《概率论与数理统计》试卷1

合集下载

概率论与数理统计试卷(第一阶段)

概率论与数理统计试卷(第一阶段)

概率论与数理统计第一阶段12.0.18.0.28.0.58.0.D C B A错对..B A12、设A 、B 为两个事件,则()A B B A =- 。

错对..B A13、若A B ⊂,则()()B P A P ≥。

错对..B A15、若A 、B 、C 三个事件两两独立,则A 、B 、C相互独立。

错对..B A16错对..B A17、若A 、B 为任意两个事件,则()()()B P A P B A P -=-。

错对..B A18、若事件A 、B 互斥,则A 、B 对立。

错对..B A19、A 为不可能事件,则有()0=A P 。

27、一批产品100件,有80件正品,20件次品,其中甲厂生产的为60件,有50件正品,10件次品,余下的40件均由乙厂生产。

先从该批产品中任取一件,记=A “取出的产品是正品”,=B “取出的产品是由甲厂生产”,则()321________________==AB P ,()654________________==B A P ,()987______________==A B P 。

请从下列各项中选出你认为正确的项填入上述绿色横线上,并选择对应填入序列。

54.65.85.21.50.60.80.100.a h g f e d c b28、甲、乙、丙三人各射一次靶,记为“甲中靶”,为“乙中靶”,为“丙中靶”,则可用上述三个事件的运算分别表示下列各事件:“三人中恰好有一人中靶”: 1 ; “三人中至少有一人中靶”: 2 ;“三人中至少有两人中靶”: 3 ; “三人中。

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率论与数理统计考试试卷与答案

概率论与数理统计考试试卷与答案

概率论与数理统计考试试卷与答案一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。

2、一个袋子中有大小相同的红球6只、黑球4只。

(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。

3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为: 0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 , 2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。

7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

《概率论与数理统计》考试试卷

《概率论与数理统计》考试试卷

填空题(每空2分, 2×12=24分)1、 设 A.B.C 为三事件, 事件 A.B.C 恰好有两个事件发生可表示为__________________。

2、 已知 =0.5, =0.3, =0.6, 则 =__________________。

3、 设 , 则 的密度函数为____________________。

4、 设 服从区间 上的均匀分布, 则 ______________, _______________。

5、 设 是X 的一个随机样本, 则样本均值 _______________, 且 服从的分布为_____________________。

6、 若二维连续型随机变量密度函数为 , 则 。

7、 总体 且 已知, 用样本检验假设 时, 采用统计量_________________________。

8、 评选估计量的标准有_______________、_____________和一致性。

9、 切贝雪夫不等式应叙述为_______________判断题(每小题2分, 2×8=16分)1、 互不相容的随机事件一定相互独立。

( )2、 若连续型随机变量 的概率密度为 , 则 。

( )3、 二维随机变量的边缘分布可以确定联合分布。

( )4、 对于任意随机变量 , 有 。

( )5、 不相关的两个随机变量一定是相互独立的。

( )6、 对任意随机变量 , 若 存在, 则 。

( )7、 若 , 则 。

( )若 , , 密度函数分别为 及 , 则 。

( )概率计算题(每题10分, 4×10=40分)在1-2000的整数中随机地取一个数, 问取到的整数即不能被4整除又不能被6整除的概率是多少? (10分)设两台车床加工同样的零件, 第一台车床的优质品率为0.6, 第二台车床的优质品率为0.9, 现把加工的零件放在一起, 且已知第一台加工的零件比第二台加工的零件多一倍, 求: (1)从产品中任取一件是优质品的概率。

《概率论与数理统计》习题及答案--第一章

《概率论与数理统计》习题及答案--第一章
《概率论与数理统计》习题及答案
第一章
1.写出下列随机试验的样本空间及下列事件中的样本点:
( 1)掷一颗骰子,记录出现的点数 . A ‘出现奇数点’ ; ( 2)将一颗骰子掷两次, 记录出现点数 . A ‘两次点数之和为
一次的点数,比第二次的点数大 2’;
Байду номын сангаас10’,B ‘第
( 3)一个口袋中有 5 只外形完全相同的球,编号分别为 1,2,3,4,5 ;从中同时
解 ( 1) A1 A2 A3 ;( 2) A1 A2 A3 ;( 3) A1 A2 A3 ( 4) A1 A2 A1 A3 A2 A3 。
A1 A2 A3
A1 A2 A3 ;
4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。
解 设 A ‘任取一电话号码后四个数字全不相同’ ,则
P( A)
(2,3,5), (2, 4,5), (1,3,5)}
A {(1, 2,3), (1,2, 4), (1,2,5), (1,3, 4), (1,3,5), (1,4,5)}
( 4) S {( ab, , ), ( , ab, ), ( , ,ab), (a,b, ), ( a, ,b), (b, a, ),
(b, , a), ( , a, b,), ( ,b, a)} ,其中‘ ’表示空盒;
A {( ab, , ), (a, b, ), ( a, , b), (b, a, ), (b, , a)} 。
( 5) S {0,1, 2, }, A {0,1, 2,3, 4}, B {3, 4, } 。 2.设 A, B,C 是随机试验 E 的三个事件,试用 A, B,C 表示下列事件:
( 1)仅 A 发生; ( 2) A, B, C 中至少有两个发生; ( 3) A, B, C 中不多于两个发生; ( 4) A, B, C 中恰有两个发生; ( 5) A, B, C 中至多有一个发生。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

《概率论与数理统计》试卷

《概率论与数理统计》试卷

《概率论与数理统计》试卷一、填空题('308'3=⨯)1、 若,A B 相互独立,且()()0.5P A P B ==,则 ()P A B = .2、 设总体X 服从正态分布()2,σμN ,12,,n X XX 是来自总体X 的样本,则()2E S = .3、 已知离散型随机变量X 的分布律如下:则b = ,{}13P X <<= .4、设()~1,5U ξ,当1215x x <<<时,{}12P x x ξ≤≤= .5、设随机变量,X Y 相互独立,且()4,1~N X ,)21,8(~b Y ,则()E X Y -= . 6、设总体X 服从参数为λ的泊松分布,λ未知,若125,,,X X X 是来自总体的样本,则λ23___+X 统计量.(请填写“是”或者“不是”) 7则()=XY E . 8、设()()25,36,0.4XY DX D Y ρ===,则()D X Y += .9、设X 表示10次独立重复射击命中目标的次数,每次命中率为0.4,则X 服从的分布为 . 10、口袋中有5只球,其中3只新的2只旧的,现接连取球三次,每次1只,则第二次取到新球的概率是 .二、('10)商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1, 0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?三、('10)已知离散型随机变量的分布律如下表:求:(1)常数C ; (2)概率{}1=X P ;(3) 概率{}23<<-X P ;(4)随机变量的分布函数()x F .四、('10) 设二维离散型随机变量(),X Y 的分布律如下: 1231 16 19118213ab问:当,a b 取什么值时,,X Y 相互独立.五、('10)设总体X 的概率密度为1,01,()0,x x f x θθ-⎧≤≤⎪=⎨⎪⎩其他,其中0>θ,θ为未知参数,12,,,n X X X 是来自总体X 的样本,12,,,n x x x 为相应的样本值,分别用矩估计法和最大似然估计法求参数θ的估计值.六、('10)有两只口袋,每只口袋中装2个红球和2个绿球.先从第一个口袋中任取2个球放入第二个口袋中,再从第二只口袋中任取2个球.把两次取到的红球数分别记作X 和Y ,求(),X Y 的分布律,X ,Y 的边缘分布律,并求)(),(),(XY E Y E X E .七、('10)设随机变量X 服从参数为θ指数分布, 其概率密度为⎪⎩⎪⎨⎧≤>=-,0,0,0,1)(/x x e x f x θθ其中,0>θ 求).(),(X D X E八、('10)根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”(单位:kg ·cm -2)X 服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下:32.56 29.66 31.64 30.00 31.87 31.03检验这批砖的平均抗断强度为32.50kg ·cm -2是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?(96.105.0=Z )Y X。

地大《概率论与数理统计》在线作业一答卷

地大《概率论与数理统计》在线作业一答卷
A.0.761
B.0.647
C.0.845
D.0.464
答案:D
21.
A.a
B.b
C.c
D.d
答案:A
22.10部机器独立工作,每部停机的概率为0.2。则3部机器同时停机的概率为()。
A.0.2013
B.0.7987
C.0.5532
D.0.4365
答案:A
23.
A.a
B.b
C.c
D.d
答案:B
24.假设有100件产品,其中有60件一等品,30件二等品,10件三等品,从中一次随机抽取 两件,则恰好抽到2件一等品的概率是( )
A.59/165
B.26/165
C.16/33
D.42/165
答案:A
25.设试验E为的投掷一枚骰子,观察出现的点数。 试判别下列事件是随机事件的为( )
A.1/8
B.3/8
C.5/8
D.7/8
答案:B
9.设连续型随机变量X的概率密度和分布函数分别为f(x),F(x),下列表达式正确为()。
A.0≤f(x)≤1
B.P(X=x)=F(x)
C.P(X=x)=f(x)
D.P(X=x)≤F(x)
答案:A
10.
A.a
B.b
C.c
D.d
答案:A
11.有一袋麦种,其中一等的占80%,二等的占18%,三等的占2%,已知一、二、三等麦种的发芽率分别为0.8,0.2,0.1,现从袋中任取一粒麦种,则它发芽的概率为()。 .0.1
答案:B
12.试判别下列现象是随机现象的为( )

概率论与数理统计考试试卷

概率论与数理统计考试试卷

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1()(1),1,2,,01k P X k p p k p -==-=<< ,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

概率论与数理统计

概率论与数理统计

《概率论与数理统计》模拟试卷一1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。

[A] P (A)=1-P (B ) [B] P (A│B)=0 [C] P (A│B )=1 [D] P (A B )=02、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。

[A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A│B )=P (B ) [D] P (A│B )=P(A ) 3、若A 、B 相互独立,则下列式子成立的为( )。

[A] )()()(B P A P B A P =[B] 0)(=AB P[C] )()(A B P B A P = [D] )()(B P B A P = 4、下面的函数中,( )可以是离散型随机变量的概率函数。

[A] {}11(0,1,2)!e P k k k ξ-=== [B] {}12(1,2)!e P k k k ξ-=== [C] {}31(0,1,2)2k P k k ξ===[D] {}41(1,2,3)2k P k k ξ===---5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。

[A]1,2a =-32b = [B] 2,3a =23b =[C] 3,5a =25b =- [D] 1,2a =32b =-二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T ,错误的填F ,填在答题卷相应题号处。

6、事件“掷一枚硬币,或者出现正面,或者出现反面”是必然事件。

( T )7、通过选取经验函数()12;,,...,k x a a a μ中的参数使得观察值i y 与相应的函数值()12;,,...,i k x a a a μ之差的平方和最小的方法称之为方差分析法。

概率论与数理统计题库及答案

概率论与数理统计题库及答案

概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21- (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 41414121(B)161814121(C)1631614121 (D)81834121-3. 设连续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f 则下列等式成立的是( ).(A) X P (≥1)1=- (B) 21)21(==X P (C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ). (A)⎰bax x F d )( (B)⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -6. 下列函数中能够作为连续型随机变量的密度函数的是( ).7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+-)(x Φ1)(=x (C) Φ=-)(a Φ)(a (D) 2)(=<a x P Φ1)(-a9. 下列数组中,不能作为随机变量分布列的是( ).(A )61,61,31,31 (B) 104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23-=X Y ( ).(A) )3,2(-N (B) )3,4(-N (C) )3,4(2-N (D) )3,2(2-N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p (C) 1- p (D)p-1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ).(A) E X D X (),().==321(B) 9.0)(,3)(==X D X E(C) E X D X ().,()==033 (D) E X D X ().,().==032113. 设),(~p n B X ,2.1)(,2)(==X D X E ,则p n ,分别是( ).(A) 4.0,5 (B) 2.0,10 (C) 5.0,4 (D) 25.0,814. 设),(~p n B X ,且6.3)(,6)(==X D X E ,则=n ( ).(A) 30 (B) 20(C) 15 (D) 1015. 设)10,50(~2N X ,则随机变量( )~)1,0(N .(A)10050-X (B) 1050-X (C) 50100-X (D) 5010-X16. 对于随机事件A B ,,下列运算公式( )成立.(A) )()()(B P A P B A P +=+ (B) )()()(B P A P AB P =(C) )()()(A B P B P AB P = (D) )()()()(AB P B P A P B A P -+=+17. 下列事件运算关系正确的是( ).(A) A B BA B += (B) A B BA B += (C) A B BA B += (D) B B -=118. 设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B19. 设A B ,为随机事件,A 与B 不同时发生用事件的运算表示为( ).(A) A B + (B) A B + (C) AB AB + (D) A B20. 若随机事件A ,B 满足AB =∅,则结论( )成立. (A) A 与B 是对立事件 (B) A 与B 相互独立(C) A 与B 互不相容 (D) A 与B 互不相容21. 甲、乙二人射击,A B ,分别表示甲、乙射中目标,则AB 表示( )的事件.(A) 二人都没射中 (B) 至少有一人没射中 (C) 两人都射中 (D) 至少有一人射中22. 若事件A B ,的概率为6.0)(=A P ,5.0)(=B P ,则A 与B 一定( ).(A) 相互对立 (B) 相互独立 (C) 互不相容 (D) 相容23. 设A ,B 为两个任意事件,则P (A +B ) =( ).(A) P (A ) + P (B ) (B) P (A ) + P (B ) - P (A )P (B ) (C) P (A ) + P (B ) - P (AB ) (D) P (AB ) – [P (A ) + P (B ) ]24. 对任意两个任意事件A B ,,等式( )成立.(A) P AB P A P B ()()()= (B) P A B P A P B ()()()+=+ (C) P A B P A P B ()()(())=≠0 (D) P AB P A P B A P A ()()()(())=≠025. 设A ,B 是两个任意事件,则下列等式中( )是不正确的.(A) )()()(B P A P AB P =,其中A ,B 相互独立 (B) )()()(B A P B P AB P =,其中0)(≠B P (C) )()()(B P A P AB P =,其中A ,B 互不相容 (D) )()()(A B P A P AB P =,其中0)(≠A P26. 若事件A 与B 互斥,则下列等式中正确的是( ). (A) P AB P A P B ()()()= (B) P B P A ()()=-1(C) P A P A B ()()= (D) P A B P A P B ()()()+=+27. 设A ,B 为两个任意事件,则下列等式成立的是( ).(A) B A B A +=+ (B) B A AB ⋅= (C) B A B B A +=+ (D) B A B B A +=+28. 设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=-29. 甲、乙两人各自考上大学的概率分别为0.7,0.8,则甲、乙两人同时考上大学的概率为( ).(A) 0.56 (B) 0.50 (C) 0.75 (D) 0.9430. 若A B ,满足( ),则A 与B 是对立事件.(A) 1)(=+B A P (B) A B U AB +==∅, (C) P A B P A P B ()()()+=+ (D) P AB P A P B ()()()=31. 若A 与B 相互独立,则等式( )成立.(A) P A B P A P B ()()()+=+ (B) P AB P A ()()=(C) P A B P A ()()= (D) P AB P A P B ()()()=32. 设n x x x ,,,21 是正态总体),(2σμN (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关. (A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α33. 假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小34. 从正态总体),(2σμN 中随机抽取容量为n 的样本,检验假设0H :,0μμ=1H :0μμ≠.若用t 检验法,选用统计量t ,则在显著性水平α下的拒绝域为( ). (A) )1(-<n t t α (B) t ≥)1(1--n t α (C) )1(->n t t α (D) )1(1--<-n t t α35. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差36. 对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差37. 设n x x x ,,,21 是正态总体),(2σμN 的一个样本,2σ是已知参数,μ是未知参数,记∑==ni i x n x 11,函数)(x Φ表示标准正态分布)1,0(N 的分布函数,975.0)96.1(=Φ,900.0)28.1(=Φ,则μ的置信水平为0.95的置信区间为( ).(A) (x -0.975n σ,x +0.975nσ) (B) (x -1.96n σ,x +1.96n σ)(C) (x -1.28nσ,x +1.28nσ) (D) (x -0.90nσ,x +0.90nσ)38. 设321,,x x x 是来自正态总体N (,)μσ2的样本,则μ的无偏估计是( ).(A)3321x x x -+ (B) 321x x x -+(C) 321x x x ++ (D) 321x x x --39. 设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321x x x ++ (B)321525252x x x ++ (C) 321515151x x x ++ (D) 321535151x x x ++40. 设21,x x 是取自正态总体)1,(μN 的容量为2的样本,其中μ为未知参数,以下关于μ的估计中,只有( )才是μ的无偏估计.(A) 213432x x + (B) 214241x x + (C) 214143x x - (D)215352x x +41. 设总体X 的均值μ与方差2σ都存在,且均为未知参数,而n x x x ,,,21 是该总体的一个样本,记∑==ni i x n x 11,则总体方差2σ的矩估计为( ).(A) x (B) ∑=-ni i x n 12)(1μ(C) ∑=-n i i x x n 12)(1 (D) ∑=n i i x n 12142. 设n x x x ,,,21 是来自正态总体22,)(,(σμσμN 均未知)的样本,则( )是统计量.(A) 1x (B) μ+x (C)221σx (D)1x μ43. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量. (A ) X (B)∑=31i iX(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X44. 设X 是连续型随机变量,其密度函数为⎩⎨⎧∉∈=],,1(,0],,1(,ln )(b x b x x x f 则常数b =( ).(A) e (B) e + 1 (C) e – 1 (D) e 245. 随机变量)21,3(~B X ,则X P (≤=)2( ).(A) 0 (B) 81(C)21 (D) 8746. 设),2(~2σN X ,已知2(P ≤X ≤4.0)4=,则X P (≤=)0( ).(A) 0.4 (B) 0.3 (C) 0.2 (D) 0.147. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么( ).(A) 2,2-==b a (B) 1,2-=-=b a (C) 1,21-==b a (D) 2,21==b a48. 设随机变量X 的密度函数为f x (),则E X ()2=( ).(A) xf x x ()-∞+∞⎰d (B)x x f x d )(2⎰∞+∞-(C)x x xf d )(2⎰∞+∞- (D)(())()x E X f x x --∞+∞⎰2d49. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式( )成立.(A) )]([)(X E X E X D -= (B) 22)]([)()(X E X E X D += (C) )()(2X E X D = (D) 22)]([)()(X E X E X D -=50. 设随机变量X 服从二项分布B (n , p ),已知E (X )=2.4, D (X )=1.44,则( ). (A) n = 8, p =0.3 (B) n = 6, p =0.6 (C) n = 6, p =0.4 (D) n = 24, p =0.1二、证明题1. 试证:已知事件A ,B 的概率分别为P (A ) = 0.3,P (B ) = 0.6,P (B A +) = 0.1,则P (AB ) =0.2. 试证:已知事件A ,B 相互独立,则)()(1)(B P A P B A P -=+.3. 已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立.4. 设事件A ,B 的概率分别为21)(=A P ,32)(=B P ,试证:A 与B 是相容的.5. 设随机事件A ,B 相互独立,试证:B A ,也相互独立.6. 设A ,B 为随机事件,试证:)()()(AB P A P B A P -=-.7. 设随机事件A ,B 满足AB =∅,试证:P A B P B ()()+=-1.8. 设A ,B 为随机事件,试证:P A P A B P AB ()()()=-+.9. 设B A ,是随机事件,试证:)()()()(AB P B A P B A P B A P ++=+.10. 已知随机事件A ,B 满足A B ⊃,试证:)()()(B P A P B A P -=-.三、计算题1. 设B A ,是两个随机事件,已知5.0)(=A P , 4.0)(=A B P ,求)(B A P .2. 某种产品有80%是正品,用某种仪器检查时,正品被误定为次品的概率是3%,次品被误定为正品的概率是2%,设A 表示一产品经检查被定为正品,B 表示一产品确为正品,求P (A ).3. 某单位同时装有两种报警系统A 与B ,每种系统独立使用时,其有效概率9.0)(=A P ,95.0)(=B P ,在A 有效的条件下B 有效的概率为97.0)(=A B P ,求)(B A P +.4. 设A , B 是两个独立的随机事件,已知P (A ) = 0.4,P (B ) = 0.7,求A 与B 只有一个发生的概率.5. 设事件A ,B 相互独立,已知6.0)(=A P ,8.0)(=B P ,求A 与B 只有一个发生的概率.6. 假设B A ,为两事件,已知4.0)(,6.0)(,5.0)(===A B P B P A P ,求)(B A P +.7. 设随机变量)2,3(~2N X ,求概率X P <-3(≤)5 (已知Φ3841.0)1(=,Φ7998.0)3(=φ).8. 设A , B 是两个随机事件,已知P (A ) = 0.6,P (B ) = 0.8,P (A B )=0.2,求)(B A P .9. 从大批发芽率为8.0的种子中,任取4粒,问(1)4粒中恰有一粒发芽的概率是多少?(2)至少有1粒种子发芽的概率是多少?10. 已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P +.11. 已知4.0)(=A P ,8.0)(=B P ,5.0)(=B A P ,求P B A ().12. 已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .13. 已知P (B ) = 0.6,)(B A P =0.2,求)(AB P .14. 设随机变量X ~ N (3,4).求 P (1< X < 7)(Φ3841.0)1(=,Φ2977.0)2(=).15. 设)5.0,3(~2N X ,求2(P ≤X ≤)6.3.已知Φ9884.0)2.1(=,2977.0)2(=Φ.16. 设B A ,是两个随机事件,已知4.0)(=A P ,5.0)(=B P ,45.0)(=A B P ,求)(B A P +.17.已知某批零件的加工由两道工序完成,第一道工序的次品率为0.03,第二道工序的次品率为0.01,两道工序的次品率彼此无关,求这批零件的合格率.18.已知袋中有3个白球7个黑球,从中有放回地抽取3次,每次取1个,试求⑴恰有2个白球的概率;⑵有白球的概率.19. 268-16.某篮球运动员一次投篮投中篮框的概率为0.8,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.20.某篮球运动员一次投篮投中篮框的概率为0.9,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.21.某气象站天气预报的准确率为70%,在4次预报中,求⑴恰有3次准确的概率;⑵至少1次准确的概率.22.已知某批产品的次品率为0.1,在这批产品中有放回地抽取4次,每次抽取一件,试求⑴有次品的概率;⑵恰有两件次品的概率.23.某射手射击一次命中靶心的概率是08.,该射手连续射击5次,求:⑴命中靶心的概率;⑵至少4次命中靶心的概率.24.设箱中有3个白球2个黑球,从中依次不放回地取出3球,求第3次才取到黑球的概率.25.一袋中有10个球,其中3个黑球7个白球.今从中有放回地抽取,每次取1个,共取5次.求⑴恰有2次取到黑球的概率;⑵至少有1次取到白球的概率.26.有甲、乙两批种子,发芽率分别是0.85和0.75,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.27.机械零件的加工由甲、乙两道工序完成,甲工序的次品率是0.01,乙工序的次品率是0.02,两道工序的生产彼此无关,求生产的产品是合格品的概率.28.一袋中有10个球,其中3个黑球7个白球.今从中依次无放回地抽取两个,求第2次抽取出的是黑球的概率.29. 两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。

《概率论与数理统计》期末试题一答案

《概率论与数理统计》期末试题一答案

1、 设A 与B 为互不相容的两个事件,0)B (P >,则=)|(B A P 0 。

2、 事件A 与B 相互独立,,7.0)(,4.0)(=+=B A P A P 则 =)(B P 0.5 。

3、 设离散型随机变量X 的分布函数为 0 1-<x=)(x F a 11<≤-xa 32- 21<≤x b a + 2≥x且21)2(==X P ,则=a61 =b , 65。

4、 某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。

5、 设随机变量X 与Y 相互独立,X 服从“0-1”分布,4.0=p ;Y 服从2=λ的泊松分布)2(π,则._______24.2____)(_______,4.2____)(=+=+Y X D Y X E6、 已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =-7、 设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。

8、 设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。

(96.1975.0=u )9、 若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。

一、 计算题(每小题10分,共60分)1、 (10分)已知8只晶体管中有2只次品,从其中取两次,每次任取一只,做不放回抽样。

求下列事件的概率:(1)一只是正品,一只是次品;(2)第二次才取得次品;(3)第二次取出的是次品。

概率论与数理统计第一章试卷

概率论与数理统计第一章试卷

概率论与数理统计第一章试卷一、选择题(每题5分,共30分)1. 设随机试验E为抛一枚硬币,观察正面H、反面T出现的情况,则样本空间Ω = ()A. {H}B. {T}C. {H,T}D. {H,T,0}2. 设A,B,C为三个事件,则“A,B,C至少有一个发生”可表示为()A. A∪ B∪ CB. A∩ B∩ CC. ¯A∪¯B∪¯CD. ¯A∩¯B∩¯C3. 设A,B为两个事件,若AB = varnothing,则称A与B()A. 相互独立B. 互不相容C. 对立D. 构成完备事件组。

4. 对于任意两个事件A,B,有P(A - B)=()A. P(A)-P(B)B. P(A)-P(AB)C. P(A)+P(B)D. P(A)+P(B)-P(AB)5. 设事件A,B满足P(A) = 0.6,P(B) = 0.4,且A⊃ B,则P(A - B)=()A. 0.2B. 0.4C. 0.6D. 1.6. 设A,B为两个随机事件,且P(A)=(1)/(3),P(B)=(1)/(2),P(AB)=(1)/(6),则P(AB)=()A. (1)/(3)B. (1)/(2)C. (1)/(6)D. (2)/(3)二、填空题(每题5分,共30分)1. 设样本空间Ω={1,2,3,·s,10},事件A = {2,4,6,8,10},则A的对立事件¯A=______。

2. 已知P(A)=(1)/(4),P(B)=(1)/(3),A,B相互独立,则P(A∪ B)=______。

3. 设A,B为两个事件,P(A) = 0.5,P(B) = 0.3,P(A∪ B)=0.6,则P(AB)=______。

4. 设事件A,B满足P(A) = 0.4,P(B) = 0.3,P(A∪ B)=0.6,则P(¯A¯B)=______。

5. 若A,B为两个事件,且P(A) = 0.7,P(A - B)=0.3,则P(AB)=______。

《概率论》试卷汇总

《概率论》试卷汇总

《概率论与数理统计》1一、填空题:(每题2分,共20分)1、设事件A 、B 相互独立,且()0.7,()0.4P A B P A ⋃==,则)(B P = .2、袋中有5只球(其中2只白球、3只黑球),从中不放回地每次随机取一只球,则第二次取到白球的概率为 .3、若X 服从泊松分布(3)π,则()D X =_ __.4、若随机变量X 的分布函数为0,1,()ln ,1,1,.x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩则X 的概率密度为__ .5、设随机变量X 的分布律为 1{0}{1}2P X P X ====, 随机变量Y 与X 相互独立且同分布,则随机变量max{,}Z X Y =的分布律为 。

6、设随机变量,X Y 的期望值分别为()1,()3,E X E Y ==则(231)E X Y -+= .7、在冬季供暖季节,住房温度X 是随机变量,已知平均温度为20C ,标准差2C ,试用切比雪夫不等式估计概率:{204}P X -<≥ .8、设1234,,,X X X X 为取自正态总体(0,1)N 的样本,令221234()()N X X X X =-+-,则当c =___ _时,cN 服从2χ分布.9、设总体X 服从区间[]0,θ上的均匀分布,从中取得样本12,,,n X X X ,则参数θ的矩估计量为__ __.10、设某种保险丝熔化时间~(,0.36)X N μ(单位:秒),取16=n 的样本,得样本均值为12,x = 则μ的置信度为95%的置信区间是 .(注:0.0250.051.96, 1.64Z Z ==)二、选择题:(每题2分,共10分)1、某人射击的命中率为0.4,用X 表示他在5次独立射击中命中目标的次数,则X 的分布为( )A. 0-1分布B.二项分布C.均匀分布D.泊松分布 2、设随机变量X 的分布函数是()F x ,则随机变量21Y X =+的分布函数为( )A. 2()1F y +B. (21)F y +C. 11()22F y -D. 11()22F y -3、若随机变量,X Y 相互独立,则下列结论错误的是( ) A.()()()E X Y E X E Y +=+ B.()()()E XY E X E Y =C.()()()D X Y D X D Y +=+D.()()()D X Y D X D Y -=-4、已知随机变量X 与Y 相互独立,且X ~(0,1)N ,Y ~(1,1)N 下式成立的是( ) A. 1{1}2P X Y +≤=B. 1{0}2P X Y +≤=C. 1{0}2P X Y -≤=D.1{1}2P X Y -≤= 5、设12,,,n X X X 为取自正态总体2(0,)N σ的样本, 下列统计量能作为2σ的无偏估计量的是 ( )A. 2111n i i X n =-∑B. 211n ii X n =∑ C. 2211ni i X n =∑ D. 2111ni i X n =+∑ 三、解答下列各题:(每题10分,共30分)1、甲乙两台机器制造出一批零件,根据长期资料总结,甲机器制造出的零件废品率为2%,乙机器制造出的零件废品率为3%,已知甲机器的制造量是乙机器的两倍.今从该批零件中任意取出一件, (1) 求取到废品的概率(2)若取到的零件经检验是废品,求该零件是乙机器制造的概率.2、设连续型随机变量X 的分布函数为4,0()0, 0x A Be x F x x -⎧+>=⎨≤⎩(1)求常数,A B 的值(2)计算概率{21}P X -≤<3、设离散型随机变量X 的所有可能取值为1,0,1-,已知15(),()39E X D X ==,求X的分布律及分布函数四、(本题12分)设二维随机变量,X Y ()的概率密度为, 0(,)0, y e x yf x y 其他-⎧<<=⎨⎩ 1、求边缘概率密度,并判断X Y 与是否相互独立; 2、求概率{2}P X Y +≤五、数理统计应用题:(每题12分,共24分)1、设总体X 的密度函数为,0() 0 ,0x e x f x x λλ-⎧>=⎨≤⎩ ,其中λ(>0)为参数,12,,n x x x 是来自总体的一组样本观测值,求参数λ的最大似然估计量.2、设某次考试的考生成绩服从正态分布,从中随机抽取25名考生的成绩,算得平均成绩为73.5分,标准差为10分,问在显著性水平=0.05α下,能否认为这次考试全体考生的平均成绩高于70分?(注:0.0250.05(24) 2.0639,(24) 1.7109t t ==) 六、证明题:(本题4分)设,A B 是两个随机事件,随机变量 1, 1A X A ⎧=⎨-⎩若出现,,若不出现. 1, 1Y ⎧=⎨-⎩若B 出现,,若B 不出现.试证明随机变量X 和Y 不相关的充分必要条件是A 与B 独立《概率论与数理统计》2(参考数据:(0.5)0.6915F =,(2)0.9772F =,0.025 1.96Z =,0.05 1.64Z =,0.025(15) 2.1315t =, 0.05(15) 1.7531t =,0.025(16) 2.1199t =,0.05(16) 1.7459t =)二、填空、选择题:(每题3分,共30分;请将各题的答案填入下列表格) 1、已知()0.5,()0.2,()0.2P A P B P B A ===,则()P A B È= .2、设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___3、设(,)X Y 服从区域:02,01G xy##上的均匀分布,则概率{}P Y X ? .4、设1210,,, X X X 是取自总体),(2σμN 的样本,则统计量102211()i i X μσ=-∑服从____分布(注明分布的自由度).5、设(0,)X U θ ,且关于y 的方程240y y X ++=有实根的概率是0.8,则参数θ= .6、设随机变量X ~(10,0.2)b (二项分布),用切比雪夫不等式估计:{24}P X -≤≥( ).(A )19 (B ) 89 (C )110 (D )9107、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是( ) (A) A 与B 互不相容 (B)()0>A B P (C) ()()()B P A P AB P = (D)()()A P B A P = 8、设两个随机变量X 和Y 相互独立,且同分布:()()1112P X P Y =-==-=,()()1112P X P Y ====,则()P X Y ==( ) (A) 0 (B) 1 (C)12 (D) 149、设随机变量),(Y X 的方差,1)(,4)(==Y D X D 相关系数,6.0=XY ρ则方差=-)23(Y X D ( ).(A) 40 (B) 34 (C) 25.6 (D) 17.610、若X 的分布函数为()F x ,Y 与X 相互独立且具有相同分布规律,max(,)Z X Y =,则Z 的分布函数为( )(A )()F z (B )2()F z (C) 1()F z - (D) 21(1())F z -- 二、概率论应用题:(40分)1、(10分)某厂有A 、B 、C 三条流水线生产同一产品,其产品分别占总产量的35%、40%、25%,这三条生产线的次品率分别为2%、3%、4%,现从出厂的产品中任取一件, (1)求恰好取到次品的概率;(2)若取到次品,求该次品是B 流水线生产的概率.2、(15分)设随机变量X 的概率密度为2,01()0,x x f x ≤≤⎧=⎨⎩其他, 求: (1)概率13{}22P X <≤;(2)X 的分布函数()F x ;(3)12+=X Y 的概率密度. 3、(15分)设随机变量,X Y 的联合概率密度为3,0,0(,)0,x y Ae x y f x y --⎧>>=⎨⎩其他,(1)求常数A 的值;(2)求边缘概率密度(),()X Y f x f y ; (3)分析随机变量,X Y 是否相互独立. 三、数理统计应用题:(25分)1、设总体X 的概率分布律为()()()11,1,2,x P X x p p x -==-= ,其中01p <<为未知参数,取样本12,,,n X X X ,记样本观测值为12,,,n x x x ,求参数p 的矩估计量和最大似然估计量.(15分)2、随机抽取某班16名学生的英语考试成绩,得平均分数为80x =分,样本标准差8s =分,若全年级的英语成绩服从正态分布,且平均成绩为76分,试问在显著性水平=0.05α下,该班的英语平均成绩是否显著高于全年级的英语平均成绩?(10分) 四、解答下列问题:(5分)某商店出售某种贵重商品. 根据经验,该商品每月销售量服从参数为12λ=的泊松分布.假定各月的销售量是相互独立的. 用中心极限定理计算该商店一年内(12个月)售出该商品件数在120件到150件之间的概率《概率论与数理统计》3一、填空题:(每题3分,共30分)1、设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P .2、三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 .3、有甲、乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为___.4、某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为___.5、设离散型随机变量X 的分布函数为0,11(),1231,2x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩ ,则{2}P X == .6、设随机变量(1,1)X U - ,则1{}2P X ≤=____.7、设随机变量1(4,)3X B ,则{0}P X >=____.8、设随机变量(0,4)X N ,则{0}P X ≥=____.9、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___.10、设总体X 的概率密度为,0()0,0x e x f x x λλ-⎧>=⎨≤⎩,来自总体X 的一个样本平均值9x =,则参数λ的矩估计ˆλ=___. 二、选择题:(每题4分,共20分)1、设随机变量X 的概率密度为3,01()0,kx x f x ⎧≤<=⎨⎩其他则常数k =( )A .1B .2C .3D .42、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(t D .)1,1(F3、设n X X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列( )不是统计量.A .i ni X ≤≤1min B .μ-X C .∑=ni iX 1σD .1X X n -4、已知随机变量X 的密度函数为 )(21)(4)3(2∞<<-∞=+-x ex f x π, 则Y =( ))1,0(~N 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京化工大学2014——2015学年第二学期
《概率论与数理统计》复习试卷
一、填空题(每空3分,共30分)
1. 设B A ,为随机事件, P (A )=0.8,P (B )=0.4,P (B |A )=0.5,则=)(B A P __________。

2. 设随机事件A 与B 互不相容,则=⋃)(B A P __________。

3. 设甲袋中有两个红球和一个白球,乙袋中有三个红球和两个白球,从甲袋中任取一球不看颜色放到乙袋中后,再从乙袋中任取一球,则最后取得红球的概率为__________。

4. 设随机变量X 与Y 相互独立且同分布,P (X =0)=P (Y =0)=0.3,P (X =1)=P (Y =1)=0.7,
则P (X =Y )= __________。

5.设X 服从参数为1的泊松分布,则==-}0)({2
X E X P __________。

6.假设随机变量X 在区间[-1,2]上服从均匀分布;随机变量 ⎪⎩⎪⎨⎧<-=>=0,10,
00,1X X X Y ,
则E (Y )= _________;D (Y )=_________。

7.设),0(~2σN X ,n X X X ,,,21 为来自总体X 的样本,22)1(S n V -=,其中
2211()1n i i S X X n ==--∑,则~)1(-n n V X _________(写出具体参数)。

8. 设12,,,n X X X 是来自总体2~(,)X N μσ的一个简单随机样本,其中样本均值为X ,若μ已
知,则未知参数2σ的置信度为1α-的置信区间为_____ ___。

若2σ已知,则未知参数
μ的置信度为1α-的置信区间为_____ ___。

(分位点用上分位点来记)
二、(10分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为 20%,不胖不瘦者患高血压病的概率为 10% ,瘦者患高血压病的概率为5%, 试求 : ( 1 ) 该地区居民患高血压病的概率;
( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大?
三、(12)设一袋子中有1个红球,2个黑球,3个白球,取两次,每次取后放回,设X 与Y 分别表示两次取球后的红球和黑球个数,求:(1)(X,Y )的分布律;(2)D(X+Y)
四、(8分)某商店出售某品牌雪糕,共有三种价格2元,2.5元,3元。

出售哪一种雪糕是随机的,售出三种价格雪糕的概率分别为0.3,0.4,0.3。

已知某天共售出200个,试用中心极限定理求这天收入在490元至510元之间的概率。

五、(16分)设(X ,Y )的联合密度函数为⎩⎨
⎧<<<<=其他,020,10,),(x y x C y x f ,C 为未知常
数。

求:(1)C ;
(2))(x f X ,)(y f Y ,并说明X 与Y 是否相互独立;
(3))(z f Z ,这里Z =2X -Y 。

六、(10分)设总体X 的密度函数为 ,,21);(+∞<<-∞=-x e x f x θθθ n X X X X ,,,,321 为来自
总体的一个样本,求参数θ的极大似然估计量θ
ˆ。

七、(14分)为改建某小区中央绿地,承建公司有5位工作人员彼此独立地测量了中央绿地的面积,得如下数据(单位:2
Km ) 1.23 1.22 1.20 1.26 1.23。

设绿地面积的测量值服从正态分布),(2σμN 。

设0.05α=,试检验:
(1) 以前认为这块绿地的面积真值是1.23,是否有必要修改以前的结果?
(2) 以前认为这块绿地的面积的标准差σ不超过0.015,能否认为这次测量的标准差显著偏大? 附表:标准正态分布的下侧分位数, 2χ分布, t 分布和F 分布的上侧分位数:
~(0,1),Z N {}()z P Z z αααΦ=<=;{}22()()P n n αχχα>=;{}()()P t n t n αα>=;
6443.0)37.0(=Φ,966.0)826.1(=Φ,9332.0)5.1(=Φ,(1.645)0.95Φ=,(1.96)0.975Φ=,
5706.2)5(025.0=t ,7764.2)4(025.0=t ,015.2)5(05.0=t ,1318.2)4(05.0=t ,833.12)5(2025
.0=χ,143.11)4(2025.0=χ,831.0)5(2975.0=χ,484.0)4(2975.0=χ,488.9)4(205.0=χ,071.11)5(205
.0=χ;711.0)4(295.0=χ;145.1)5(295
.0=χ。

相关文档
最新文档