八年级下册数学经典压轴题

合集下载

初二下数学试卷压轴题

初二下数学试卷压轴题

一、题目已知二次函数y=ax^2+bx+c(a≠0)的图象如下:1. 根据图象,写出该二次函数的顶点坐标和对称轴方程。

2. 若该函数图象与x轴有两个交点,且这两个交点的横坐标分别为-1和3,求该函数的解析式。

3. 若该函数图象与y轴的交点为点P,求点P的坐标。

4. 若函数图象上的点A(1,-2)关于直线y=x对称的点为B,求点B的坐标。

5. 若函数图象在x轴的左侧与x轴相交,在x轴的右侧与x轴相交,且这两个交点的横坐标分别为m和n(m<n),求m+n的值。

二、解题过程1. 顶点坐标为(-1,4),对称轴方程为x=-1。

2. 由题意知,函数图象与x轴的交点横坐标分别为-1和3,代入二次函数解析式得:a(-1)^2 + b(-1) + c = 0a(3)^2 + b(3) + c = 0解得:a = 1,b = -4,c = 3所以,该函数的解析式为y=x^2-4x+3。

3. 由于函数图象与y轴的交点横坐标为0,代入解析式得:y = (0)^2 - 4(0) + 3 = 3所以,点P的坐标为(0,3)。

4. 点A(1,-2)关于直线y=x对称的点为B,则B的横坐标为-2,纵坐标为1,所以点B的坐标为(-2,1)。

5. 函数图象在x轴的左侧与x轴相交,在x轴的右侧与x轴相交,即存在两个实数根m和n,满足:am^2 + bm + c = 0an^2 + bn + c = 0根据韦达定理,有:m + n = -b/a由于a=1,b=-4,代入得:m + n = -(-4)/1 = 4所以,m+n的值为4。

答案:1. 顶点坐标为(-1,4),对称轴方程为x=-1。

2. 函数解析式为y=x^2-4x+3。

3. 点P的坐标为(0,3)。

4. 点B的坐标为(-2,1)。

5. m+n的值为4。

因式分解压轴题(20题)-【常考压轴题】2023-2024学年八年级数学下册压轴题攻略(原卷版)

因式分解压轴题(20题)-【常考压轴题】2023-2024学年八年级数学下册压轴题攻略(原卷版)

原创精品资源学科网独家享有版权,侵权必究!1第四章因式分解压轴题1.若a =a 的说法正确的是().A .是正整数,而且是偶数B .是正整数,而且是奇数C .不是正整数,而是无理数D .无法确定2.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M 的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.3.如果一个三位正整数M 可以表示为()3m m +的形式,其中m 为正整数,则称M 为“幸运数”.例如:三位数270,()27015153=⨯+ ,∴270是“幸运数”;又如:三位数102,1021102251334617=⨯=⨯=⨯=⨯ ,∴102不是“幸运数”、根据题意,最大的“幸运数”为;若M 与N 都是“幸运数”,且350M N -=,则所有满足条件的N 的和为.4.一个四位正整数m ,如果m 满足各个数位上的数字均不为0,千位数字与个位数字相等,百位数字与十位数字相等,则称m 为“对称数”,将m 的千位数字与百位数字对调,十位数字与个位数字对调得到一个新数m ',记()81m m F m '-=.例如:对称数7337m =时,3373m '=,则()7337377373374481F -==.已知s 、t 都是“对称数”,记s 的千位数字与百位数字分别为a ,b ,t 的千位数字与百位数字分别为x ,y ,其中19b a ≤<≤,1x ≤,9y ≤,a ,b ,x ,y 均为整数.若()F s 能被8整除,则a b -=;同时,若()F s 、()F t 还满足()()64138F s F t a b x y xy +=++-+,则()F t 所有可能值的和为.5.“回文诗”即正念倒念都有意思,均成文章的诗,如:“秋江楚雁宿沙洲,雁宿沙洲浅水流.流水浅洲沙宿雁,洲沙宿雁楚江秋.”其意境与韵味读起来都是一种美的享受.在数学中也有这样一类数有这样的特征,即正读倒读都一样的自然数,我们称之为“回文数”,例如11,343等.下列几个命题中:(1)2222是“回文数”;(2)所有两位数中,有9个“回文数”;所有三位数中,有81个“回文数”;(3)任意四位数的“回文数”是11的倍数;(4)如果一个“回文数”m 是另外一个正整数n 的平方,则称m 为“平方回数”.若t 是一个千位数字为1的四位数的“回文数”,若11s t =,且s 是一个“平方回数”,则1331t =.其中,真命题有.(填序号)6.定义:任意两个数a ,b ,按规则()()11c a b =++运算得到一个新数c ,称所得的新数c 为a ,b 的“和积数”.(1)若4a =,2b =-,求a ,b 的“和积数”c ;(2)若12ab =,228a b +=,求a ,b 的“和积数”c ;(3)已知1a x =+,且a ,b 的“和积数”32452c x x x =+++,求b (用含x 的式子表示)并计算a b +的最小值.7.若一个四位数M 的百位数字与千位数字的差恰好是个位数字与十位数字的差的2倍,则将这个四位数M 称作“星耀重外数”.例如:2456M =,∵()42265-=⨯-,∴2456是“星耀重外数”;又如4325M =,∵()34252-≠⨯-,∴4325不是“星耀重外数”.(1)判断2023,5522是否是“星耀重外数”,并说明理由;(2)一个“星耀重外数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,且满足29a b c d ≤≤<≤≤,记()492223624ac a d b G M -++-=,当()G M 是整数时,求出所有满足条件的M .8.已知一个各个数位上的数字均不为0的四位正整数()M abcd a c =>,以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s ,若s 等于M 的千位数字与十位数字的平方差,则称这个数M 为“平方差数”,将它的百位数字和千位数字组成两位数ba ,个位数字和十位数字组成两位数dc ,并记()T M ba dc =+.例如:6237是“平方差数”,因为226327-=,所以6237是“平方差数”;此时()6237267399T =+=.又如:5135不是“平方差数”,因为22531615-=≠,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M abcd =是“平方差数”,且()T M 比M 的个位数字的9倍大30,求所有满足条件的“平方差数”M .9.一个两位数M ,若将十位数字2倍的平方与个位数字的平方的差记为数N ,当N >0时,我们把N 放在M 的右边将所构成的新数叫做M 的“叠加数”.例如:M =47,∵N =(2×4)2-72=15>0,∴47的“叠加数”为4715;M =26,∵N =(2×2)2-62=-20<0,∴26没有“叠加数”.(1)请判断3420和5846是否为某个两位数的“叠加数”,并说明理由;(2)两位数M =10a +b (1≤a ≤9,1≤b ≤4,且a 、b 均为整数)有“叠加数”,且12a -M -N 能被13整除,求所有满足条件的两位数M 的“叠加数”.原创精品资源学科网独家享有版权,侵权必究!310.材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.(1)分解因式:1ab a b +++(2)若a ,()b a b >都是正整数且满足40ab a b ---=,求a b +的值;(3)若a ,b 为实数且满足50ab a b ---=,22235S a ab b a b =+++-,求S 的最小值.11.八年级课外兴趣小组活动时,老师提出了如下问题:将2346a ab b --+因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式()()()()()()234623223232a ab b a b b b a =---=---=--;解法二:原式()()()()()()24362232223a ab b a b a a b =---=---=--.【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将22x a x a -++因式分解;【挑战】(2)请用分组分解法将222ax a ab bx b +--+因式分解;(3)若229a b +=,2a b -=,请用分组分解法先将432234222a a b a b ab b -+-+因式分解,再求值.12.如图①,在平面直角坐标系中,点A ,点B 分别在x 轴负半轴和y 轴正半轴上,点C 在第二象限,且90ACB ∠=︒,AC BC =,点B 的坐标为()0,m ,点C 的纵坐标为n ,满足222170m n m +-+=.(1)求点A 的坐标;(2)如图②,点D 是AB 的中点,点E ,F 分别是边AC ,BC 上的动点,且DE DF ⊥,在点E ,F 移动过程中,四边形的面积是否为定值?请说明理由;(3)在平面直角坐标系中,是否存在点P ,使得PAC △是以点A 为直角顶点的等腰直角三角形,请直接写出满足条件的点P 的坐标.13.在x 轴正半轴上有一定点A ,(),0A a .(1)若多项式24x x a ++恰好是某个整式的平方,那么点A 的坐标为__________;(2)如图1,点P 为第三象限角平分线上一动点,连接AP ,将射线AP 绕点A 逆时针旋转30︒交y 轴于点Q ,连接PQ ,在点P 运动的过程中,当45APQ ∠=︒时,求OQA ∠的度数;(3)如图2,已知点B 、点C 分别为y 轴正半轴,x 轴正半轴上的点,C 在A 右侧,在线段OB 上取点(0)E m ,,AC n =,且45BCE ∠=︒,过点A 做AD x ⊥轴,且AD OC =,求DF 的长.(结果用m ,n 表示)14.通过课堂的学习知道,我们把多项式222a ab b ++及222a ab b -+叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式()()()()()222()2321414121231x x x x x x x x x +-=++-=+-=+++-=+-;再例如求代数式2246x x +-的最小值,()2222462232(1)8x x x x x +-=+-=+-.可知当=1x -时,2246x x +-有最小值,最小值是8-,根据阅读材料用配方法解决下列问题:(1)代数式223a a -++的最大值为:;(2)若2211M a b =++与62N a b =-,判断M N 、的大小关系,并说明理由;(3)已知:2a b -=,2450ab c c -++=,求代数式a b c ++的值.15.阅读材料,解决问题【材料1】教材中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式223x x +-.原式()()()()()22223211314121231x x x x x x x x x =+-=++--=+-=+++-=+-.【材料2】因式分解:()()221x y x y ++++原创精品资源学科网独家享有版权,侵权必究!5解:把x y +看成一个整体,令x y A +=,则原式()22211A A A =++=+,再将A x y =+重新代入,得:原式()21x y =++上述解题用到的“整体思想”是数学解题中常见的思想方法.请你解答下列问题:(1)根据材料1,利用配方法进行因式分解:268x x -+;(2)根据材料2,利用“整体思想”进行因式分解:()()244x y x y ---+;(3)当a ,b ,c 分别为ABC 的三边时,且满足222464170a b c a b c ++---+=时,判断ABC 的形状并说明理由.16.我们定义:一个整数能表示成22a b +(a 、b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为22521=+,所以5是“完美数”.[解决问题](1)已知29是“完美数”,请将它写成22a b +(a 、b 是整数)的形式______;(2)若265x x -+可配方成()2x m n -+(m 、n 为常数),则mn =______;[探究问题](3)已知222450x y x y +-++=,则x y +=______;(4)已知224412S x y x y k =++-+(x 、y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由.[拓展结论](5)已知实数x 、y 满足25502x x y -++-=,求2x y -的最值.17.阅读材料:我们把多项式222a ab b ++及222a ab b -+叫做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式的最大值,最小值等.例分解因式:()22223214(1)4(12)(12)(3)(1)x x x x x x x x x +-=++-=+-=+++-=+-;又例如:求代数式2246x x +-的最小值:()2222462232(1)8x x x x x +-=+-=+- ;又2(1)0x + ;∴当=1x -时,2246x x +-有最小值,最小值是8-.根据阅读材料,利用“配方法”,解决下列问题:(1)分解因式:245a a --=___________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22412400a a b b -+-+=求边长c 的最小值;(3)当x 、y 为何值时,多项式222267x xy y y -+-++有最大值?并求出这个最大值.18.【实践探究】小青同学在学习“因式分解”时,用如图1所示编号为①②③④的四种长方体各若干块,进行实践探究:(1)现取其中两个拼成如图2所示的大长方体,请根据体积的不同表示方法,写出一个代数恒等式:;(2)【问题解决】若要用这四种长方体拼成一个棱长为2x y +的正方体,其中②号长方体和③号长方体各需要多少个?试通过计算说明理由;(3)【拓展延伸】如图3,在一个棱长为y 的正方体中挖出一个棱长为x 的正方体,请根据体积的不同表示方法,直接写出33y x -因式分解的结果,并利用此结果解决问题:已知a 与2n 分别是两个大小不同正方体的棱长,且()()338244a n a n an -=--,当2a n -为整数时,求an 的值.19.材料:对一个图形通过两种不同的方法计算它的面积或体积,可以得到一个数学等式.(1)如图1,将一个边长为a 的正方形纸片剪去-一个边长为b 的小正方形,根据剩下部分的面积,可得一个关于a ,b 的等式:__________.请类比上述探究过程,解答下列问题:(2)如图2,将一个棱长为a 的正方体木块挖去一个棱长为b 的小正方体,根据剩下部分的体积,可以得到等式:33a b -=__________,将等式右边因式分解,即33a b -=__________;原创精品资源学科网独家享有版权,侵权必究!7(3)根据以上探究的结果,①如图3所示,拼叠的正方形边长是从1开始的连续奇数...,按此规律拼叠到正方形ABCD ,其边长为19,求阴影部分的面积.②计算:()()33211211+--20.(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:①2257x x +-=__________;②22672x xy y -+=__________.(3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq npb +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题:①分解因式2235294x xy y x y +-++-=__________;②若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.。

初二下学期数学期末综合压轴题100题锦集

初二下学期数学期末综合压轴题100题锦集

初二下学期数学期末综合压轴题100题锦集1.△ABC是等边三角形,D是射线BC上的一个动点(与点B、C 不重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,交射线AC于点F,连接BE.(1)如图E 13.1,当点D在线段BC上运动时.① 求证:△AEB≌△ADC;② 探究四边形BCFE是怎样特殊的四边形?并说明理由;(2)如AFDFDCE图(备用图)图13.113.2,当点D在BC的延长线上运动时,请直接写出(1)中的两个结论是否仍图然成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCFE是菱形?并说明理由.,B60°,BC2.点O是AC的2.如图,在Rt△ABC中,ACB90°中点,过点O的直线l与AB边相交于点D.过点C作CE∥AB交直线l于点E,设AOD=.(1)当等于多少度时,四边形EDBC是等腰梯形?并求此时AD的长;EDBC90°(2)当时,判断四边形是否为菱形,并说明理由.-1)3.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,,且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;..(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?若存在,请求出点Q的坐标,若不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以 OP、OQ为邻边的平行四边形OPCQ,设点Q的横坐标为n,求平行四边形OPCQ周长(周长用n 的代数式表示),并写出其最小值...第3题图14.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是 ,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.AAF第3题图2D EG C BC B4.例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N.求证:AM=MN.思路点拨:取的AB中点P,连结PM易证△APM ≌△MCQ从而AM=MN.问题解决: (1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.①填空:当∠AMN = °时,AM=MN;②证明①的结论.(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)第5题图2 第5题图3 第5题图15.如图①,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.6.如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y的图象上,点P(m,n)是函数y k(k0,x0)xk(k0,x0)的图象上异于B的任意一点,过点Px分别作x轴、),轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为s1,求s2;(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为.s2写出.s2与m的函数关系式,并标明m的取值范围.7.在直角坐标系xoy中,将面积为3的直角三角形AGO沿直线y=x翻折,得到三角形CHO,连接AC,已知反比例函数y k x0的图象过A、C两点,如图①. x(1)k的值是 .(2)在直线y=x图象上任取一点D,作AB⊥AD,AC⊥CB,线段OD交AC于点F,交AB于点E, P为直线OD上一动点,连接PB、PC、CE.㈠如图②,已知点A的横坐标为1,当四边形AECD为正方形时,求三角形PBC的面积. ㈡如图③,若已知四边形PEBC为菱形,求证四边形PBCD是平行四边形.㈢若D、P两点均在直线y=x上运动,当ADC=60°,且三角形PBC的周长最小时,请直接写出三角形PBC与四边形ABCD的面积之比.8.(1)如图6,点E,F,M,N分别是菱形ABCD四条边上的点,若AE=BF=CM=DN,求证:四边形EFMN是平行四边形.(2)如图7,当E,F,M,N分别是菱形ABCD四条边的中点时,试判断四边形EFMN的形状,并说明理由.9、如图,在四边形ABFC中,∠ACB=90,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。

八年级下几何压轴题

八年级下几何压轴题

初二几何压轴题汇编12(1)(2)1.已知正方形.若一个等边三角形的三个顶点均在正方形的内部或边上,则称这个等边三角形为正方形的内等边三角形.正方形的边长为,点在边上.当点为边的中点时,求作:正方形的内等边(尺规作图,不写作法,保留作图痕迹).若是正方形的内等边三角形,连接,,则线段长的最小值是 ,线段长的取值范围是 .和都是正方形的内等边三角形,当边的长最大时,画出和,点,,按逆时针方向排序,连接.找出图中与线段相等的所有线段,并给予证明.(1)(2)2.如图①,已知正方形的边长为,点是边上的一个动点,点关于直线的对称点是点,连接、、、,设.的最小值是 ,此时的值是 .如图②,若的延长线交边于点,并且.12(3)求证:点是的中点.求的值.若点是射线上的一个动点,请直接写出当为等腰三角形时的值.(1)(2)(3)3.如图,在正方形中,,是边上一动点(不与点重合),点与点关于所在的直线对称,连接,,延长到点,使得,连接,.当时,依题意补全图.在()的条件下,求线段的长.当点在边上运动时,能使为等腰三角形,请直接写出此时与的数量关系 .4.12(1)(2)在正方形中,点在对角线上(与点、不重合),连接,过点作与边(或延长线)交于点,作交射线于点.如图:依题意补全图.判断与的数量关系为 ,并证明你的结论.若正方形的边长为,当时,请直接写出的长为 .12(1)(2)5.如图,正方形中,是对角线,点在射线上运动(与点、不重合),连接,过点作线段的平行线交直线于点,过点作直线的垂线,垂足为点,连接.如图,当点在线段上时.依题意补全图.判断与的数量关系并加以证明.如图,若点在线段的延长线上时,且,正方形的边长为,求的长.(1)(2)(3)6.如图,正方形中,为上一动点,过点作交边于点.求证:.用等式表示、、之间的数量关系,并证明.点从点出发,沿方向移动,若移动的路径长为,则的中点移动的路径长为 (直接写出答案).(1)7.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.如图,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 .(2)(3)BDACPE当点在菱形外部时,()中的结论是否还成立?若成立,请予以证明.若不成立,请说明理由(选择图,图中的一种情况予以证明或说理).BDACP EBDAPEC如图,当点在线段的延长线上时,连接,若,,求四边形的面积.BDAPEC(1)(2)8.如图,在矩形中,,,是的中点,点是线段上一动点,连接并延长交直线于点,过作,交射线于点,连接,点是线段的中点.连接图中的,,求证:.如图,当点与重合时,求的长.(3)当点从点运动到点时,求点经过的路径长.(1)12(2)12(3)9.四边形是边长为的正方形,点是边上一动点(包含端点、不包含),点是正方形外角的平分线上一点,且满足.当点与点重合时,直接写出线段与线段的数量关系.如图,当点是边的中点时.补全图形.请证明①中的结论仍然成立.取线段的中点,连接、、.求证:.直接写出线段长度的取值范围.1(1)10.在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数,与的数量关系是否发生改变?探究问题:首先考察点的两个特殊位置.当点与点重合时,如图所示, ,用等式表示线段与之间的数量关系: .2(2)(3)当时,如图所示,①中的结论是否发生变化?直接写出你的结论: .(填“变化”或“不变化”)然后考察点的一般位置:依题意补全图,,通过观察、测量,发现:()中①的结论在一般情况 .(填“成立”或“不成立”)证明猜想:若()中①的结论在一般情况下成立,请从图和图中任选一个进行证明;若不成立,请说明理由.(1)(2)(3)11.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:如图,在正方形中,点为边上任意一点(点不与、重合),点在线段上,过点的直线,分别交、于点、.此时,有结论,请进行证明.如图,当点为中点时,其他条件不变,连接正方形的对角线,与交于点,连接,此时有结论:,请利用图做出证明.如图,当点为直线上的动点时,如果中的其他条件不变,直线分别交直线、于点、,请你直接写出线段与之间的数量关系、线段与之间的数量关系.(1)(2)12.把一个含角的直角三角板和一个正方形摆放在一起,使三角板的直角顶点和正方形的顶点重合,连接,点,分别为,的中点,连接,.如图,点,分别在正方形的边,上,请判断,的数量关系和位置关系,直接写出结论.如图,点,分别在正方形的边,的延长线上,其他条件不变,那么你在()中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.(1)(2)(3)13.在矩形中,,,点是边上一点,过点作,交射线于点,交射线于点.如图,若,则 .当以、、为顶点的三角形是等边三角形时,依题意在图中补全图形,并求的长.过点作交射线于点,请探究:当为何值时,以、、、为顶点的四边形是平行四边形.(1)(2)(3)14.在正方形中,点是射线上一点,点是正方形外角平分线上一点,且,连接,.如图,当是线段的中点时,直接写出与的数量关系.当点不是线段的中点,其它条件不变时,请你在图中补全图形,判断中的结论是否成立,并证明你的结论.若正方形的边长为,当点,,在一条直线上时,求的面积.(直接写出结果即可)(1)(2)15.已知:如图,正方形中,是边上的一点,连结,作于,交正方形的外角的平分线于,易证:.当点在的延长线上时,其他条件不变,请在图中补全图形,猜想与的数量关系,并证明你的结论.当点在边上时,其他条件不变,连结,交边于点.12用等式表示线段、和之间的数量关系,并证明.若正方形的边长为,,求的长.123(1)(2)16.如图,在正方形中,点是边所在直线上一动点(不与点、重合),过点作,交射线于点,连接.如图,当点在线段上时,.按要求补全图形. (用含的式子表示).判断线段,,之间的数量关系,并证明.当点在直线上时,直接写出线段,,之间的数量关系,不需证明.(1)(2)17.如图,是正方形的对角线,点为线段上一个动点(点不与点,重合),连接,点在射线上,且.提出问题:当运动时,的度数,线段,之间的数量关系是否发生变化?探究问题:首先考察点的一个特殊位置:若,如图所示,,观察线段,之间的数量关系.然后考察点的一般位置:若,依题意补全图,通过观察、测量,发现:12在一般情况下 (用含的式子表示)此时,线段,之间的数量关系是 ,并证明.12(1)(2)18.如图,四边形是平行四边形,,是直线上的两点,点关于的对称点为,连接交于点.若,如图.依题意补全图形.判断与的数量关系是 .如图,当时,,的延长线相交于点,取的中点,连接.用等式表示线段与的数量关系,并证明.19.如图,在正方形中,是边上的一动点,点在边的延长线上,且,连接、、,平分交于点.(1)(2)(3)根据题意补全图形.求证:.过点作于点,用等式表示线段,与之间的数量关系,并证明.(1)12(2)(3)20.已知:在正方形中,点在对角线上运动(不与,重合)连接,过点作于交直线于点,作于交直线于点.当点在对角线上运动到图位置时,则与的数量关系是 .当点运动到图所示位置时.依据题意补全图形.上述结论还成立吗?若成立,请证明.若不成立,请说明理由.若正方形边长为,,直接写出长.(1)21.已知:如图,正方形,点是直线上一个动点,连接交直线于点,过点作于点,连接.如图,12(2)直接写出的度数.用等式表示线段、和之间的数量关系,并证明.当点运动到图和图所示的位置时,请选择其中一种情况补全图形,并直接写出线段、和之间的数量关系.(1)(2)22.已知,如图,正方形中,点是对角线上的一个动点.如图,连接,,直接写出与的数量关系.如图,点为边的中点,当点运动到线段上时,连接,,相交于点.123请你根据题意在图中补全图形.猜想与的位置关系,并证明.如果正方形的边长为,直接写出的长.12(1)(2)23.在正方形中,点是直线上一点,连接,将线段绕点顺时针旋转,得到线段,连接.如图,若点在线段的延长线上.过点作于,与对角线交于点.请根据题意补全图形.求证:.若点在射线上,直接写出,,三条线段的数量关系为 .12(1)(2)24.已知正方形中,点是边(或的延长线)上任意一点,平分,交射线于点.如图,若点在线段上.依题意补全图.用等式表示线段,,之间的数量关系,并证明.如图,若点在线段的延长线上,请直接写出线段,,之间的数量关系.(1)(2)(3)25.如图,在正方形中,为边上的一动点(不与点、重合),连接,点关于直线的对称点为,连接,.依题意补全图形.求的大小.过点作于,用等式表示线段、和的数量关系,并证明.12(1)12(2)26.正方形中,点是直线上的一个动点,连接,将线段绕点顺时针旋转得到线段,连接.如图,若点在线段上.直接写出的度数为 .求证:.如图,若点在的延长线上,,.依题意补全图.直接写出线段的长度为 .(1)12(2)27.已知:正方形的边长为,点在上,射线交直线于点,作于点.如图,当点在边上时,猜想与的数量关系并证明.若点在直线上.依题意,在备用图中补全图形.请直接写出与的数量关系 .12(1)(2)(3)28.如图,在正方形中,点在边上,点在正方形外部,且满足,.连接,,取的中点,连接,,交于点.回答下列问题:依题意补全图形.求证:.请探究线段,,所满足的等量关系,并证明你的结论.设,若点沿着线段从点运动到点,则在该运动过程中,线段所扫过的面积为 (直接写出答案).29.已知,点在正方形的边上(不与点,重合),是对角线,延长到点,使,过点作的垂线,垂足为,连接,.(1)12(2)根据题意补全图形,并证明.回答问题:用等式表示线段与的数量关系,并证明.用等式表示线段,,之间的数量关系(直接写出即可).12(1)(2)(3)30.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在中,,,点为直线上一动点(点不与,重合),以为边在右侧作正方形,连接.观察猜想.如图,当点在线段上时.与的位置关系为: .,,之间的数量关系为: .(将结论直接写在横线上)数学思考.如图,当点在线段的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.拓展延伸.如图,当点在线段的延长线上时,延长交于点,连接,若已知,,请求出的长.(1)212(2)31.已知:四边形是正方形,点在边上,点在边上,且.如图,判断与有怎样的位置关系?写出你的结果,并加以证明.1如图,对角线与交于点.,分别与,交于点,点.求证:.连接,若,,求的长.(1)(2)32.在正方形和正方形中,顶点、、在同一直线上,是的中点.如图,若,,求的长.如图,连接,.试判断与的关系,并证明.(1)12(2)33.正方形中,点是直线上的一个动点(不与点,重合),作射线,过点作于点,连接.如图,当点在上时,如果,那么的度数是 .如图,当点在延长线上时.依题意补全图.用等式表示线段,和之间的数量关系,并证明.(1)34.已知如图,正方形,为等腰直角三角形,其中,,连接,,,点是的中点,连接.用等式表示线段与的数量关系是 .12(2)若将绕顶点旋转,使得点恰好在线段上,并且点在线段的上方,点仍是的中点,连接,.在图中依据题意补全图形.求证:.(1)(2)35.在正方形中,对角线、交于点,动点在线段上(不含点),,交于点,过点作,垂足为,交于点.当点与点重合时(如图),求证:≌.试猜想线段,的数量关系,并证明你的猜想.(1)36.如图,正方形中,为上一动点,过点作交边于点.求证:.(2)(3)用等式表示、、之间的数量关系,并证明.点从点出发,沿方向移动,若移动的路径长为,则的中点移动的路径长为 (直接写出答案).12(1)(2)37.四边形是正方形,是对角线,是平面内一点,且.过点作,且.连接,.是的中点,作射线交于点.如图,若点,分别在,边上.求证:..如图,若点在四边形内,点在直线的上方.求与的和的度数.(1)(2)(3)38.已知,正方形,是延长线上一点,连接,,作中边上的高,连接.依题意补全图形.求证:.猜想,,之间的数量关系,并说明理由.(1)(2)39.如图,在正方形中,点为的中点,为线段上任意一点,将线段绕点逆时针旋转,得到线段.请按要求补全图形:连接,过点作,交对角线于点,连接.判断与的数量关系并加以证明.(1)12(2)40.在正方形中,是边上一动点(不与点,重合),点关于射线的对称点为点,连接,连接并延长交于点.求出的度数.过点作于点,点作交延长线于点,连接.补全图形.用等式表示线段与的数量关系,并证明.。

八年级下册数学压轴题(含答案)

八年级下册数学压轴题(含答案)

八年级下压轴题1.如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=15,OC=12,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1)求CE和OD的长;(2)求直线DE的表达式;(3)直线y=kx+b与AE所在的直线垂直,当它与矩形OABC有公共点时,求出b的取值范围.【答案】解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=15,AB=OC=12,BE=√AE2−AB2=√152−122=9,∴CE=15−9=6,在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(12−OD)2+62=OD2,∴OD=7.5.(2)∵CE=6,∴E(6,12).∵OD=7.5,∴D(0,7.5),设直线DE的解析式为y=mx+n,∴{n=7.56m+n=12,解得{m =34n =152, ∴直线DE 的解析式为y =34x +152.(3)∵直线y =kx +b 与AE 所在的直线垂直,DE ⊥AE ,∴直线y =kx +b 与DE 平行,∴直线为y =34x +b ,∴当直线经过A 点时,0=34×15+b ,则b =−454,当直线经过C 点时,则b =12,∴当直线y =kx +b 与矩形OABC 有公共点时,−454≤b ≤12. 2. 如图,在平面直角坐标系中,直线l 1:y =34x 与直线l 2:y =kx +b(k ≠0)相交于点A(a,3),直线l 2与y 轴交于点B(0,−5).(1)求直线l 2的函数解析式;(2)将△OAB 沿直线l 2翻折得到△CAB ,使点O 与点C 重合,AC 与x 轴交于点D.求证:四边形AOBC 是菱形;(3)在直线BC 下方是否存在点P ,使△BCP 为等腰直角三角形?若存在,直接写出点P 坐标;若不存在,请说明理由.【答案】解:(1)∵直线l₁:y =34x 与直线l₂:y =kx +b 相交于点A(a,3),∴A(4,3),∵直线交l₂交y 轴于点B(0,−5),∴y =kx −5,把A(4,3)代入得,3=4k −5,∴k =2,∴直线l 2的解析式为y =2x −5;(2)∵OA =√32+42=5,∴OA =OB ,∵将△OAB 沿直线l₂翻折得到△CAB ,∴OB =OC ,OA =AC ,∴OA=OB=BC=AC,∴四边形AOBC是菱形;(3)如图,过C作CM⊥OB于M,则CM=OD=4,∵BC=OB=5,∴BM=3,∴OB=2,∴C(4,−2),过P1作P1N⊥y轴于N,∵△BCP是等腰直角三角形,∴∠CBP1=90°,∴∠MCB=∠NBP1,∵BC=BP1,∴△BCM≌△P1BN(AAS),∴BN=CM=4,∴P1(3,−9);同理可得,P2(7,−6),P3(72,−112).综上所述,点P的坐标是(3,−9)或(7,−6)或P(72,−112).3.如图,在Rt△ABC中,∠C=90°,∠A=45°,AC=10cm,点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,同时点E从点B出发沿BA方向以√2cm/s的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是t(0<t≤10)s.过点E作EF⊥BC于点F,连接DE,DF.(1)用含t的式子填空;BE=______cm,CD=______cm.(2)试说明,无论t为何值,四边形ADEF都是平行四边形;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】√2t t【解析】解:(1)由题意:BE=√2t(cm),AD=t(cm),故答案为√2t,t.(2)如图2中,∵CA=CB,∠C=90°,∴∠A=∠B=45°,∵EF⊥BC,∴∠EFB=90°,∴∠FEB=∠B=45°,∴EF=BF,∵BE=√2t,∴EF=BF=t,∴AD=EF,∵∠EFB=∠C=90°,∴AD//EF,∴四边形ADFE是平行四边形.(3)①如图3−1中,当∠DEF=90°时,易证四边形EFCD是正方形,此时AD=DE= CD,t=5.②如图3−2中,当∠EDF=90时,∵DF//AC,∴∠AED=∠EDF=90°,∵∠A=45°,∴AD=√2AE,∴t=√2(10√2−√2t),,解得t=203③当∠EFD=90°,△DFE不存在.s.综上所述,满足条件的t的值为5s或2034.如图,在矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(−9,12).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,且直线BD与OA、x轴分别交于点D、F.(1)求线段BO的长;(2)求△OBD的面积;(3)在x轴上是否存在点M,使得以A、B、F、M为顶点的四边形是平行四边形?若存在,请求出满足条件的M点的坐标;若不存在,请说明理由.【答案】解:(1)∵四边形AB CO是矩形,∴∠BCO=90°.在Rt△BCO中,∵BO2=BC2+OC2,∴BO=√122+92=15.(2)设OD=x,∵四边形ABCO是矩形,∴∠BAD=90°.∵矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,∴△BAD≌△BED,∴BE=BA=9,AD=ED=12−x,∠BED=∠BAD=90°,∴∠OED=90°,EO=BO−BE=15−9=6.在Rt△DEO中,OD2=OE2+DE2,∴x2=62+(12−x)2,解得x=152,即OD=152,∴S△OBD=12OD⋅AB=1354;(3)由(2)知,OD=152得D(0,152),设直线BD的解析式为y=kx+b,∵B(−9,12),D(0,152),∴{−9k+b=12 b=152,解得{k =−12b =152, ∴直线BD 的解析式为y =−12x +152.当y =0时,x =15,∴OF =15.又∵AB =9,∴FM =9, ∴在x 轴上存在点M ,使得以A 、B 、F 、M 为顶点的四边形是平行四边形.满足条件的点M 的坐标为(6,0)或(24,0).5. 如图,在平面直角坐标系中,O 为坐标原点,矩形OABC 的顶点A(12,0)、C(0,9),将矩形OABC 的一个角沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与x 轴交于点D .(1)线段OB 的长度为______;(2)求直线BD 所对应的函数表达式;(3)若点Q 在线段BD 上,在线段BC 上是否存在点P ,使以D ,E ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】解:(1)15;(2)如图,设AD =x ,则OD =OA −AD =12−x ,根据折叠的性质,DE =AD =x ,BE =AB =9,又OB =15,∴OE =OB −BE =15−9=6,在Rt △OED 中,OE 2+DE 2=OD 2,即62+x 2=(12−x)2,解得 x =92, ∴OD =12−92=152,∴点D(152,0),设直线BD 所对应的函数表达式为:y =kx +b(k ≠0),B(12,9), 则{12k +b =9152k +b =0,解得{k =2b =−15, ∴直线BD 所对应的函数表达式为:y =2x −15.(3)过点E 作EP//BD 交BC 于点P ,过点P 作PQ//DE 交BD 于点Q ,则四边形DEPQ 是平行四边形,再过点E 作EF ⊥OD 于点F ,由12⋅OE ⋅DE =12⋅DO ⋅EF ,得EF =6×92152=185,即点E 的纵坐标为185, 又点E 在直线OB :y =34x 上,∴185=34x,解得x=245,∴E(245,185),由于PE//BD,所以可设直线PE:y=2x+n,∵E(245,185)在直线EP上,∴185=2×245+n,解得n=−6,∴直线EP:y=2x−6,令y=9,则9=2x−6,解得x=152,∴P(152,9).6.如图,直线y=−12x+3与x轴、y轴分别相交于A,B两点,P是线段AB上的一个动点(不与AB两点重合),点M的坐标为(4,0),设P点的横坐标为x,设△OPM 的面积为S.(1)求点A,B的坐标;(2)求S关于x的函数解析式,并写出自变量x的取值范围;(3)当S=12S△AOB时,求点P的坐标;(4)画出函数S的图象.【答案】解:(1)针对于直线y=−12x+3,令x=0,∴y=3,∴B(0,3),令y=0,∴−12x+3=0,∴x=6,∴A(6,0);(2)∵点P在直线y=−12x+3上,且P点的横坐标为x,∴P(x,−12x+3),∵M(4,0),∴OM=4,∴S=S△OPM=12OM×|y P|=2y P=2(−12x+3)=−x+6(0<x<6);(3)由(1)知,A(6,0),B(0,3),∴S△AOB=12OA×OB=9,由(2)知,S=−x+6(0<x<6);当S=12S△AOB时,∴−x+6=92,∴x=32,∴y=−12x+3=94,∴P(32,94 );(4)由(2)知,S=−x+6(0<x<6),∴函数S的图象如图所示:7.如图,直线l1:y=kx+245与x轴、y轴分别相交于A、B两点,直线l2:y=−2x+b 与x轴、y轴、直线l1分别相交于点C、D、P.已知点A的坐标为(6,0),点D的坐标为(0,6),点M 是x 轴上的动点. (1)求k ,b 的值及点P 的坐标;(2)当△POM 为等腰三角形时,求点M 的坐标;(3)是否存在以点M 、O 、D 为顶点的三角形与△AOB 全等?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】解:(1)∵直线l 1:y =kx +245与x 轴相交于A(6,0),∴6k +245=0,∴k =−45,∴直线l 1:y =−45x +245①∵直线l 2:y =−2x +b 与y 轴相交于点D(0,6), ∴b =6,∴直线l 2:y =−2x +6②, 联立①②解得,{x =1y =4,∴P(1,4);(2)∵点M 是x 轴上的动点, ∴设M(m,0), ∵P(1,4),∴OP =√17,OM =|m|,MP =√(m −1)2+16, ∵△POM 为等腰三角形, ∴当OM =OP 时, ∴√17=|m|, ∴m =±√17, ∴M(−√17,0)或(√17,0)当OM=MP时,∴|m|=√(m−1)2+16,∴m=172,∴M(172,0),当OP=MP时,∴√17=√(m−1)2+16,∴m=0(舍)或m=2,∴M(2,0),即:点M的坐标为(−√17,0)或(√17,0)或(172,0)或(2,0);(3)∵点A的坐标为(6,0),点D的坐标为(0,6),∴OA=OD=6,∵点M在x轴上,∴∠AOB=∠DOM=90°,∵以点M、O、D为顶点的三角形与△AOB全等,∴△AOB≌△DOM,∴OM=OB,∵直线l1:y=−45x+245与y轴相交于B,∴B(0,245),∴OB=245,∴OM=245,∴M(245,0)或(−245,0).8.在平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B,且与正比例函数的图象交于点C(3,4).(1)求、的值;(2)若D点是线段OC上的动点,过D作DE∥y轴交AC于点E.①设D点的横坐标为,线段DE的长为,则与的函数关系式为_______;②连接AD,若△AOD为等腰三角形,请求出点D的坐标;(3)在平面内是否存在点Q,使以O、A、C、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【详解】(1)∵正比例函数的图象过点C(3,4),∴,解得:,∴正比例函数为,∵一次函数的图象过点C(3,4),∴,解得:,∴一次函数解析式为:;(2)①∵D在正比例函数上,∴ D点的纵坐标为:,∵E点在一次函数上,∴ E点的纵坐标为:,∴ DE =;②∵点A是一次函数与x轴的交点,∴ A(-3,2),即OA=3,而D的坐标为(,),∵∠AOD是钝角,一定是等腰三角形的顶角,∴OD=OA,∴OD=,解得:,则,∴点D的坐标为(,);(3)根据图象分析:①当OA作为平行四边形的边时,则CQ∥OA,CQ=OA,此时Q(0,4),(6,4),②当OA作为平行四边形的对角线时,则OQ∥AC,OQ=AC,此时Q(-6,-4),综上所述,存在,点Q的坐标为(0,4),(6,4),(-6,-4).9.如图1,在平面直角坐标系xOy中,直线l1:y1=kx+b与l2: y2=kx+3相交于点C(1,2),直线l1与x轴交于点A (-1,0)、直线l2与x轴交于B点.(1) 求直线l1的解析式(表达式) ;(2)判断△ABC的形状并说明理由; (3)在x轴上是否存在点P,使△ACP为等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由;(4) 如图2,设直线l2与y轴交于点D,点为线段BD上的一个动点,过点M 作ME⊥y轴于点E,作MF⊥x轴于点F,连接EF,问是否存在点M,使EF的值最小?若存在,求出此时EF 的值.10.如图,直线y=kx -3与x 轴、y 轴分别交于B ⎪⎭⎫ ⎝⎛0,23、C 两点,(1)求k 值;(2)若点A(x ,y)是直线y=kx -3上在第一象限内的一个动点,当点A 在运动过程中,试写出△AOB 的面积S 与x 的函数关系式;(不要求写出自变量的取值范围) (3)探究:①当A 点运动到什么位置时,△AOB 的面积为49,并说明理由; ②在①成立的情况下,x 轴上是否存在一点P ,使△AOP 是等腰三角形?若存在,请直接写出满足条件的所有P 点坐标;若不存在,请说明理由.答案解析(1)把B 的坐标代入y=kx -3,得:k -3=0,解得:k=2; (2)OB=,则S=×(2x -3)=x -;(3)①根据题意得:x -=,解得:x=3,则A 的坐标是(3,3);②OA==3,当O是△AOP的顶角顶点时,P的坐标是(-3,0)或(3,0);当A是△AOP的顶角顶点时,P与过A的与x轴垂直的直线对称,则P的坐标是(6,0);当P是△AOP的顶角顶点时,P在OA的中垂线上,OA的中点是(,),与OA垂直的直线的斜率是:-1,设直线的解析式是:y=-x+b,把(,)代入得:=-+b,解得:b=,则直线的解析式是:y=-x+,令y=0,解得:x=,则P的坐标是(,0).故P的坐标是:(-3,0)或(3,0)或(6,0)或(,0).。

初二下数学压轴题

初二下数学压轴题

初二下数学压轴题在初二下学期的数学学习中,压轴题是学生们备考的关键。

下面就为大家整理出一些初二下数学的压轴题,希望对大家的复习有所帮助。

1. 解方程:已知方程$2x-5=3x+2$,求解$x$的值。

解析:首先将方程两边的变量合并,得到$2x-3x=2+5$,即$-x=7$,然后将$x$的系数移到右边,得到$x=-7$。

2. 计算:$(-3)^2+5\times(-2)-4\div(-2)$。

解析:先计算乘除法,得到$9+(-10)-(-2)$,然后计算加减法,最终得到$1$。

3. 计算:$\frac{3}{5}\times\frac{4}{3}\div\frac{2}{5}$。

解析:将分数相乘得到$\frac{3\times4}{5\times3}$,再将结果除以$\frac{2}{5}$,最终得到$\frac{12}{15}\div\frac{2}{5}=\frac{12}{15}\times\frac{5}{2}=\frac{60}{30}=2$。

4. 求平方根:$3\sqrt{27}-2\sqrt{75}$。

解析:首先将根号内的数化简,得到$3\sqrt{3\times3\times3}-2\sqrt{3\times5\times5}$,然后计算,得到$3\times3\sqrt{3}-2\times5\sqrt{3}=9\sqrt{3}-10\sqrt{3}=-\sqrt{3}$。

5. 计算:$2^{3\times2}-(3+2)^2$。

解析:先计算指数运算,得到$2^6=64$,然后计算括号内的加减法,得到$64-(3+2)^2=64-5^2=64-25=39$。

6. 解不等式:$2x-3\leq5$。

解析:首先将不等式中的变量合并,得到$2x-3\leq5$,然后将$3$移到右边,得到$2x\leq5+3$,即$2x\leq8$,最后得到$x\leq4$。

7. 解实际问题:某班级男生人数是女生人数的$2$倍,如果班级总共有$90$名学生,那么男生和女生的人数各是多少?解析:设班级女生人数为$x$,则男生人数为$2x$,根据题意,$x+2x=90$,即$3x=90$,解得$x=30$,所以女生人数为$30$,男生人数为$60$。

初二下册数学压轴题

初二下册数学压轴题

人教版八年级下册数学期末动点最值压轴题(带答案)一、单选题1.如图,点A ,B 分别为x 轴、y 轴上的动点,2AB =,点M 是AB 的中点,点()0,3C ,()8,0D ,过C 作CE x ∥轴.点P 为直线CE 上一动点,则PD PM +的最小值为()A B .9C D .52.如图,在平面直角坐标系中,O 为原点,点A ,C ,E 的坐标分别为(0,4),(8,0),(8,2),点P ,Q 是OC 边上的两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐标为()A .(2,0)B .(3,0)C .(4,0)D .(5,0)3.如图,直线122y x =-+与x 轴、y 轴交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点发以每秒1个单位的速度沿x 轴向左移动.当动到△COM 与△AOB 全等时,移的时间t 是()A .2B .4C .2或4D .2或64.如图,在矩形ABCD 中,AB =4,∠CAB =60°,点E 是对角线AC 上的一个动点,连接DE ,以DE 为斜边作Rt △DEF ,使得∠DEF =60°,且点F 和点A 位于DE 的两侧,当点E 从点A 运动到点C 时,动点F 的运动路径长是()A .4B .3C .8D .35.如图是甲、乙两个动点在某时段速度随时间变化的图象,下列结论错误的是()A .乙点前4秒是匀速运动,4秒后速度不断增加B .甲点比乙点早4秒将速度提升到32cm/sC .在4至8秒内甲的速度都大于乙的速度D .甲、乙两点到第3秒时运动的路程相等6.如图,直线y =x +8分别与x 轴、y 轴交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,当PC +PD 值最小时,点P 的坐标为()A .(-4,0)B .(-3,0)C .(-2,0)D .(-1,0)7.如图,点A ,B 在直线MN 的同侧,A 到MN 的距离8AC =,B 到MN 的距离5BD =,已知4CD =,P 是直线MN 上的一个动点,记PA PB +的最小值为a ,PA PB -的最大值为b ,则22a b -的值为()A .160B .150C .140D .1308.如图,在正方形ABCD 中,3AB =,E 是AD 上的一点,且1AE =,F ,G 是AB ,CD 上的动点,且BE FG =,BE FG ⊥,连接EF ,FG ,BG ,当EF FG BG ++的值最小时,CG 的长为()A .32B 10C .125D .65二、填空题9.如图,AB ∥CD ,AC 平分∠BAD ,BD 平分∠ADC ,AC 和BD 交于点E ,F ,G 分别是线段AB 和线段AC 上的动点,且AF =CG ,若DE =1,AB =2,则DF +DG 的最小值为______.10.如图,等腰BAC 中,120BAC ∠=︒,6BC =,P 为射线BA 上的动点,M 为BC 上一动点,则PM CP +的最小值为________.11.如图①,在△ABC中,∠ACB=90°,∠A=30°,点C沿BE折叠与AB上的点D重合,连接DE,请你探究:BCAB=______;请在这一结论的基础上继续思考:如图②,在△OPM中,∠OPM=90°∠M=30°,若OM=2,点G是OM边上的动点,则12 PG MG+的最小值为______.12.如图,在Rt△ABC中,∠C=90°,AC=6,∠B=30°,点F在边AC上,并且CF =2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_____.13.如图,F为正方形ABCD的边CD上一动点,AB=2,连接BF,过A作AH⊥BF 交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为_____.14.如图1,动点P从长方形ABCD的顶点A出发,沿A→C→D以1cm/s的速度运动到点D停止.设点P的运动时间为x(s),△PAB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则长方形ABCD的面积为_____cm2.15.如图,Rt ABC 中,2BC AC ==D 是斜边AB 上一个动点,把ACD △沿直线CD 折叠,点A 落在同一平面内的'A 处,当'A D 平行于Rt ABC 的直角边时,AD 的长为______.16.如图,在等腰三角形ABC 中,AB =AC =13,BC =10,D 是BC 边上的中点,AD =12,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是_______.三、解答题17.如图1,在平面直角坐标系中,点A 的坐标为(5,0),点B 在第一象限内,且AB =4,OB =3.(1)试判断△AOB 的形状,并说明理由.(2)点P 是线段OA 上一点,且PB -PA =1,求点P 的坐标;(3)如图2,点C 、点D 分别为线段OB 、BA 上的动点,且OC =BD ,求AC +OD 的最小值.18.如图,在矩形ABCD中,AB=9,点E在边AB上,且AE=5.动点P从点A出发,以每秒1个单位长度,沿折线AD—DC运动,到达点C后停止运动.连接PE,作点A 关于直线PE的对称点F,设点P的运动时间为t秒(t>0).(1)如图1,在点P的运动过程中,当F与点C重合时,求BC的长;(2)如图2,如果BC=4,当点F落在矩形ABCD的边上时,求t的值.19.已知:如图,△ABC中,∠C=90°,BC>AC,点D是AB的中点,点P是直线BC 上的一个动点,连接DP,过点D作DQ⊥DP交直线AC于点Q.(1)如图①,当点P、Q分别在线段BC、AC上时(点Q与点A、C不重合),过点B作AC的平行线交QD的延长线于点G,连接PG、PQ.①求证:PG=PQ;②若BC=12,AC=9,设BP=x,CQ=y,求y关于x的函数表达式;(2)当点P在线段CB的延长线上时,依据题意补全图②,请写出线段BP、PQ、AQ之间的数量关系,并说明理由.20.如图,直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,点C 的坐标是()0,1-,P 为直线AB 上的动点,连接PO ,PC ,AC .(1)求A ,B 两点的坐标.(2)求证:ABC 为直角三角形.(3)当PBC 与POA 面积相等时,求点P 的坐标.21.如图,P 为正方形ABCD 的边BC 上的一动点(P 不与B 、C 重合),连接AP ,过点B 作BQ ⊥AP 交CD 于点Q ,将BCQ △沿着BQ 所在直线翻折得到BQE △,延长QE 交BA 的延长线于点M .(1)探求AP 与BQ 的数量关系;(2)若3AB =,2BP PC =,求QM 的长.22.如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A(0,a),且a、p(p﹣1)2=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP 的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边的等腰直角三角形,直角顶点为Q,若存在,请求出点Q坐标;若不存在,请说明理由.参考答案:1.B解:如图,作D 关于CE 的对称点D ¢,连接D O ',交CE 于点P ,连接OM ,OM D M OD '+≥',PM PD PM PD D M ''+=+≥,∴当,,,O M P D '共线时,PM 最短则PD PM +的最小值为OD 'OM - BOA △是直角三角形,点M 是AB 的中点,2AB =112OM AB ∴== 点()0,3C ,()8,0D ,(8,6)D '∴10OD '∴==∴OD 'OM -1019=-=即PD PM +的最小值为9故选B2.C解: 四边形APQE 的周长,AP PQ EQ AE =+++ PQ =2,()()0,4,8,2,A E AE PQ \+是定值,所以四边形APQE 的周长最小,则AP EQ +最小,如图,把AP 沿x 轴正方向平移2个单位长度得,A Q ¢则()2,4,A ¢则,A Q AP ¢=作E 关于x 轴的对称点,H 则()8,2,H -连接A H '交x 轴于,K 则,A K EK A H ⅱ+=所以当,Q K 重合时,A Q QE ¢+最小,即AP QE +最小,设A H '的解析式为:,y kx b =+24,82k b k b ì+=ï\í+=-ïî解得:1,6k b ì=-ïí=ïî所以A H '的解析式为:6,y x =-+令0,y =则6,x =则()6,0,K 即()6,0,Q ()4,0.P ∴故选C3.D解: 直线122y x =-+与x 轴、y 轴交于A 、B 两点,令0,x =则2,y =令0y =,则120,2x -+=4,x ∴=如图,当1,M M 关于y 轴对称时,此时1,CM O ABO V V ≌此时112,246,OM OM AM ===+=6,t ∴=故选:D4.B解:当E 与A 点重合时,点F 位于点F '处,当E 与C 点重合时,点F 位于点F 处,如图,∴F 的运动路径是线段FF '的长;∵AB =4,∠CAB =60°,∴∠DAC =∠ACB =30°,∴AC =2AB =8,AD =BC 22AC AB -3,当E 与A 点重合时,在Rt △ADF '中,AD 3DAF '=60°,∠ADF '=30°,AF '=12AD 3,∠AF 'D =90°,当E 与C 重合时,∠DCF =60°,∠CDF =30°,CD =AB =4,∴∠FDF '=90°,∠DF 'F =30°,CF =12CD =2,∴∠FDF '=∠AF 'D =90°,DF 22CD CF -=3∴DF ∥AF ',DF =AF '=∴四边形FDAF '是平行四边形,∴FF '=AD ,故选:B .5.D【详解】A .根据图象可得,乙前4秒的速度不变,为12米/秒,故A 正确,不合题意;B .从图象可知,甲8秒时速度是32厘米/秒,乙12秒时速度是32厘米/秒,故B 正确,不符合题意;C .在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故C 正确,不合题意.D .甲每秒增加的速度为:3284÷=(米/秒),3412⨯=(米/秒),甲前3秒的运动路程为481224++=(米),乙前4秒的速度不变,为12米/秒,则行驶的路程为12336⨯=米,所以甲、乙两点到第3秒时运动的路程不相等,故D 错误,符合题意;故选:D .6.C解:作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC +PD 值最小,最小值为CD ′,如图.令y =x +8中x =0,则y =8,∴点B 的坐标为(0,8);令y =x +8中y =0,则x +8=0,解得:x =-8,∴点A 的坐标为(-8,0).∵点C 、D 分别为线段AB 、OB 的中点,∴点C (-4,4),点D (0,4).∵点D ′和点D 关于x 轴对称,∴点D ′的坐标为(0,-4).设直线CD ′的解析式为y =kx +b ,∵直线CD ′过点C (-4,4),D ′(0,-4),∴444k b b -+⎧⎨-⎩==,解得:24k b -⎧⎨-⎩==,∴直线CD ′的解析式为y =-2x -4.令y =0,则0=-2x -4,解得:x =-2,∴点P 的坐标为(-2,0).故选:C .7.A解:如图所示,作点A 关于直线MN 的对称点A ',连接A B '交直线MN 于点P ,则点P 即为所求点,过点A '作直线AE BD ⊥,∵8AC =,5BD =,4CD =,∴8A C '=,8+5=13BE =,==4A E CD ',在Rt A EB ' 中,根据勾股定理得,∴A B '即PA +PB 的最小值是a =如图所示,延长AB 交MN 于点P ',∵P A P B AB ''-=,AB PA PB >-,∴当点P 运动到P '点时,PA PB -最大,过点B 作BE AC ⊥,则4BE CD ==,∴853AE AC BD =-=-=,在Rt AEB 中,根据勾股定理得,2222345AB AE BE =+=+=,∴5PA PB -=,即5b =,∴2222185)5160a b -=-=,故选A .8.A如图,过点G 作GT ⊥AB 于T ,设BE 交FG 于R .∵四边形ABCD 是正方形,∴AB =BC ,∠A =∠ABC =∠C =90°,∵GT ⊥AB ,∴∠GTB =90°,∴四边形BCGT 是矩形,∴BC =GT ,∴AB =GT ,∵GF ⊥BE ,∴∠BRF =90°,∵∠ABE +∠BFR =90°,∠TGF +∠BFR =90°,∴∠ABE =∠TGF ,在△BAE 和△GTF 中,A GTF AB GT ABE TGF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAE ≌△GTF (ASA ),∴AE =FT =1,∵AB =3,AE =1,∴BE,∴GF =BE在Rt △FGT 中,FG∴EF +FG 的值最小时,EF +FG +BG 的值最小,设CG =BT =x ,则EF +BGx 轴上寻找一点P (x ,0),使得点P 到M (0,3),N (2,1)的距离和最小.如图,作点M 关于x 轴的对称点M ′(0,-3),连接NM ′交x 轴于P ,连接PM ,此时PM +PN 的值最小.∵N(2,1),M′(0,-3),∴直线M′N的解析式为y=2x-3,∴P(32,0),∴x=3222221(2)3x x+-+故选:A.9.2解:连接BC,∵AC平分∠BAD,BD平分∠ADC,AB∥CD,∴∠DAC=∠BAC,∠ADB=∠CDB,∠AED=180°-180°÷2=90°,∵AB∥CD,∴∠DCA=∠BAC,∴∠DCA=∠DAC,∴DA=DC,同理:DA=BA,∴DC=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵DA=DC,∴四边形ABCD是菱形.如图.在AC上取点B',使AB'=AB,连接FB',作点D关于AB的对称点D',连接D'F、DD'.作B'H ⊥CD 于点H ,作B'M ⊥DD '于点M .∴DF =D 'F ,∵AF =CG ,∠B 'AF =∠DCG ,AB '=AB =CD ,∴△B 'AF ≌DCG (SAS ),∴B 'F =DG ,∴DF +DG =D 'F +B 'F ,∴当B '、F 、D '三点在同一直线上时,DF +DG =D 'F +B 'F 取最小值为B 'D '.∵DE =1,AD =AB =2,∴∠DAE =30°,∠ADE =60°,∴AC 33,CB'3,∴B'H =12B'C 3,CH 33∴DH =DC -CH =2-(33,∵四边形DHB′M 是矩形∴DM =B'H 3-1,MB′=DH 31,∴D 'M =DD '-DM 3-DM 33)3+1,∴D 'B 2222(31)(31)22MB MD ''+=-++=即DF +DG 的最小值为2.故答案为:210.解:作点C 关于BA 的对称点D ,连接BD ,点M 1是BC 上一点,连接DM 1,交AB 于点P ,连接CP ,作DM ⊥BC 于M ,由对称可知,DP =CP ,∴1PM CP PM DP DM +=+=当DM ⊥BC 时,PM CP +最短,最小值为DM 长,∵等腰BAC 中,120BAC ∠=︒,6BC =,∴30ABC ACB ∠=∠=︒,由对称得,30ABD ∠=︒,6BC BD ==,∴60CBD ∠=︒,30MDB ∠=︒,∴132BM BD ==,DM ==故答案为:11.1232解:①∵30A ∠=︒,∴60ABC ∠=︒,∵点C 沿BE 折叠与AB 上的点D 重合,∴BCE BDE @V V ,∴BC BD =,30CBE DBE ∠=∠=°,90C BDE ∠=∠=︒,∴A DBE ∠=∠,∴AE BE =,AD BD =,∴12BD AB =,∴12BC AB =,即12BC AB =;②如图所示:作射线MB ,使得30OMB ∠=︒,过点G 作GB MB ⊥,过点P 作PC MB ⊥交于点C ,连接PB ,在Rt POM 中,30PMO ∠=︒,2MO =,∴112OP OM ==,PM ,∵30OMB ∠=︒,90GBM ∠=︒,∴12GB GM =,∴12PG GM PG GB PB PC +=+≥≥,即当P 、G 、B 三点共线时,12PG GM +取得最小值,在Rt PCM 中,∵30PMO ∠=︒,30OMB ∠=︒,90PCM ∠=︒,∴30CPM ∠=︒∴12CM PM =32PC ==,∴12PG GM +的最小值为32;故答案为:①12;②32.12.2解:如图,延长FP 交AB 于M ,当FP ⊥AB 时,点P 到AB 的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠B=30°,∠ACB=90°∴∠A=60°∵∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴FM22AF FM-3,∵FP=FC=2,∴PM=MF-PF3,∴点P到边AB距离的最小值是3.故答案为:3.13.35解:如图,取AB的中点O,连接OG,OC.四边形ABCD是正方形,∴∠ABC=90°,AB=2,∴OB=OA=1,∴,OCAH⊥BF,∴∠AGB=90°,AO=OB,∴OG=12AB=1,CD OC OG≥-,当O、G、C共线时,CG的值最小,最小值1,此时如图,OB=OG=1,∴∠OBG=∠OGB,AB//CD,∴∠OBG=∠CFG,∠OGB=∠CGF,∴∠CGF=∠CFG,∴CF=CG1-,∠ABH=∠BCF=∠AGB=90°,∴∠BAH+∠ABG=90°,∠ABG+∠CBF=90°,∴∠BAH=∠CBF,AB=BC,∴△ABH≌△BCF(ASA),∴BH=CF1-,∴CH=BC-BH1故答案为:314.60解:由图象,结合题意可得AC =13cm ,CD =25-13=12(cm ),∴AD =(cm ),∴长方形ABCD 的面积为:12×5=60(cm 2).故答案为:60.15.2解:Rt △ABC 中,BC =AC ∴AB =2,∠B =∠A ′CB =45°,①如图1,当A ′D ∥BC ,设AD =x ,∵把△ACD 沿直线CD 折叠,点A 落在同一平面内的A ′处,∴∠A ′=∠A =∠A ′CB =45°,A ′D =AD =x ,∵∠B =45°,∴A ′C ⊥AB ,∴BH =2BC =1,DH =2A ′D =2x ,∴x +2x +1=2,∴x =,∴AD =②如图2,当A′D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC2综上所述:AD的长为:222.16.120 13解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BM′+M′N′=BH,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,BD=12BC=5,在Rt△ABD中,AB2=AD2+BD2,∴AD,∵S△ABC=12AC•BH=12BC•AD,∴13•BH=10×12,解得:BH=120 13,故答案为:120 13.17.解:△AOB是以B为直角顶点的直角三角形,理由如下:∵A(5,0),∴OA=5,∴AB2+OB2=42+32=25=52=OA2,∴△AOB是以OA为斜边的直角三角形;(2)解:如图,作BE⊥OA于E,设PA=x,则BP=x+1,∵S△AOB=12BO•AB=12OA•BE,∴125OB ABBEOA⋅==,∴OE9 5 =,∴PE=5-95-x=165-x,在Rt△BEP中,(x +1)2=(165-x )2+(125)2,解得x =2514∴OP =5-2514=4514,∴P (4514,0);(3)解:如图,过点O 作以OB 为腰,∠BOH =90°的等腰直角三角形,∴HO =BO ,∠HOC =∠OBD =90°,又∵OC =DB ,在△HOC 和△OBD 中HO BO HOC OBD OC DB =⎧⎪∠=∠⎨⎪=⎩,∴△HOC ≌△OBD (SAS ),∴OD =HC ,∴AC +OD =AC +HC ,∴要使AC +OD 最小,则AC +CH 最小,∴当A 、C 、H 三点共线时,AC +CH 最小,即AC +OD 有最小值为AH 的长,分别过点B ,H 作BE ⊥x 轴于E ,HF ⊥x 轴于F ,则OB =OH =3,∵S △AOB =12BO •AB =12OA •BE ,∴125OB AB BE OA ⋅==,∴95OE ==,∵∠HFO =∠HDB =∠OEB =90°,∴∠HOF +∠OHF =90°,∠HOF +∠BOE =90°,∴∠OHF =∠BOE ,在△OHF 与△BOE 中,OFH BEO OHF BOE OH BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OHF ≌△BOE (AAS ),∴OF =BE =125,HF =OE =95,∵H 在第二象限,∴H (-125,95);∴AH ==,即AC +OD18.解:连接EC 、AP ,∵F 与点C 重合,点A 与点F 关于直线PE 对称,连接EC 、AP,∴PE 是线段AC 的垂直平分线,∴EC =AE =5,BE =AB -AE =4,∴BC =3,∴BC 的长为3;(2)解:当点P 在线段AD 上,点F 落在CD 边上时,连接EF ,过点F 作FG ⊥AB 于点G ,∵矩形ABCD 中,FG ⊥AB ,∴四边形AGFD 为矩形,∴FG =AD =BC =4,∵点A 与点F 关于直线PE 对称,∴PE 是线段AC 的垂直平分线,∴EF =AE =5,∴GE 3=,∴DF =AG =AE -GE =2,∴t 的值为4261+=(秒);当点P 在线段CD 上,点F 落在CD 边上时,连接EF ,过点F 作FH ⊥AB 于点H ,同理求得EH =3,BH =BE -EH =1=CF ,∴t 的值为491121+-=(秒);当点P 在线段CD 上,点F 落在BC 边上时,连接EF ,同理求得FB =3,CF =BC -BF =1,∴t 的值为491141++=(秒);综上,t 的值为6秒或12秒或14秒.19.解:①证明:由题意知AD BD =∵AC BG∥∴BGD AQD∠=∠在BGD △和AQD 中BGD AQD BDG ADQ BD AD ∠=∠⎧⎪∠=⎨⎪=⎩∴()BGD AQD AAS ≌∴GD QD=∵PD DQ⊥∴DP 垂直平分GQ∴PG PQ =;②∵PG PQ=∴22PG PQ =;∴由勾股定理知222222BG BP CQ CPG PQ P +===+∴()()2222912y x y x -+-+=∴4732y x =-∴y 关于x 的函数表达式为4732y x =-.(2)解:AQ 2+BP 2=PQ 2.补全图形,如图②:证明:作BG AC ∥,交QD 的延长线于点G ,连接PQ PG ,同(1)可证()BGD AQD AAS ≌∴GD QD=∵PD DQ⊥∴DP 垂直平分GQ∴PG PQ=∴22PG PQ =∴由勾股定理知222222AQ PG PQ BG BP BP +=+==∴222BP AQ PQ +=;补全图形,如图③:证明:作BG AC ∥,交QD 的延长线于点G ,连接PQ PG ,同(1)可证()BGD AQD AAS ≌∴GD QD=∵PD DQ⊥∴DP 垂直平分GQ∴PG PQ=∴22PG PQ =∴由勾股定理知222222AQ PG PQ BG BP BP +=+==∴222BP AQ PQ +=;综上所述,222BP AQ PQ +=.20.(1)∵直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,∴令0y =,则240x -+=,解得2x =,∴()2,0A ,令0x =,则4y =,∴()0,4B .(2)∵()0,4B ,()0,1C -,∴5BC =,∵在Rt ABO 中,222224220AB OB OA =+=+=,在Rt AOC △中,22222125AC OC OA =+=+=,∴2220525AB AC +=+=,又∵22525BC ==,∴222AB AC BC +=,由勾股定理逆定理知,ABC 为直角三角形(3)设(),24P a a -+,∵PBC 与POA 面积相等,则5224a a ⨯=⨯-+,∴()5224a a =-+或()5224a a =--+,∴89a =或8a =-,∴820,99P ⎛⎫ ⎪⎝⎭或()8,20P -.21.(1)∵四边形ABCD 是正方形,∴AB =BC ,∴90ABQ CBQ ∠+∠=︒,∵BQ ⊥AP∴90PAB QBA ∠+∠=︒,∴PAB CBQ ∠=∠,在PBA △和BCQ △中,{PAB CBQAB BCABP BCQ∠=∠=∠=,∴()PBA QCB ASA ≌,∴AP BQ =.(2)过点Q 作QH AB ⊥于H,如图∵四边形ABCD 是正方形,∴QH =BC =AB =3,∵BP =2PC ,∴BP =2,PC =1,∴BQ AP ==∴2BH ===,∵四边形ABCD 是正方形,∴DC //AB∴CQB QBA ∠=∠,由折叠知识得EQB CQB ∠=∠,∴QBA EQB ∠=∠,∴MQ =MB ,设QM =x ,则有MB =x ,MH =x -2,在t R MHQ 中,根据勾股定理可得222(2)3x x =-+,解得x =134,∴QM 的长为134.22.(1)(p ﹣1)2=0.∴a +3=0,p -1=0,解得a=-3,p =1,∴P (1,0),A (0,-3),设直线AP 的解析式为y=kx+b ,∴03k b b +=⎧⎨=-⎩,解得33k b =⎧⎨=-⎩,∴直线AP 的解析式为y =3x -3;(2)解:过M 作MD AP ∥交x 轴于D ,连接AD ,∵MD AP ∥,△MAP 的面积等于6,∴△DAP 的面积等于6,∴162A DP y ⋅⋅=,即1362DP ⋅⨯=,∴DP =4,∴D (-3,0)设直线DM 的解析式为y =3x+c ,则()330c ⨯-+=,∴c=9,∴直线DM 的解析式为y=3x +9,令x =-2,得y=3,∴M (-2,3);(3)解:存在设B (t ,3t -3),①当点Q 在x 轴负半轴时,过B 作BE ⊥x 轴于E ,如图,∴OE=t ,BE =3-3t ,∵△BCQ是以BC为底边的等腰直角三角形,∴BQ=CQ,∠BQC=90°,∴∠BQE=90°-∠NQC=∠QCN,又∵∠BEQ=∠QN C,∴△BEQ≌△QNC(AAS),∴QN=BE=3-3t,QE=CN=4,∴OQ=QE-OE=ON+QN,即4-t=2+3-3t,∴t=12,∴OQ=7 2,∴Q(-72,0);②当Q在y轴正半轴上时,过C作CF⊥y轴于F,过B作BG⊥y轴于G,如图,∴BG=t,OG=3t-3,∵△BCQ是以BC为底边的等腰直角三角形,∴BQ=CQ,∠BCQ=90°,∴∠CQF=90°-∠BQG=∠GBQ,又∵∠CFQ=∠BGQ=90°,∴△CQF≌△QBG(AAS),∴CF=QG=2,QF=BG=t,∴O Q=OG-QG=OF-QF,即3t-3-2=4-t,∴t=9 4,∴OQ=4-t=7 4,∴Q(0,7 4);③当Q在y轴正半轴上时,过点C作CF⊥y轴于F,过B作BT⊥y轴于T,如图,∴BT=t,OT=3t-3,同②可证△CFQ≌△QTB(AAS),∴CF=BT=t,QF=CF=2,∴O Q=OT+QT=OF+QF,即3t-3+2=4+t,∴t=5 2,∴OQ=4+t=13 2,∴Q(0,13 2);综上,Q的坐标为(-72,0)或(0,74)或(0,132).。

八年级下册数学期末压轴题(含答案)

八年级下册数学期末压轴题(含答案)

八年级数学下册期末压轴题练习(含答案)一、填空题:1.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ 的最小值为 .2.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.3.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AE PQ的周长取最小值时,四边形AEPQ 的面积是.4.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A.点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化; (3)∠PBH=450 ; (4)BP=BH.其中正确的命题是.5.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.二、综合题:6. (1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.7.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.8.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是 cm2.9.一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.10.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.参考答案1.答案为:3.3.答案为:4.5.2.答案为:7;解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF 中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.4.答案为:(1)(2)(3).5.答案为:2;解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,6. (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…∴AB=12.∴S梯形ABCD=0.5(AD+BC)•AB=0.5×(6+12)×12=108.即梯形ABCD的面积为108.…7.解:(1)①∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E 点旋转到DA的延长线上,∴AE=AG,AB=AD,∠EAB=∠GAD,∴△ABE≌△ADG(SAS),∴△ABE的面积=△ADG的面积;②作GH⊥DA交DA的延长线于H,如图2,∴∠AHG=90°,∵E点旋转到CB的延长线上,∴∠ABE=90°,∠HAB=90°,∴∠GAH=∠EAB,在△AHG和△AEB中,∴△AHG≌△AEB,∴GH=BE,∵△ABE的面积=0.5EB•AB,△ADG的面积=0.5GH•AD,∴△ABE的面积=△ADG的面积;(2)结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如图3,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,∴△AHG≌△AEP(AAS),∴GH=BP,∵△ABP的面积=0.5EP•AB,△ADG的面积=0.5GH•AD,∴△ABP的面积=△ADG的面积;(3)∵AB=5cm,BC=3cm,∴AC==4cm,∴△ABC的面积=0.5×3×4=6(cm2);根据(2)中的结论得到阴影部分的面积和的最大值=△ABC的面积的3倍=18cm2.故答案为相等;相等;18.8.解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为0.25a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为0.5a,面积为0.25a2,周长为2a.(3)猜想:重叠部分的面积为0.25a2.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G 设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=0.5a又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=0.5a×0.5a =0.25a2,∴阴影部分的面积是0.25a2.9.(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2。

八年级数学下册压轴题攻略(人教版)勾股定理常考压轴题汇总(原卷版)

八年级数学下册压轴题攻略(人教版)勾股定理常考压轴题汇总(原卷版)

专题04 勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.182.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm26.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.57.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.4109.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.611.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.14413.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.1019.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.3020.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.4121.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC =S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.1423.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接P A,当△ABP为等腰三角形时,t的值为.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.37.如图,Rt△ABC中,.点P为△ABC内一点,P A2+PC2=AC2.当PB的长度最小时,△ACP的面积是.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.。

八下数学压轴题精选

八下数学压轴题精选

八下压轴题精选一.解答题(共20小题)1.如图,在△ABC中,AB=AC=a,BC=b,且2a>b,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.(1)在图(1)中,D是BC边上的中点,计算DE+DF和BG的长(用a,b表示),并判断DE+DF与BG的关系.(2)在图(2)中,D是线段BC上的任意一点,DE+DF与BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明)2.如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB 的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.3.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.4.如图,AB、CD交于点E,AD=AE,CB=CE,F、G、H分别是DE、BE、AC的中点.(1)求证:AF⊥DE;(2)求证:FH=GH.5.阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?6.如图,将△ABC绕顶点A逆时针旋转一角度,使点D落在BC边上,得到△ADE,此时恰好AB∥DE,已知∠E=35°,求∠DAC的度数.7.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.8.将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB 与A′B′相交于点O.(1)求证:△BCE≌△B′CF;(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.9.图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于M.(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.10.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.11.如图(a),两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)将图(a)中的△OAB绕点O顺时针旋转90°角,在图(b)中作出旋转后的△OAB(保留作图痕迹,不写作法,不证明);(2)在图(a)中,你发现线段AC,BD的数量关系是,直线AC,BD相交成度角;(3)将图(a)中的△OAB绕点O顺时针旋转一个锐角,得到图(c),这时(2)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.12.已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.13.如图,在平行四边形ABCD中,过点B作BE∥AC,在BG上取点E,连接DE 交AC的延长线于点F.(1)求证:DF=EF;(2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长.14.如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.15.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.16.如图,已知▱ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作DC的垂线,分别交AE、AB于点M、N.(1)若M为AG中点,且DM=2,求DE的长;(2)求证:AB=CF+DM.17.几何证明(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:FG=(AB+BC+AC).(2)若BD、CE分别是△ABC的内角平分线,其余条件不变(如图1),线段FG 与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.18.如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.19.如图,在四边形ABCD中,AD<BC,对角线AC、BD相交于O点,AC=BD,∠ACB=∠DBC.(1)求证:四边形ABCD为等腰梯形.(2)若E为AB上一点,延长DC至F,使CF=BE,连接EF交BC于G,请判断G 点是否为EF中点,并说明理由.20.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.。

八年级下册数学压轴题(含答案)

八年级下册数学压轴题(含答案)

八年级下册数学压轴题(含答案)四边形AOBC的对角线互相平分,且相等,故为菱形;又因为OC经过翻折后落在AB上,且AC与x轴垂直,故OC垂直于AB,故AO=OC=OB=BC,故AOBC是一个菱形;3)设点P的坐标为(x,y),则BPC为直角三角形,且BP=PC,又因为BP在y轴下方,故y<0,且BP与BC垂直,故BP的斜率为-2;设BP的解析式为y=-2x+b,且B点坐标为(0,-5),则有b=-5;又因为BP=PC,故PC的解析式为y=2x+b,且C点坐标为(a,0),代入得a=5;又因为XXX在BC下方,故y<0,代入得y=-2x-5;代入BP的解析式得x=5/3,代入得y=-25/3;故存在点P(5/3,-25/3),使△BCP为等腰直角三角形。

题目:在平面直角坐标系中,已知点A(0,0),B(5,0),C(0,5√2),D从A出发沿AC方向以1m/s的速度向C匀速运动,同时点E从B出发沿BA方向以√2m/s的速度向A匀速运动。

当其中一个点到达终点时,另一个点也随之停止运动。

设点D,E运动的时间是t(0<t≤10)秒。

过点E作EF⊥BC于点F,连接DE,DF。

1)求BE和CD的长度。

2)试说明,无论t为何值,四边形ADEF都是平行四边形。

3)当t为何值时,△DEF为直角三角形?请说明理由。

解法:1)由题意可知,BE=√2t,CD=t,故BE=√2t,CD=t。

2)如图所示,由题意可得,∠C=90°,∠A=45°,故∠B=45°。

又因为EF⊥BC,所以∠EFB=90°,∠FEB=45°,所以BE=EF。

又因为AE=√2t,DE=CD,所以DE=√2t。

因此,四边形ADEF的对角线相等,且相互平分,所以ADEF是平行四边形。

3)如图所示,当EF⊥BC时,由勾股定理可知,DE²=DF²+EF²,即(√2t)²=(t+BE)²+(5√2-BF)²。

八下各章压轴题

八下各章压轴题

八年级下册数学几何压轴题一、四边形1.如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是;(2)连接PC,当PE+PF+PC 取得最小值时,此时PB的长是;2.如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为 s时,四边形ACFE是菱形;②当t为何值时,EF⊥BC,并加以说明;3.如图,在矩形纸片ABCD中,AB=33,BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30°;⑴求BE、QF的长;⑵求四边形PEFH的面积;4.如图,在矩形ABCD中,AB=3cm,∠DBC=30°,动点P以2cm/s的速度,从点B出发,沿B→D 的方向,向点D运动;动点Q以3cm/s的速度,从点D出发,沿D→C→B的方向,向点B移动.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.(1)求△PQD的面积S(cm2)与运动时间t(s)之间的函数关系式,并写出自变量t的取值范围.(2)在运动过程中,是否存在这样的t,使得△PQD为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.5 如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.6 如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)当点P 在AB、CD上运动时,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.7.如图,已知矩形ABCD ,AD=4,CD=10,P 是AB 上一动点,M 、N 、E 分别是PD 、PC 、CD 的中点. (1)求证:四边形PMEN 是平行四边形;(2)请直接写出当AP 为何值时,四边形PMEN 是菱形;(3)四边形PMEN 有可能是矩形吗?若有可能,求出AP 的长;若不可能,请说明理由.8..问题解决:如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN.当21=CD CE 时,求BNAM的值.类比归纳:在图1中,若31=CD CE ,则BN AM 的值等于 ;若41=CD CE ,则BN AM 的值等于 ;若n CD CE 1= (n 为整数),则BNAM的值等于 (用含n 的式子表示)联系拓广:如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN ,设m BC AB 1= (m >1),n 1=CD CE ,则BNAM 的值等于 ;(用含m ,n 的式子表示)11.已知正方形ABCD 。

2023-2024学年八年级数学下册 第一次月考(压轴32题10种题型)(解析版)

2023-2024学年八年级数学下册 第一次月考(压轴32题10种题型)(解析版)

第一次月考(压轴32题10种题型)范围:八年级下册第一-第二单元一.二次根式有意义的条件(共1小题)1.若|2017﹣m|+=m,则m﹣20172=2018.【答案】见试题解答内容【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:2018.二.二次根式的性质与化简(共3小题)2.把a中根号外面的因式移到根号内的结果是﹣.【答案】见试题解答内容【解答】解:原式=﹣=﹣,故答案为:﹣3.先阅读下列的解答过程,然后作答:形如的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样()2+()2=m,•=,那么便有==±(a>b)例如:化简解:首先把化为,这里m=7,n=12;由于4+3=7,4×3=12,即()2+()2=7,•=,∴===2+由上述例题的方法化简:(1);(2);(3).【答案】见试题解答内容【解答】解:(1)==﹣;(2)===﹣;(3)==.4.已知实数在数轴上的对应点如图所示,化简.【答案】见试题解答内容【解答】解:由数轴可得:a<0,a+b<0,c﹣a>0,b+c<0,故原式=﹣a+(a+b)+c﹣a﹣b﹣c=﹣a.三.分母有理化(共1小题)5.已知x=+3,y=﹣3,求下列各式的值(1)x2﹣2xy+y2,(2)x2﹣y2.【答案】见试题解答内容【解答】解:(1)当x=+3,y=﹣3时,x2﹣2xy+y2=(x﹣y)2=[(+3)﹣(﹣3)]2=62=36;(2)x2﹣y2=(x+y)(x﹣y)=[(+3)+(﹣3)][(+3)﹣(﹣3)]=2×6=12四.二次根式的化简求值(共1小题)6.阅读下面计算过程:==试求:(1)的值为﹣.(2)求+...+的值.(3)若,求a2﹣4a+4的值.【答案】(1)﹣;(2)9;(3)5.【解答】解:(1)==﹣,故答案为:﹣;(2)+...+=﹣1+﹣+…+﹣+﹣=﹣1=10﹣1=9;(3)∵=+2,∴a2﹣4a+4=(a﹣2)2=(+2﹣2)2=()2=5.五.二次根式的应用(共2小题)7.细心观察图形,认真分析各式,然后解答问题.=()2+1=2,s1=;=12+()2=3,S2=;…=12+()2=4,S3=;…(1)请用含有n(n为正整数)的等式表示上述变化规律:=n,S n=.(2)若一个三角形的面积是2,计算说明它是第几个三角形?(3)求出+++…+的值.【答案】见试题解答内容【解答】解:(1)因为每一个三角形都是直角三角形,由勾股定理可求得:OA1=,OA2=,OA3=…OA n=,所以=n.S n=•1•=故:答案为n与(2)当S n=2时,有:2=,解之得:n=32即:说明它是第32个三角形.(3)+++…+=++…+=11.25即:+++…+的值为11.25.8.已知a,b均为正整数.我们把满足的点P(x,y)称为幸福点.(1)下列四个点中为幸福点的是P1(5,5);P1(5,5);P2(6,6);P3(7,7);P4(8,8)(2)若点P(20,t)是一个幸福点,求t的值;(3)已知点P(+1,﹣1)是一个幸福点,则存在正整数a,b满足,试问是否存在实数k的值使得点P和点Q(a+k,b﹣k)到x轴的距离相等,且到y 轴的距离也相等?若存在,求出k的值;若不存在,请说明理由.【答案】(1)P1(5,5);(2)t的值为15或20或25;(3)k的值为10.5,理由见解析.【解答】解:(1)∵a,b均为正整数,满足的点P(x,y)称为幸福点,∴当a=1,b=1时,x=5,y=5,故P1(5,5)是幸福点,当a=1,b=2时,x=8,y=7,故(8,7)是幸福点,当a=2,b=1时,x=7,y=8,故(7,8)是幸福点,...∴P1(5,5),P2(6,6),P3(7,7),P4(8,8)中只有P1(5,5)是幸福点,故答案为:P1(5,5);(2)∵点P(20,t)是一个幸福点,∴2a+3b=20,3a+2b=t,∵a,b均为正整数,∴a=1,b=6或a=b=4或a=7,b=2,当a=1,b=6时,t=15,当a=b=4时,t=20,当a=7,b=2时,t=25,∴t的值为15或20或25;(3)∵点P(+1,﹣1)是一个幸福点,则存在正整数a,b满足,∴消去m得,b=a+2,∵P(2a+3b,3a+2b),Q(a+k,b﹣k),∴P(5a+6,5a+4),Q(a+k,a+1﹣k),∵点P和点Q到x轴的距离相等,∴有4种情况,①,解得,a=﹣1(舍),k=;②,解得,a=1,k=10.5,∴b=3,符合题意;③,解得,a=﹣3(舍),k=;④,解得,a=﹣1(舍),k=﹣;∴当a=1,b=3,k=10.5时,点P和点Q到x轴的距离相等,且到y轴的距离也相等.六.勾股定理(共13小题)9.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD,BE相交于点F,若AF=4,,则AC=()A.1B.2C.D.【答案】D【解答】解:如图,过点E作EG⊥AD于G,连接CF,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠CAD=∠BAD,∠CBE=∠ABE,∵∠ACB=90°,∴2(∠BAD+∠ABE)=90°,∴∠BAD+∠ABE=45°,∴∠EFG=∠BAD+∠ABE=45°,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理,得AE==,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴=,∴AC===,故选:D.10.如图,在Rt△ABC中,∠BAC=90°,以其三边为边分别向外作正方形,延长EC,DB 分别交GF,AH于点N,K,连接KN交AG于点M,若S1﹣S2=2,AC=4,则AB的长为()A.2B.C.D.【答案】A【解答】解:(1)如图,根据条件得到“K”型△ABC≌△FNC,得到NF=AB=x.(2)连接GK,可以发现△GNK的面积=GN×AG÷2=2GN,同理△KAG的面积=2AK.利用条件S1﹣S2=2,得到GN﹣AK=1,即n﹣m=1,又因为n+x=4,所以m=3﹣x.(3)在△KBC中,有射影定理AB2=AC×AK.这样可以得到方程:x2=4×(3﹣x),解得x=2,即AB=2.故选:A.11.如图,AB=AC=4,P是BC上异于B、C的一点,则AP2+BP•PC的值是()A.16B.20C.25D.30【答案】A【解答】解:过点A作AD⊥BC于点D.∵AD⊥BC,∴△ADP与△ABD都为直角三角形.∴AP2=AD2+DP2,AB2=AD2+BD2.∵AB=AC,AD⊥BC,∴BD=CD.∵PC=CD+DP,BD=CD,∴PC=BD+DP.∵BP=BD﹣DP,PC=BD+DP,∴BP•PC=BD2﹣DP2.∵AP2=AD2+DP2,BP•PC=BD2﹣DP2,∴AP2+BP×PC=AD2+BD2.∵AB2=AD2+BD2,AP2+BP×PC=AD2+BD2,∴AP2+BP•PC=AB2.∵AB=4,∴AP2+BP•PC=16.故选:A.12.如图,在四边形ABCD中,已知AC⊥BD,AC=4,BD=5,则AD+BC的最小值是()A.3B.6C.D.【答案】D【解答】解:设AC,BD的交点为O,AB,BC,CD,DA的中点分别是P,Q,R,S,连接PQ,QR,RS,SP,OQ,OS,QS,如图:∵AC,BD互相垂直,∴△AOD和△BOC为直角三角形,且AD,BC分别为斜边,∴AD=2OS,BC=2OQ,∴AD+BC=2(OS+OQ),∴当OS+OQ为最小时,AD+BC为最小,根据“两点之间线段最短”得:OQ+OS≥QS,∴当点O在线段QS上时,OQ+OS为最小,最小值为线段QS的长,∵点P,Q分别为AB,BC的中点,∴PQ为△ABC的中位线,∴PQ=AC=2,PQ∥AC,同理:QR=BD=,QR∥BD,RS=AC=2,RS∥AC,SP=BD=,SP∥BD,∴PQ∥AC∥RS,QR∥BD∥SP,∴四边形PQRS为平行四边形,∵AC⊥BD,PQ∥AC,SP∥BD,∴PQ⊥SP,∴四边形PQRS为矩形,在Rt△PQS中,PQ=2,SP=,由勾股定理得:QS==,∴OQ+OS的最小值为,∴AD+BC的最小值为.故选:D.13.如图,在△ABC中,AC=8,∠A=30°,∠B=45°,点P是AC延长线上一动点,PM⊥BC边与点M,PN⊥AB边与点N,连接MN,则MN的最小值为()A.B.C.D.【答案】A【解答】解:过点C作CH⊥AB,∵∠A=30°,AC=8,∴CH=4,AH=4,∵∠B=45°,∴BH=CH=4,∴AB=4+4,连接PB,取PB的中点Q,连接MQ,QN,∵PM⊥BC PN⊥AB,∴点P,M,N,B四点共圆,点Q为圆心,∵∠B=45°,∴∠MQN=2∠B=90°,∴MN=QN,∵PB=2QN,∴MN=PB,∴当PB最小时,MN最小,设PN=x,∵∠A=30°,∴PA=2x,AN=x,∴BN=4+4﹣x,∵PB2=PN2+NB2,∴PB2=x2+(4+4﹣x)2=4x2﹣(8+24)x+64+32,∵4>0,∴当x==+3时,即PN=+3时,PB2有最小值,此时BN=4+4﹣x=+1,∴PN=BN,∴PB=2BN=2+2,∴MN=×(2+2)=+,故选:A.14.如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.【答案】C【解答】解:设CF交AB于点P,过C作CN⊥AB于点N,如图:设正方形JKLM边长为m,∴正方形JKLM面积为m2,∵正方形ABGF与正方形JKLM的面积之比为5,∴正方形ABGF的面积为5m2,∴AF=AB=m,由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF=GF,∴△AFL≌△FGM(AAS),∴AL=FM,设AL=FM=x,则FL=FM+ML=x+m,在Rt△AFL中,AL2+FL2=AF2,∴x2+(x+m)2=(m)2,解得x=m或x=﹣2m(舍去),∴AL=FM=m,FL=2m,∵tan∠AFL====,∴=,∴AP=,∴FP===m,BP=AB﹣AP=m﹣=,∴AP=BP,即P为AB中点,∵∠ACB=90°,∴CP=AP=BP=,∵∠CPN=∠APF,∠CNP=90°=∠FAP,∴△CPN∽△FPA,∴==,即==,∴CN=m,PN=m,∴AN=AP+PN=m,∴tan∠BAC====,∵△AEC和△BCH是等腰直角三角形,∴△AEC∽△BCH,∴=,∵CE=+,∴=,∴CH=2,故选:C.15.如图,在△ABC中,∠ACB=90°,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC=7,空白部分面积为16,则图中阴影部分的面积是.【答案】.【解答】解:如图,∵四边形ABGF是正方形,∴∠FAB=∠AFG=∠ACB=90°,∴∠FAC+∠BAC=∠FAC+∠ABC=90°,∴∠FAC=∠ABC,∴△FAH≌△ABN(ASA),=S△ABN,∴S△F AH=S四边形FNCH,∴S△ABC在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=7,∴(AC+BC)2=AC2+BC2+2AC•BC=49,∴AB2+2AC•BC=49,=16,∵AB2﹣S△ABC∴AB2﹣AC•BC=16,∴BC•AC=,AB2=,∴AC2+BC2=,∴阴影部分的面积和=AC2+BC2+2S△ABC﹣S白=+2××﹣16=.故答案为:.16.如图,在正方形ABCD的对角线AC上取一点E,使得∠CDE=15°,连接BE并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=,有下列四个结论:①∠CBE=;④CE+DE=EF.则其中正确的结论有①=15°;②AE=+1;③S△DEC②④.(填序号)【答案】见试题解答内容【解答】解:①∵四边形ABCD是正方形,∴BC=CD,∠BCE=∠DCE=45°.在△BCE和△DCE中,,∴△BCE≌△DCE(SAS),∴∠CBE=∠CDE=15°,故①正确;②过D作DM⊥AC于M,∵∠CDE=15°,∠ADC=90°,∴∠ADE=75°,∵∠DAE=45°,∴∠AED=60°,∵AD=AB=,∴AM=DM=×=,∴ME=DM=×=1,∴AE=+1,故②正确;③根据勾股定理求出AC=2,∵DM=,EM=1,∵∠DCA=45°,∠AED=60°,∴CM=,∴CE=CM﹣EM=﹣1,=×(﹣1)×=,故③错误;∴S△DEC④在EF上取一点G,使EG=EC,连接CG,∵BC=CF,∴∠CBE=∠F,∴∠CBE=∠CDE=∠F=15°.∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=GCF.在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.∵EF=EG+GF,∴EF=CE+ED,故④正确;故答案为:①②④.17.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4= 2.5.【答案】2.5.【解答】解:∵△ABD、△ACE、△BCF均是等腰直角三角形,∴AB=BD,AC=CE,BC=CF,=m,S△ACH=n,设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG∵a2+b2=c2,+S△ACE=S△BCF,∴S△ABD∴S1+m+n+S4=S2+S3+m+n,∴S4=3.5+5.5﹣6.5=2.5故答案为:2.5.18.阅读:如图1,在△ABC中,3∠A+∠B=180°,BC=8,AC=10,求AB的长.小明的思路:如图2,作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,易得∠A=∠D,△ABD为等腰三角形,由3∠A+∠B=180°和∠A+∠ABC+∠BCA=180°,易得∠BCA=2∠A,△BCD为等腰三角形,依据已知条件可得AE和AB 的长.解决下列问题:(1)图2中,AE=9,AB=12;(2)在△ABC中,∠A,∠B,∠C的对边分别为a、b、c.如图3,当3∠A+2∠B=180°时,用含a,c式子表示b.【答案】见试题解答内容【解答】解:(1)如图2,作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,则BE是AD的垂直平分线,∴AB=BD,∠A=∠D,∵3∠A+∠ABC=180°,∠A+∠ABC+∠BCA=180°,∴∠BCA=2∠A,∵∠BCA=∠D+∠CBD,∴∠BCA=∠A+∠CBD=2∠A,∴∠CBD=∠A,∴DC=BC=8,∴AD=DC+AC=8+10=18,∴AE=AD=9,∴EC=AD﹣CD=9﹣8=1.∴在直角△BCE和直角△AEB中,由勾股定理得到:BC2﹣CE2=AB2﹣AE2,即82﹣12=AB2﹣92,解得,AB=12,故答案为:9;12;(2)作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,则BE是边AD的垂直平分线,∴AB=BD,∠A=∠D.∵3∠A+2∠B=180°,∠A+∠ABC+∠BCA=180°,∴2∠A+∠ABC=∠ACB,∵∠ACB=∠D+∠DBC,∴2∠A+∠ABC=∠D+∠DBC,∵∠A=∠D,∴∠A+∠ABC=∠DBC,BD=AB=c,即∠DCB=∠DBC,∴DB=DC=c,由题意得,DE=AE=,∴EC=AE﹣AC=﹣b=,在Rt△BEC中,BE2=BC2﹣EC2,在Rt△BEA中,BE2=BA2﹣EA2,∴BC2﹣EC2=BA2﹣EA2,即a2﹣()2=c2﹣()2,整理得,b=.19.如图,已知四边形ABCD中,AB∥CD,BC=AD=4,AB=CD=10,∠DCB=90°,E 为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE,设点P运动的时间为t秒.(1)求BE的长;(2)若△BPE为直角三角形,求t的值.【答案】见试题解答内容【解答】解:(1)∵CD=10,DE=7,∴CE=10﹣7=3,在Rt△CBE中,BE==5;(2)当∠BPE=90°时,AP=10﹣3=7,则t=7÷1=7(秒),当∠BEP=90°时,BE2+PE2=BP2,即52+42+(7﹣t)2=(10﹣t)2,解得,t=,∴当t=7或时,△BPE为直角三角形.20.如图1,四边形ADCO中,∠AOC=90°,∠ADC=90°,AD=7,DC=24,CO=15.(1)求线段AO的长度;(2)如图2所示,OB是∠AOC的平分线,一动点P从点O出发,以每秒2个单位长度的速度沿射线OB运动.设点P的运动时间为t秒,当△AOP是等腰三角形时,请求出t 的值.【答案】(1)20;(2)t的值为5或10或10.【解答】解:如图1,连接AC,∵∠ADC=90°,AD=7,DC=24,∴AC===25,∵∠AOC=90°,CO=15,∴AO===20;(2)如图2,∵OB是∠AOC的平分线,∴∠AOB=∠COB=45°,∵一动点P从点O出发,以每秒2个单位长度的速度沿射线OB运动,设点P的运动时间为t秒,∴OP=2t,当△AOP是等腰三角形时,分3种情况讨论:①当AP=OP时,∴∠PAO=∠POA=45°,∴△AOP是等腰直角三角形,由(1)知:AO=20,∴OP=AO=10,∴2t=10,∴t=5;②当OA=OP″时,∴2t=20,∴t=10;③当AP′=AO时,∴∠AP′O=∠AOP′=45°,∴△AOP′是等腰直角三角形,∴OP=AO=20,∴2t=20,∴t=10,∴t的值为5或10或10.21.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?【答案】见试题解答内容【解答】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴由勾股定理得PB=2cm∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;(2)如图2所示,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC.在Rt△BPD与Rt△BPC中,,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6cm,∴AD=10﹣6=4cm.设PC=x cm,则PA=(8﹣x)cm在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,BP平分∠CAB;(3)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或10.8s时△BCP为等腰三角形.七.勾股定理的证明(共2小题)22.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=6,大正方形的面积为16,则小正方形的面积为()A.8B.6C.4D.3【答案】C【解答】解:由题意可得,,∴小正方形的面积=(a﹣b)2=a2+b2﹣2ab=16﹣12=4,故选:C.23.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【答案】B【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,在△BPG和△BCG中,,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2=x2(+1)2+x2=(4+2)x2,∴===2+.故选:B.八.勾股定理的逆定理(共2小题)24.已知△ABC中,BC=m﹣n(m>n>0),AC=2,AB=m+n.(1)求证:△ABC是直角三角形;(2)当∠A=30°时,求m,n满足的关系式.【答案】见试题解答内容【解答】解:(1)∵BC=m﹣n(m>n>0),AC=2,AB=m+n,∴AC2+CB2=(m﹣n)2+4mn=m2+n2﹣2mn+4mn=m2+n2+2mn=(m+n)2=AB2.∴∠C=90°.∴△ABC是为直角三角形;(2)∵∠A=30°,∴==,∴m=3n.25.定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.【答案】见试题解答内容【解答】解:(1)是.理由:∵AM2+BN2=1.52+22=6.25,MN2=2.52=6.25,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形,∴点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=24﹣AM﹣BN=18﹣x,①当MN为最长线段时,依题意MN2=AM2+NB2,即(18﹣x)2=x2+36,解得x=8;②当BN为最长线段时,依题意BN2=AM2+MN2.即x2=36+(18﹣x)2,解得x=10,综上所述,BN=8或10.九.勾股定理的应用(共6小题)26.勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.如图,秋千静止时,踏板离地的垂直高度BE=1m,将它往前推6m至C处时(即水平距离CD=6m),踏板离地的垂直高度CF=4m,它的绳索始终拉直,则绳索AC的长是()m.A.B.C.6D.【答案】B【解答】解:设绳长为x米,在Rt△ADC中,AD=AB﹣BD=AB﹣(DE﹣BE)=x﹣(4﹣1)=(x﹣3)米,DC=6m,AC=x米,∴AB2+DC2=AC2,根据题意列方程:x2=(x﹣3)2+62,解得:x=,∴绳索AC的长是.故选:B.27.如图,某住宅社区在相邻两楼之间修建一个上方是以AB为直径的半圆,下方是长方形的仿古通道,已知AD=2.3米,CD=2米;现有一辆卡车装满家具后,高2.5米,宽1.6米,请问这辆送家具的卡车能否通过这个通道?请说出你的理由.【答案】见试题解答内容【解答】解:∵车宽1.6米,∴卡车能否通过,只要比较距厂门中线0.8米处的高度与车高.在Rt△OEF中,由勾股定理可得:EF===0.6(m),EH=EF+FH=0.6+2.3=2.9>2.5,∴卡车能通过此门.28.如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 3.2米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;(3)当他在丙房间时,测得MA=2.8米,且∠MPA=75°,∠NPB=45°.①求∠MPN的度数;②求丙房间的宽AB.【答案】见试题解答内容【解答】解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM===2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM+∠BPN=90°,∵∠APM+∠AMP=90°,∴∠AMP=∠BPN.在△AMP与△BPN中,,∴△AMP≌△BPN,∴MA=PB=2.4,∵PA==0.7,∴AB=PA+PB=0.7+2.4=3.1;(3)①∠MPN=180°﹣∠APM﹣∠BPN=60°;②过N点作MA垂线,垂足点D,连接NM.设AB=x,且AB=ND=x.∵梯子的倾斜角∠BPN为45°,∴△BNP为等腰直角三角形,△PNM为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND=15°.∵∠APM=75°,∴∠AMP=15°.∴∠DNM=∠AMP,∵△PNM为等边三角形,∴NM=PM.∴△AMP≌△DNM(AAS),∴AM=DN,∴AB=DN=AM=2.8米,即丙房间的宽AB是2.8米.29.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.30.已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所对的边分别记作a、b、c.如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有S1+S2=S3;(1)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分别记作S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2、S3,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;(3)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积.【答案】见试题解答内容【解答】解:(1)∵,根据勾股定理可知:S1+S2=S3;(2)S1+S2=S3;(3)S=S1+S2﹣(S3﹣S△ABC)阴影部分=×6×8=24.=S△ABC31.已知在△ABC中,AB=AC,点D在线段BC上,点F在射线AD上,连接CF,作BE ∥CF交射线AD于E,∠CFA=∠BAC=α.(1)如图1,当α=70°时,∠ABE=15°时,求∠BAE的大小;(2)当α=90°,AB=AC=8时,①如图2.连接BF,当BF=BA,求CF的长;②若AD=,求CF的长.【答案】(1)55°;(2)①;②:或.【解答】解:(1)∵BE∥CF,∠CFA=∠BAC=α=70°,∴∠BED=70°,∵∠BED=∠ABE+∠BAE,∠ABE=15°,∴∠BAE=70°﹣15°=55°;(2)①∵BF=BA,AB=AC,∴BF=AC,∵BE∥CF,∠CFA=∠BAC=α=90°,∴BE⊥AF,AE=EF,∠ABE=∠FBE,∠BEF=∠AFC=90°,∴∠ABE+∠BAE=90°=∠BAE+∠CAF,∴∠ABE=∠CAF,∴∠CAF=∠FBE,∴△BEF≌△AFC(AAS),∴EF=FC,∴,∵AB=AC=8,∴CF2+(2CF)2=64,解得:(负根舍去);②如图,过A作AM⊥BC于M,当D在M的右边时,∵∠BAC=90°,AB=AC=8,∴,,∵,∴,∴,∴,∴,∴,由(1)得:∠ABE=∠CAF,而∠AEB=∠AFC=90°,AB=AC,∴△BAE≌△ACF(AAS),∴,当D在M的左边时,如图,同理可得:,,,∴;综上:或.一十.四边形综合题(共1小题)32.如图,长方形ABCD中,AB=8,BC=10,在边CD上取一点E,将△ADE折叠后点D 恰好落在BC边上的点F处(1)求CE的长;(2)在(1)的条件下,BC边上是否存在一点P,使得PA+PE值最小?若存在,请求出最小值;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)长方形ABCD中,AB=8,BC=10,∴∠B=∠BCD=90°,CD=AB=8,AD=BC=10,由折叠知,EF=DE,AF=AD=8,在Rt△ABF中,根据勾股定理得,BF==6,∴CF=BC﹣BF=4,设CE=x,则EF=DE=CD﹣CE=8﹣x,在Rt△ECF中,根据勾股定理得,CF2+CE2=EF2,∴16+x2=(8﹣x)2,∴x=3,∴CE=3;(2)如图,延长EC至E'使CE'=CE=3,连接AE'交BC于P,此时,PA+PE最小,最小值为AE',∵CD=8,∴DE'=CD+CE'=8+3=11,在Rt△ADE'中,根据勾股定理得,AE'==.。

八年级下册数学期末压轴题专辑(含解析,)

八年级下册数学期末压轴题专辑(含解析,)

八年级下册数学期末压轴题专辑(含解析)1.如图,ON 为∠AOB 中的一条射线,点P 在边OA 上,PH ⊥OB 于H ,交ON 于点Q ,PM ∥OB 交ON 于点M, MD ⊥OB 于点D ,QR ∥OB 交MD 于点R ,连结PR 交QM 于点S 。

(1)求证:四边形PQRM 为矩形; (2)若OP=12PR ,试探究∠AOB 与∠BON 的数量关系,并说明理由。

(1)证明:∵PH ⊥OB ,MD ⊥OB ,∴PH ∥MD ,∵PM ∥OB ,QR ∥OB ,∴PM ∥QR ,∴四边形PQRM 是平行四边形, ∵PH ⊥OB ,∴∠PHO=90°,∵PM ∥OB ,∴∠MPQ=∠PHO=90°,∴四边形PQRM 为矩形; (2)∠AOB=3∠BON .理由如下: ∵四边形PQRM 为矩形,∴PS=SR=SQ=12PR ,∴∠SQR=∠SRQ , 又∵OP=12PR ,∴OP=PS ,∴∠POS=∠PSO , ∵QR ∥OB ,∴∠SQR=∠BON ,在△SQR 中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON ,∴∠POS=2∠BON , ∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON ,即∠AOB=3∠BON . 2.如图,矩形OABC 在平面直角坐标系内(O 为坐标原点),点A 在x 轴上,点C 在y 轴上,点B 的坐标分别为( ,点E 是BC 的中点,点H 在OA 上,且AH=12,过点H 且平行于y 轴的HG 与EB 交于点G ,现将矩形折叠,使顶点C 落在HG 上,并与HG 上的点D 重合,折痕为EF ,点F 为折痕与y 轴的交点。

(1)求∠CEF 的度数和点D 的坐标; (2)求折痕EF 所在直线的函数表达式;(3)若点P 在直线EF 上,当△PFD 为等腰三角形时,试问满足条件的点P 有几个?请求出点P 的坐标,并写出解答过程。

八年级数学下册专题11一次函数几何压轴训练(原卷版)

八年级数学下册专题11一次函数几何压轴训练(原卷版)

专题11 一次函数几何压轴训练1.(2023秋•东阳市期末)如图,在平面直角坐标系中,直线分别交x轴,y轴于点B,A,直线OC⊥AB,垂足为点C,D为线段OA上一点(不与端点重合),过点D 作直线l∥x轴,交直线AB于点E,交直线OC点F.(1)求线段OC的长;(2)当DE=EF时,求点D的坐标;(3)若直线l过点C,点M为线段OC上一点,N为直线l上的点,已知OM=CN,连结AN,AM,求线段AN+AM的最小值.2.(2023秋•和平县期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C (2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE 交x轴于点F,若△DEF为直角三角形,求点D坐标.3.(2023秋•槐荫区期末)如图,直线和直线l2与x轴分别相交于A,B两点,且两直线相交于点C,直线l2与y轴相交于点D(0,﹣4),OA=2OB.(1)求出直线l2的函数表达式;(2)E是x轴上一点,若S△ABC=2S△BCE,求点E的坐标;(3)若F是直线l1上方且位于y轴上一点,∠ACF=2∠CAO,判断△BCF的形状并说明理由.4.(2023秋•巴中期末)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A、B,直线BC与x轴负半轴交于点C,且CO=2AO.(1)求线段AC的长;(2)动点P从点C出发沿射线CA以每秒1个单位的速度运动,连接BP,设点P的运动时间为t(秒),△BPO的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在线段BC上是否存在点D,连接DP,使得△BDP是以BP为直角边的等腰直角三角形,若存在,请求出t的值,若不存在,请说明理由.5.(2023秋•金牛区期末)如图1,在平面直角坐标系中,直线y=2x+b与x轴、y轴分别交于点A、点B,S△AOB=4,点C(3,m)是直线AB上一点,在直线AB左侧过点C的直线交y轴于点D,交x轴于点E.(1)求m和b的值;(2)当∠ACD=45°时,求直线CD的解析式;(3)如图2,在(2)的条件下,过C作CM⊥x轴,在直线AC上一点P,直线CD上一点Q,直线CM上一点H,当四边形AHQP为菱形时,求P点的坐标.6.(2023秋•咸阳期末)如图,已知一次函数y=kx+b(k、b为常数,且k≠0)的图象与x 轴交于点A(﹣6,0),与y轴交于点B(0,8).(1)求该一次函数的表达式;(2)点C为点B上方y轴上的点,在该一次函数的图象上是否存在点P,使得以点P、B、C为顶点的三角形与△OAB全等?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.7.(2023秋•历城区期末)如图1,直线AB:y=﹣x+b分别与x,y轴交于A(3,0),B两点,点A沿x轴向右平移3个单位得到点D.(1)分别求直线AB和BD的函数表达式.(2)在线段BD上是否存在点E,使△ABE的面积为,若存在,求出点E坐标;若不存在,说明理由.(3)如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K.当点P运动时,点K的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.8.(2023秋•江门期末)如图所示,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a,b满足+(a﹣4)2=0.(1)a=,b=;(2)如图1,若点C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(3)如图2,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过点D作DN⊥DM交x轴于点N,当点M在y轴正半轴上运动的过程中,式子S△BDM﹣S△ADN的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求出该式子的值.9.(2023秋•简阳市期末)如图,在平面直角坐标系xOy中,一次函数y=﹣x+8分别与x 轴、y轴交于A、B两点,过点B作BC⊥AB交x轴于点C.(1)求点C的坐标;(2)点D为直线AB上一点,且∠DCA=∠DAC,求直线CD的解析式;(3)若点Q是x轴上一点,连接BQ,将△ABQ沿着BQ所在直线折叠,当点A落在y 轴上时,求点Q的坐标.10.(2023秋•天桥区期末)如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)请写出点A坐标,点B坐标,直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点Q的坐标;②点M在线段AC上,连接BM,如图2,若∠BMP=∠BAC,直接写出P的坐标.11.(2023秋•万州区期末)如图1,在平面直角坐标系中,一次函数y=2x+4的图象与x轴,y轴分别交于A、B两点,点C是OB的中点.(1)求直线AC的解析式;(2)如图2,若点M是直线AC上的一动点,当S△ABM=2S△AOC时,求点M的坐标;(3)将直线AB向右平移3个单位长度得到直线l,若点E为平移后直线l上的一点,在平面直角坐标系中是否存在点F,使以点A、C、E、F为顶点,AE为边的四边形为菱形,若存在,请直接写出所有满足条件的点F的坐标;若不存在,请说明理由.12.(2023秋•盐都区期末)如图,直线AB:y=x+b分别与x、y轴交于A,B两点,点A的坐标为(−4,0),过点B的直线交x轴正半轴于点C,且OB:OC=4:3.(1)求直线BC的函数表达式;(2)在x轴上方是否存在点D,使以点A,B,D为顶点的三角形与△ABC全等.若存在,画出△ABD,并求出点D的坐标,若不存在,请说明理由;(3)点P是y轴上的一点,连接CP,将△BCP沿直线CP翻折,当点B的对应点B′恰好落在x轴上时,请直接写出此时直线CP的函数表达式.13.(2023春•阳江期末)如图,在平面直角坐标系中,直线l1:y=﹣x+5与y轴交于点A,直线l2与x轴、y轴分别交于点B(﹣4,0)和点C,且与直线l1交于点D(2,m).(1)求直线l2的解析式;(2)若点E为线段BC上一个动点,过点E作EF⊥x轴,垂足为F,且与直线l1交于点G,当EG=6时,求点G的坐标;(3)若在平面上存在点H,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点H的坐标.14.(2023春•潮阳区期末)如图,直线y=x﹣3交x轴于A,交y轴于B,(1)求A,B的坐标和AB的长(直接写出答案);(2)点C是y轴上一点,若AC=BC,求点C的坐标;(3)点D是x轴上一点,∠BAO=2∠DBO,求点D的坐标.15.(2023春•武穴市期末)如图,在平面直角坐标系xOy中,直线l1:y=x+2与x轴交于点A,直线l2:y=3x﹣6与x轴交于点D,与l1相交于点C.(1)求点D的坐标;(2)在y轴上一点E,若S△ACE=S△ACD,求点E的坐标;(3)直线l1上一点P(1,3),平面内一点F,若以A、P、F为顶点的三角形与△APD 全等,求点F的坐标.16.(2023春•淅川县期末)如图,已知直线y=kx+b经过A(6,0)、B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若C是线段OA上一点,将线段CB绕点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上.①求点C和点D的坐标;②若点P在y轴上,Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q坐标,否则说明理由.17.(2023春•拜泉县期末)综合与探究.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线,点B的坐标为B(2a,a).(1)A,C.(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的解析式(问题(1)中的结论可直接使用).(3)若点M在y轴上,则在平面直角坐标系中的x轴及x轴的下方,是否存在这样的点N,使得以A、D、N、M为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.18.(2023春•唐县期末)(1)基本图形的认识:如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连结AE、DE,求证:△AED是等腰直角三角形.(2)基本图形的构造:如图2,在平面直角坐标系中,A(2,0),B(0,3),连结AB,过点A在第一象限内作AB的垂线,并在垂线截取AC=AB,求点C的坐标;(3)基本图形的应用:如图3,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D,且∠CAB=45°,求点D的坐标.19.(2023春•新罗区期末)数形结合作为一种数学思想方法,数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”.例如:在我们学习数轴的时候,数轴上任意两点,A表示的数为a,B表示的数为b,则A,B两点的距离可用式子|a﹣b|表示.研一研:如图,在平面直角坐标系中,直线AB分别与x轴正半轴、y轴正半轴交于点A(a,0)、点B(0,b),且a、b满足(a﹣6)2+|b﹣4|=0.(1)直接写出以下点的坐标:A(,0),B(0,).(2)若点P、点Q分别是y轴正半轴(不与B点重合)、x轴负半轴上的动点,过Q作QC∥AB,连接PQ.已知∠BAO=34°,请探索∠BPQ与∠PQC之间的数量关系,并说明理由.(3)已知点D(3,2)是线段AB的中点,若点H为y轴上一点,且,求S△AHD=S△AOB,求点H的坐标.20.(2023春•红安县期末)如图,在平面直角坐标系中,直线l1:y=kx+8分别交x轴,y 轴于点A,B,点A(8,0).直线l2:经过线段AB的中点Q,分别交x轴,y 轴于点C,D.(1)请直接写出k的值;(2)请求出直线l2的解析式;(3)点P(t,0)为x轴上一动点,过点P作PE∥y轴交l1,l2于点E,F;①当EF=2EP时,求t的值.②连接BC,当∠OBC=∠ABF时,求t的值.21.(2023春•樊城区期末)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与x轴,y轴交于A,B;与直线y2=kx交于P(2,1),且PO=P A.(1)求点A的坐标;(2)求函数y1,y2的解析式;(3)点D为直线y1=ax+b上一动点,其横坐标为t(t<2),DF⊥x轴于点F,交y2=kx于点E,且DF=2EF,求点D的坐标;(4)在(3)的条件下,如果点D在第一象限内,过点P的直线y=mx+n将四边形OBDE 分为两部分,两部分的面积分别设为S1,S2.若≤2,直接写出m的取值范围.22.(2023春•松北区期末)如图,直线y=x+10交x轴于点A,交y轴于点B,直线y=kx+b 过点A,交y轴于点C,且C为线段OB的中点.(i)求k、b的值;(2)点P为线段AC延长线上一点,连接PB,设点P的横坐标为t,△P AB的面积为S,求S与t的函数关系式;(3)在(2)的条件下,点D在线段AO的延长线上,连接CD、PD,且,点E在AD上,且∠DPE=45°,过点C作CF∥PE,交x轴于点F,若AF=DE,求P点的坐标.23.(2023春•碑林区校级期末)如图,在平面直角坐标系中,直线y=﹣2x+b与x轴,y轴分别交于A、B两点.直线交线段AB于点C(1,m),且S△AOB=2S△BOC.(1)求b的值;(2)若点D是y轴上一点,点E为平面上一点,是否存在以点A,B,D,E为顶点的四边形是矩形?若存在,请求出点E的坐标,若不存在请说明理由.24.(2023春•台江区期末)已知直线与x轴交于点A,与y轴交于点B,P为直线AB上的一个动点,过点P分别作PF⊥x轴于点F,PE⊥y轴于点E,如图所示.(1)若点P为线段AB的中点,求OP的长;(2)若四边形PEOF为正方形时,求点P的坐标;(3)点P在AB上运动过程中,EF的长是否有最小值,若有,求出这个最小值;若没有,请说明理由.25.(2023春•舞阳县期末)如图,在平面直角坐标系中,直线y=﹣x+6与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣3),与直线CD交于点A(m,3).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F.若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.26.(2023秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x ﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.27.(2023秋•金华期末)如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)直线l1的表达式为,点D的坐标为;(2)设P(2,m),当点P在点D的下方时,求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C 的坐标.28.(2023秋•新都区校级期末)如图,已知直线y=x﹣2分别与x轴,y轴交于A,B两点,直线OG:y=kx(k<0)交AB于点D.(1)求A,B两点的坐标;(2)如图1,点E是线段OB的中点,连接AE,点F是射线OG上一点,当OG⊥AE,且OF=AE时,在x轴上找一点P,当PE+PD的值最小时,求出△APE的面积;(3)如图2,若k=﹣2,过B点BC∥OG,交x轴于点C,此时在x轴上是否存在点M,使∠OBM+∠OBC=45°,若存在,求出点M的坐标;若不存在,请说明理由.29.(2023春•巴中期末)如图,在平面直角坐标系中,直线y=2x+10与x轴交于点A,与y轴交于点B,过点B的另一直线交x轴正半轴于点C,且△ABC面积为60.(1)求点C的坐标及直线BC的表达式;(2)若M为线段BC上一点,直线AM把△ABC的面积分成两部分,这两部分的面积之比为1:2,求M的坐标;(3)当△ABM的面积为20时,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C为顶点的四边形为平行四边形?若存在,直接写出点D的坐标;若不存在,请说明理由.30.(2023春•湘潭县期末)如图,长方形OABC,是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,在AB上取一点M使得△CBM沿CM翻折后,点B落在x轴上,记作B′点.(1)求B'点的坐标;(2)求折痕CM所在直线的表达式;(3)求折痕CM上是否存在一点P,使PO+PB'最小?若存在,请求出最小值,若不存在,请说出理由.。

八年级下压轴 50题(含答案及解析)

八年级下压轴 50题(含答案及解析)
②当AB=AE=2,∠B=60°时,将四边形ABCE向右平移a(a>0)个单位后,恰有两个顶点落在反比例函数y= 的图象上,求k的值.
29.如图1,在平面直角坐标系中,直线y=﹣ x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.
10.(1)如图①,两个正方形的边长均为3,求三角形DBF的面积.
①当t=秒时,以A、P、E、D、为顶点可以构成平行四边形.
②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
23.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣ x+b过点C.
13.如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF= ∠B.
(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;
(2)求证:BF=EF﹣EM.
14.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.

八年级下数学期末压轴题精选

八年级下数学期末压轴题精选

期末考前压轴题精选(绝密资料)1、如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.2、如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.3、如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.4、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.5、如图,在Rt△ABC中,∠B=90°,.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC 于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.6、某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?7、台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东30°方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.(1)该城市是否会受到这次台风的影响?为什么?(提示:过A作AD⊥BC于D)(2)若受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?8、已知如图,在▱ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.9、A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C、D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C、D两县农用车的费用分别为每辆300元和150元,从B市运往C、D两县农用车的费用分别为每辆200元和250元.(1)设从A市运往C县的农用车为x辆,此次调运总费为y元,求y与x的函数关系式,并写出自变量x的取值范围;(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用?解:(1)从A市运往C县的农用车为x辆,此次调运总费为y元,根据题意得:y=300x+200(42﹣x)+150(50﹣x)+250(x﹣2),即y=200x+15400,所以y与x的函数关系式为:y=200x+15400,又∵,解得:2≤x≤42,且x为整数,所以自变量x的取值范围为:2≤x≤42,且x为整数;(2)∵此次调运的总费用不超过16000元,∴200x+15400≤16000 解得:x≤3,∴x可以取:2或3,方案一:从A市运往C县的农用车为2辆,从B市运往C县的农用车为40辆,从A市运往D县的农用车为48辆,从B市运往D县的农用车为0辆,方案二:从A市运往C县的农用车为3辆,从B市运往C县的农用车为39辆,从A市运往D县的农用车为47辆,从B市运往D县的农用车为1辆,∵y=200x+154000是一次函数,且k=200>0,y随x的增大而增大,∴当x=2时,y最小,即方案一费用最小,此时,y=200×2+15400=15800,所以最小费用为:15800元。

(完整)八年级下数学压轴题及答案.docx

(完整)八年级下数学压轴题及答案.docx

.八年级下数学压轴题1.已知,正方形ABCD中,∠ MAN=45°,∠ MAN 绕点 A 顺时针旋转,它的两边分别交CB、 DC(或它们的延长线)于点M、 N, AH⊥ MN 于点 H.( 1)如图①,当∠MAN 绕点 A 旋转到 BM=DN 时,请你直接写出AH 与 AB 的数量关系:;(2)如图②,当∠ MAN 绕点 A 旋转到 BM≠ DN 时,( 1)中发现的 AH 与 AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠ MAN=45°, AH⊥ MN 于点 H,且 MH=2 , NH=3,求 AH 的长.(可利用( 2)得到的结论).2.如图,△ ABC 是等边三角形,点 D 是边 BC上的一点,以AD 为边作等边△ADE,过点C 作 CF∥ DE交 AB 于点 F.(1)若点 D 是 BC边的中点(如图①),求证: EF=CD;(2)在( 1)的条件下直接写出△ AEF和△ ABC的面积比;(3)若点 D 是 BC 边上的任意一点(除 B、 C 外如图②),那么( 1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由..3.( 1)如图 1,在正方形ABCD中, E 是 AB 上一点, F 是 AD 延长线上一点,且DF=BE.求证: CE=CF;(2)如图 2,在正方形 ABCD中, E 是 AB 上一点, G 是 AD 上一点,如果∠ GCE=45°,请你利用( 1)的结论证明: GE=BE+GD.(3)运用( 1)( 2)解答中所积累的经验和知识,完成下题:如图 3,在直角梯形ABCD中, AD∥ BC( BC> AD),∠ B=90°,AB=BC,E 是 AB 上一点,且∠ DCE=45°, BE=4, DE=10,求直角梯形ABCD的面积..4.如图,正方形ABCD中, E 为 AB 边上一点,过点 D 作 DF⊥ DE,与 BC 延长线交于点F.连接 EF,与 CD边交于点 G,与对角线 BD 交于点 H.(1)若 BF=BD= ,求 BE 的长;(2)若∠ ADE=2∠ BFE,求证: FH=HE+HD..5.如图,将一三角板放在边长为 1 的正方形ABCD上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC 相交于 Q.探究:设A、 P 两点间的距离为x.(1)当点 Q 在边 CD上时,线段 PQ 与 PB 之间有怎样的数量关系?试证明你的猜想;(2)当点 Q 在边 CD上时,设四边形 PBCQ的面积为 y,求 y 与 x 之间的函数关系,并写出函数自变量x 的取值范围;( 3)当点 P 在线段 AC 上滑动时,△ PCQ是否可能成为等腰三角形?如果可能,指出所有能使△ PCQ成为等腰三角形的点Q 的位置.并求出相应的x 值,如果不可能,试说明理由..6.Rt△ ABC与 Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起, CB 与 DE 重合.( 1)求证:四边形ABFC为平行四边形;( 2)取 BC 中点 O,将△ ABC 绕点 O 顺时钟方向旋转到如图(二)中△A′B′位C置′,直线 B'C'与 AB、 CF分别相交于 P、 Q 两点,猜想 OQ、 OP 长度的大小关系,并证明你的猜想;( 3)在( 2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明).7.如图,在正方形ABCD中,点 F 在 CD边上,射线AF 交 BD 于点 E,交 BC的延长线于点 G.(1)求证:△ ADE≌△ CDE;(2)过点 C 作 CH⊥ CE,交 FG于点 H,求证: FH=GH;(3)设 AD=1,DF=x,试问是否存在 x 的值,使△ ECG为等腰三角形?若存在,请求出x 的值;若不存在,请说明理由..8.在平行四边形ABCD中,∠ BAD 的平分线交直线BC于点 E,交直线 DC 于点 F.(1)在图 1 中证明 CE=CF;( 2)若∠ ABC=90°, G 是 EF的中点(如图2),直接写出∠ BDG 的度数;( 3)若∠ ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图 3),求∠ BDG的度数..9.如图,已知 ?ABCD中, DE⊥ BC 于点 E,DH⊥ AB 于点 H,AF 平分∠ BAD,分别交 DC、DE、 DH 于点 F、 G、 M,且 DE=AD.(1)求证:△ ADG≌△ FDM.(2)猜想 AB 与 DG+CE之间有何数量关系,并证明你的猜想..10.如图,在正方形 ABCD 中, E、 F 分别为 BC、 AB 上两点,且 BE=BF,过点 B 作 AE 的垂线交 AC 于点 G,过点 G 作 CF的垂线交 BC于点 H 延长线段 AE、GH 交于点 M.(1)求证:∠ BFC=∠ BEA;(2)求证: AM=BG+GM..11.如图所示,把矩形纸片OABC 放入直角坐标系xOy 中,使OA、OC 分别落在x、 y 轴的正半轴上,连接AC,且 AC=4,(1)求 AC 所在直线的解析式;(2)将纸片 OABC折叠,使点 A 与点 C重合(折痕为 EF),求折叠后纸片重叠部分的面积.(3)求 EF所在的直线的函数解析式..12.已知一次函数的图象与坐标轴交于A、B 点(如图),AE 平分∠ BAO,交x 轴于点 E.(1)求点 B 的坐标;(2)求直线 AE 的表达式;(3)过点 B 作 BF⊥ AE,垂足为 F,连接 OF,试判断△ OFB的形状,并求△ OFB的面积.(4)若将已知条件“AE平分∠ BAO,交 x 轴于点 E”改变为“点 E 是线段 OB上的一个动点(点 E 不与点 O、 B 重合)”,过点 B 作 BF⊥ AE,垂足为 F.设 OE=x, BF=y,试求 y 与 x 之间的函数关系式,并写出函数的定义域..13.如图,直线l1的解析表达式为:y=﹣ 3x+3,且 l1与 x 轴交于点D,直线 l2经过点 A,B,直线 l1, l2交于点 C.(1)求点 D 的坐标;(2)求直线 l 2的解析表达式;(3)求△ ADC的面积;( 4)在直线l 2上存在异于点 C 的另一点P,使得△ ADP 与△ ADC 的面积相等,请直接写出点 P 的坐标..14.如图 1,在平面直角坐标系中,O 是坐标原点,长方形OACB的顶点 A、B 分别在 x 轴与 y 轴上,已知OA=6, OB=10.点 D 为 y 轴上一点,其坐标为(0, 2),点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC﹣ CB的方向运动,当点 P 与点 B 重合时停止运动,运动时间为 t 秒.(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)①求△ OPD的面积 S关于 t 的函数解析式;②如图②,把长方形沿着OP 折叠,点 B 的对应点B′恰好落在A C 边上,求点P的坐标.( 3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由..15.如图,在平面直角坐标系中,已知O 为原点,四边形ABCD为平行四边形,A、 B、C 的坐标分别是A(﹣ 5, 1), B(﹣ 2, 4), C( 5, 4),点D 在第一象限.( 1)写出 D 点的坐标;( 2)求经过 B、 D 两点的直线的解析式,并求线段BD 的长;( 3)将平行四边形 ABCD先向右平移 1 个单位长度,再向下平移 1 个单位长度所得的四边形 A1 1 1 1四个顶点的坐标是多少?并求出平行四边形ABCD与四边B C DA1B1C1D1重叠部分的面积..16.如图,一次函数的图象与x 轴、 y 轴交于点A、B,以线段 AB 为边在第一象限内作等边△ABC,( 1)求△ ABC 的面积;( 2)如果在第二象限内有一点P( a,);试用含有a 的代数式表示四边形ABPO的面积,并求出当△ABP 的面积与△ ABC的面积相等时 a 的值;( 3)在 x 轴上,是否存在点M,使△ MAB 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由...2018 年 06 月 17 日梧桐听雨的初中数学组卷参考答案与试题解析一.解答题(共16 小题)1.已知,正方形ABCD中,∠ MAN=45°,∠ MAN 绕点 A 顺时针旋转,它的两边分别交CB、 DC(或它们的延长线)于点M 、N,AH⊥ MN 于点 H.( 1)如图①,当∠ MAN 绕点 A 旋转到 BM=DN 时,请你直接写出AH 与 AB 的数量关系:AH=AB;(2)如图②,当∠ MAN 绕点 A 旋转到 BM≠ DN 时,( 1)中发现的 AH 与 AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠ MAN=45°, AH⊥ MN 于点 H,且 MH=2 , NH=3,求 AH 的长.(可利用( 2)得到的结论)【解答】解:( 1)如图① AH=AB.( 2)数量关系成立.如图②,延长CB至 E,使 BE=DN.∵ ABCD是正方形,∴AB=AD,∠ D=∠ ABE=90°,在 Rt△ AEB和 Rt△ AND 中,,∴Rt△ AEB≌ Rt△AND,∴AE=AN,∠ EAB=∠NAD,∵∠ DAN+∠ BAN=45°,∴∠ EAB+∠ BAN=45°,∴∠ EAN=45°,∴∠ EAM=∠ NAM=45°,在△ AEM 和△ ANM 中,,.∵ AB、 AH 是△ AEM 和△ ANM 对应边上的高,∴AB=AH.( 3)如图③分别沿AM 、AN 翻折△ AMH 和△ ANH,得到△ ABM 和△ AND,∴BM=2, DN=3,∠ B=∠ D=∠BAD=90°.分别延长 BM 和 DN 交于点 C,得正方形 ABCD,由(2)可知,AH=AB=BC=CD=AD.设AH=x,则MC=x﹣ 2, NC=x﹣ 3,在 Rt△ MCN 中,由勾股定理,得MN 2=MC2+NC2∴52=( x﹣ 2)2 +(x﹣ 3)2( 6 分)解得 x1=6, x2 =﹣ 1.(不符合题意,舍去)∴AH=6.2.如图,△ ABC 是等边三角形,点 D 是边 BC上的一点,以AD 为边作等边△ADE,过点C作 CF∥ DE 交 AB 于点 F.( 1)若点 D 是 BC边的中点(如图①),求证: EF=CD;( 2)在( 1)的条件下直接写出△ AEF和△ ABC的面积比;(3)若点 D 是 BC 边上的任意一点(除 B、 C 外如图②),那么( 1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由...【解答】(1)证明:∵△ ABC是等边三角形, D 是 BC的中点,∴ AD⊥ BC,且∠ BAD= ∠ BAC=30°,∵△ AED是等边三角形,∴AD=AE,∠ ADE=60°,∴∠ EDB=90°﹣∠ ADE=90°﹣ 60°=30°,∵ED∥CF,∴∠ FCB=∠ EDB=30°,∵∠ ACB=60°,∴∠ ACF=∠ ACB﹣∠ FCB=30°,∴∠ ACF=∠ BAD=30°,在△ ABD 和△ CAF中,,∴△ ABD≌△ CAF(ASA),∴AD=CF,∵ AD=ED,∴ED=CF,又∵ ED∥ CF,∴四边形 EDCF是平行四边形,∴EF=CD.( 2)解:△ AEF和△ ABC的面积比为:1: 4;(易知AF=BF ,延长EF交AD于H,△AEF的面积..=?EF?AH= ? CB ?AD= ? ?BC?AD,由此即可证明)(3)解:成立.理由如下:∵ ED∥ FC,∴∠ EDB=∠FCB,∵∠ AFC=∠ B+∠ BCF=60°+∠ BCF,∠ BDA=∠ ADE+∠EDB=60°+∠ EDB ∴∠ AFC=∠ BDA,在△ ABD 和△ CAF中,∴△ ABD≌△ CAF(AAS),∴AD=FC,∵ AD=ED,∴ED=CF,又∵ ED∥ CF,∴四边形 EDCF是平行四边形,∴EF=DC.3.(1)如图 1,在正方形 ABCD中,E 是 AB 上一点, F 是 AD 延长线上一点,且 DF=BE.求证: CE=CF;(2)如图 2,在正方形 ABCD中, E 是 AB 上一点, G 是 AD 上一点,如果∠ GCE=45°,请你利用( 1)的结论证明: GE=BE+GD.(3)运用( 1)( 2)解答中所积累的经验和知识,完成下题:如图 3,在直角梯形ABCD中, AD∥ BC( BC>AD),∠ B=90°, AB=BC,E 是 AB 上一点,且∠ DCE=45°, BE=4, DE=10,求直角梯形ABCD的面积...【解答】( 1)明:∵四形ABCD是正方形,∴BC=CD,∠ B=∠CDF=90°,∵∠ ADC=90°,∴∠FDC=90°.∴∠B=∠ FDC,∵BE=DF,∴△ CBE≌△ CDF( SAS).∴CE=CF.(2)明:如 2 ,延 AD 至 F,使 DF=BE,接 CF.由( 1)知△CBE≌△ CDF,∴∠ BCE=∠ DCF.∴∠ BCE+∠ ECD=∠DCF+∠ ECD,即∠ ECF=∠ BCD=90°,又∠ GCE=45°,∴∠ GCF=∠ GCE=45°.∵CE=CF,GC=GC,∴△ ECG≌△ FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如 3, C作 CG⊥ AD,交 AD 延于 G.在直角梯形ABCD中,∵ AD∥ BC,∴∠A=∠B=90°,又∵∠ CGA=90°, AB=BC,∴四形 ABCG正方形.∴AG=BC.⋯( 7 分)∵∠ DCE=45°,根据( 1)( 2)可知, ED=BE+DG.⋯( 8 分)∴10=4+DG,即 DG=6.AB=x, AE=x 4, AD=x 6,在Rt△ AED中,..∵DE2=AD2+AE2,即 102 =( x 6)2+(x 4)2.解个方程,得: x=12 或 x= 2(舍去).⋯(9 分)∴ AB=12.∴ S 梯形ABCD= ( AD+BC) ?AB= ×( 6+12)× 12=108.即梯形 ABCD的面108.⋯( 10 分)4.如,正方形 ABCD中, E AB 上一点,点 D 作 DF⊥ DE,与 BC 延交于点F.接 EF,与 CD 交于点 G,与角 BD 交于点 H.(1)若 BF=BD= ,求 BE 的;(2)若∠ ADE=2∠ BFE,求: FH=HE+HD.【解答】( 1)解:∵四形ABCD正方形,∴∠ BCD=90°,BC=CD,∴Rt△ BCD中, BC2+CD2=BD2,即 BC2=()2( BC)2,∴BC=AB=1,∵DF⊥ DE,∴∠ ADE+∠ EDC=90°=∠EDC+∠ CDF,∴∠ ADE=∠ CDF,在△ ADE 和△ CDF中,∵,∴△ ADE≌△ CDF( ASA),..∴ AE=CF=BF﹣ BC=﹣1,∴ BE=AB﹣ AE=1﹣(﹣1)=2﹣;(2)证明:在 FE 上截取一段 FI,使得 FI=EH,∵△ADE≌△CDF,∴ DE=DF,∴△ DEF为等腰直角三角形,∴∠ DEF=∠ DFE=45°=∠DBC,∵∠ DHE=∠ BHF,∴∠ EDH=∠ BFH(三角形的内角和定理),在△ DEH和△ DFI中,∵,∴△ DEH≌△ DFI( SAS),∴DH=DI,又∵∠ HDE=∠BFE,∠ ADE=2∠BFE,∴∠ HDE=∠ BFE= ∠ ADE,∵∠ HDE+∠ ADE=45°,∴∠ HDE=15°,∴∠ DHI=∠ DEH+∠ HDE=60°,即△ DHI 为等边三角形,∴DH=HI,∴FH=FI+HI=HE+HD.5.如图,将一三角板放在边长为 1 的正方形ABCD上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC 相交于 Q.探究:设 A、 P 两点间的距离为x.(1)当点 Q 在边 CD上时,线段 PQ 与 PB 之间有怎样的数量关系?试证明你的猜想;(2)当点 Q 在边 CD上时,设四边形 PBCQ的面积为 y,求 y 与 x 之间的函数关系,并..写出函数自变量x 的取值范围;( 3)当点 P 在线段 AC 上滑动时,△ PCQ是否可能成为等腰三角形?如果可能,指出所有能使△ PCQ成为等腰三角形的点Q 的位置.并求出相应的x 值,如果不可能,试说明理由.【解答】解:( 1) PQ=PB,(1 分)过P 点作 MN ∥ BC分别交 AB、 DC于点 M、 N,在正方形 ABCD中, AC 为对角线,∴ AM=PM ,又∵ AB=MN,∴MB=PN,∵∠BPQ=90°,∴∠ BPM+∠ NPQ=90°;又∵∠ MBP+∠BPM=90°,∴∠ MBP=∠ NPQ,在Rt△ MBP≌Rt△ NPQ 中,∵∴Rt△ MBP≌Rt△ NPQ,( 2 分)∴PB=PQ.(2)∵ S 四边形PBCQ=S△PBC+S△PCQ,∵AP=x,∴AM=x,∴CQ=CD﹣ 2NQ=1﹣ x,又∵ S△PBC= BC?BM= ?1?( 1﹣x) =﹣x,S△PCQ= CQ?PN=(1﹣x) ?( 1﹣x),..=﹣+,∴ S 四边形PBCQ=﹣x+1 .( 0≤ x≤).(4分)( 3)△ PCQ可能成为等腰三角形.①当点 P 与点 A 重合时,点Q 与点 D 重合,PQ=QC,此时, x=0.( 5 分)②当点 Q 在 DC的延长线上,且CP=CQ时,(6 分)有:QN=AM=PM=x,CP=﹣x,CN=CP=1﹣x,CQ=QN﹣ CN=x﹣( 1﹣x)=x﹣ 1,∴当﹣ x=x﹣ 1 时, x=1.( 7 分).6.Rt△ ABC 与 Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起, CB与 DE 重合.( 1)求证:四边形ABFC为平行四边形;( 2)取 BC 中点 O,将△ ABC 绕点 O 顺时钟方向旋转到如图(二)中△A′B′位C置′,直线B'C'与 AB、 CF分别相交于 P、Q 两点,猜想 OQ、OP 长度的大小关系,并证明你的猜想;( 3)在( 2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)..【解答】( 1)证明:∵△ABC≌△ FCB,∴AB=CF, AC=BF.∴四边形ABFC为平行四边形.(2)解: OP=OQ,理由如下:∵OC=OB,∠ COQ=∠BOP,∠ OCQ=∠ PBO,∴△ COQ≌△ BOP.∴OQ=OP.( 3)解: 90°.理由:∵ OP=OQ,OC=OB,∴四边形PCQB为平行四边形,∵BC⊥ PQ,∴四边形PCQB为菱形.7.如图,在正方形 ABCD中,点 F 在 CD 边上,射线 AF 交 BD 于点 E,交 BC 的延长线于点G.(1)求证:△ ADE≌△ CDE;(2)过点 C作 CH⊥ CE,交 FG 于点 H,求证: FH=GH;(3)设 AD=1,DF=x,试问是否存在 x 的值,使△ ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【解答】( 1)证明:∵四边形ABCD是正方形,∴DA=DC,∠ 1=∠ 2=45°,DE=DE,∴△ ADE≌△ CDE...(2)证明:∵△ADE≌△CDE,∴∠ 3=∠4,∵ CH⊥ CE,∴∠ 4+∠5=90°,又∵∠ 6+∠ 5=90°,∴∠ 4=∠6=∠ 3,∵AD∥ BG,∴∠ G=∠3,∴∠ G=∠6,∴ CH=GH,又∵∠ 4+∠ 5=∠ G+∠7=90°,∴∠ 5=∠7,∴ CH=FH,∴ FH=GH.( 3)解:存在符合条件的x 值此时,∵∠ ECG> 90°,要使△ ECG为等腰三角形,必须CE=CG,∴∠ G=∠8,又∵∠ G=∠ 4,∴∠ 8=∠4,∴∠ 9=2∠4=2∠ 3,∴∠ 9+∠3=2∠ 3+∠ 3=90°,∴∠ 3=30°,∴ x=DF=1× tan30 °=.8.在 ?ABCD中,∠ BAD 的平分线交直线BC于点 E,交直线DC于点 F.(1)在图 1 中证明 CE=CF;(2)若∠ ABC=90°,G 是 EF 的中点(如图 2),直接写出∠ BDG的度数;(3)若∠ ABC=120°, FG∥ CE, FG=CE,分别连接 DB、 DG(如图 3),求∠ BDG 的度数...【解答】( 1)证明:如图1,∵AF 平分∠ BAD,∴∠ BAF=∠ DAF,∵四边形 ABCD是平行四边形,∴ AD∥ BC,AB∥ CD,∴∠ DAF=∠ CEF,∠ BAF=∠F,∴∠ CEF=∠ F.∴CE=CF.( 2)解:连接GC、 BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF 平分∠ BAD,∴∠DAF=∠ BAF=45°,∵∠DCB=90°,DF∥ AB,∴∠DFA=45°,∠ ECF=90°∴△ ECF为等腰直角三角形,∵G 为 EF中点,∴EG=CG=FG, CG⊥ EF,∵△ ABE 为等腰直角三角形,AB=DC,∴BE=DC,∵∠ CEF=∠ GCF=45°,∴∠ BEG=∠DCG=135°在△ BEG与△ DCG中,∵,∴△ BEG≌△ DCG,∴BG=DG,..∵CG⊥ EF,∴∠ DGC+∠ DGA=90°,又∵∠ DGC=∠ BGA,∴∠ BGA+∠ DGA=90°,∴△ DGB为等腰直角三角形,∴∠ BDG=45°.(3)解:延长 AB、 FG交于 H,连接 HD.∵ AD∥ GF, AB∥ DF,∴四边形 AHFD 为平行四边形∵∠ABC=120°, AF 平分∠ BAD∴∠ DAF=30°,∠ ADC=120°,∠ DFA=30°∴△ DAF 为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ ADH,△ DHF 为全等的等边三角形∴DH=DF,∠ BHD=∠ GFD=60°∵FG=CE, CE=CF,CF=BH,∴ BH=GF在△ BHD 与△ GFD中,∵,∴△ BHD≌△ GFD,∴∠ BDH=∠GDF∴∠ BDG=∠ BDH+∠HDG=∠GDF+∠ HDG=60°..9.如图,已知 ?ABCD中, DE⊥ BC于点 E,DH⊥ AB 于点 H,AF 平分∠ BAD,分别交 DC、DE、 DH 于点 F、G、 M,且 DE=AD.(1)求证:△ ADG≌△ FDM.(2)猜想 AB 与 DG+CE之间有何数量关系,并证明你的猜想.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥ CD,AD∥ BC,∴∠ BAF=∠ DFA,∵ AF 平分∠ BAD,∴∠ DAF=∠ DFA,∴AD=FD,∵DE⊥ BC, DH⊥ AB,∴∠ ADG=∠ FDM=90°,在△ ADG 和△ FDM 中,,∴△ ADG≌△ FDM( ASA).(2) AB=DG+EC.证明:延长GD 至点 N,使 DN=CE,连接 AN,∵DE⊥ BC, AD∥ BC,∴∠ ADN=∠DEC=90°,..在△ ADN 和△ DEC中,,∴△ ADN≌△ DEC( SAS),∴∠ NAD=∠CDE, AN=DC,∵∠ NAG=∠NAD+∠ DAG,∠ NGA=∠ CDE+∠ DFA,∴∠ NAG=∠NGA,∴AN=GN=DG+CE=DC,∵四边形 ABCD是平行四边形,∴AB=CD,∴AB=DG+EC.10.如图,在正方形ABCD 中, E、 F 分别为 BC、 AB 上两点,且BE=BF,过点B 作 AE 的垂线交 AC 于点 G,过点 G 作 CF的垂线交BC于点 H 延长线段AE、 GH 交于点 M.( 1)求证:∠ BFC=∠ BEA;( 2)求证: AM=BG+GM.【解答】证明:( 1)在正方形 ABCD中, AB=BC,∠ ABC=90°,在△ ABE和△ CBF中,,..∴△ ABE≌△ CBF( SAS),∴∠ BFC=∠BEA;(2)连接 DG,在△ ABG 和△ ADG 中,,∴△ ABG≌△ ADG( SAS),∴BG=DG,∠2=∠3,∵ BG⊥AE,∴∠ BAE+∠ 2=90°,∵∠ BAD=∠ BAE+∠4=90°,∴∠ 2=∠3=∠ 4,∵ GM⊥ CF,∴∠ BCF+∠ 1=90°,又∠ BCF+∠ BFC=90°,∴∠ 1=∠BFC=∠ 2,∴∠ 1=∠3,在△ ADG 中,∠ DGC=∠3+45°,∴∠ DGC 也是△ CGH 的外角,∴D、G、 M 三点共线,∵∠ 3=∠4(已证),∴AM=DM ,∵DM=DG+GM=BG+GM,∴ AM=BG+GM.11.如图所示,把矩形纸片OABC 放入直角坐标系xOy 中,使OA、OC 分别落在x、 y 轴的正半轴上,连接AC,且 AC=4,..(1)求 AC所在直线的解析式;(2)将纸片 OABC折叠,使点 A 与点 C 重合(折痕为 EF),求折叠后纸片重叠部分的面积.(3)求 EF所在的直线的函数解析式.【解答】解:( 1)∵=,∴可设 OC=x,则 OA=2x,在Rt△ AOC中,由勾股定理可得 OC2+OA2=AC2,∴ x2+( 2x)2=(4 )2,解得 x=4( x=﹣ 4 舍去),∴ OC=4, OA=8,∴A( 8, 0), C(0, 4),设直线 AC 解析式为 y=kx+b ,∴,解得,∴直线 AC 解析式为y=﹣x+4;( 2)由折叠的性质可知AE=CE,设AE=CE=y,则 OE=8﹣ y,在Rt△ OCE中,由勾股定理可得 OE2+OC2=CE2,∴( 8﹣ y)2+42=y2,解得 y=5,∴AE=CE=5,∵∠ AEF=∠CEF,∠ CFE=∠ AEF,∴∠ CFE=∠ CEF,∴CE=CF=5,∴S△CEF= CF?OC= × 5× 4=10,..即重叠部分的面积为10;(3)由( 2)可知 OE=3, CF=5,∴ E(3 ,0), F( 5,4 ),设直线 EF的解析式为 y=k′x+b′,∴,解得,∴直线 EF的解析式为y=2x﹣ 6.12.已知一次函数的图象与坐标轴交于A、B 点(如图),AE 平分∠ BAO,交x 轴于点 E.(1)求点 B 的坐标;(2)求直线 AE 的表达式;(3)过点 B 作 BF⊥ AE,垂足为 F,连接 OF,试判断△ OFB的形状,并求△ OFB的面积.(4)若将已知条件“AE平分∠ BAO,交 x 轴于点 E”改变为“点 E 是线段 OB上的一个动点(点 E 不与点 O、B 重合)”,过点 B 作 BF⊥AE,垂足为 F.设 OE=x,BF=y,试求 y 与 x 之间的函数关系式,并写出函数的定义域...【解答】解:( 1)对于 y=﹣x+6,当x=0 时, y=6;当 y=0 时, x=8,∴ OA=6, OB=8,在 Rt△ AOB中,根据勾股定理得: AB=10,则 A( 0, 6), B(8,0);( 2)过点 E 作 EG⊥ AB,垂足为 G(如图 1 所示),∵ AE 平分∠ BAO, EO⊥AO,EG⊥ AG,∴ EG=OE,在 Rt△ AOE和 Rt△ AGE中,,∴Rt△ AOE≌Rt△ AGE(HL),∴AG=AO,设OE=EG=x,则有 BE=8﹣ x, BG=AB﹣ AG=10﹣ 6=4,在Rt△ BEG中, EG=x, BG=4, BE=8﹣ x,根据勾股定理得: x2+4 2=( 8﹣ x)2,解得: x=3,∴E(3 ,0),设直线 AE 的表达式为 y=kx+b( k≠ 0),将A( 0, 6), E( 3,0)代入 y=kx+b 得:,解得:,则直线 AE 的表达式为y=﹣ 2x+6;( 3)延长 BF 交 y 轴于点 K(如图 2 所示),..∵AE 平分∠ BAO,∴∠ KAF=∠ BAF,又BF⊥AE,∴∠ AFK=∠ AFB=90°,在△ AFK和△ AFB 中,∵,∴△ AFK≌△ AFB,∴FK=FB,即F 为KB 的中点,又∵△ BOK为直角三角形,∴OF= BK=BF,∴△ OFB 为等腰三角形,过点 F 作 FH⊥ OB,垂足为H(如图 2 所示),∵OF=BF, FH⊥ OB,∴OH=BH=4,∴F 点的横坐标为 4,设F( 4, y),将 F( 4, y)代入 y=﹣ 2x+6 ,得: y=﹣ 2,∴ FH=| ﹣2| =2,则 S△OBF= OB?FH= × 8× 2=8;(4)在 Rt△ AOE中, OE=x, OA=6,根据勾股定理得:AE==,又BE=OB﹣ OE=8﹣ x, S△ABE= AE?BF= BE?AO(等积法),∴ BF==(0<x<8),又BF=y,则 y=(0<x<8).13.如图,直线l1的解析表达式为:y=﹣ 3x+3,且 l1与 x 轴交于点D,直线 l2经过点 A,B,直线 l 1, l2交于点 C.(1)求点 D 的坐标;(2)求直线 l2的解析表达式;..(3)求△ ADC的面积;(4)在直线 l 2上存在异于点 C 的另一点 P,使得△ ADP 与△ ADC 的面积相等,请直接写出点 P 的坐标.【解答】解:( 1)由 y=﹣ 3x+3,令 y=0,得﹣ 3x+3=0,∴x=1,∴D( 1,0);( 2)设直线l 2的解析表达式为y=kx+b,由图象知: x=4,y=0; x=3,,代入表达式y=kx+b,∴,∴,∴直线 l2的解析表达式为;( 3)由,解得,∴ C(2,﹣ 3),∵ AD=3,∴ S△ADC=× 3× |﹣3| =;( 4)△ ADP 与△ ADC 底边都是AD,面积相等所以高相等,△ADC 高就是点 C 到直线AD 的距离,即 C 纵坐标的绝对值=| ﹣ 3| =3,则 P 到 AD 距离 =3,∴ P 纵坐标的绝对值=3,点 P 不是点 C,∴点 P 纵坐标是3,∵ y=1.5x﹣6 ,y=3,..∴1.5x﹣ 6=3x=6,所以 P( 6,3).14.如图 1,在平面直角坐标系中,O 是坐标原点,长方形OACB的顶点 A、B 分别在 x轴与 y 轴上,已知OA=6, OB=10.点 D 为 y 轴上一点,其坐标为(0, 2),点 P 从点 A出发以每秒 2 个单位的速度沿线段AC﹣CB 的方向运动,当点 P 与点 B 重合时停止运动,运动时间为t 秒.(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)①求△ OPD 的面积 S关于 t 的函数解析式;②如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标.( 3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:( 1)∵ OA=6, OB=10,四边形OACB为长方形,∴C( 6, 10).设此时直线DP 解析式为y=kx+b,把( 0,2 ), C(6, 10)分别代入,得,解得则此时直线DP 解析式为y=x+2;( 2)①当点P 在线段 AC 上时, OD=2,高为 6, S=6;当点 P 在线段 BC 上时, OD=2,高为 6+10﹣2t=16 ﹣2t ,S=× 2×(16﹣2t)=﹣2t+16;②设 P( m, 10),则 PB=PB′=m,如图 2,∵OB′=OB=10, OA=6,∴ AB′==8,..∴B′C=10﹣ 8=2,∵ PC=6﹣ m,∴m2=22+( 6﹣ m)2,解得 m=则此时点 P 的坐标是(,10);( 3)存在,理由为:若△ BDP为等腰三角形,分三种情况考虑:如图3,①当 BD=BP1=OB﹣ OD=10﹣ 2=8,在Rt△ BCP1中, BP1=8, BC=6,根据勾股定理得: CP1==2 ,∴AP1=10﹣ 2 ,即 P1(6, 10﹣ 2 );②当BP2 =DP2时,此时 P2( 6,6);③当DB=DP3=8 时,在 Rt△ DEP 中, DE=6,3根据勾股定理得:P3E==2,∴ AP3=AE+EP3=2+2,即 P3( 6, 2+2),综上,满足题意的P 坐标为( 6, 6)或( 6, 2+2)或( 6, 10﹣ 2)...15.如图,在平面直角坐标系中,已知O 为原点,四边形ABCD为平行四边形,A、 B、C 的坐标分别是A(﹣ 5,1), B(﹣ 2, 4),C( 5, 4),点 D 在第一象限.( 1)写出 D 点的坐标;( 2)求经过B、D 两点的直线的解析式,并求线段BD 的长;( 3)将平行四边形ABCD 先向右平移 1 个单位长度,再向下平移 1 个单位长度所得的四边形 A1B1C1 D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形 A1 B1 C1D1重叠部分的面积.【解答】解:( 1)∵ B(﹣ 2, 4), C( 5, 4),∴BC=5﹣(﹣ 2) =5+2=7,∵ A(﹣ 5,1),∴点 D 的横坐标为﹣ 5+7=2,∴点D 的坐标为( 2, 1);( 2)设直线 BD 的解析式为 y=kx+b,将 B(﹣ 2, 4)、D( 2, 1)代入得:,解得,∴经过 B、 D 两点的直线的解析式为y=﹣x+,过 B 点作 AD 的垂线,垂足为E,则 BE=4﹣ 1=3,DE=2﹣(﹣ 2)=2+2=4,..在 Rt△ BDE中, BD===5;( 3)∵ ?ABCD向右平移1 个单位长度,再向下平移 1 个单位长度,∴A1(﹣ 4, 0),B1(﹣ 1, 3), C1( 6,3) D1( 3,0 ),∴重叠部分的底边长 7﹣ 1=6,高为 3﹣1=2,∴重叠部分的面积S=6× 2=12.16.如图,一次函数的图象与x 轴、 y 轴交于点A、B,以线段AB 为边在第一象限内作等边△ABC,( 1)求△ ABC的面积;( 2)如果在第二象限内有一点P( a,);试用含有a 的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ ABC的面积相等时 a 的值;(3)在 x 轴上,是否存在点 M,使△ MAB 为等腰三角形?若存在,请直接写出点 M 的坐标;若不存在,请说明理由.【解答】解:( 1)分别令 y=0 和 x=0,得一次函数y=x+1 的图象与x 轴.y 轴的交点坐标分别是A(,0),B(0,1),即OA=,OB=1,∴ AB==2∵△ ABC为等边三角形,∴ S△ABC=;( 2)如图 1, S△AOB=,S△AOP=,S△BOP=| a| ?OB=﹣.∴ S 四边形ABPO=S△AOB+S△BOP=,而 S△ABP=S 四边形ABPO﹣S△APO,..∴当 S△ABP=S△ABC时,=,解得 a=﹣;( 3)如图 2,满足条件的点M 有 4 个:M 1(﹣,0),M 2(﹣ 2,0),M3(,0),M 4(+2,0)..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学经典压
轴题
Revised as of 23 November 2020
C 2
C 1A 2
B 2
B 1
O 1
O
A 1
D
C
B
A
八年级下册数学经典压轴题、新题
1. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形
C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点
1O ;再以1111C O B O 、为
邻边作第3个平行四边形1211C B B O ……依此类推.
(1)求矩形ABCD 的面积;
(2)求第1个平行四边形1OBB C 、第2个平行四边 形
111A B C C 和第6个平行四边形的面积。

2、如图,菱形ABCD 的对角线长分别为b a 、,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,……,如此下去,得到四边形A 2011B 2011C 2011D 2011的面积用含 b a 、的代数式表示为 .
3、在直角三角形ABC 中,CD 是斜边AB 的高,∠A 的平分线AE 交CD 于F ,交BC 于E ,EGAB 于G ,求证:CFGE 是菱形。

4.如图,在梯形ABCD 中,
,6,5,30AD
BC AC BD OCB ==∠=︒,求
BC+AD
的值及梯形面积.
5.已知数x 1,x 2,x 3,x 4, …,x n 的平均数是5,方差为2,则
3x 1+4,3x 2+4, …,3x n +4的平均数是_______________,方差是_______________.
6、一组数据 0,-1,5,x ,3,-2的极差是8,那么x 的值为( ) A 、6 B 、7 C 、6或-3 D 、7或-3 7.观察式子:a b 3,-25a b ,37a b ,-4
9
a b ,……,根据你发现的规律知,第8个式子为 .
8、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及
腰长如图,依此规律第10个图形的周长为 。

……
第一个图 第二个图 第三个图
9、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为
_ F _ A
_B
_ C _D _ E
_ G
B
C
A
D
O
(―1,―3),若一反比例函数x
k
y =
的图象过点D ,则其 解析式为 。

第16题图
10.下图是我国古代着名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若
AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是 _________ . 11.若关于x 的分式方程
无解,则常数m 的值为 _________ .
12、黄商超市用2500元购进某种品牌苹果进行试销,由于销售状况良好,超市又调
拨6000元资金购进该品牌苹果,但这次进货价比上次每千克少元,购进苹果的数量是上次的3倍。

(1)试销时该品牌苹果的进货价是每千克多少元
(2)如果超市按每千克4元的定价出售,当售出大部分后,余下600千克按五折
出售完,那么超市在这两次苹果销售中共获利多少元
13.如图,已知六边形ABCDEF 的每个内角都是120°,且AB=1,BC=CD=7,DE=3,则这个六边形周长为( )
A .31
B .36
C .32
D .29
14.如图甲,四边形ABCD 是等腰梯形,AB CD ,由4个这样的等腰梯形可以拼出
图乙所示的平行四边形,则下列结论成立的是( ) ①60C ∠=︒;②AD=BC ;③DC =3AB ;④AB=AD . A .①②③
B .②③④
C .①③④
D .①②④
图乙
D
C
A B 图甲

15、如图,11POA 、 212P A A 是等腰直角三角形,点1P 、2P 在函数4
(0)y x x
=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________.
16、如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数
x
y 2
=
上,且AB ∥CD ∥y 轴,AD ∥x 轴,B (1,0)、C (3,0)。

⑴试判断四边形ABCD 的形状。

⑵若点P 是线段BD 上一点PE ⊥BC 于E ,M 是PD 的中点,连EM 、AM 。

求证:AM=EM
⑶在图⑵中,连结AE 交BD 于N ,则下列两个结论:

MN
DM BN +值不变;②
2
2
2MN DM
BN +的值不变。

其中有且仅有一个是正确的,请选择正确的结
论证明并求其值。

17.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=
x
2
于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD .
(1)求证:AD 平分∠CDE ;
(2)对任意的实数b (b ≠0),求证AD ·BD 为定值;
(3)是否存在直线AB ,使得四边形OBCD 为平行四边形若存在,求出直线的解析式;若不存在,请说明理由.
18.如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动
点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段
DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点
N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒. (1)求NC ,MC 的长(用t 的代数式表示); (2)当t 为何值时,四边形PCDQ 构成平行四边形 (3)是否存在某一时刻,使射线QN 恰好将△ABC 的面积和周长同时平分若存在,求出此时t 的值;若不存在,请说明理由;
(4)探究:t 为何值时,△PMC 为等腰三角形
A B C E
O D
x y
19. 已知反比例函数x
k
y =
图象过第二象限内的点A (-2,m )AB ⊥x 轴于B ,Rt △AOB 面积为3, 若直线y=ax+b 经过点A ,并且经过反比例函数x
k
y =的图象上另一点
C (n ,—2
3
).
(1).求反比例函数的解析式和直线y=ax+b 解析式. (2)利用图像直接写出关于x 的不等式ax+b>x
k
的解集。

(3)求△AOC 的面积。

(4)在坐标轴上是否存在一点P ,使△PAO 为等腰三角形,若存在,请直接写出P 点坐标,若不存在,说明理由。

相关文档
最新文档