新北师大版八年级数学下册月考卷
2021-2022学年度初中数学北师大版八年级下册第二章第六节 一元一次不等式组 同步练习
初中数学北师大版八年级下册第二章第六节一元一次不等式组同步练习一、单选题1.下列不等式组中,无解的是()A.{x<2x<−3B.{x<2x>−3C.{x>2x>−3D.{x>2x<−32.已知关于x的不等式组的{x−a≥b2x−a<2b+1解集为3≤x<5,则ba的值为()A.﹣2B.−12C.﹣4D.﹣143.若不等式组{x<1x<m的解为x<m,则m的取值范围为()A.m≤1B.m=1C.m≥1D.m<14.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[3.2]=3,[2]=2,[-2.3]=-3.如果[x−12]=2,则x的取值范围是()A.5≤x≤7B.5<x≤7C.5<x<7D.5≤x<75.定义一种运算:a∗b={a,a≥bb,a<b,则不等式(2x+1)∗(2−x)>3的解集是()A.x>1或x<13B.−1<x<13C.x>1或x<−1D.x>13或x<−16.已知某程序如图所示,规定:从“输入实数x”到“结果是否大于95”为一次操作,如果该程序进行了两次操作停止,那么实数x的取值范围是()A.x>23B.11≤x≤23C.23<x≤47D.x≤477.若关于x的一元次不等式组{−2x+3m4≤2x2x+7≤4(x+1)的解集为x≥32,且关于y的方程3y−2=2m−(5−3y)2的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.108.目前,我国已获批上市4款自主研发的新冠疫苗.某生物制药公司计划生产制造A、B两种疫苗共40万支,已知生产每支A疫苗需甲种原料8mg,乙种原料5mg;生产每支B疫苗需甲种原料4mg,乙种原料9mg.公司现有甲种原料4kg,乙种原料3kg,设计划生产A疫苗x支,下列符合题意的不等式组是( )A .{8x +5(400000−x)≤40000004x +9(400000−x)≤3000000B .{5x +9(400000−x)≤40000008x +4(400000−x)≤3000000C .{8x +4(400000−x)≤40000005x +9(400000−x)≤3000000D .{8x +9(400000−x)≤40000005x +4(400000−x)≤3000000二、填空题9.不等式组 {5x +4>3xx−12≤2x−15 的解是 .10.已知关于 x 的不等式组 {5−3x ≥−1,a −2x <0无解,则 a 的取值范围是 . 11.三个数3, 1-a ,1-2a 在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a 的取值范围为12.在某种药品的说明书上的部分内容是“用法用量:每天 30~60mg ,分2~3次服用”.则一次服用这种药品的剂量 x 的范围是 mg .13.对于任意实数,m ,n ,定义一种运算: m※n =mn −m −n +72 ,请根据上述定义解决问题:若关于x 的不等式 a <(12※x)<7 的解集中只有一个整数解,则实数a 的取值范围是 .14.若点 P 的坐标为 (x−15,2x −10) ,其中 x 满足不等式组 {5x −10≥2(x +1)12x −1≤7−32x ,则点 P 在第 象限.15.令 a 、b 两数中较大的数记作 max|a ,b|,如 max|2,3|=3,已知 k 为正整数且使不等式 max|2k+1,﹣k+5|≤5 成立,则 k 的值是 .16. 12月是成都奶油巧克力草莓大丰收的季节,重庆渝北海领开展“水果一带一路”活动,成都顺丰快递公司出动所有车辆分12月25,26日两批往重庆运输现摘草莓.该公司共有A ,B ,C 三种车型,其中A 型车数量占公司车辆总数的一半,B 型车数量与C 型车数量相等.25日安排A 型车数量的一半,B 型车数量的 13 ,C 型车数量的 34 进行运输,且25日A ,B ,C 三种车型每辆车载货量分别为10吨,15吨,20吨,则25日刚好运完所有草莓重量的一半.26日安排剩下的所有车辆完成剩下的所有草莓的运输,且26日A ,B ,C 三种车型每辆载货量分别不超过14吨,27吨,24吨.26日B 型车实际载货量为26日A 型车每辆实际载货量的 32.已知同型货车每辆的实际载货量相等,A ,B ,C 三种车型每辆车26日运输成本分别为100元/吨,200元/吨,75元/吨,则26日运输时,一辆A 型车、一辆B 型车,一辆C 型车总的运输成本至多为 元.三、解答题17.解不等式组: {6(23x −2)<x −31−x2−2⩽x 并把解集在数轴上表示出来.18.已知a ,b ,c 是△ABC 的三边长,若b =2a ﹣1,c =a+5,且△ABC 的周长不超过20cm ,求a 的范围.19.x 取哪些正整数值时,不等式 5x +2>3(x −1) 与 2x−13≤3x+16 都成立?20.已知关于x ,y 的方程满足方程组 {3x +2y =m +1 ①2x +y =m −1 ② ,(Ⅰ)若 x-y=2 ,求m 的值;(Ⅱ)若x ,y ,m 均为非负数,求m 的取值范围,并化简式子|m −3|+|m −5| ;(Ⅲ)在(Ⅱ)的条件下求 s =2x −3y +m 的最小值及最大值.四、综合题21.疫情期间,为满足市民的防护需求,某医药公司想要购买A 、B 两种口罩.在进行市场调研时发现:A 型口罩比B 型口罩每件进价多了10元.用68000元购买A 型口罩的件数是用32000元购买B 型口罩件数的2倍.(1)A 、B 型口罩进价分别为每件多少元?(2)若该公司计划购买A 、B 型口罩共200件,其中A 型口罩的件数不大于B 型口罩的件数,且用于购买A 型口罩的钱数多于购买B 型口罩的钱数.设购买A 型口罩x 件,则符合条件的进货方案共多少种?(件数均为整数,不用列出方案)22.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S 店准备购进A 型(电动汽车)和B 型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.23.对实数x 、y ,我们定义一种新运算:F (x ,y ) =ax +by (其中a ,b 为常数).例如:F (2,3) =2a +3b ,F (2, −3 ) =2a −3b .已知F (1,1)=2,F (1, −1 )=0. (1)则 a = , b = ;(2)若方程组 {F(x,−y)=4m −3F(x,2y)=−5m 的解中,x 是非正数,y 是负数: ①求m 的取值范围;②若 2x ⋅4y =2n ,求n 的最小值;(3)若关于x 的不等式组 {F(3x,0)>−2cF(−2x,0)≥−3c恰好有3个整数解,求c 的取值范围.24.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?答案解析部分1.D2.A3.A4.D5.C6.C7.D8.C9.-2<x≤310.a≥411.−3<a<−212.10≤x≤3013.6≤a<13214.四15.2或116.540017.解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:18.解:由题意得:{a+5<2a−1+aa+5+a+2a−1≤20,解得3<a≤4.∴a的取值范围为3<a≤419.解:解不等式5x+2>3(x−1)得:5x+2>3x−3x >−52解不等式 2x−13≤3x+16得:2(2x −1)≤3x +1 4x −2≤3x +1x ≤3∴ −52<x ≤3∴符合条件的正整数值有1、2、3 20.解:(Ⅰ) {3x +2y =m +1 ①2x +y =m −1 ②①-②×2得: −x =−m +3 得: x =m −3 2m −6+y =m −1③ 把③代入②2m-6+y=m-1 y =−m +5④把③和④代入 x −y =2 , m-3+m-5=2, m =5 , ∴ 的值为5.(Ⅱ)∵x ,y ,m 均为非负数,{m −3≥0−m +5≥0m ≥0∴3≤m ≤5∴|m −3|+|m −5| . =m-3+5-m , =2.(Ⅲ)把 x=m-3 y=-m+5, x −y =2 代入 s =2x −3y +m , ∴ s=2x-3y+m , =2(m-3 )-3(-m+5)+m =6m-21 ∵ 3≤m≤5 , ∴-3≤6m -21≤9∴−3≤s ≤9 .答: s =2x −3y +m 的最小值为-3,最大值为9.21.(1)解:设B 型口罩每件的进价为y 元,则A 型口罩每件的进价为(y+10)元 依题意得: 68000y+10 =2×32000y 解得:y =160经检验,y =160是原方程的解,且符合题意∴y+10=170.答:A 型口罩每件的进价为170元,B 型口罩每件的进价为160元; (2)解:设购买A 型口罩x 件,则购买B 型口罩(200﹣x )件 依题意得: {x ≤200−x170x >160(200−x) 解得:963233<x≤100又∵x 为正整数,∴x 可以取97,98,99,100, ∴符合条件的进货方案共4种.22.(1)解:设A 型汽车购进x 辆,则B 型汽车购进(16﹣x )辆.根据题意得: {30x +42(16−x)≤60030x +42(16−x)≥576 , 解得:6≤x≤8. ∵x 为整数, ∴x 取6、7、8. ∴有三种购进方案:(2)解:设总利润为w 万元.根据题意得:W =(32﹣30)x+(45﹣42)(16﹣x ) =﹣x+48. ∵﹣1<0,∴w 随x 的增大而减小,∴当x =6时,w 有最大值,W 最大=﹣6+48=42(万元).∴当购进A 型车6辆,B 型车10辆时,可获得最大利润,最大利润是42万元. (3)解:设电动汽车行驶的里程为a 万公里.当32+0.65a =45时,解得:a =20<30. ∴选购太阳能汽车比较合算.23.(1)1;1(2)解:①原式= {x −y =4m −3x +2y =−5m ,解得: {x =m −2y =1−3m , ∵x 是非正数,y 是负数,∴{m −2≤01−3m <0,解得: 13<m ≤2 ;②原式整理为: 2x ⋅22y =2n ,∴x +2y =n ,即 m −2+2(1−3m)=n , 整理得: n =−5m ,∴当 m 取最大值2时,此时 n 的值最小, 最小值为: n =−5×2=−10 ;(3)解:不等式组整理为: {3x >−2c−2x ≥−3c, 解得: −23c <x ≤32c ,∵不等式组恰好有3个整数解,∴2<32c −(23c)≤3 ,解得:1213<c ≤1813.24.(1)解:设y 与x 之间的函数关系式为y=kx+b ,由函数图象,得 {50k +b =250200k +b =100,解得: {k =−1b =300. ∴y 与x 之间的函数关系式为y=﹣x+300. (2)解:∵y=﹣x+300,∴当x=120时,y=180.设甲品牌进货单价是a 元,则乙品牌的进货单价是2a 元,由题意,得 120a+180×2a=7200,解得:a=15, ∴乙品牌的进货单价是30元.答:甲、乙两种品牌的文具盒进货单价分别为15元,30元.(3)解:设甲品牌进货m 个,则乙品牌的进货(﹣m+300)个,由题意,得{15m +30(−m +300)≤63004m +9(−m +300)≥1795,解得:180≤m≤181.∵m 为整数,∴m=180,181. ∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个.设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(﹣m+300)=﹣5m+2700.∵k=﹣5<0,∴W随m的增大而减小.∴m=180时,W最大=1800元.。
2024-2025学年八年级数学上学期第三次月考卷(深圳专用,北师大版八上第1~5章)(考试版A4)
2024-2025学年八年级数学上学期第三次月考卷(深圳专用)(考试时间:90分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版,第一章勾股定理25%+第二章实数25%+第三章平面直角坐标系10%+第四章一次函数20%+第五单元二元一次方程20%。
5.难度系数:0.71。
第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下面几个数:0.1237·· ,1.010010001…(两个1中间的0依次增多),3p ,227,其中,无理数的个数有( )A .1个B .2个C .3个D .4个2.下列计算正确的是( )A =B =C =D =3.已知点(,3)P a b +、(2,)Q b -关于y 轴对称,则ab 的值是( )A .-1B .2C .-3D .34.如图,一次函数y kx b =+的图像交y 轴于点()0,6A -,交x 轴于点()3,0B ,则下列说法正确的是( )A .该函数的表达式为26y x =--B .点()2,2C -不在该函数图象上C .点P (x 1,y 1),Q (x 2,y 2)在图象上,若12x x >,则12y y <D .将图象向上平移1个单位得到直线25y x =-5.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50,问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为( )A .15022503x y y x ì+=ïïíï+=ïîB .15022503x y y x ì-=ïïíï+=ïîC .2502503x y x x -=ìïí-=ïîD .2502503x y x y -=ìïí-=ïî6.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图所示(收支差额=车票收入-支出费 用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则下列说法正确的是:A .①反映了建议(Ⅱ),③反映了建议(Ⅰ)B .②反映了建议(Ⅰ),④反映了建议(Ⅱ)C .①反映了建议(Ⅰ),③反映了建议(Ⅱ)D .②反映了建议(Ⅱ),④反映了建议(Ⅰ)7.已知33x k y k=ìí=-î是关于x ,y 的二元一次方程227x y -=的解,则k 的值是( )A .3B .3-C .2D .2-8.如图,四边形ABCD 中,AC BC BD ==,且AC BD ^,若8AB =,则ABD S =△( )A .6B .9C .12D .16第二部分(非选择题 共76分)二、填空题(本大题共5小题,每小题3分,满分15分)9x 的取值范围是 .10.在ABC V 中,10AB AC ==,BD 是AC 边上的高,2DC =,则BD 等于11.我们用符号[x ]表示一个不大于实数x 的最大的整数,如:[2.78]=2,[﹣0.23]=﹣1,则按这个规律,[﹣1﹣]= .12.已知点A (3,0)和B (1,3),如果直线y =kx +1与线段AB 有公共点,那么k 的取值范围是 .13.如图,在Rt ABC △中,90ACB Ð=°,3AC =,4BC =,BD 是ABC Ð是的平分线,E 是线段BD 上一点,F 是线段BC 上一点,则CE EF +的最小值为 .三、解答题(本大题共7小题,满分61分.解答应写出文字说明,证明过程或演算步骤)14.(6分)计算()1020222p --+-.15.(6分)解下列方程组(1)244523x y x y -=-ìí-=-î(2)124324y x x y ++ì=ïíï-=-î16.(8分)点O 是平面直角坐标系的原点,点A 、B 坐标分别是()1,2、()3,1.(1)求ABO V 的面积;(2)在图中画出OB 的垂线OC ,标出格点C 并写出坐标;(3)在第一象限内,画出以线段AB 为腰的等腰ABD △,标出格点D 并写出坐标.17.(8分)在“欢乐周末·非遗市集”活动现场,诸多非遗项目集中亮相,让过往游客市民看花了眼、“迷”住了心.小明买了一个年画风筝,并进行了试放,为了解决一些问题,他设计了如下的方案:先测得放飞点与风筝的水平距离BD为15m;根据手中余线长度,计算出AC的长度为17m;牵线放风筝的手到地面的距离AB为1.5m.已知点A,B,C,D在同一平面内.(1)求风筝离地面的垂直高度CD;(2)在余线仅剩9m的情况下,若想要风筝沿射线DC方向再上升12m,请问能否成功?请运用数学知识说明.18.(9分)“沉睡数千年,一醒惊天下”,三星堆遗址出土的文物再现了古蜀文明的辉煌景象.某校组织师生共480人开展三星堆博物馆研学活动.该校计划向运输公司租用A,B两种车型接送师生往返,若租用A 型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则还有15人没有座位.(1)求A,B两种车型各有多少个座位?(2)若要求租用的每辆客车都坐满,那么共有多少种租车方案?并列出所有的租车方案.19.(11分)先阅读下列材料,然后解决问题:【阅读感悟】在平面直角坐标系中,已知点()23Q t t -+,,当t 的值发生改变时,点Q 的位置也会发生改变,为了求点Q运动所形成的图象的解析式,令点Q 的横坐标x ,纵坐标y ,得到了方程组23t x t y -=ìí+=î消去t ,得5y x -=,即5y x =+,可以发现,点Q 随t 的变化而运动所形成的图象的解析式是5y x =+.【尝试应用】(1)观察下列四个点的坐标,不在函数4y x =-+图象上的是( )A .()13M ,B .()4N t t -,C .()4P t t -,D .()242P t t -,(2)求点()327M t t --,随t 的变化而运动所形成的图象的解析式;【综合运用】(3)如图,在平面直角坐标系中,点P 在一次函数142y x =+的图象上运动.已知点A 3,0为定点,连接PA ,过点A 作直线BA PA ^,且BA PA =,求点B 随点P 的变化而运动所形成的图象的解析式.20.(13分)(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑(点D 不与点B,C重合),连接EC.①则线段BC,DC,EC之间满足的等量关系式为 ;②求证:BD2+CD2=2AD2.(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=13,CD=5,求AD2.。
北师大版八年级数学下册第一次月考试卷(含答案)
八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。
新北师大版八年级数学(下)第一次月考试卷(20201127223135)
2015 — 2016学年度第二学期八年级数学月考试卷(一)亲爱的同学:你好!数学就是力量,自信决定成绩。
请你灵动智慧,缜密思 考,细致作答,努力吧,祝你成功!A 、有两条边相等的两个等腰三角形全等 C 两角对应相等的两个等腰三角形全等、两腰对应相等的两个等腰三角形全等 、一边对应相等的两个等边三角形全等4、已知a v b ,则下列不等式一定成立的是A . a+3> b+3B . 2a >2b5、不等式2x+3 > 0的最小整数解是()A . -1B . 1C . 0D . 2 6、足球比赛的记分规则是胜一场得3分,平一场得1分,负一场得0分.一个队共进行 14场比赛,得分不少于 20分,那么该队至少胜了 7、如图所示,DE 是线段AB 的垂直平分线,下列结论一定 成立的是()A. ED=CDB. / DAC M BC. / C>2Z BD. / B+Z ADE=901、 2、 3、题号 1 2 3 4 5 6 7 8 910 答案、精心选一选(本大题共 10小题,每小题3分,共30分•每小题给出四个答案,其中只有 一个是正确的). ) 三角形内有一点到三角形三顶点的距离相等,则这点 A 、三条中线的交点;C 、三条高的交战; 定是三角形的( 、三边垂直平分线的交点; 、三条角平分线的交点; 若等腰三角形的周长为A.11cmB.7.5cm下列命题中正确的是 ( 26cm 一边为 C11cm,则腰长为( ).11cm 或7.5cm D. 以上都不对).-a v — b D . a - b v 0A. 3 场 B 4场 C . 5场 D)&已知一个等腰三角形的两内角的度数的比为 1 : 4,则这个等腰三角形顶角的度数为(A. 20 °B. 120 °C. 20 。
或120°D. 36 °9、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售, 但要保证利润率不低于5%则至多可打.................... ()A. 6折B . 7折C . 8折D . 9折10、如图,已知AB=AC / A=36°, AC的垂直平分线MN交AB于D, AC于M以下结论:①厶BCD是等腰三角形;②射线CD>^ ACB的角平分线;③厶BCD的周长C A BCE=AB+BC④厶ADI W^ BCD正确的有()A.①②B.①③C. ①②③D.③④二、细心填一填(本大题共5小题,每小题3分,共15分•请你把答案填在横线的上方).11、用不等式表示“ x与8的差是非负数” __________________ .12、如果关于x的方程3x 2k x 5的解是正数,则k的取值范围是 _________________13、若不等式a 1 x a 1的解集是x 1,则a的取值范围是__________________ .14、如图,在Rt△ ABC中,/ ACB=9C° , AB的垂直平分线DE交AC于点E,交BC的延长线于15、如图,在平面直角坐标系中,矩形OABC 点D是OA的中点,点P在BC上运动,当△ 为____________ 。
最新强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专题测试试题(名师精选)
第二章一元一次不等式和一元一次不等式组专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式﹣2x+4<0的解集是()A.x>12B.x>﹣2 C.x<2 D.x>22、对有理数a,b定义运算:a✬b=ma +nb,其中m,n是常数,如果3✬4=2,5✬8>2,那么n的取值范围是()A.n>1-B.n<1-C.n>2 D.n<23、把不等式36x≥-的解集在数轴上表示正确的是()A.B.C.D.4、不等式组3xx a>⎧⎨>⎩的解是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥35、下列各式:①1﹣x :②4x +5>0;③x <3;④x 2+x ﹣1=0,不等式有( )个.A .1B .2C .3D .46、如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是 ( )A .102m << B .102m -<< C .0m < D .12m > 7、如图,已知正比例函数1y kx =与一次函数2y x b =-+的图象交于点P ,下面有四个结论:①0k >;②0b >;③0x >时,10y >;④当2x <-时,kx x b >-+;其中正确的是( )A .①②B .①④C .②④D .①③8、若不等式﹣3x <1,两边同时除以﹣3,得( )A .x >﹣13 B .x <﹣13 C .x >13 D .x <139、若点()2,1A a a -+在第一象限,则a 的取值范围是( )A .2a >B .1a 2-<<C .1a <D .无解10、如果x >y ,则下列不等式正确的是( )A .x ﹣1<y ﹣1B .5x <5yC .33xy > D .﹣2x >﹣2y第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式612x +>-的解集为______. 2、按下面的程序计算,若开始输入的值x 为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当2x =时,输出结果=____.若经过2次运算就停止,则x 可以取的所有值是____.3、如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 4、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________.5、 “a 的25用不等式表示__________________.三、解答题(5小题,每小题10分,共计50分)1、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人.(1)若亲友团有6人,甲、乙旅行社各需多少费用?(2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)2、解不等式1226123x x ++≥-,并将解集在数轴上表示;3、某建筑集团需要重新统筹调配某种大型机器,需要从A 市和B 市调配这种机器到C 市和D 市,已知A 市和B 市有可调配的该种机器分别是8台和4台,现决定调配到C 市5台和D 市7台已知从A 市调运一台机器到C 市和D 市的运费分别是300元和600元;从B 市调运一台机器到C 市和D 市的运费分别是100元和200元.设B 市运往C 市的机器是x 台,本次调运的总运费是w 元.(1)求总运费w 关于x 的函数关系式;(2)若要求总运费不超过4500元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?4、(1)若x >y ,比较﹣3x +5与﹣3y +5的大小,并说明理由;(2)解不等式组:202(1)(3)0x x x -≤⎧⎨-+->⎩,并把它的解集在数轴上表示出来.5、解不等式()()()()11851x x x x +-+>+-.-参考答案-一、单选题1、D【分析】首先通过移项得到-2-4x <,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:24x -<-,两边同时除以-2可得:>2x ,∴原不等式的解集为:>2x ,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.2、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243nm -=,由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>,解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.3、D【分析】解一元一次不等式求出不等式的解集,由此即可得出答案.【详解】解:不等式36x ≥-的解集为2x ≥-,在数轴上的表示如下:故选:D.【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.4、D【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.5、B【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0;③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.6、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m 的不等式组解答即可.【详解】解:∵P (m ,1﹣2m )在第一象限,∴0120m m ⎧⎨-⎩>> ,解得:102m << 故选A .【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m 的一元一次不等式组成为解答本题的关键.7、D【分析】根据正比例函数和一次函数的性质判断即可.【详解】解:∵直线1y kx =经过第一、三象限,∴k >0,故①正确;∵2y x b =-+与y 轴交点在负半轴,∴b <0,故②错误;∵正比例函数1y kx =经过原点,且y 随x 的增大而增大,∴当x >0时,y 1>0;故③正确;当x <-2时,正比例函数1y kx =在一次函数2y x b =-+图象的下方,即kx <x b -+,故④错误.故选:D .【点睛】本题考查了一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.8、A【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x <1,两边同时除以﹣3,得x >﹣13.故选:A .【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.9、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.10、C【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A .∵x >y ,∴x ﹣1>y ﹣1,故本选项不符合题意;B .∵x >y ,∴5x >5y ,故本选项不符合题意;C .∵x >y , ∴33xy >,故本选项符合题意; D .∵x >y ,∴﹣2x<﹣2y,故本选项不符合题意;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.二、填空题1、x>-8【分析】按照去分母、去括号、移项、合并同类项的步骤求出不等式的解集.【详解】解:612x+>-,去分母,得6+x>-2,移项,得x>-2-6,合并同类项,得x>-8.故答案为:x>-8.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.2、11, 2或3或4.【分析】根据题意将2x=代入求解即可;根据题意列出一元一次不等式组即可求解.解:当2x =时,第1次运算结果为2215⨯+=,第2次运算结果为52111⨯+=,∴当2x =时,输出结果11=,若运算进行了2次才停止,则有()2121102110x x ⎧+⨯+>⎨+<⎩, 解得:74.54x <<. x 可以取的所有值是2或3或4,故答案为:11,2或3或4.【点睛】此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组.3、x >2 无解【分析】根据同大取大,同小取小,大小小大中间取判断即可;【详解】∵a <2,∴不等式组2x a x >⎧⎨>⎩的解集为x >2; 不等式组2x a x <⎧⎨>⎩中x 不存在,方程组无解; 故答案是:x >2;无解.【点睛】本题主要考查了不等式组的解集表示,准确分析判断是解题的关键.【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】 解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =- 则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键.5、25a【分析】根据题意表示出a 的25即可.【详解】解:由题意可得:a 的25可表示为25a .故填25-<a .【点睛】本题考查列一元一次不等式,掌握列一元一次不等式的基本方法成为解答本题的关键.三、解答题1、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.2、7x ≥-,数轴表示见解析【分析】先去分母,然后再求解一元一次不等式即可.【详解】 解:1226123x x ++≥- 去分母得:()()3162226x x +≥-+,去括号得:336452x x +≥--,移项、合并同类项得:749x ≥-,系数化为1得:7x ≥-;数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.3、(1)2004100w x =+;(2)共有3种调运方案;(3)当A 市运往C 市的机器是5台,A 市运往D 市的机器是3台,B 市运往C 市的机器是0台, B 市运往D 市的机器是4台时,总运费最低,最低运费为4100元【分析】(1)设B 市运往C 市的机器是x 台,本次调运的总运费是w 元,则B 市运往D 市的机器是()4x -台,A 市运往C 市的机器是()5x -台,A 市运往D 市的机器是()()853x x --=+⎡⎤⎣⎦台,然后根据题意求解即可;(2)根据(1)中所求,建立不等式求解即可;(3)利用一次函数的性质求解即可.【详解】解:(1)设B 市运往C 市的机器是x 台,本次调运的总运费是w 元,则B 市运往D 市的机器是()4x -台,A 市运往C 市的机器是()5x -台,A 市运往D 市的机器是()()853x x --=+⎡⎤⎣⎦台,由题意得:()()()300560031002004w x x x x =-++++-15003006001800100800200x x x x =-++++-2004100x =+;(2)∵要求总运费不超过4500元,∴20041004500w x =+≤,∴2x ≤,由∵0x ≥,∴02x ≤≤,又∵x 是整数,∴x 可取0,1,2,∴共有3种调运方案;(3)∵()200410004w x x =+≤≤,2000>,∴w 随着x 的增大而增大,∴当0x =时,w 有最小值,最小值为4100元,∴当A 市运往C 市的机器是5台,A 市运往D 市的机器是3台,B 市运往C 市的机器是0台, B 市运往D 市的机器是4台时,总运费最低,,最低运费为4100元.【点睛】本题主要考查了一次函数和一元一次不等式的应用,解题的关键在于能够熟练掌握一次函数的性质.4、(1)﹣3x +5<﹣3y +5;(2)﹣1<x ≤2,数轴上表示见解析.【分析】(1)先在x >y 的两边同乘以−3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】解:(1)∵x >y ,∴不等式两边同时乘以−3得:(不等式的基本性质3)−3x <−3y ,∴不等式两边同时加上5得:5−3x <5−3y ;∴﹣3x +5<﹣3y +5;(2)202(1)(3)0x x x -≤⎧⎨-+->⎩①②, ∵解不等式①,得x ≤2,解不等式②,得x >﹣1,∴原不等式组的解集为:﹣1<x ≤2,在数轴上表示不等式组的解集为:【点睛】主要考查了不等式的基本性质和解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.5、x<3【分析】利用平方差公式、多项式乘多项式法则计算,移项合并,把x系数化为1,即可求出解集.【详解】解:去括号得:x2-1+8>x2+4x-5,移项合并得:4x<12,解得:x<3.【点睛】本题考查了平方差公式、多项式乘多项式,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.。
24-25八年级数学第一次月考卷(深圳专用,北师大版八上第1~2章:勾股定理+实数)(考试版A4)
2024-2025学年八年级数学上学期第一次月考卷(深圳专用)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版第一章勾股定理+第二章实数。
5.难度系数:0.68。
第Ⅰ卷一、选择题:本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列数中是无理数的是()A.2πB.3.1415926C.117D. 3.6-2.以下列各组数为边长,不能构成直角三角形的是()A.8,15,17B.7,24,25C.6,8,10D.1,13)A3=B=C6´=D+= 4.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A.16B.25C.144D.1695.实数a ,b 在数轴上的位置如图所示,且|a |>|b ||2a +b |的结果为( )A .2a +b .﹣2a +b C .a +b D .2a ﹣b6.使代数式y =有意义的自变量x 的取值范围是( )A .4x ¹B .3x >C .3x ³D .3x ³且4x ¹7.在四边形ABCD 中,AD BC ∥,90D Ð=°,5AD =,3BC =,分别以A ,C 为圆心,大于12AC 的长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A B C .D .48.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD ,交于点O .若1AD =,4BC =,则22AB CD +等于( )A .15B .16C .17D .20第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
2020-2021学年度(北师大版)八年级下学期数学第一次月考试卷及答案
八年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共15小题,共45.0分)1.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A. 3B. 4C. 5D. 62.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A. 6B. 5C. 4D. 33.下列说法正确的是()A. 若a<b,则3a<2bB. 若a>b,则ac2>bc2C. 若−2a>2b,则a<bD. 若ac2<bc2,则a<b4.不等式3(1−x)>2−4x的解在数轴上表示正确的是()A. B.C. D.5.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A. 三角形中有一个内角小于或等于60°B. 三角形中有两个内角小于或等于60°C. 三角形中有三个内角小于或等于60°D. 三角形中没有一个内角小于或等于60°6.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,则AB,AC,CE的长度关系为()A. AB>AC=CEB.AB=AC>CEC. AB>AC>CED. AB=AC=CE7.小明准备用节省的零花钱买一台复读机,他已存有45元,计划从现在起以后每月节省30元,直到他至少有300元,设x月后他至少有300元,则符合题意的不等式是()A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3008.x≥3的最小值是a,x≤−5的最大值是b,则a+b=()A. 1B. −1C. 2D. −29.已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A. 9B. 12C. 15D. 1810.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A. 9B. 6C. 4D. 311.不等式3(x−2)≤x+4的非负整数解有()个A. 4B. 5C. 6D. 无数个12.不等式组{x>−2 3x−4≤8−2x的最小整数解为()A. −1B. 0C. 1D. 413.如图,坐标平面内一点A(2,−1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2B. 3C. 4D. 514.“双11”期间,某商店计划用160000元购进一批家电,其进价和售价如下表:类别彩电(元/台)冰箱(元/台)洗衣机(元/台)进价200016001000售价220018001100若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,则商店销售完这批家电后获得的利润最大为()A. 17000元B. 17200元C. 17400元D. 17600元15.若不等式组{2x−a<1−1<x<1,则(a−3)(b+3)的值为()x−2b>3的解集为A. 1B. −1C. 2D. −2二、填空题(本大题共5小题,共25.0分)16.如图,直线a,b过等边三角形ABC顶点A和C,且a//b,∠1=42°,则∠2的度数为______.17.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为______.18.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为______度.19.在实数范围内规定新运算“△”,其规则是:a△b=2a−b.已知不等式x△k≥1的解集在数轴上如图表示,则k的值是______.20.定义:对于实数a,符号[a]表示不大于a的最大整数,例如:[4.7]=4,[−π]=−4,+1]=−5,则x的取值范围为______.[3]=3,如果[x+23三、解答题(本大题共7小题,共80.0分)21.(8分)若关于x的方程1+x2−x =2mx2−4的解也是不等式组{1−x2>x−22(x−3)≤x−8的一个解,求m的取值范围.22.(8分)如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,∠B=30°,∠BAC=80°,且BC+AC=12cm,(1)求∠CAE的度数;(2)求△AEC的周长.23.(10分)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连结AM.(1)求证:EF=12AC;(2)若∠BAC=45°,求线段AM,DM,BC之间的数量关系.24.(12分)某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?25.(12分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低,马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元.A,B两种产品原来的运费和现在的运费(单位:元/件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的产品总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?26.(14分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.27.(16分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN?如存在,请求出此时M、N运动的时间.答案1.A2.D3.D4.A5.D6.D7.B8.D9.B10.D11.C12.B13.C14.C15.D16.102°17.x≤118.3419.k=−320.−20≤x<−1721.解:原分式方程变形得:1−xx−2=2m(x−2)(x+2),方程两边同乘以最简公分母(x+2)(x−2)得:(x+2)(x−2)−x(x+2)=2m,x2−4−x2−2x=2m,−2x=2m+4,∴x=−m−2,∵不等式组{1−x2>x−2①2(x−3)≤x−8②,由①得:1−x>2x−4,−3x>−5,∴x<53,由②得:2x−6≤x−8,∴x≤−2,∴不等式组的解集为x≤−2,∵x=−m−2,∴−m−2≤−2,∴m≥0,∵关于x的方程1+x2−x =2mx2−4有意义,∴x≠±2,∴−m−2≠±2,∴m≠−4且m≠0,∴m>0.22.解:∵AB的垂直平分线分别交AB,BC于点D,E,∴BE=AE,∴∠BAE=∠B=30°,又∵∠BAC=80°,∴∠CAE=∠BAC−∠BAE=80°−30°=50°;(2)∵AE=BE,∴AE+CE+AC=BC+AC=12cm.即△AEC的周长为12cm.23.(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∴△AEC 为直角三角形, ∵点F 为AC 的中点, ∴EF =12AC ;(2)解:BC =AM +DM.理由如下: ∵∠BAC =45°,CE ⊥BD , ∴△AEC 是等腰直角三角形, ∵点F 为AC 的中点, ∴EF 垂直平分AC , ∴AM =CM ,∵CD =CM +DM =AM +DM ,CD =CB , ∴BC =AM +DM .24.解:(1)设A 、B 两种型号的扫地车每辆每周分别可以处理垃圾a 吨、b 吨,{a +2b =1002a +b =110, 解得,{a =40b =30,答:(1)求A 、B 两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨; (2)设购买A 型扫地车m 辆,B 型扫地车(40−m)辆,所需资金为y 元, {25m +20(40−m)≤91040m +30(40−m)≥1400,解得,20≤m ≤22, ∵m 为整数, ∴m =20,21,22, ∴共有三种购买方案,方案一:购买A 型扫地车20辆,B 型扫地车20辆; 方案二:购买A 型扫地车21辆,B 型扫地车19辆; 方案三:购买A 型扫地车22辆,B 型扫地车18辆; ∵y =25m +20(40−m)=5m +800, ∴当m =20时,y 取得最小值,此时y =900,答:方案一:购买A 型扫地车20辆,B 型扫地车20辆所需资金最少,最少资金是900万元.25.解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件, 根据题意得:{45x +25y =120030x +20y =1200−300,解得:{x =10y =30,答:每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件, (2)设增加m 件A 产品,则增加了(8−m)件B 产品,设增加供货量后得运费为W 元, 增加供货量后A 产品的数量为(10+m)件,B 产品的数量为30+(8−m)=(38−m)件, 根据题意得:W =30(10+m)+20(38−m)=10m +1060, 由题意得:38−m ≤2(10+m), 解得:m ≥6, 即6≤m ≤8,∵一次函数W 随m 的增大而增大 ∴当m =6时,W 最小=1120,答:产品件数增加后,每次运费最少需要1120元.26.解:设购买A 型号笔记本电脑x 台时的费用为w 元,(1)当x =8时,方案一:w =90%a ×8=7.2a ,方案二:w =5a +(8−5)a ×80%=7.4a ,∴当x =8时,应选择方案一,该公司购买费用最少,最少费用是7.2a 元;(2)若x ⩽5,方案一每台按售价九折销售,方案二每台按售价销售,所以采用方案一购买合算; 若x >5,方案一:w =90%ax =0.9ax ,方案二:当x >5时,w =5a +(x −5)a ×80%=5a +0.8ax −4a =a +0.8ax , 则0.9ax >a +0.8ax , x >10,∴x 的取值范围是x >10且x 为正整数27.解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,x +12=2x , 解得:x =12;(2)设点M 、N 运动t 秒后,可得到等边三角形△AMN ,如图①,AM=t×1=t,AN=AB−BN=12−2t,∵三角形△AMN是等边三角形,∴t=12−2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵{AC=AB∠C=∠B∠AMC=∠ANB,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y−12,NB=36−2y,CM=NB,y−12=36−2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
2021-2022学年最新北师大版八年级数学下册第四章因式分解月考试题(含答案解析)
北师大版八年级数学下册第四章因式分解月考考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解正确的是( ).A .()22242a a a a -=+B .()()2422a a a -+=+-C .()22211a a a -+=-D .()210251025a a a a -+=-+2、下列等式中,从左到右的变形是因式分解的是( )A .a (a -3)=a 2-3aB .(a +3)2=a 2+6a +9C .6a 2+1=a 2(6+21a )D .a 2-9=(a +3)(a -3)3、下列分解因式正确的是( )A .()244x x x x -+=--B .()222x xy x x x y ++=+C .()()()2x x y y y x x y -+-=-D .()22442x x x -+=+ 4、下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b ++D .214x x -+ 5、已知a +b =2,a -b =3,则22a b -等于( )A .5B .6C .1D .326、下列多项式中能用平方差公式分解因式的是( )A .﹣a 2﹣b 2B .x 2+(﹣y )2C .(﹣x )2+(﹣y )2D .﹣m 2+17、下列各式从左至右是因式分解的是( )A .()242(2)a a a -=+-B .()()2211x y x y x y --=+--C .222()x y x xy y +=++D .222()2x y x xy y -=++8、下列从左边到右边的变形,是因式分解的是( )A .(3﹣x )(3+x )=9﹣x 2B .x 2+y 2=(x +y )(x ﹣y )C .x 2﹣x =x (x ﹣1)D .2yz ﹣y 2z +z =y (2z ﹣yz )+z9、若a 、b 、c 为一个三角形的三边长,则式子()22a c b --的值( )A .一定为正数B .一定为负数C .可能是正数,也可能是负数D .可能为010、多项式22ax ay -分解因式的结果是( )A .()22a x y +B .()()a x y x y +-C .()()a x y x y ++D .()()ax y ax y +-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:4811x -=__.2、计算下列各题:(1)3x x ⋅=______; (2)()3ab =______; (3)()42m =______; (4)63x x +=______.3、因式分解:2a 2﹣4ab +2b 2=_____.4、在实数范围内因式分解:x 2﹣6x +1=_____.5、分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:①20220220211(2021)(3)22π⎛⎫-+--⨯ ⎪⎝⎭;②()()43322222362436x y x y x y x y -+÷-;③(32)(32)a b a b +--+.(2)在实数范围内因式分解:①32222288a b a b ab -+-;②49x -.2、因式分解:(1)3244a a a -+(2)(1)(3)8x x ---3、因式分解:(1)326a ab +(2)2255x y -(3)22363x xy y -+-4、(1)按下表已填的完成表中的空白处代数式的值:(2)比较两代数式计算结果,请写出你发现的2()a b -与222a ab b -+有什么关系?(3)利用你发现的结论,求:222021404220202020-⨯+的值.5、(1)计算:(12a 3-6a 2+3a )÷3a(2)因式分解:32288a a a -+-参考答案-一、单选题1、C【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A 、()()2222421a a a a a a -=+=+,故本选项错误;B 、()()()224422a a a a -+=--=-+-,故本选项错误;C 、()22211a a a -+=-,故本选项正确;D 、()2210255a a a -+=-,故本选项错误.故选:C .【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.2、D【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A 、a (a -3)=a 2-3a ,属于整式乘法,不符合题意;B 、(a +3)2=a 2+6a +9,属于整式乘法,不符合题意;C 、6a 2+1=a 2(6+21a )不是因式分解,不符合题意;D 、a 2-9=(a +3)(a -3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.3、C【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ()244x x x x -+=-+,原选项错误,不符合题意;B. ()2221x xy x x x y ++=++,原选项错误,不符合题意;C. ()()()2x x y y y x x y -+-=-,正确,符合题意; D. ()22442x x x -+=-,原选项错误,不符合题意;故选:C .【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.4、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A 、不能用完全平方公式因式分解,故本选项不符合题意; B 、不能用完全平方公式因式分解,故本选项不符合题意;C 、不能用完全平方公式因式分解,故本选项不符合题意;D 、221142x x x ⎛⎫-+=- ⎪⎝⎭能用完全平方公式因式分解,故本选项符合题意; 故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握()2222a ab b a b ±+=± 是解题的关键.5、B【分析】根据平方差公式因式分解即可求解【详解】∵a +b =2,a -b =3,∴22a b -()()236a b a b =+-=⨯=故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.6、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、22a b --,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B 、()2222x y x y +-=+,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意; C 、()()2222x y x y -=++-,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D 、()()2221111m m m m -+=-=+-,可以利用平方差公式进行分解,符合题意; 故选:D .【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.7、A【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、()242(2)a a a -=+-,等式从左到右的变形属于因式分解,故本选项符合题意;B 、()()2211x y x y x y --=+--,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C 、222()x y x xy y +=++,是整式的乘法,不是因式分解,故本选项不符合题意;D 、222()2x y x xy y -=++,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.8、C【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A 、(3﹣x )(3+x )=9﹣x 2属于整式的乘法运算,不是因式分解,不符合题意;B 、22()()x y x y x y -=+-,原式错误,不符合题意;C 、x 2﹣x =x (x ﹣1),属于因式分解,符合题意;D 、2yz ﹣y 2z +z =2(21)z y y -+,原式分解错误,不符合题意;故选:C .【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.9、B【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:原式=(a-c+b)(a-c-b),∵两边之和大于第三边,两边之差小于第三边,∴a-c+b>0,a-c-b<0,∵两数相乘,异号得负,∴代数式的值小于0.故选:B.【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.10、B【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.二、填空题1、2(91)(31)(31)x x x ++-【分析】先把原式化为22291,x 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式22(91)(91)x x =+-2(91)(31)(31)x x x =++-,故答案为:2(91)(31)(31)x x x ++-.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.2、4x 33a b 8m ()331x x +【分析】(1)根据同底数幂相乘运算法则计算即可;(2)根据积的乘方的运算法则计算即可;(3)根据幂的乘方的运算法则计算即可;(3)根据提取公因式法因式分解即可.【详解】解:(1)34x x x ⋅=;(2)()333ab a b =;(3)()428m m =; (4)()63331x x x x +=+.故答案是:(1)4x ;(2)33a b ;(3)8m ;(4)()331x x +.【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.3、()22a b -【分析】先提取公因式2,再利用完全平方公式计算可得.【详解】解:原式=()()222222a ab b a b -+=-. 故答案为:()22a b -【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.4、(3x -+(3x --【分析】将该多项式拆项为22(3)x --,然后用平方差公式进行因式分解.【详解】261-+x x2(69)8x x =-+-22(3)x =--(33x x =-+--.故答案为:(33x x -+--.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.5、﹣2ab (2a ﹣b )2【分析】先提取公因式-2ab ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式=﹣2ab (4a 2﹣4ab +b 2)=﹣2ab (2a ﹣b )2,故答案为:﹣2ab (2a ﹣b )2.【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.三、解答题1、(1) ①912;②-6x 2y+4x-12;③9a 2-b 2+4b -4;(2)①-2ab 2(a -2)2;②(x 2+3)(x x 【分析】(1)①根据零指数幂、积的乘方、同底数幂的乘法计算即可;②利用多项式除以多项式计算即可;③根据平方差公式和完全平方公式计算即可;(2)①利用提取公因式和完全平方公式计算即可;②利用平方差公式计算即可;【详解】(1)①原式=1+9-12=912;②原式=36x 4y 3÷(﹣6x 2y 2)﹣24x 3y 2÷(﹣6x 2y 2)+3x 2y 2÷(﹣6x 2y 2),=-6x 2y+4x-12;③原式=[3a +(b -2)][3a -(b -2)],=(3a )2-(b -2)2,=9a 2-(b 2-4b +4),=9a 2-b 2+4b -4;(2)在实数范围内因式分解:①原式=-2ab 2(a 2-4a +4),=-2ab 2(a -2)2;②原式=(x 2+3)(x 2-3),=(x 2+3)(x x ;【点睛】本题主要考查了利用公式法和提公因式法进行因式分解,整除除法,实数混合运算,积的乘方,同底数幂的乘法,准确计算是解题的关键.2、(1)2(2)a a -;(2)(5)(1)x x -+【分析】(1)先提取公因式,再十字相乘法进行因式分解.(2)先去括号,再十字相乘法进行因式分解.【详解】解:(1)3244a a a -+=2(44)a a a -+=2(2)a a -(2)(1)(3)8(5)(1)x x x x ---=-+=2438x x -+-=245x x --(5)(1)x x =-+【点睛】本题考查了十字相乘法因式分解,对于形如2x px q ++的二次三项式,若能找到两数a b 、,使a b q ⋅=,且a b p +=,那么2x px q ++就可以进行如下的因式分解,即()()()22x px q x a b x ab x a x b ++=+++=++.3、(1)2a (a 2+3b );(2)5(x +y )(x ﹣y );(3)﹣3(x ﹣y )2.【分析】(1)直接提公因式2a 即可;(2)先提公因式,再利用平方差公式即可;(3)先提公因式,再利用完全平方公式即可.(1)解:326a ab +=2a (a 2+3b );(2)解:(2)原式=5(x 2﹣y 2)=5(x +y )(x ﹣y );(3)解:(3)原式=﹣3(x 2﹣2xy +y 2)=﹣3(x ﹣y )2.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.4、(1)见解析;(2)()2222a b a ab b -=-+;(3)1【分析】(1)把每组,a b 的值分别代入2()a b -与222a ab b -+进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论()2222a b a ab b -=-+可得2021,2020,a b 再代入进行简便运算即可. 【详解】解:(1)填表如下:(2)观察上表的计算结果归纳可得:()2222a b a ab b -=-+(3)222021404220202020-⨯+=2220212202120202020-⨯⨯+=()220212020-=1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.5、(1)4a 2-2a +1;(2)2a (a -2)2.【分析】(1)根据多项式除以单项式的法则进行计算即可;(2)先提公因式,再根据完全平方公式进行因式分解即可.【详解】解(1)(12a 3-6a 2+3a )÷3a=4a 2-2a +1;(2)32288a a a -+=2a(a2-4a+4)=2a(a-2)2.【点睛】本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键.。
2022-2023学年全国初中八年级下数学北师大版月考试卷(含解析)
2022-2023学年全国八年级下数学月考试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 下列图形中,是中心对称图形的是 A. B. C. D.2. 如图,等腰中,=,=.用尺规作图作出线段,则下列结论错误的是( )A.=()△ABC AB AC ∠A 36∘BD AD BD∠DBC 36∘B.=C.=D.的周长=3. 若,下列式子:①;②;③;④中,正确的有( )A.个B.个C.个D.个4. 如图,点,分别是的边和边上的点,且,=,是的角平分线,则的度数为A.B.C.D.5. 如图,在三角形中,,将此三角形绕点按顺时针方向旋转后得到三角形 ,若点 恰好落在线段上,,交于点,则的度数是 ( )A.B.C.D.∠DBC 36∘S △ABD S △BCD△BCD AB +BCa <b <0−a >−b >1a +b <ab <1234D E △ABC AB AC DE //BC ∠AED 64∘EC ∠DEB ∠ECB ()78∘68∘58∘48∘ABC ∠ACB =,∠B =90∘50∘C C A ′B ′B ′AB AC A ′B ′O ∠COA ′80∘70∘60∘50∘2x ≥2,6. 不等式组的解集是A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7. 若,,则________.(填上或)8. 如图,在平面直角坐标系中,等边的顶点在轴的正半轴上,,,点,将绕点顺时针旋转得到,则的长度为________,线段的长为________,图中阴影部分面积为________.9. 如图,已知 中,,,垂直平分交于点,垂足为, 若 ,则________.10. 如图,在平面直角坐标系中,四边形是正方形,点,是中点,将以为旋转中心逆时针旋转后,再将得到的三角形平移,使点与点重合,写出此时点的对应点的坐标:________.{2x ≥2,2(x −1)<x +1( )x ≥1x <31≤x <31<x <3a >b c <0−2ac −2bc ><xOy △ABC A y B(−5,0)C(5,0)D(11,0)△ACD A 60∘△ABE AE △ABC AB =AC ∠BAC =120∘DE AC BC D E DE =2cm BC =cm xOy OABC C(0,4)D OA △CDO C 90∘C O D11. 不等式组的整数解的个数为________.12. 如图,中,=,=,=,点是边的中点,点是边上一点,若为等腰三角形,则线段的长度等于________.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13. 解不等式,并把它的解集在数轴上表示出来.14. 先阅读下面的例题,再按要求解答问题:例:解不等式.解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①,得,解不等式组②,得,故不等式的解集为或.问题:求不等式的解集.15. 如图,在中, 的平分线交于点,且.如果点是边的中点, ,求的长.16. 如图,在中,是的中点,延长到点,使,连接,. 2x −1≤1−x <112△ABC ∠A 90∘AB 3AC 6D AC P BC △BDP BP ≤−1x −322x −13(x +3)(x −3)>0{x +3>0,x −3>0,{x +3<0,x −3<0,x >3x <−3(x +3)(x −3)>0x >3x <−3<0(5x −3≠0)2x +15x −3△ABC ∠ABC BE AC E DE//BC D AB AB =10cm DB ▱ABCD F AD BC E CE =BC 12DE CF (1)CEDF求证:四边形是平行四边形;若,,,求的长. 17. 已知一次函数.(1)画出函数图象;(2)说出不等式解集是________;不等式解集是________;(3)求出函数图象与坐标轴的两个交点之间的距离.18. 如图,由边长为个单位长度的小正方形组成的网格中,已知格点(顶点是网格线的交点)和格点画出绕点逆时针方向旋转得到的;画出向下平移个单位长度得到的.19. 如图,等边三角形的边长为,为边上的一点,延长至,使,连接,交于点.求证若为的中点,求的长.20. 邵东市是中国八大箱包生产基地之一,被誉称“中国皮具箱包之都”.某电商计划从邵东某箱包厂家购进款、款两种型号的书包,放在电商平台销售.若购买个款书包和个款书包需用元;若购买个款书包和个款书包需用元.求每个款书包和每个款书包各多少元;该电商平台决定购进款书包和款书包共个,总费用不超过元,那么最多可以购买多少个款书包?(1)CEDF (2)AB =4AD =6∠B =60∘DE y =−2x −6−2x −6>0−2x −6<01△ABC O.(1)△ABC O 90∘△A 1B 1C 1(2)△A 1B 1C 14△A 2B 2C 2ABC 2D AC AB E BE =CD DE BC P (1)DP =PE(2)D AC BP A B 8A 5B 11004A 6B 760(1)A B (2)A B 75059000A21. 如图,将矩形绕点顺时针旋转得矩形,当点落在上时,连接,求证:.23. 已知一次函数的图象经过点,两点.正比例函数的图象经过点.(1)求这两个函数的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求三角形的面积.ABCD A α(<α<)0∘90∘AEFG E BD DF DF =CD y =kx +b A(−3,0)B(2,5)y =kx B(2,3)AOB参考答案与试题解析2022-2023学年全国八年级下数学月考试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】D【考点】中心对称图形【解析】此题暂无解析【解答】解:在平面内,把一个图形绕着某一个点旋转如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.,不是中心对称图形,不符合题意;,是轴对称图形,不是中心对称图形,不符合题意;,是轴对称图形,不是中心对称图形,不符合题意;,是中心对称图形,符合题意.故选.2.【答案】C【考点】等腰三角形的性质【解析】根据作图痕迹发现平分,然后根据等腰三角形的性质进行判断即可.【解答】∵等腰中,=,=,∴==,由作图痕迹发现平分,∴===,∴=,故、正确;∵,180∘A B C D D BD ∠ABC △ABC AB AC ∠A 36∘∠ABC ∠ACB 72∘BD ∠ABC ∠A ∠ABD ∠DBC 36∘AD BD A B AD ≠CD S ABD S BCD C∴=错误,故错误;的周长===,故正确,3.【答案】C【考点】不等式的性质【解析】此题暂无解析【解答】此题暂无解答4.【答案】C【考点】角平分线的性质平行线的性质【解析】首先根据角平分线的定义求出的度数,然后根据平行线的性质得到的度数.【解答】解:∵=,∴==,∵是的角平分线,∴==,∵,∴=,∴=.故选.5.【答案】C【考点】S △ABD S △BCD C △BCD BC +CD +BD BC +AC BC +AB D ∠DEC ∠ECB ∠AED 64∘∠DEB −180∘64∘116∘EC ∠DEB ∠DEC ∠CEB =∠DEB =×1212116∘58∘DE //BC ∠DEC ∠ECB ∠ECB 58∘C旋转的性质【解析】【解答】解:∵在三角形中,=,=,∴==.由旋转的性质可知:=,∴==.又∵==,∴=,∴====.故选.6.【答案】C【考点】解一元一次不等式组【解析】此题暂无解析【解答】解:解不等式①,得,解不等式②,得,所以不等式组的解集为.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】【考点】不等式的性质ABC ∠ACB 90∘∠B 50∘∠A −∠ACB −∠B 180∘40∘BC B'C ∠B ∠BB'C 50∘∠BB'C ∠A +∠ACB'+∠ACB'40∘∠ACB'10∘∠COA'∠AOB'∠OB'C +∠ACB'∠B +∠ACB'60∘C {2x ≥2,①2(x −1)<x +1,②x ≥1x <31≤x <3C >【解析】本题主要考查不等式的性质.【解答】解:∵∴∵∴.故答案为:.8.【答案】,,【考点】弧长的计算等边三角形的性质坐标与图形变化-旋转勾股定理扇形面积的计算全等三角形的性质与判定【解析】此题暂无解析【解答】此题暂无解答9.【答案】【考点】线段垂直平分线的性质【解析】首先连接,由垂直平分,可得=,由中,=,=,可求得===,继而求得与的长,则可求得的长,继而求得答案.a >b−2a <−2bc <0−2ac >−2bc >π1416π12AD DE AC AD CD △ABC AB AC ∠BAC 120∘∠B ∠C ∠DAC 30∘AD CD BD解:连接,∵中,=,=,∴==.∵垂直平分,∴=.∴==.∴====.∴==.∴==.∴==.故答案为:.10.【答案】【考点】正方形的性质坐标与图形变化-平移坐标与图形变化-旋转【解析】根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.【解答】∵绕点逆时针旋转,得到,则==,∴点坐标为;当将点与点重合时,点向下平移个单位,得到,∴点向下平移个单位.故点坐标为,11.【答案】【考点】一元一次不等式组的整数解【解析】此题暂无解析AD △ABC AB AC ∠BAC 120∘∠B ∠C 30∘DE AC AD CD ∠DAC ∠C 30∘AD CD 2DE 2×24(cm)∠BAD ∠BAC −∠DAC 90∘BD 2AD 8(cm)BC BD +CD 12(cm)12(4,2)△CDO C 90∘△CBD'BD'OD 2D (4,6)C O C 4△OAD''D 4D''(4,2)3解:解原不等式组,得,所以可取个整数值,分别为,故答案为:.12.【答案】或【考点】勾股定理等腰三角形的性质【解析】分两种情形:①当=时.②当=时分别求解;【解答】如图,当=时,连接交于点,作于,于.∵==.=,∴=,∵=,∴垂直平分线段,∴=,∴=,∵,∴==,在中,∵==,∴=,==,∵==,∴==,∴=,=,在中,.当=时,=,综上所述,满足条件的的值为或.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13.−2<x ≤1x 3−1,0,1332–√5–√PD PB BD BP'PD PB PA BD H PE ⊥AC E PF ⊥AB F AD DC 3AB 3AB AD PB PD PA BD ∠PAB ∠PAD PE PF ⋅AB ⋅PF +⋅AC ⋅PE =⋅AB ⋅AC 121212PE PF 2Rt △ABDA AB AD 3BD 32–√BH DH AH =32–√2∠PAE ∠APE 45∘PE AE 2PA 22–√PH PA −AH =2–√2Rt △PBH PB ===B +P H 2H 2−−−−−−−−−−√(+(32–√2)22–√2)2−−−−−−−−−−−−−−√5–√BD BP'BP'32–√BP 32–√5–√解:去分母得,,去括号得,,移项、合并同类项得,,把的系数化为得,,在数轴上表示为:;【考点】解一元一次不等式在数轴上表示不等式的解集【解析】(1)先去分母,再去括号,移项、合并同类项,把的系数化为,并在数轴上表示出来即可;【解答】解:去分母得,,去括号得,,移项、合并同类项得,,把的系数化为得,,在数轴上表示为:;14.【答案】解:由有理数的除法法则“两数相除,异号得负”,得①或②解不等式组①,得 ,解不等式组②,得不等式组②无解,故不等式的解集为.【考点】解一元一次不等式组【解析】暂无【解答】解:由有理数的除法法则“两数相除,异号得负”,得①或②3(x −3)≤2(2x −1)−63x −9≤4x −2−6−x ≤1x 1x ≥−1x 13(x −3)≤2(2x −1)−63x −9≤4x −2−6−x ≤1x 1x ≥−1{2x +1>0,5x −3<0,{2x +1<0,5x −3>0,−<x <1235<0(5x −3≠0)2x +15x −3−<x <1235{2x +1>0,5x −3<0,{2x +1<0,5x −3>0,<x <13解不等式组①,得 ,解不等式组②,得不等式组②无解,故不等式的解集为.15.【答案】解:平分,,,,,,是的中点,,.【考点】角平分线的性质平行线的性质【解析】根据角平分线性质,平行线性质定理即可求出答案.【解答】解:平分,,,,,,是的中点,,.16.【答案】证明:在中,,且.∵是的中点,∴.又∵,∴.∵,∴四边形是平行四边形.−<x <1235<0(5x −3≠0)2x +15x −3−<x <1235∵BE ∠ABC ∴∠ABE =∠CBE ∵DE//BC ∴∠DEB =∠CBE ∴∠ABE =∠DEB ∴BD =DE ∵D AB ∵AD =BD ∴DE =AB =×10=5cm 1212∵BE ∠ABC ∴∠ABE =∠CBE ∵DE//BC ∴∠DEB =∠CBE ∴∠ABE =∠DEB ∴BD =DE ∵D AB ∵AD =BD ∴DE =AB =×10=5cm 1212(1)▱ABCD AD //BC AD =BC F AD DF =AD 12CE =BC 12DF =CE DF //CE CEDF (2)解:如图,过点作于点.在中,∵,,∴,∴.∵,∴,∴,.在中,,则.∴在中,根据勾股定理知.【考点】含30度角的直角三角形勾股定理【解析】(1)由“平行四边形的对边平行且相等”的性质推知,且=;然后根据中点的定义、结合已知条件推知四边形的对边平行且相等=,且,即四边形是平行四边形;(2)如图,过点作于点,构造含度角的直角和直角.通过解直角和在直角中运用勾股定理来求线段的长度.【解答】证明:在中,,且.∵是的中点,∴.又∵,∴.∵,∴四边形是平行四边形.解:如图,过点作于点.在中,∵,,∴,(2)D DH ⊥BE H ▱ABCD ∠B =60∘AD //BC ∠B =∠DCE ∠DCE =60∘AB =4CD =AB =4CH =CD =122DH =23–√▱CEDF CE =DF =AD =123EH =1Rt △DHE DE ==(2+13–√)2−−−−−−−−−√13−−√AD //BC AD BC CEDF (DF CE DF //CE)CEDF D DH ⊥BE H 30△DCH △DHE △DCH △DHE ED (1)▱ABCD AD //BC AD =BC F AD DF =AD 12CE =BC 12DF =CE DF //CE CEDF (2)D DH ⊥BE H ▱ABCD ∠B =60∘AD //BC ∠B =∠DCE ∠DCE =60∘∴.∵,∴,∴,.在中,,则.∴在中,根据勾股定理知.17.【答案】;.,(3)∵,,∴,,∴.【考点】一次函数与一元一次不等式一次函数的图象【解析】(1)分别将、代入一次函数,求出与之相对应的、值,由此即可得出点、的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与轴的上下位置关系,即可得出不等式的解集;(3)由点、的坐标即可得出、的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【解答】解:(1)当时,,∴一次函数与轴交点的坐标为;当时,解得:,∴一次函数与轴交点的坐标为.描点连线画出函数图象,如图所示.(2)观察图象可知:当时,一次函数的图象在轴上方;当时,一次函数的图象在轴下方.∴不等式解集是;不等式解集是.(3)∵,,∴,,∴.18.【答案】解:如图,即为所求;∠DCE =60∘AB =4CD =AB =4CH =CD =122DH =23–√▱CEDF CE =DF =AD =123EH =1Rt △DHE DE ==(2+13–√)2−−−−−−−−−√13−−√x <−3x >−3x <−3x >−3B(−3,0)C(0,−6)OB =3OC =6BC ==3O +O B 2C 2−−−−−−−−−−√5–√x =0y =0y =−2x −6y x C B x B C OB OC x =0y =−2x −6=−6y =−2x −6y C (0,−6)y =−2x −6=0x =−3y =−2x −6x B (−3,0)x <−3y =−2x −6x x >−3y =−2x −6x −2x −6>0x <−3−2x −6<0x >−3B(−3,0)C(0,−6)OB =3OC =6BC ==3O +O B 2C 2−−−−−−−−−−√5–√(1)△A 1B 1C 1(2)△A B C如图,即为所求.【考点】作图-平移变换作图-旋转变换【解析】此题暂无解析【解答】解:如图,即为所求;如图,即为所求.19.【答案】证明:作,交于点.∴,.∵为等边三角形,∴为等边三角形,∴,∴,∴.(2)△A 2B 2C 2(1)△A 1B 1C 1(2)△A 2B 2C 2(1)DF//AB BC F ∠PDF =∠E ∠PFD =∠PBE △ABC △CDF CD =DF =BE △DPF ≅△EPB DP =PE (2)AC BC解:若为的中点,则也是的中点,由()知,.【考点】等边三角形的性质全等三角形的判定全等三角形的性质【解析】【解答】证明:作,交于点.∴,.∵为等边三角形,∴为等边三角形,∴,∴,∴.解:若为的中点,则也是的中点,由()知,.20.【答案】解:设每个款书包和每个款书包分别为元,元,可得:解得:答:每个款书包和每个款书包分别为元,元.设购买款书包个,根据题意可得:,解得:.答:该电商最多可以购进个款书包.【考点】二元一次方程组的应用——销售问题(2)D AC F BC 1FP =PB BP =0.5(1)DF//AB BC F ∠PDF =∠E ∠PFD =∠PBE △ABC △CDF CD =DF =BE △DPF ≅△EPB DP =PE (2)D AC F BC 1FP =PB BP =0.5(1)A B x y {8x +5y =1100,4x +6y =760,{x =100,y =60.A B 10060(2)A m 100m +60×(750−m)≤59000m ≤350350A一元一次不等式组的应用【解析】此题暂无解析【解答】解:设每个款书包和每个款书包分别为元,元,可得:解得:答:每个款书包和每个款书包分别为元,元.设购买款书包个,根据题意可得:,解得:.答:该电商最多可以购进个款书包.21.【答案】证明:由旋转可得,,,,∴.又∵,∴.又∵,∴,∴.又∵,∴.【考点】矩形的性质旋转的性质全等三角形的性质与判定【解析】(1)先运用判定,可得,再根据,即可得出;也可以运用“三线合一”得出结论;(2)当时,点在的垂直平分线上,分两种情况讨论,依据,即可得到旋转角的度数.【解答】证明:由旋转可得,,,,∴.又∵,(1)A B x y {8x +5y =1100,4x +6y =760,{x =100,y =60.A B 10060(2)A m 100m +60×(750−m)≤59000m ≤350350A AE =AB ∠AEF =∠ABC =∠DAB =90∘EF =BC =AD∠AEB =∠ABE ∠ABE +∠EDA ==∠AEB +∠DEF 90∘∠EDA =∠DEF DE =ED △AED ≅△FDE(SAS)DF =AE AE =AB =CD CD =DF SAS △AED ≅△FDE DF =AE AE =AB =CD CD =DF GB =GC G BC ∠DAG =60∘αAE =AB ∠AEF =∠ABC =∠DAB =90∘EF =BC =AD∠AEB =∠ABE ∠ABE +∠EDA ==∠AEB +∠DEF 90∘∠EDA =∠DEF∴.又∵,∴,∴.又∵,∴.22.【答案】=【考点】一次函数图象上点的坐标特点【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:(1)∵一次函数的图象经过两点、,解得:所以一次函数的解析式为:∵正比例函数的图象经过点∴ 得所以正比例函数的解析式为:;(2)函数图象如右图:(3)∵的底边,底边上的高为,∴的面积.【考点】待定系数法求一次函数解析式一次函数的图象正比例函数的图象一次函数图象上点的坐标特点【解析】∠EDA =∠DEF DE =ED △AED ≅△FDE(SAS)DF =AE AE =AB =CD CD =DF y =kx +b A(−3,0)B(2,5){−3k +b =02k +b =5{k =1b =3y =x +3y =kx B(2,5)2k =5k =52y =x 52△AOB OA =3OA 5△AOB =3×5÷2=7.5(1)将点的坐标代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)利用、点坐标,然后根据面积公式求解即可.【解答】解:(1)∵一次函数的图象经过两点、,解得:所以一次函数的解析式为:∵正比例函数的图象经过点∴ 得所以正比例函数的解析式为:;(2)函数图象如右图:(3)∵的底边,底边上的高为,∴的面积.A B y =kx +b A(−3,0)B(2,5){−3k +b =02k +b =5{k =1b =3y =x +3y =kx B(2,5)2k =5k =52y =x 52△AOB OA =3OA 5△AOB =3×5÷2=7.5。
2022-2023学年初中八年级下数学北师大版月考试卷(含解析)
2022-2023学年初中八年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1. 如图,将三角形ABC沿BC所在直线向右平移得到三角形DEF.已知BE=3,BF=8,则EC长为( )A.2B.3C.4D.52. 下列各组数不能作为直角三角形边长的是( )A.3,4,5B.8,15,17C.7,9,11D.9,12,153. 若点P(3−x,x+1)位于平面直角坐标系中的第四象限,则x的取值范围在数轴上可表示为()A.B.C.D.4. 若a>b,则下列不等式变形错误的是( )A.a+1>b+1B.a2>b2C.3a−4>3b−4D.4−3a>4−3b5. 平面直角坐标系内一点P(−5,1)关于原点对称的点的坐标是( )A.(5,−1)B.(5,−1)C.(−5,−1)D.(5,1)6. 如图的方格纸中每一个小方格都是边长为1的正方形,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC为等腰三角形,这样的格点的个数有( )A.8个B.9个C.10个D.11个7. 不等式 −2x<4 的解集是()A.x>−2B.x<−2C.x>2D.x<28. 如图,按下面的程序运算,规定程序运行到“判断结果是否大于30”为一次运算.若运算进行了4次才停止,则x的取值范围是( )A.518<x≤394B.518≤x≤394C.7516<x≤518D.7516≤x≤5189. 如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4√3B.6√3C.8√3D.12√310. 如图所示,在完全重合放置的两张矩形纸片ABCD中,AB=4 GBC=8,将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分的面积为()A.4√33B.185C.6D.365卷II(非选择题)二、填空题(本题共计 4 小题,每题 5 分,共计20分)11. 分别以下列四组数为一个三角形的边长:①6、8、10,②5、12、13,③8、15、17,④4、5、6,其中能构成直角三角形的有________(填序号).12. 用反证法证明“四边形的四个内角不能都是锐角”时,应首先假设________.13. 关于x的不等式组的整数解共有6个,则a的取值范围是________.14. 若△ABC∼△A′B′C′,∠A=50∘,∠C′=100∘,则∠B′的度数为________.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15. 解下列不等式,并把解集在数轴上表示出来.(1)2x+13−5x−12≥−1.(2)x−22<7−x3.16. 两个大小不同且都含有30∘角的直角三角板按如图所示放置,将△ABC与△EDC的顶点C重合,其中∠ACB=∠DCE=90∘,∠CAB=∠CED=30∘.(1)如图1,当点E在AC上,点D在BC上时,CE:AE=2:3,求S△DCE:S四边形AEDB;(2)如图2,将△EDC绕着点C旋转一定角度时,求BD∶AE;(3)如图2,当点A,E,D在同一条直线上时,连接BD,若CD=1,BC=3,求BD.17. 如图,点D在△ABC的AB边上.(尺规作图,保留作图痕迹,不要求写作法)(1)作∠BDC的角平分线DE,交BC于点E;(2)作线段AC的垂直平分线,交AC于点F.18. 如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向下平移6个单位得到的△A1B1C1,并写出A1;(2)请画出△ABC关于原点对称的△A2B2C2,并写出点B2的坐标;(3)分别连接B2C和C2B,判断四边形CBC2B2是什么特殊的四边形(不用说明理由);19. 如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90∘,AB=13米,BC=12米,求这块空地的面积.20. 如图,已知一次函数y=43x+m的图象与x轴交于点A(−6,0),与y轴交于点B.(1)求m的值和点B的坐标;(2)在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,请说明理由.21. 如图,点O为等边三角形ABC内一点,连接OA,OB,OC,以OB为一边作∠OBM=60∘,且BO=BM,连接CM,OM.(1)若AB=2,则△ABC的面积=________.(2)判断AO与CM的大小关系并证明;(3)若OA=2√7,OC=6,OB=8,探究线段OC,OM,CM满足的数量关系并证明.22. 解不等式:5x−13−2x+12>1 .23. 如图,在等边△ABC内有一点D,将△ABD绕点A逆时针旋转,使AB与AC重合,点D旋转至点E,连接DE.(1)求证:△ADE是等边三角形;(2)若AD=√3,BD=1,CD=2,求∠ADB的度数;(3)在(2)的条件下,求等边△ABC的边长.参考答案与试题解析2022-2023学年初中八年级下数学月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】A【考点】平移的性质【解析】根据平移的性质证明BE=CF即可解决问题.【解答】解:由平移的性质可知,BC=EF,∴BE=CF=3,∵BF=8,∴EC=BF−BE−CF=8−3−3=2.故选A.2.【答案】C【考点】勾股定理的逆定理【解析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.【解答】解:A,32+42=52,能构成直角三角形,故不符合题意;B,82+152=172,能构成直角三角形,故不符合题意;C,72+92≠112,不能构成直角三角形,故符合题意;D,92+122=152,能构成直角三角形,故不符合题意.故选C.3.【答案】D【考点】在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:∵点P(3−x,x+1)位于平面直角坐标系中的第四象限,∴{3−x>0,x+1<0,解得x<−1.故选D.4.【答案】D【考点】不等式的性质【解析】根据不等式的基本性质进行解答.【解答】解:A、在不等式a>b的两边同时加上1,不等式仍成立,即a+1>b+1.故本选项变形正确;B、在不等式a>b的两边同时除以2,不等式仍成立,即a2>b2.故本选项变形正确;C、在不等式a>b的两边同时乘以3再减去4,不等式仍成立,即3a−4>3b−4.故本选项变形正确;D、在不等式a>b的两边同时乘以−3再加上4,不等号方向改变,即4−3a<4−3b.故本选项变形错误.故选D.5.【答案】B【考点】关于原点对称的点的坐标【解析】根据关于原点对称的点的横坐标互为相反数,纵坐标也互为相反数解答.【解答】解:点P(−5,1)关于原点对称的点的坐标是(5,−1).故选:B.6.【答案】B【考点】等腰三角形的判定【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】解一元一次不等式【解析】此题暂无解析【解答】解:−2x<4x>−2.故选A.8.【答案】C【考点】一元一次不等式的运用【解析】根据程序运算进行了4次才停止,即可得出关于x的一元一次不等式,解之即可得出x的取值范围.【解答】解:依题意,①2x−3≤30,得:x≤332;②2(2x−3)−3≤30,则4x−9≤30,得:x≤394,③2(4x−9)−3≤30,则8x−21≤30,得:x≤518,④2(8x−21)−3>30,则16x−45>30,得:x>7516,即7516<x≤518.故选C.9.【答案】D【考点】作图—应用与设计作图等腰三角形的判定【解析】此题暂无解析【解答】解:连接OB,OD,OA,∵⊙O是等边△ABC的内切圆,∴∠OBD=30∘,∠BDO=90∘,∴OB=2OD=4,由勾股定理得:BD=√OB2−OD2=2√3,同理CD=2√3,∴BC=BD+CD=4√3,∵△ABC是等边三角形,A,O,D三点共线,∴AD=6,∴S△ABC=12BC⋅AD=12√3.故选D.10.【答案】B【考点】翻折变换(折叠问题)轴对称的性质勾股定理矩形的性质全等三角形的性质与判定【解析】由于AF =CF ,在Rt △ABF 中由勾股定理求得AF 的值,证得△ABF ≅△AGE ,有AE =AF ,即ED =AD −AE ,再由直角三角形的面积公式,求得Rt △AGE 中边AE 上的高,即可计算阴影部分的面积.【解答】解:由题意知,AF =FC ,AB =CD =AG =4,BC =AD =8在Rt △ABF 中,由勾股定理知AB 2+BF 2=AF 2,即42+(8−AF)2=AF 2,解得AF =5,∵∠BAF +∠FAE =∠FAE +∠EAG =90∘,∴∠BAF =∠EAG ,∵∠B =∠AGE =90∘,AB =AG ,∴△BAF ≅△GAE(AAS),∴AE =AF =5,ED =GE =3,过G 作GH ⊥AD ,垂足为H ,∵S △GAE =12AG ⋅GE =12AE ⋅GH ,∴4×3=5×GH ,∴GH =125,∴S △GED =12ED ⋅GH =12×3×125=185.故选B .二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】①②③【考点】勾股定理的逆定理【解析】欲判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【解答】解:62+82=102,能构成直角三角形;52+122=132,能构成直角三角形;82+152=172,能构成直角三角形;52+42≠62,不能构成直角三角形.故答案为:①②③.12.【答案】四边形的四个内角都是锐角【考点】反证法【解析】“四边形的四个内角不能都是锐角”的反面为四边形的四个内角都是锐角,据此直接写出逆命题即可.【解答】解:∵“四边形的四个内角不能都是锐角”的反面为四边形的四个内角都是锐角,∴应假设:四边形的四个内角都是锐角.故答案为:四边形的四个内角都是锐角.13.【答案】−6≤a<−5【考点】一元一次不等式组的整数解【解析】解不等式得出其解集为a <x <1,根据不等式组的整数解有6个得出其整数解得情况,从而得出字母a 的取值范围.【解答】解不等式x −a >0,得:x >a ,解不等式3−3x >0,得:x <1,则不等式组的解集为a <x <1,∵不等式组的整数解有6个,∴不等式组的整数解为0、−1、−2、−3、−4、−5,则−6≤a <−5,14.【答案】30∘【考点】相似三角形的性质三角形内角和定理【解析】先根据三角形内角和定理求出∠B 的度数,再根据相似三角形的性质即可得出结论.【解答】解:∵△ABC ∼△A ′B ′C ′,∴∠A =∠A ′,∵∠A =50∘,∴∠A ′=50∘,∴在△A ′B ′C ′中,∠B ′=180∘−∠A ′−∠C′=180∘−50∘−100∘=30∘.故答案为:30∘.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15.【答案】解:(1)去分母得:2(2x +1)−3(5x −1)≥−6,去括号得:4x +2−15x +3≥−6,移项合并得:−11x ≥11,解得:x ≤1.表示在数轴上,如图所示:(2)去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并解得:x<4.表示在数轴上,如图所示:【考点】解一元一次不等式在数轴上表示不等式的解集【解析】(1)不等式移项合并,将x系数化为1,即可求出解集;(2)不等式去分母后,去括号,移项合并,将x系数化为1,即可求出解集.【解答】解:(1)去分母得:2(2x+1)−3(5x−1)≥−6,去括号得:4x+2−15x+3≥−6,移项合并得:−11x≥11,解得:x≤1.表示在数轴上,如图所示:(2)去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并解得:x<4.表示在数轴上,如图所示:16.【答案】解:(1)当点E在AC上,点D在BC上时,∵∠CAB=∠CED=30∘,∴DE//AB,∴△ABC∽△EDC,∴S△DCE:S△ABC=(CE)2:(CA)2=4:25,∴S△DCE:S四边形AEDB=4:21.(2)∵∠ACB=∠DCE=90∘,∴∠DCB=∠ACE.∵∠CAB =∠CED =30∘,∴DC:CE =1:√3, BC:CA =1:√3,∴DC:CE =BC:CA ,∴△DBC ∽△EAC ,∴BD:AE =1:√3.(3)由(2)可知,∵△DBC ∽△EAC ,∴∠AEC =∠BDC.∵点A ,E ,D 在同条一直线上,∠CED =30∘,∴∠AEC =∠BDC =150∘,∴∠ADB =150∘−60∘=90∘,设BD =x ,可知AE =√3x ,∴在Rt △ABD 中,x 2+(2+√3x)2=62,解得x 1=−√3+√352,x 2=−√3−√352 (舍).∴BD =−√3+√352.【考点】相似三角形的性质与判定旋转的性质相似三角形的性质含30度角的直角三角形勾股定理【解析】此题暂无解析【解答】解:(1)当点E 在AC 上,点D 在BC 上时,∵∠CAB =∠CED =30∘,∴DE//AB ,∴△ABC ∽△EDC ,∴S △DCE :S △ABC =(CE)2:(CA)2=4:25 ,∴S △DCE :S 四边形AEDB =4:21.(2)∵∠ACB =∠DCE =90∘,∴∠DCB =∠ACE.∵∠CAB =∠CED =30∘,∴DC:CE =1:√3, BC:CA =1:√3,∴DC:CE =BC:CA ,∴△DBC ∽△EAC ,∴BD:AE =1:√3.(3)由(2)可知,∵△DBC ∽△EAC ,∴∠AEC =∠BDC.∵点A ,E ,D 在同条一直线上,∠CED =30∘,∴∠AEC =∠BDC =150∘,∴∠ADB =150∘−60∘=90∘,设BD =x ,可知AE =√3x ,∴在Rt △ABD 中,x 2+(2+√3x)2=62,解得x 1=−√3+√352,x 2=−√3−√352 (舍).∴BD =−√3+√352.17.【答案】解:(1)如图,DE 即为所求.(2)如图,直线FG 即为所求.【考点】作角的平分线作线段的垂直平分线【解析】(1)根据尺规作基本图形的方法:①作∠ABC 的角平分线交AD 于点E 即可;②作线段DC 的垂直平分线交DC 于点F 即可.(2)连接EF ,根据等腰三角形的性质和三角形中位线定理,即可写出线段EF 和AC 的数量关系及位置关系.【解答】解:(1)如图,DE 即为所求.(2)如图,直线FG 即为所求.18.如图,△A1B1C1为所作,点A1的坐标为(1,−5);如图,△A2B2C2为所作,点B2的坐标为(−4,−2);四边形CBC2B2是平行四边形.【考点】作图-平移变换作图-旋转变换【解析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用关于原点对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可;(3)利用B2、C1、C2、B1的坐标可判断B2C1平行且等于C2B1,从而可判断四边形CBC2B2是平行四边形.【解答】如图,△A1B1C1为所作,点A1的坐标为(1,−5);如图,△A2B2C2为所作,点B2的坐标为(−4,−2);四边形CBC2B2是平行四边形.19.解:如图,连结AC .在△ACD 中,∵AD =4米,CD =3米,∠ADC =90∘,∴AC =5米.又∵AC 2+BC 2=52+122=132=AB 2,∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积−△ACD 的面积=12×5×12−12×3×4=24(平方米).【考点】三角形的面积勾股定理的逆定理勾股定理【解析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,那么△ABC 的面积减去△ACD 的面积就是所求的面积.【解答】解:如图,连结AC .在△ACD 中,∵AD =4米,CD =3米,∠ADC =90∘,∴AC =5米.又∵AC 2+BC 2=52+122=132=AB 2,∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积−△ACD 的面积=12×5×12−12×3×4=24(平方米).20.【答案】解:(1)把点A(−6,0)代入y =43x +m ,解得m=8,∴点B的坐标为(0,8).(2)存在,设C点坐标为(a,0).由题意,12⋅|a+6|⋅8=16,解得a=−2或−10,∴点C坐标为(−2,0)或(−10,0).【考点】一次函数图象上点的坐标特点一次函数的应用待定系数法求一次函数解析式三角形的面积【解析】(1)把点A(−6,0)代入y=43x+m,求出m,即可.(2)存在,设点C坐标为(a,0),由题意可得12⋅|a+6|⋅8=16,解方程即可.【解答】解:(1)把点A(−6,0)代入y=43x+m,解得m=8,∴点B的坐标为(0,8).(2)存在,设C点坐标为(a,0).由题意,12⋅|a+6|⋅8=16,解得a=−2或−10,∴点C坐标为(−2,0)或(−10,0).21.【答案】√3(2)AO=CM.证明如下:∵∠OBM=60∘,OB=BM,∴△OBM是等边三角形,∴OM=OB=MB,∵∠ABC=∠OBM=60∘,∴∠ABO=∠CBM.在△AOB和△CMB中,{OB=MB,∠ABO=∠CBM,AB=BC,∴△AOB≅△CMB(SAS),∴AO=CM.(3)OM2=OC2+CM2. 证明如下:∵△OBM是等边三角形,∴OM =OB =8,由(1)可知,CM =OA =2√7,在△OMC 中, OM 2=64,∴OC 2+CM 2=62+(2√7)2=64,∴OM 2=OC 2+CM 2.【考点】勾股定理三角形的面积等边三角形的性质等边三角形的性质与判定全等三角形的性质与判定勾股定理的逆定理【解析】此题暂无解析【解答】解:(1)如图,过点A 作AD ⊥BC 交于点D ,∵△ABC 为等边三角形,且AB =BC =2,∴∠ABC =60∘,BD =1,∴AD =√3,∴S △ABC =12BC ⋅AD =√3.故答案为:√3.(2)AO =CM .证明如下:∵∠OBM =60∘,OB =BM ,∴△OBM 是等边三角形,∴OM =OB =MB ,∵∠ABC =∠OBM =60∘,∴∠ABO =∠CBM .在△AOB 和△CMB 中,{OB =MB ,∠ABO =∠CBM ,AB =BC ,∴△AOB ≅△CMB(SAS),∴AO =CM .(3)OM 2=OC 2+CM 2. 证明如下:∵△OBM 是等边三角形,∴OM =OB =8,由(1)可知,CM =OA =2√7,在△OMC 中, OM 2=64,∴OC 2+CM 2=62+(2√7)2=64,∴OM 2=OC 2+CM 2.22.【答案】解:去分母得2(5x −1)−3(2x +1)>6,去括号得10x −2−6x −3>6,合并同类项移项得4x >11,解得x >114.【考点】解一元一次不等式【解析】此题暂无解析【解答】解:去分母得2(5x −1)−3(2x +1)>6,去括号得10x −2−6x −3>6,合并同类项移项得4x >11,解得x >114.23.【答案】(1)证明:由旋转的性质可得AE =AD ,∵△ABC 是等边三角形,∴∠DAE =∠BAC =60∘,∴△ADE 是等边三角形.(2)解:∵△ADE 是等边三角形,∴DE =AD =√3,∠AED =60∘,由旋转的性质可得CE =BD =1,∴∠AEC=∠AED+∠CED=150∘.∵△AEC是由△ADB旋转得到的,∴∠ADB=∠AEC=150∘.(3)解:如图,过点C作AE的垂线,交AE的延长线于点F,由(2)可知∠AEC=150∘,∴∠CEF=30∘.在Rt△CEF中,CF=12CE=12.根据勾股定理可知EF=√32,∴AF=AE+EF=√3+√32=3√32,在Rt△ACF中,AC=√AF2+CF2 =√274+14=√7,∴等边△ABC的边长为√7.【考点】旋转的性质等边三角形的性质与判定勾股定理含30度角的直角三角形【解析】111【解答】(1)证明:由旋转的性质可得AE=AD,∵△ABC是等边三角形,∴∠DAE=∠BAC=60∘,∴△ADE是等边三角形.(2)解:∵△ADE是等边三角形,∴DE=AD=√3,∠AED=60∘,由旋转的性质可得CE=BD=1,∴∠AEC=∠AED+∠CED=150∘.∵△AEC是由△ADB旋转得到的,∴∠ADB=∠AEC=150∘.(3)解:如图,过点C作AE的垂线,交AE的延长线于点F,由(2)可知∠AEC=150∘,∴∠CEF=30∘.在Rt△CEF中,CF=12CE=12.根据勾股定理可知EF=√32,∴AF=AE+EF=√3+√32=3√32,在Rt△ACF中,AC=√AF2+CF2 =√274+14=√7,∴等边△ABC的边长为√7.。
最新(北师大版)八年级下学期第一次月考数学试卷(含答案)
八年级下学期第一次月考数学试卷范围:第一章~第二章满分:150分考试用时:120分钟题号一二三总分得分一、选择题(本大题共15小题,共45.0分)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12cm,则AB等于()A. 6cmB. 7cmC. 8cmD. 9cm2.在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC()A. 三条角平分线的交点B. 三条中线的交点C. 三条高的交点D. 三边垂直平分线的交点3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为()A. 1B. 2C. 3D. 44.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A. M点B. N点C. P点D. Q点5.由下列条件不能判定△ABC是直角三角形的是()A. ∠A=37°,∠C=53°B. ∠A−∠C=∠BC. ∠A:∠B:∠C=3:4:5D. ∠A:∠B:∠C=2:3:56. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠ACD 交AB 于点E ,则下列结论一定成立的是( )A. BC =ECB. EC =BEC. BC =BED. AE =EC7. 已知a // b ,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为( )A. 35°B. 55°C. 56°D. 65°8. 下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 不等式组{2x +9>6x +1x −k <1的解集为x <2,则k 的取值范围为( )A. k >1B. k <1C. k ≥1D. k ≤110. 不等式组{2x >1−12x +1≥0的整数解x 的值为( )A. 0、1、2B. 1、2C. 2D. 111. 已知关于x 的不等式组{x >2a −3,2x ≥3(x −2)+5仅有三个整数解,则a 的取值范围是 ( )A. 12≤a <1B. 12≤a ≤1C. 12<a ≤1D. a <112. 商店里有如表两种节能灯:功率(kw)单价(元/只) 白炽灯 0.1 2 节能灯0.0432经了解知,这两种灯的使用寿命相同.已知王阿姨家所在地的电价为0.50元/kW·ℎ.如果仅考虑费用支出[用电量(kW·ℎ)=功率(kW)×时间(ℎ)],且节能灯较合算,则这两种灯的使用寿命需超过()A. 1000hB. 900hC. 1100hD. 800h13.某市自来水公司按如下标准收取水费:若每户每月用水不超过5m3,则每立方米收费1.5元;若每户每月用水超过5m3,则超过部分每立方米收费2元,小颖家某月的水费不少于15元,那么她家这个月的用水量(吨数为整数)至少是()A. 10.75m3B. 9m3C. 8m3D. 8.75m314.某人从一鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均元的价格把鱼全部卖给了乙,结果发现赚了钱,原每条b元,后来他又以每条a+b2因是()A. a<bB. a>bC. a=bD. 与a、b大小无关15.已知a,b为常数,ax+b>0的解集为x<1,则bx−a<0的解集是()5A. x>−5B. x<−5C. x>5D. x<5二、填空题(本大题共5小题,共25.0分)16.三角形三边长分别为3,4,5,那么最长边上的中线长等于______.17.如图,某失联客机从A地起飞,飞行1000km到达B地,再折返飞行1000km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为___________.(用含正整数n的代数式表示)19. 我们定义|a b cd|=ad −bc ,例如|2345|=2×5−3×4=10−12=−2,则不等式组1<|1x34|<3的解集是 . 20. 若关于x 的不等式组{x−24<x−13,2x −m ≤2−x 有且只有三个整数解,则m 的取值范围是 .三、解答题(本大题共7小题,共80.0分)21. (8分)解不等式组{3x −2>1,①x +9<3(x +1),②并把解集在数轴上表示出来.22. (8分)我们定义一个关于实数m ,n 的新运算,规定:m※n =4m −3n ,例如:5※2=4×5−3×2=14,若m 满足m※2<0,求m 的取值范围.23. (10分)解不等式:2x −1>3x−12.解:去分母,得2(2x−1)>3x−1.…(1)请完成上述解不等式的余下步骤;(2)解题回顾:本题“去分母”这一步的变形依据是_____________(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变B.不等式两边都乘(或除以)同一个负数,不等号的方向改变24.(12分)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.25. (12分)解不等式组:{3x ≤2x +1,①2x +5≥−1.②请结合题意填空,完成本题的解答. (1)解不等式①,得____________; (2)解不等式②,得____________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.26. (14分)在△ABC 中,AB 、AC 边的垂直平分线分别交BC 边于点M 、N .(1)如图①,若△AMN 是等边三角形,则∠BAC =______°; (2)如图②,若∠BAC =135°,求证:BM 2+CN 2=MN 2.(3)如图③,∠ABC 的平分线BP 和AC 边的垂直平分线相交于点P ,过点P 作PH 垂直BA 的延长线于点H.若AB =4,CB =10,求AH 的长.27.(16分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动、点G点在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.答案1.C2.D3.D4.A5.C6.C7.B8.C9.C 10.B 11.A 12.A 13.B 14.A 15.B 16.2.5 17.100018.(32)2n−2×√3319.13<x <1 20.1≤m <421.解:x >3.解集在数轴上表示略. 22.解:∵m※2=4m −3×2=4m −6,∴由m※2<0可得4m −6<0, 解得:m <32.23.解:(1)去括号,得4x −2>3x −1.移项,得4x −3x >2−1. 合并同类项,得x >1.(2)A24.证明:∵DE 是AB 的垂直平分线,∴EA =EB .∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.25.(1)x≤1(2)x≥−3(3)略(4)−3≤x≤126.(1)120(2)如图①,连接AM、AN∵∠BAC=135°∴∠B+∠C=45°,又∵点M在AB的垂直平分线上∴AM=BM∴∠BAM=∠B,同理AN=CN,∠CAN=∠C∴∠BAM+∠CAN=45°∴∠MAN=90°,∴AM2+AN2=MN2;∴BM2+CN2=MN2;(3)如图②,连接AP、CP,过点P作PE⊥BC于点E ∵BP平分∠ABC,PH⊥BA,PE⊥BC∴PH=PE∵点P在AC的垂直平分线上∴AP=CP在Rt△APH和Rt△CPE中{AP=CPPH=PE∴Rt△APH≌Rt△CPE∴AH=CE,∵BP平分∠ABC,PH⊥BA,PE⊥BC∴∠HBP=∠CBP,∠BHP=∠BEP=90°∵BP=BP∴Rt△BPH≌Rt△BPE∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH ∴AH=(BC−AB)÷2=3.27.解:(1)∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△BCD中,{∠CAO=∠DBO ∠ACD=∠BCD CD=CD,∴△ACD≌△BCD(AAS),∴AC=BC;(2)如图2,过点D作DM⊥AC于M,∵CD平分∠ACB,OD⊥BC,∴DO=DM,在△BOD和△AMD中,{∠DBO=∠DAM∠BOD=∠AMD=90°DO=DM,∴△BOD≌△AMD(AAS),∴OB=AM,在Rt△DOC和Rt△DMC中,{DO=DMDC=DC,∴Rt△DOC≌Rt△DMC(HL),∴OC=MC,∵∠CAO=∠DBO,∠DEA=∠DBO,∴∠DAE=∠DEA,∵DM⊥AC,∴AM=EM,∴OB=EM,∵C(4,0),∴OC=4,∴BC+CE=OB+OC+MC−EM=2OC=8;(3)GH=OG+FH;证明:如图3,在GO的延长线上取一点N,使ON=FH,∵CD平分∠ACO,DF⊥AC,OD⊥OC,∴DO=DF,在△DON和△DFH中,{DO=DF∠DON=∠DFH=90°ON=FH,∴△DON≌△DFH(SAS),∴DN=DH,∠ODN=∠FDH,∵∠GDH=∠GDO+∠FDH,∴∠GDH=∠GDO+∠ODN=∠GDN,在△DGN和△DGH中,{DN=DH∠GDN=∠GDH DG=DG,∴△DGN≌△DGH(SAS),∴GH=GN,∵ON=FH,∴GH=GN=OG+ON=OG+FH.11。
八年级下册数学(北师大版)第一次月考试题及答案
八年级数学试卷一参考答案及评分标准北师版一、选择题:(每题3分,共30分)二、填空题:(每小题3分,共24分)11、50°或80° 12、3 13、x <-5 14、4∶3 15、60︒16、-120 17、x ≦1 18、85三、解答题(19——26题,共66分)19(每小题3分,共12分)⑴ 6x ≤ ⑴x ﹤1 ⑴12x >- ⑴ 3x <20. 解:原方程化简为:2(x+m )-3(2x -1)=6m …………2分2x+2m -6x+3=6mx=-434-m …………4分 ∵方程解的负数 ∴-434-m ﹤0 ∴ 34m >…………6分 21.(本题6分)证明:∵∠A=∠D=90°,∴Rt △BAC 和Rt △CDB 中…………1分AC=BD ,BC=BC ,∴Rt △BAC ≌Rt △CDB .…………4分∴∠ACB=∠DBC .∴∠OCB=∠OBC .∴OB=OC …………6分22.(本题6分)证明:∵ AB =AC ,∴ ∠B =∠C .…………1分∵ DE ⊥BC 于点E ,∴∠FEB=∠FEC=90°.∴∠B+∠EDB=∠C+∠EFC=90°.∴∠EFC=∠EDB.…………4分∵∠EDB=∠ADF,∴∠EFC=∠ADF.∴△ADF是等腰三角形.…………6分23.(本题8分)解:∵∠C=90°,∠A=30°,∴∠ABC=60°,…………1分又∵BD是角平分线,∴∠ABD=∠DBC=30°,…………3分在Rt△BCD中,BD=2CD=10,…………4分又∵∠A=∠ABD=30°,∴AD=BD=10,…………6分∴AC=AD+DC=10+5=15(cm)…………8分24.(本题8分)解:(1)120×0.95=114(元).…………2分所以若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;…………3分(2)设购买商品的价格为x元,…………4分由题意得:0.8x+168<0.95x,…………5分解得:x>1120.…………7分所以当购买商品的价格超过1120元时,采用方案一更合算.…………8分25、(本题10分)解:BE=EC,BE⊥EC.…………2分理由如下:∵AC=2AB,点D是AC的中点,∴AB=AD=CD.…………3分∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°.…………5分∵EA=ED,∴△EAB≌△EDC.…………7分∴∠AEB=∠DEC,BE=EC.…………8分∴∠BEC=∠AED=90°.∴BE⊥EC.…………10分26、(本题10分)(1)证明:∵D是AB的中点,∴AD=BD.∵AG∥BC,∴∠GAD=∠FBD.∵∠ADG=∠BDF,…………3分∴△ADG≌△BDF.∴AG=BF.…………4分(2)连接EG,∵△ADG≌△BDF,∴GD=FD.∵DE⊥DF,∴EG=EF.…………6分∵AG∥BC,∠ACB=90°,∴∠EAG=90°.…………7分在Rt△EAG中,∵EG2=AE2+AG2=AE2+BF2∴EF2=AE2+BF2且AE=9,BF=18.…………9分10分说明:以上各题如有其他解(证)法,请酌情给分。
北师大八年级数学下册第二学期月考试卷.docx
初中数学试卷 桑水出品八年级第二学期月考数学试卷一、选择题(每题3分,共30分)1.下列等式从左到右的变形为分解因式的是( )。
A .1)1)(1(2-=-+x x xB .4)2(3463222+-=+-x x x x C .()1111222a ab a b -=- D .22111242x x x ⎛⎫++=+ ⎪⎝⎭2.下列因式分解正确的是( )A .(x+2y )2=x 2+4xy+4y 2B .-x 2+2xy -y 2=(x -y )2C .(x -y )2+4xy=(x+y )2D .(2x+y )2-(x+2y )2=(3x+3y )(x -y )3.把多项式3m (x -y )-2(y -x )2分解因式的结果是( )A .(x -y )(3m -2x -2y )B .(x -y )(3m -2x+2y )C .(x -y )(3m+2x -2y )D .(y -x )(3m+2x -2y )4.若281(9)(3)(3)n x x x x -=++-,则n 等于( )。
A .2B .4C .6D .85.如果多项式x 2-mx -35分解因式为(x -5)(x+7),则m 的值为( )A .-2B .2C .12D .-12 6.代数式234251,,,,,28x x x y x y mπ+++中,是分式的有( ) A .1个 B .2个 C .3个 D .4个7.若把分式xyy x 2+中的x 和y 都扩大3倍,且0≠+y x ,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍8.“五·一”期间,几名同学包租一辆面包车前去旅游,面包车的租价为160元,出发时又增加了两名学生,结果每个学生比原来少出3元车费,若设参加旅游的学生共有x 人,则所列方程为( )A .160x -1602x +=3 B .1602x +-160x =3 C .160x -1602x -=3 D .1602x --160x =3 9.化简223111a a a a ++---+1等于( ) A .-11a + B .1a a + C .11a a -+ D .11a a +- 10.若关于x 的方程33211+=-++ax x x x 有增根1=-x ,则23a -的值为( )。
【新】北师大版八年级下册第一次月考数学试卷含答案 (2)
八年级(下)第一次月考数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>44.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.57.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.68.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥310.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三.解答题:本大题共6小题,满分56分.17.解不等式:.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.3.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5【考点】勾股定理;等腰三角形的性质.【专题】动点型.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD 的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3【考点】一次函数与一元一次不等式.【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣,∵﹣3≤a<0,∴﹣3≤﹣<0,解得:k≥1.故选C.【点评】本题考查了一次函数与一元一次不等式.把点的坐标代入直线方程得到a=﹣是解题的关键.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是3.【考点】勾股定理.【分析】根据勾股定理得出a2+b2的值,再利用完全平方公式求出ab的值.【解答】解:∵a、b是直角三角形的两条直角边,直角三角形的周长为6,斜边长为2.5,∴a+b=3.5,a2+b2=2.52=6.25,(a+b)2=12.25,∴a2+b2+2ab=12.25,∴2ab=6,解得:ab=3.故答案为:3.【点评】此题主要考查了勾股定理以及完全平方公式,正确应用完全平方公式是解题关键.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)【考点】命题与定理;平行线的判定与性质.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为x>.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为:,【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【考点】等边三角形的判定与性质;三角形的重心;三角形中位线定理.【专题】压轴题.【分析】根据等边三角形的性质,可得AD的长,∠ABG=∠HBD=30°,根据等边三角形的判定,可得△MEH的形状,根据直角三角形的判定,可得△FIN的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.=S△EFG﹣S△EMH﹣S△FINS五边形NIGHM=×42﹣×22﹣××1=,故答案为:.【点评】本题考查了等边三角形的判定与性质,利用了等边三角形的判定与性质,直角三角形的判定,利用图形的割补法是求面积的关键.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【考点】勾股定理;等腰直角三角形.【专题】分类讨论.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC 交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.三.解答题:本大题共6小题,满分56分.17.解不等式:.【考点】解一元一次不等式.【分析】利用不等式的基本性质,即可求得原不等式的解集.【解答】解:去分母得:6(5x+1)﹣3(x﹣2)>2(5x﹣1)+4(x﹣3),去括号得:0x+6﹣3x+6>10x﹣2+4x﹣12,移项得:30x﹣3x﹣10x﹣4x>﹣2﹣12﹣6﹣6,合并同类项得:13x>﹣26,系数化为1得:x>﹣13.【点评】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【考点】全等三角形的判定与性质.【分析】连接BE,根据已知条件先证出∠BCE=∠ACD,根据SAS证出△ACD≌△BCE,得出AD=BE,再根据勾股定理求出AB,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt△BAE中,根据AB、AE的值,求出BE,从而得出AD.【解答】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE====9,∴AD=9.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD≌△BCE.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?【考点】一次函数的应用.【分析】(1)根据题意可知进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,由此可得出y与x的关系式;(2)先求出x的取值范围,再由x为整数即可得出结论.【解答】解:(1)根据题意得,进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,y=4000×(0.7x﹣9)+10000×(9﹣0.3x)=﹣200x+54000;(2)根据题意得,0.4x≥9﹣0.3x,解得x≥12,∴x的取值是12≤x≤30的整数.∵k=﹣200<0,∴y随x的增大而减小,∴当x=13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.【点评】本题考查的是一次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题;几何综合题.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM 全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.。
24-25学年八年级数学第三次月考卷(考试版A4)【测试范围:北师大版八上第1~6章】(四川成都专用
2024-2025学年八年级数学上学期第三次月考卷(四川成都专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版八年级上册第1章~第6章。
其中:第1章:25%;第2章:13%;第3章:11%;第4章:21%;第5章:16%;第6章:14%;5.难度系数:0.65。
A 卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).1.实数223.140.50500500027,,2p L )个.A .3B .4C .5D .62.具备下列条件的ABC V 中,不是直角三角形的是( )A .AB CÐÐ=Ð+B .::3:4:5A B C ÐÐÐ=C .三边之比为5:12:13D .三边长分别为8cm ,15cm ,17cm 3.下列运算正确的是( )A 5=±B 6=C .1=D 9=4.如图,显示某滑雪俱乐部甲、乙两组各六名会员的身高情况,则下列说法错误的是( )A .甲组的极差为13cmB .甲组的众数为174cmC .乙组的中位数为176cmD .甲组的方差小于乙组的方差5.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点()2,1--的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )A .1y x =+B .1y x =-C .21y x =+D .21y x =-6.《九章算术》中有一题:“今有共买金,人出四百,盈三千四百;人出三百,亏一百.问人数、金价各几何?”译文:现有几个人共同买黄金,若每人出400钱,多出3400钱;每人出300钱,少100钱.那么人数、金价各是多少?设人数为x 人,金价为y 元,根据题意列出方程组是( )A .4003400300100x y x y -=ìí-=îB .4001003003400x y x y -=ìí-=îC .4003400300100x y x y -=ìí-=-îD .4001003003400x y x y -=ìí+=î7.如图所示,一圆柱高8cm ,底面半径为2cm ,在圆柱下底面的点A 有一只蚂蚁,它想吃到上底面与点A相对的点B 处的食物,沿圆柱侧面爬行的最短路程是(π取3)( )A .6cmB .10cmC .D .8.已知在平面直角坐标系中,一次函数2y x a =+(a 为常数)的图象与y 轴交于点A ,将该一次函数的图象向右平移3个单位长度后,与y 轴交于点B ,若点A 与点B 关于x 轴对称,则关于一次函数2y x a =+的图象,下列说法正确的是( )A .与y 轴交于负半轴B .不经过第三象限C .与坐标轴围成的三角形面积为3D .经过点()39,第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.已知点()11,A m y +, ()2,B m y 都在一次函数32y x =-+的图象上,那么1y 与2y 的大小关系是1y 2y (填“>”,“=”“<”).10.若m ,n 为实数,且|21|0m n +-=,则()2023m n +的值为 .11.为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.12.如图,一架秋千静止时,踏板离地的垂直高度DE =0.5m ,将它往前推送1.5m (水平距离BC =1.5m )时,秋千的踏板离地的垂直高度BF =1m ,秋千的绳索始终拉直,则绳索AD 的长是 m .13.如图,在ABC D 中,45B Ð=°.按以下步骤作图:①分别以点B 和点C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点D 和点E ;②作直线DE 交边AB 于点F .若6BF =,3AF =,则AC 的长为 .三、解答题 (本大题共5小题,其中14题12分,15-16题,每题8分,17-18题,每题10分,共48分.解答应写出文字说明、证明过程或演算步骤.)14.(满分12分)计算或解方程组:(1)计算:())2024012023p --;(2);(3)解方程组:()24221x y x y -=ìí+=-î.15.(满分8分)如图所示,在边长为1的正方形网格中,ABC V 的三个顶点A 、B 、C 都在格点上.(1)作ABC V 关于x 轴的对称图形DEF V (其中A 、B 、C 的对称点分别是D 、E 、F ),并分别写出点D 、E 、F 的坐标;(2)P 为x 轴上一点,请在图中画出使PAB V 的周长最小时的点P ,并直接写出此时点P 的坐标.16.(满分8分)传承爱国情怀,讴歌百年党史,某校开展了“学党史,知党恩,跟党走”的知识竞赛,现从该校七、八年级中各随机抽取20名学生的竞赛成绩(100分制,80分及以上为优秀)进行整理、描述和分析(成绩用x 表示,共分成四组:A .060x £<,B .6080x £<,C .80100x £<,D .100x =).下面给出部分信息:七年级抽取的学生竞赛成绩在C 组的数据是:80,84,85,90,95,98八年级抽取的学生竞赛成绩在C 组的数据是:80,82,84,86,86,90,94,98七、八年级抽取的学生竞赛成绩的统计量:年级平均数众数中位数满分率七年级82100a 25%八年级82b 8835%根据以上信息,解答下列问题:(1)直接写出a ,b 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生对“党史”掌握较好?请说明理由(写出一条理由即可);(3)该校七、八年级共有700人参加此次竞赛活动,估计参加此次活动成绩优秀的学生人数是多少?17.(满分10分)问题背景:在ABC V 中,AB 、BC 、AC 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC V (即ABC V 三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC V 的高,而借用网格就能计算出它的面积.(1)请你直接写出ABC V 的面积为______;思维拓展:(2)我们把上述求ABC V 面积的方法叫做构图法.若ABC V2的正方形网格(每个小正方形的边长为1)画出相应的ABC V ,则它的面积是______;探索创新:(3)若ABC V ,(m >0,n >0,且m ≠n ,则这三角形的面积是_____.(用含m ,n 的式子表示)18.(满分10分)综合与实践:《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)02468箭尺读数y(厘米)618304254【探索发现】(1)①建立平面直角坐标系,如图②,横轴表示供水时间x,纵轴表示箭尺读数y,描出以表格中数据为坐标的各点;②观察上述各点的分布规律,发现这些点大致一条直线上,并根据你所学知识求出函数表达式(自变量取值范围不写);【结论应用】(2)应用上述发现的规律估算:①供水时间达到11小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为96厘米时是几点钟?(箭尺最大读数为100厘米).B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)19.20.若关于x 、y 的方程组31,95xy y a x y a+=+ìí+=-î的解互为相反数,则a 的值是 .21.若一组数据12,,,n x x x L 的平均数为17,方差为3,则另一组数据122x +,222x +,22n x +L 的平均数是 ,方差是22.如图,把平面内一条数轴x 绕点O 逆时针旋转角60°得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(,)a b 为点P 的斜坐标.若点P 的斜坐标为(1,4),点G 的斜坐标为(7,4)-,连接PG ,则线段PG 的长度为 .23.如图,在ABC V 中,10AB AC ==,12BC =,以BC 所在直线为x 轴,过点A 作BC 的垂线为y 轴建立直角坐标系,D E ,分别为线段AO 和线段AC 上一动点,且=AD CE .当BD BE +的值最小时,点E 的坐标为 .二、解答题(本大题共3小题,其中24题8分,25题10分,26题12分,共30分.解答应写出文字说明、证明过程或演算步骤.)24.(满分8分)某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.25.(满分10分)如图,在平面直角坐标系中,直线1l 与x 轴交于点(4,0)A -,与y 轴交于点B ,且与直线29:4l y x =交于点C ,点C 的横坐标为2.(1)求直线1l 的解析式;(2)在x 轴上取点M ,过M 作x 轴的垂线交直线1l 于点D ,交直线2l 于点E .若2DE =,求点M 的坐标;(3)在第二象限内,是否存在点Q ,使得QAB V 为等腰直角三角形?若存在,请直接写出点Q 坐标;若不存在,请说明理由.26.(满分12分)在ABC V 中,90BAC Ð=°,AB AC =,点D 是平面内一点(不与点A ,B ,C 重合),连接BD CD ,,=90BDC а,连接AD .将ADC △沿直线AD 翻折,得到ADG △,连接CG .(1)如图1,点D 在ABC Ð内部,BD 交AC 于点E ,点F 是BD 上一点,且BF CD =,连接AF .①求证:ABF ADG ≌V V ;②若AD =1CD =,求点G 到直线BC 的距离;(2)如图2,点D 在BAC Ð的内部,试探究BD ,AD ,CG 之间的数量关系并说明理由.。
2022-2023学年北师大版八年级下数学月考试卷(含解析)
2022-2023学年初中八年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 下列汽车标志中,可以看作是中心对称图形的是 A. B. C. D.2. 等腰三角形的两边长分别为和,则此三角形的周长是( )A.B.C.D.或3. 已知,都是实数,且,则下列不等式的变形正确的是( )A.B.C.()5cm 10cm 15cm20cm25cm20cm 25cma b a <b 3a <3b−a +1<−b +1a +x >b +xbD.4. 如图,点,分别是的边和边上的点,且,=,是的角平分线,则的度数为A.B.C.D.5. 如图,在三角形中,,将此三角形绕点按顺时针方向旋转后得到三角形 ,若点 恰好落在线段上,,交于点,则的度数是 ( )A.B.C.D.6. 若不等式组的解为,则的取值范围是A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )>a 2b 2D E △ABC AB AC DE //BC ∠AED 64∘EC ∠DEB ∠ECB ()78∘68∘58∘48∘ABC ∠ACB =,∠B =90∘50∘C C A ′B ′B ′AB AC A ′B ′O ∠COA ′80∘70∘60∘50∘{x +2>2x −6,x <m x <8m ( )m ≥8m ≤8m <8m >87. 若,那么________(填“”“”或“”).8. 如图,在等边中,将绕顶点顺时针旋转,旋转角为,得到 .设的中点为,的中点为,,连接.当时,的长度为________;设 在整个旋转过程中,的取值范围是________A D 人\ B 第题图9. 如图,中,,的垂直平分线交于点,交于点,________.11. 不等式组的非负整数解为________.12. 如图,为等腰三角形的外接圆,是的直径,,为上任意一点(不与点,重合),直线交的延长线于点,在点处的切线交于点,则下列结论:①若,则的长为;②若,则AP 平分;③若,则;④无论点在上的位置如何变化,.其中正确结论的序号为________.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )a <b −2a +9−2b +9><=△ABC △ABC C a (<α<)0∘180∘ΔC A 1B 1AC D A 1B 1M AC =2MD a =60∘MD MD =x,x Ar ck NY t B 114△ABC ∠C =90∘AB BC D AB E ∠DAC =,∠B =20∘{x +2<3,−2x <4⊙O ABC AB ⊙O AB=12P BCˆB C CP AB Q ⊙O P PD BQ D ∠PAB =30∘PB ˆπPD //BC ∠CAB PB =BD PD =63–√P BC ˆCQ ⋅CP =108>−3x −2x +413. 解不等式,并把它的解集在数轴上表示出来. 14. 解不等式组:15. 已知:如图在中,是角平分线, ,, ,求的度数.16. 如图,沿方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从上的一点取,米, .那么另一边开挖点离多远正好使,,三点在一直线上(,结果精确到米)?17. 已知一次函数.(1)画出函数图象;(2)说出不等式解集是________;不等式解集是________;(3)求出函数图象与坐标轴的两个交点之间的距离.18. 在网格中建立如图所示的平面直角坐标系,是格点三角形(顶点是网格线的交点).−>−3x −25x +42x −(x −2)≤5,32>3x −1.1+5x 2△ABC BD DE//BC ∠A =60∘∠BDC =80∘∠BDE AC AC B ∠ABD =120∘BD =400∠D =30∘E D A C E ≈1.7323–√1y =−2x −6−2x −6>0−2x −6<010×10△ABC画出绕点逆时针方向旋转得到的;画出向下平移个单位长度得到的.19. 如图,等边三角形的边长为,为边上的一点,延长至,使,连接,交于点.求证若为的中点,求的长.20. 年月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进、两种类型的便携式风扇到地摊一条街出售.已知台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元.求型风扇、型风扇进货的单价各是多少元?小丹准备购进这两种风扇共台,根据市场调查发现,型风扇销售情况比型风扇好,小丹准备多购进型风扇,但数量不超过型风扇数量的倍,购进、两种风扇的总金额不超过元.根据以上信息,小丹共有哪几种进货方案?哪种进货方案费用最低?最低费用为多少? 21. 如图是实验室中的一种摆动装置,(虚线三角形)是底边为的等腰直角三角形,摆动臂可绕点旋转,摆动臂可绕点旋转,,.(1)△ABC O 90∘△A 1B 1C 1(2)△A 1B 1C 14△A 2B 2C 2ABC 2D AC AB E BE =CD DE BC P (1)DP =PE(2)D AC BP 20205A B 2A 5B 1003A 2B 62(1)A B (2)100A B A B 3A B 1170△ABC BC AD A DM D AD =30DM =10(1)A AM在旋转过程中,当,,三点在同一直线上时,的长为________;在旋转过程中,当,,三点为同一直角三角形的顶点时,求的长.22. 阅读理解题在平面直角坐标系中,点到直线的距离公式为:,例如,求点到直线的距离.解:由直线知:,,所以到直线的距离为:根据以上材料,解决下列问题:(1)求点到直线的距离.(2)若点到直线的距离为,求实数的值.23. 如图,一次函数与二次函数的图象交于,两点.利用图中条件,求两个函数的解析式;根据图象写出使的的取值范围为________.(1)A D M AM (2)A D M AM xOy P(,)x 0y 0Ax +By +C =0(+≠0)A 2B 2d =|A +B +C |x 0y 0+A 2B2−−−−−−−√P(1,3)4x +3y −3=04x +3y −3=0A =4B =3C =−3P(1,3)4x +3y −3=0d ==2|4×1+3×3−3|+4232−−−−−−√(0,0)P 13x −4y −5=0(1,0)P 2x +y +C =02–√C =kx +b y 1=a y 2x 2A(−1,n)B(2,4)(1)(2)<y 1y 2x参考答案与试题解析2022-2023学年初中八年级下数学月考试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】A【考点】中心对称图形【解析】根据中心对称图形的性质得出图形旋转,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.【解答】解:,旋转,与原图形能够完全重合是中心对称图形,故符合题意;,旋转,不能与原图形能够完全重合不是中心对称图形,故不符合题意;,旋转,不能与原图形能够完全重合不是中心对称图形,故不符合题意;,旋转,不能与原图形能够完全重合不是中心对称图形,故不符合题意;故选.2.【答案】C【考点】等腰三角形的性质【解析】分是腰长和底边两种情况讨论求解即可.【解答】解:是腰长时,三角形的三边分别为,,,∵,∴不能组成三角形;是腰长时,三角形的三边分别为,,,,能组成三角形,周长,综上所述,此三角形的周长是.180∘A 180∘B 180∘C 180∘D 180∘A 5cm 5cm 5cm 5cm 10cm 5+5=1010cm 5cm 10cm 10cm ∵5+10>10=5+10+10=25(cm)25cm C故选.3.【答案】A【考点】不等式的性质【解析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】、不等式的两边都乘以,不等号的方向不变,故正确;、不等式的两边都乘以,不等号的方向改变,故错误;、不等式的两边都加同一个整式,不等号的方向不变,故错误;、不等式的两边都除以,不等号的方向改变,故错误;4.【答案】C【考点】角平分线的性质平行线的性质【解析】首先根据角平分线的定义求出的度数,然后根据平行线的性质得到的度数.【解答】解:∵=,∴==,∵是的角平分线,∴==,∵,∴=,∴=.故选.5.【答案】C A 3A B −1B C CD 2D ∠DEC ∠ECB ∠AED 64∘∠DEB −180∘64∘116∘EC ∠DEB ∠DEC ∠CEB =∠DEB =×1212116∘58∘DE //BC ∠DEC ∠ECB ∠ECB 58∘CC【考点】旋转的性质【解析】【解答】解:∵在三角形中,=,=,∴==.由旋转的性质可知:=,∴==.又∵==,∴=,∴====.故选.6.【答案】A【考点】解一元一次不等式组【解析】分别解出不等式组中每一个不等式的解集,再根据同小取小及不等式组的解集为 ,从而得出的取值范围.【解答】解:由①得:,由②得:.∵不等式组的解集为,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】ABC ∠ACB 90∘∠B 50∘∠A −∠ACB −∠B 180∘40∘BC B'C ∠B ∠BB'C 50∘∠BB'C ∠A +∠ACB'+∠ACB'40∘∠ACB'10∘∠COA'∠AOB'∠OB'C +∠ACB'∠B +∠ACB'60∘C x <8m {x +2>2x −6,①x <m,②x <8x <m x <8m ≥8A >【考点】不等式的性质【解析】不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.【解答】解:∵,∴,∴.故答案为:.8.【答案】;【考点】旋转的性质作图-旋转变换勾股定理坐标与图形变化-旋转三角形中位线定理【解析】。
24-25八年级数学第一次月考卷(考试版A4)【测试范围:北师大版八上第一、二章】(四川成都专用)
2024-2025学年八年级数学上学期第一次月考卷(四川成都专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版八年级上册第一章、第二章。
5.难度系数:0.65。
A 卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).1.下列式子中,属于最简二次根式的是( )A B C D 2.满足下列条件的ABC V ,其中是直角三角形的为( )A .::3:4:5ABC ÐÐÐ= B .::3:4:5AB BC AC = C .1,4,5AB BC AC === D .30,75A B Ð=°Ð=°3+ )A .8±B .8C .8-D .无法确定4.勾股定理是用代数思想解决几何问题最重要的工具,也是数形结合的纽带之一.如图,当秋千静止时,踏板B 离地的垂直高度0.8m BE =,将它往前推3m 至C 处时(即水平距离3m CD =),踏板离地的垂直高度 2.6m CF =,它的绳索始终拉直,则绳索AC 的长是( )A .3.4mB .3.6mC .3.8mD .4.2m5.已知有理数a ,b 满足52b a =,则a b +=( )A .2B .32C .23D .1166.临汾是帝尧之都,有着尧都之称.尧都华表柱身祥云腾龙,顶蹲冲天吼,底座浮雕长城和黄河壶口瀑布,是中华民族历史悠久、文化灿烂的标志.如图,在底面周长约为6米且带有层层回环不断的云朵石柱上,有一条雕龙从柱底沿立柱表面均匀地盘绕2圈到达柱顶正上方(从点A 到点C ,B 为AC 的中点),每根华表刻有雕龙的部分的柱身高约16米,则雕刻在石柱上的巨龙至少为( )A .20米B .25米C .30米D .15米7.如图,在四边形ABCD 中,对角线分别为AC 、BD ,且AC BD ^交于点O ,若2AD =,4BC =,则22AB CD +的值为( )A .20B .18C .16D .18.如图,是4个全等的直角三角形镶嵌而成的正方形图案,已知大正方形的面积是81,小正方形的面积是25,若用x y ,表示直角三角形的两条直角边(x y >),请观察图案,下列式子不正确的是( )A .5x y -=B .2281x y +=C .12x y +=D .28xy =第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9210是同类二次根式,则a = .11.如图,小张在投篮训练时把球打到篮板的点D 处后恰好进球,已知小张与篮板底的距离BC =米,头顶与地面的距离 1.65AB =米,头顶与篮板点D 处的距离3AD =米,则点D 到地面的距离CD 为 米.12.如图,正方形纸片ABCD 的四个顶点分别在四条平行线1l 、2l 、3l 、4l 上,这四条直线中相邻两条之间的距离依次为1h 、2h 、31(0h h >,20h >,30)h >,若15h =,22h =,则正方形ABCD 的面积S 等于 .13.如图,90C Ð=°,AB CD ∥,5AB =,11CD =,8AC =,点E 是BD 的中点,则AE 的长为 .三、解答题(本大题共5小题,其中14题12分,15-16题,每题8分,17-18题,每题10分,共48分.解答应写出文字说明、证明过程或演算步骤.)14.(满分12分)化简:(1)(332;15.(满分8分)2023年7月五号台风“杜苏芮”登陆,使我国很多地区受到严重影响,据报道,这是今年以来对我国影响最大的台风,风力影响半径250km(即以台风中心为圆心,250km为半径的圆形区域都会受台风影响),如图,线段BC是台风中心从C市向西北方向移动到B市的大致路线,A是某个大型^.若A,C之间相距300km,A,B之间相距400km.农场,且AB AC(1)判断农场A是否会受到台风的影响,请说明理由.(2)若台风中心的移动速度为25km/h,则台风影响该农场持续时间有多长?16.(满分8分)我们用[]a 表示不大于a 的最大整数,[]a a -的值称为数a 的小数部分,如[]2.132=,2.13的小数部分为[]2.13 2.130.13-=.(1)=______________,=______________,p 的小数部分=______________;(2)的小数部分为a ,求a +(3)已知10x y =+,其中x 是整数,且01y <<,求x y -的相反数.17.(满分10分)如图,一架长25m 的云梯AB 斜靠在一面墙上,这时云梯底端距墙脚的距离15m BC =,90ABC Ð=°.(1)求这架云梯的顶端距地面的高度AC ;(2)当云梯的顶端A 沿墙面下滑m x 到达A ¢位置时,用含x 的代数式表示云梯的底端水平滑动的距离BB ¢;(3)若云梯底端离墙的距离不能小于云梯长度的15,求云梯的顶端所能达到的最大高度.18.(满分10分)数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.【思想应用】(1)已知a ,b 均为正实数,且2a b +=+图形解决此问题:如图,2AB =,1AC =,2BD =,CA AB ^,DB AB ^,点E 是线段AB 上的动点,且不与端点重合,连接CE ,DE ,设AE a =,BE b =.①用含a 的代数式表示CE =________,用含b 的代数式表示DE =________.________.【类比应用】(2B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)190.7160=, 1.542== .20.如图,在四边形ABDC 中,90BAC BDC Ð=Ð=°,2AB AC BD ==,,4DC =,则AD 的长为 .21.设x 、y 、z 是两两不等的实数,且满足下列等式:=3333x y z xyz ++-的值为 .22.如图,在ABC V 中,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AB D ¢V ,B D ¢与AC交于点M ,且M 为DB ¢的中点,连接BB ¢交AD 于点N ,若AB =47AB M AN S ¢==,V ,则点B 到DB ¢的距离为 .23.如图,在Rt ABC △中,90BAC Ð=°,6AC =,10BC =,D E 、分别是AB BC 、上的动点,且CE BD =,连接AE CD 、,则AE CD +的最小值为 .二、解答题 (本大题共3小题,其中24题8分,25题10分,26题12分,共30分.解答应写出文字说明、证明过程或演算步骤.)24.(满分8分)【探究发现】我国三国时期的数学家赵爽利用四个全等的直角三角形拼成如图1所示图形,其中四边形ABED 和四边形CFGH 都是正方形,巧妙地用面积法得出了直角三角形三边长a ,b ,c 之间的一个重要结论:222a b c +=.(1)请你将数学家赵爽的说理过程补充完整:已知:Rt ABC △中,90ACB Ð=°,BC a =,AC b =,AB c =.求证:222a b c +=.证明:由图可知4ABC ABED CFGH S S S =+△正方形正方形,2ABED S c =Q 正方形,ABC S =V ______,正方形CFGH 边长为______,222214()222c ab a b ab ab b \=´+-=-+,即222a b c +=.【深入思考】如图2,在ABC V 中,90C Ð=°,BC a =,AC b =,AB c =,以AB 为直角边在AB 的右侧作等腰直角ABD △,其中AB BD =,90ABD Ð=°,过点D 作DE CB ^,垂足为点E.(2)求证:DE a =,BE b =;(3)请你用两种不同的方法表示梯形ACED 的面积,并证明:222a b c +=;【实际应用】(4)将图1中的四个直角三角形中较短的直角边分别向外延长相同的长度,得到图3所示的“数学风车”,若12a =,9b =,“数学风车”外围轮廓(图中实线部分)的总长度为108,求这个风车图案的面积.25.(满分10分)阅读下面材料:我们在学习二次根式时,熟悉的是分母有理化以及应用,其实,还有一个方法叫做“分子有理化”,与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中==,分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.和=,=.再例如:求y=的最大值.做法如下:解:由x+2≥0,x﹣2≥0可知x≥2,而y==x=2时,分母+有最小值2,所以y的最大值是2.解决下述问题:(1)由材料可知,__________=(2)比较4和(3)式子y__________.26.(满分12分)在ABC V 中,2AC AB =,点D 为直线BC 上一点,AD AE =,BAC DAE Ð=Ð,连接ED交AC 于F .(1)如图1,90BAC Ð=°,F 为AC 中点,若AE =1DF =,求BD 的长;(2)如图2,延长CB 至点G 使得BG DB =,过点G 作GH DA ^延长线于点H ,若ED BC ^,CD AH =,求证:ED GH =;(3)如图3,120BAC Ð=°,AB =E 关于直线BC 的对称点E ¢,连接BE ¢,AE ¢,CE ¢,当BE ¢最小时,直接写出ACE ¢V 的面积.。
2022-2023学年北师大版八年级下数学月考试卷(含解析)
2022-2023学年初中八年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 如果,那么下列不等式中一定成立的是 A.B.C.D.2. 下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3. 下列各式中,从左到右的变形是因式分解的是( )a >b ()1−a >1−b1212a >b c 2c 2>a 2b 2a(+1)>b(+1)c 2c 22−2a +122a(a −1)+1A.=B.=C.=D.= 4.如图,在▱中,已知,,平分交于点,则的值为A.B.C.D.5. 若从边形的一个顶点出发,最多可以作条对角线,则该边形的内角和是( )A.B.C.D.6. 如图,在中,=,点是上的点,且=,垂直平分,垂足是.如果=,则等于( )A.B.C.D.7. 如图,平行四边形中, ,,对角线,相交于点,过点的直线分别交,于点,,且,则四边形的周长是( )2−2a +1a 22a(a −1)+1(x +y)(x −y)−x 2y 2−6x +5x 2(x −5)(x −1)+x 2y 2(x −y +2xy)2ABCD AB =5AD =2DE ∠ADC AB E BE ( )32.53.52n 3n 540∘720∘900∘1080∘△ABC ∠C 90∘E AC ∠1∠2DE AB D EC 4cm AE 10cm8cm6cm5cmABCD AB =8BC =10AC BD O O AD BC E F OE =3EFCDA.B.C.D.8. 关于的分式方程的解是正数,则的取值范围是( )A.且B.C.且且D.且9. 如图,在中, ,,过点作,垂足为,点为的中点,与交于点,若的长为,则的长为()A.B.C.D.10. 如图,正方形中,点为对角线的交点,点为正方形外一点,且满足,连接,若 ,则四边形的面积为( )20242832x −1=x x −1a (x −1)(x −2)a a >2a ≠−1a <2a >−2a ≠−1a ≠0a >−2a ≠0Rt △ABC ∠ACB =90∘AC =BC C CD ⊥AB D E BC AE CD F DF 2–√3AE 2–√22–√5–√25–√ABCD O P ∠BPC =90∘PO PO =4OBPCA.B.C.D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 若分式的值为零,则的值为________.12. 如图,平行四边形的周长为,,平分交的延长线于,则________.13. 如果不等式组的解集为,那么的取值范围是为________.14. 如图,在平行四边形中,连接,且,过点作于点,过点作于点,且,在的延长线上取一点,满足,则________.681016−4x 22−5x +2x 2x ABCD 10AB =2BE ∠ABC CD E DE ={x <5,x ≤mx <5m ABCD BD BD =CD A AM ⊥BD M D DN ⊥AB N DN =6DB P ∠ABD =∠MAP +∠PAB AP =▱ABCD AC O O AD BC15. 如图, 的对角线、相交于点,经过点,分别交、于点、,已知的面积是 ,则图中阴影部分的面积是________.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )16. 分解因式与解方程:分解因式:;解分式方程:.17. 先化简,再求值:,其中满足.18. 如图,点是正方形外一点,点下是线段上一点,是等腰直角三角形,其中,连接、.求证:;若,,求.19. 如图,在平面直角坐标系中,一次函数的图象与轴交于点 ,与轴交于点,且与正比例函数的图象交点为.求正比例函数与一次函数的关系式;若点在第二象限, 是以为直角边的等腰直角三角形,请求出点的坐标;在轴上是否存在一点使周长最小,若存在,求出点的坐标;在轴上求一点使为等腰三角形,请直接写出所有符合条件的点的坐标.20. 如图,在平面直角坐标系中,已知,,点在第一象限,=,=.▱ABCD AC BD O EF O AD BC E F ▱ABCD 100cm 2(1)a −2axy +a x 2y 2(2)+1=4x 3x +3x x +1(1−)÷−3x +2x −1+2x x 2x x +1x −x −1=0x 2E ABCD AE △EBF ∠EBF =90∘CE CF (1)△ABF ≅△CBE (2)AF =2BF =3tan ∠CFE xOy y =x +b k 1x A (−3,0)y B y =kx C(3,4)(1)(2)D △DAB AB D (3)x E △BCE E (4)x P △POC P A(0,2)B(1,0)C AB AC ∠BAC 90∘(1)求点到轴的距离;(2)点的坐标为________. 21. 某商场计划购进、两种品牌的卡通笔袋,品牌笔袋的进价是品牌笔袋的进价的倍,用元购进品牌笔袋的件数比用元购进品牌笔袋的件数少件.求每件品牌笔袋、品牌笔袋的进价分别是多少元?商场计划用元来购进、两种品牌笔袋,其中、两种品牌笔袋的总数量至少为件,设品牌笔袋购进件,那么品牌笔袋最多购进多少件?在的条件下,若品牌笔袋每件的售价是元,品牌笔袋每件的售价元,若、两种品牌笔袋全部售完,请求出总利润与的表达式?并求该超市利润最低是多少元? 22.如图,在正方形中,点,都在对角线上, . 求证:(1);(2)四边形是菱形.C y C A B A B 21004100B 10(1)A B (2)500A B A B 60A a A (3)(1)(2)A 15B 8A B W a ABCDEF AC ∠ABE =∠CBF BE =BF BEDF参考答案与试题解析2022-2023学年初中八年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】不等式的性质【解析】不等式的基本性质是解不等式的主要依据,分析中注意不等式的基本性质是有条件的,要确定符合其中的条件,再运用相关性质得出结论.【解答】解:,不等式的两边都乘以,不等号的方向改变,可得,不等式的两边都加上,不等号的方向不变,可得,故错误;,当时,,故错误;,时,,故错误;,不等式的两边都乘以,因为,不等号的方向不变,故正确.故选.2.【答案】B【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】解:,是轴对称图形,不是中心对称图形;,既是轴对称图形,也是中心对称图形;A −12−a <−b 121211−a <1−b 1212A B c=0ac 2=bc 2B C a <0<a 2b 2C D (+1)c 2+1>0c 2D D A B C,既不是轴对称图形,也不是中心对称图形;,既不是轴对称图形,也不是中心对称图形.故选.3.【答案】C【考点】因式分解的概念因式分解【解析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【解答】、=,等号的右边不是整式的积的形式,故此选项不符合题意;、=,这是整式的乘法,故此选项不符合题意;、=,是因式分解,故此选项符合题意;、=,等号的右边不是整式的积的形式,故此选项不符合题意;4.【答案】A【考点】平行四边形的性质等腰三角形的性质角平分线的定义【解析】根据平行四边形性质得出==,==,,求出=,推出==,代入=求出即可.【解答】解:∵四边形是平行四边形,,,∴,,,∴.∵平分,∴,∴,∴,∴.C D B A 2−2a +1a 22a(a −1)+1B (x +y)(x −y)−x 2y 2C x2−6x +5(x −5)(x −1)D +x 2y 2(x −y +2xy )2AD BC 2AB CD 5AB //CD ∠EDC ∠DEC AE DA 2BE BA −AE ABCD AD =2AB =5AD=BC =2AB=CD =5AB //CD ∠AED=∠CDE DE ∠ADC ∠ADE=∠EDC ∠ADE=∠AED AE =DA =2BE =BA −AE =3A故选.5.【答案】B【考点】多边形的内角和多边形的对角线【解析】本题考查了多边形内角和与对角线.【解答】解:∵从边形的一个顶点出发,最多可以作条对角线,∴,∴该边形的内角和为:.故选.6.【答案】B【考点】线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】B【考点】平行四边形的性质全等三角形的性质与判定【解析】A n 3n =6n (6−2)×180°=720°B CD =AB =8AD =BC =10根据平行四边形的对边相等得: ,,再根据平行四边形的性质和对顶角相等可以证明: ,根据全等三角形的性质,得:,,故四边形的周长为.【解答】解:四边形是平行四边形,,,,,,.在和中,,,,故四边形的周长为.故选.8.【答案】C【考点】分式方程的解【解析】【解答】解:,,,.要使方程有解,则且,即且 ;要使方程解为正数,则,即.综上,且且 .故选.9.【答案】C【考点】CD =AB =8AD =BC =10△AOE ≅△COF OF =OE =3CF =AE EFCD CD +EF +AD =24∵ABCD ∴CD =AB =8AD =BC =10OA =OC AD//BC ∴∠EAO =∠FCO ∠AEO =∠CFO △AOE △COF ∠EAO =∠FCO ,∠AEO =∠CFO ,OA =OC ,∴△AOE ≅△COF (AAS)∴OF =OE =3CF =AE EFCD CD +EF +AD =8+6+10=24B −1=xx −1a(x −1)(x −2)=1x −1a (x −1)(x −2)=x −2(x −1)(x −2)a(x −1)(x −2)x =a +2x ≠1x ≠2a ≠−1a ≠0a +2>0a >−2a >−2a ≠−1a ≠0C直角三角形斜边上的中线三角形中位线定理勾股定理等腰三角形的性质:三线合一相似三角形的性质与判定【解析】此题暂无解析【解答】解:连接,如图所示,在中,,,∴为等腰直角三角形.∵,∴,∴为等腰直角三角形.∵为的中点,∴是的中位线,,∴,,∴,∴.∵,∴,∴,∴,∴,在中,.故选.10.【答案】DE Rt △ABC ∠ACB =90∘AC =BC △ABC CD ⊥AB AD =BD =CD =AB 12△BCD E BC DE △ABC BE =CE =DEDE//AC DE =AC 12△DEF ∽△CAF ==DF CF DE AC 12DF =2–√3CF =22–√3CD =BD =2–√BE =CE =DE =1AC =2Rt △ABC AE ===C +A E 2C 2−−−−−−−−−−√+1222−−−−−−√5–√C正方形的性质全等三角形的性质与判定旋转的性质等腰三角形的判定与性质三角形的面积【解析】此题暂无解析【解答】解:将顺时针旋转形成,四边形为正方形,,,,,,,,点、点与点在一条直线上,由旋转而来,,,为等腰直角三角形,,,故四边形的面积为.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )△OCP 90∘△OBQ ∵ABCD ∴CO =OB ∠COB =90∘∵∠BPC =90∘∴∠OCP +∠OBP =180∘∵△OBQ ≅△OCP ∴∠OCP =∠OBQ ∴∠OBQ +∠OBP =180∘∴Q B P ∵△OBQ △OCP 90∘∴OQ =OP =4∠QOP =90∘∴△QOP ∴=×OP ×OQ =8S △QOP 12∴S 四边形OBPC=+S △OCP S △OBP=+S △OBQ S △OBP=S △QOP=8OBPC 8B【考点】分式值为零的条件【解析】分式的值为零时,分子等于零,分母不等于零.【解答】解:依题意,得,且,所以,且,解得,,所以.故答案为:.12.【答案】【考点】平行四边形的性质角平分线的定义等腰三角形的性质【解析】根据平行四边形性质,角平分线的性质求解.【解答】解:设和的交点为,平行四边形周长为,且,故,平分,,−2−4=0x 22−5x +2≠0x 2(x −2)(x +2)=0(2x −1)(x −2)≠0x +2=0x =−2−21BE AD O ∵ABCD 10AB =2AD =BC =3∵BE ∠ABC ∴∠ABE =∠EBC ∵AB//EC,,又,,,,则.故答案为:.13.【答案】【考点】不等式的解集解一元一次不等式组【解析】根据“同小取较小”的原则进行解答即可.【解答】解:∵不等式组的解集为,∴,故答案为:.14.【答案】【考点】平行四边形的性质勾股定理等腰直角三角形【解析】根据,,可得,再根据,,即可得到,依据,,即可得到是等腰直角三角形,即可得到的值.【解答】解: ,,.∵AB//EC ∴∠ABE =∠BED AD//BC ∴∠AOB =∠OBC ∴∠OBC =∠BEC ∴BC =CE =3DE =CE −CD =3−2=11m ≥5{x <5,x ≤mx <5m ≥5m ≥562–√BD =CD AB =CD BD =BA AM ⊥BD DN ⊥AB DN =AM =6∠ABD =∠MAP +∠PAB ∠ABD =∠P +∠BAP △APM AP ∵BD =CD AB =CD ∴BD =BA ∵AM ⊥BD DN ⊥AB又,,.,,,是等腰直角三角形,,.故答案为:.15.【答案】【考点】全等三角形的性质与判定平行四边形的性质【解析】先证和全等,再根据割补法得出阴影部分面积和平行四边形面积之间的关系,即可解答.【解答】解:在平行四边形中,,∴.在和中,∴,∴,∴.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )16.【答案】解:原式.方程两边同乘以得:,解得:.经检验:是原分式方程的解.∵AM ⊥BD DN ⊥AB ∴DN =AM =6∵∠ABD =∠MAP +∠PAB ∠ABD =∠P +∠BAP ∴∠P =∠PAM ∴△APM ∴AP =PM ∴AP ==6A +P M 2M 2−−−−−−−−−−−√2–√62–√25cm 2△ODE △OBF ABCD AD//BC,OD =OB∠EDO =∠FBO △ODE △OBF ∠ODE =∠OBF ,OD =OB ,∠DOE =∠BOF ,△DOE ≅△BOF =S △DOE S △BOF =+=+S 阴影S △AOE S △BOF S △AOE S △DOE ===25c S △AOD 14S ▱ABCD m 225cm 2(1)=a(−2xy +)x 2y 2=a( x − y)2(2)3(x +1)4x +3(x +1)=3x x =−34x =−34【考点】解分式方程——可化为一元一次方程提公因式法与公式法的综合运用【解析】(1)首先提取公因式,再运用完全平方公式分解即可;(2)根据解分式方程步骤解方程即可,但要注意验根.【解答】解:原式.方程两边同乘以得:,解得:.经检验:是原分式方程的解.17.【答案】解:原式,∵,∴,则原式.【考点】分式的化简求值【解析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.【解答】解:原式,∵,∴,a (1)=a(−2xy +)x 2y 2=a( x − y)2(2)3(x +1)4x +3(x +1)=3x x =−34x =−34=⋅−x +2−3x +2x(x +2)x −1x x +1=⋅−=x −=x −1x +2x(x +2)x −1x x +1x x +1x 2x +1−x −1=0x 2=x +1x 2=1=⋅−x +2−3x +2x(x +2)x −1x x +1=⋅−=x −=x −1x +2x(x +2)x −1x x +1x x +1x 2x +1−x −1=0x 2=x +1x 2则原式.18.【答案】证明:∵四边形是正方形,∴, ,∵是等腰直角三角形,其中,∴,∴,∴,在和中,∴.解:∵是等腰直角三角形,,∴,,∴,,由得,∴,,∴,∴.【考点】全等三角形的性质与判定正方形的性质勾股定理锐角三角函数的定义【解析】()由四边形是正方形可得出,,再由是等腰直角三角形可得出,通过角的计算可得出利用全等三角形的判定定理即可证出;()根据是等腰直角三角形可得出,,勾股定理求出,通过角的计算可得出,再根据全等三角形的性质可得出,,通过角的计算即可得出,从而得出.【解答】证明:∵四边形是正方形,∴, ,∵是等腰直角三角形,其中,∴,∴,∴,=1(1)ABCD AB =CB ∠ABC =90∘△EBF ∠EBF =90∘BE =BF ∠ABC −∠CBF =∠EBF −∠CBF ∠ABF =∠CBE △ABF △CBE AB =CB,∠ABF =∠CBE,BF =BE,△ABF ≅△CBE (SAS)(2)△EBF BF =3∠BFE =∠FEB =45∘BE =BF =3∠AFB =−∠BFE =180∘135∘EF ==3B +B E 2F 2−−−−−−−−−−√2–√(1)△ABF ≅△CBE ∠CEB =∠AFB =135∘AF =CE =2∠CEF =∠CEB −∠FEB =−=135∘45∘90∘tan ∠CFE ===CE EF 232–√2–√31ABCD AB =CB ∠ABC =90∘△EBF BE =BF ∠ABF =∠CBE SAS △ABF ≅△CBE 2△EBF ∠BFE =∠FEB BE =BF =3EF ∠AFB =135∘∠CEB =∠AFB =135∘CE =AF =2∠CEF =90∘tan ∠CFE (1)ABCD AB =CB ∠ABC =90∘△EBF ∠EBF =90∘BE =BF ∠ABC −∠CBF =∠EBF −∠CBF ∠ABF =∠CBE AB =CB,在和中,∴.解:∵是等腰直角三角形,,∴,,∴,,由得,∴,,∴,∴.19.【答案】解:正比例函数的图象经过点 ,∴,∴,∴正比例函数解析式为,∵一次函数的图象经过 ,,∴ ∴ ∴一次函数为.①当时,如图,作⊥轴垂足为,∵,,∴,∵,∴,∴, ,∴;②当时,作轴垂足为,同理得 ,∴, ,∴,∴点坐标为 或.存在;理由:如图,△ABF △CBE AB =CB,∠ABF =∠CBE,BF =BE,△ABF ≅△CBE (SAS)(2)△EBF BF =3∠BFE =∠FEB =45∘BE =BF =3∠AFB =−∠BFE =180∘135∘EF ==3B +B E 2F 2−−−−−−−−−−√2–√(1)△ABF ≅△CBE ∠CEB =∠AFB =135∘AF =CE =2∠CEF =∠CEB −∠FEB =−=135∘45∘90∘tan ∠CFE ===CE EF 232–√2–√3(1)y=kx C (3,4)4=3k k =43y =x 43y =x +b k 1A (−3,0)C (3,4){−3+b =0,k 13+b =4,k 1 =,k 123b =2,y =x +223(2)DA ⊥AB DM x M ∠DAM +∠BAO =90∘∠BAO +∠ABO =90∘∠DAM =∠ABO DA =AB ,∠DMA =∠AOB △DAM ≅△ABO (AAS)DM =AO =3AM =BO =2D (−5,3)B ⊥AB D ′N ⊥y D ′N △BN ≅△BAO D ′(AAS)N =BO =2D ′BN =AO =3(−2,5)D ′D (−5,3)(−2,5)(3)作关于轴对称点,连接,交轴于,此时周长最小.∵,∴ ,∵,∴的解析式为:.令,得,∴,∴点的坐标为 .当是腰,是顶角的顶点时,,则的坐标为或;当是腰,是顶角的顶点时,,则与关于对称,则的坐标是;当是底边时,设的坐标为,则,解得,此时的坐标是.综上可知的坐标为或或或.【考点】待定系数法求一次函数解析式待定系数法求正比例函数解析式全等三角形的性质与判定轴对称——最短路线问题勾股定理【解析】根据待定系数法即可解决;分两种情形讨论,添加辅助线构造全等三角形即可求出点坐标;先确定出点的位置,即可得出结论;分, ,三种情形即可得出结论.【解答】解:正比例函数的图象经过点 ,∴,∴,∴正比例函数解析式为,∵一次函数的图象经过 ,,∴ ∴ C x C ′BC ′x E △BCE C (3,4)(3,−4)C ′B (0,2)BC ′y =−2x +2y =00=−2x +2x =1E (1,0)(4)OC O OP =OC P (5,0)(−5,0)OC C CP =CO P O x =3P (6,0)OC P (a,0)(a −3+=)242a 2a =256P (,0)256P (5,0)(−5,0)(6,0)(,0)256(1)(2)D (3)E (4)OP =OC CP =CO PC =PO (1)y=kx C (3,4)4=3k k =43y =x 43y =x +b k 1A (−3,0)C (3,4){−3+b =0,k 13+b =4,k 1 =,k 123b =2,=x +22∴一次函数为.①当时,如图,作⊥轴垂足为,∵,,∴,∵,∴,∴, ,∴;②当时,作轴垂足为,同理得 ,∴, ,∴,∴点坐标为 或.存在;理由:如图,作关于轴对称点,连接,交轴于,此时周长最小.∵,∴ ,∵,∴的解析式为:.令,得,∴,∴点的坐标为 .当是腰,是顶角的顶点时,,则的坐标为或;当是腰,是顶角的顶点时,,则与关于对称,则的坐标是;当是底边时,设的坐标为,则,解得,此时的坐标是.综上可知的坐标为或或或.20.【答案】过点作轴于点,则==,y =x +223(2)DA ⊥AB DM x M ∠DAM +∠BAO =90∘∠BAO +∠ABO =90∘∠DAM =∠ABO DA =AB ,∠DMA =∠AOB △DAM ≅△ABO (AAS)DM =AO =3AM =BO =2D (−5,3)B ⊥AB D ′N ⊥y D ′N △BN ≅△BAO D ′(AAS)N =BO =2D ′BN =AO =3(−2,5)D ′D (−5,3)(−2,5)(3)C x C ′BC ′x E △BCE C (3,4)(3,−4)C ′B (0,2)BC ′y =−2x +2y =00=−2x +2x =1E (1,0)(4)OC O OP =OC P (5,0)(−5,0)OC C CP =CO P O x =3P (6,0)OC P (a,0)(a −3+=)242a 2a =256P (,0)256P (5,0)(−5,0)(6,0)(,0)256C CD ⊥y D ∠CDA ∠AOB 90∘∵=,∴=,∵=,∴=,∴=,在与中,,∴,∴=,∵点的坐标是,∴==,即点到轴的距离是;【考点】等腰直角三角形坐标与图形性质全等三角形的性质与判定【解析】此题暂无解析【解答】此题暂无解答21.【答案】解:设每件品牌笔袋的进价为元,品牌笔袋的进价为元.根据题意得:,,经检验, 是原方程的根,(元),答:每件品牌笔袋的进价为元,品牌笔袋的进价为元.设品牌笔袋购进件,由题意得,解得: ,∠BAC 90∘∠CAD +∠BAO 90∘∠AOB 90∘∠ABO +∠BAO 90∘∠CAD ∠ABO △CAD △ABO △CAD ≅△ABO(AAS)CD AO A (0,2)CD AO 6C y 2(2,3)(1)B x A 2x +10=1002x 100xx =5x =52x =2×5=10A 10B 5(2)A a a +≥60500−10a 5a ≤40A答:品牌笔袋最多购进件..∵,∴随着的增大而减小,由知, ,∴当时,(元),答:该超市利润最低是元.【考点】分式方程的应用一元一次不等式的实际应用一次函数的应用【解析】暂无暂无暂无【解答】解:设每件品牌笔袋的进价为元,品牌笔袋的进价为元.根据题意得:,,经检验, 是原方程的根,(元),答:每件品牌笔袋的进价为元,品牌笔袋的进价为元.设品牌笔袋购进件,由题意得,解得: ,答:品牌笔袋最多购进件..∵,∴随着的增大而减小,由知, ,∴当时,(元),答:该超市利润最低是元.22.【答案】证明:∵四边形是正方形,为对角线,A 40(3)W =(15−10)a +(8−5)×500−10a 5=5a +300−6a =−a +300k =−1<0W a (2)a ≤40a =40=−1×40+300=260W 最小260(1)B x A 2x +10=1002x 100xx =5x =52x =2×5=10A 10B 5(2)A a a +≥60500−10a 5a ≤40A 40(3)W =(15−10)a +(8−5)×500−10a 5=5a +300−6a =−a +300k =−1<0W a (2)a ≤40a =40=−1×40+300=260W 最小260(1)ABCD AC ∠BAE =∠BCF =45∘∴ .∵,,又∵已知,∴ ,∴.如图,连接,∵四边形是正方形,∴是的垂直平分线.∴,.由得,∴.∴四边形是菱形.【考点】全等三角形的性质与判定菱形的判定正方形的性质平行四边形的性质与判定全等三角形的性质定理全等三角形的判定菱形的判定与性质【解析】此题暂无解析【解答】证明:∵四边形是正方形,为对角线,∴ .∵,,又∵已知,∴ ,∴.如图,连接,∠BAE =∠BCF =45∘∠BEF =∠ABE +∠BAE ∠BFE =∠CBF +∠BCF ∠ABE =∠CBF ∠BEF =∠BFE BE =BF (2)BD ABCD AC BD BE =DE BF =DF (1)BE =BF BE =BF =DF =DE BEDF (1)ABCD AC ∠BAE =∠BCF =45∘∠BEF =∠ABE +∠BAE ∠BFE =∠CBF +∠BCF ∠ABE =∠CBF ∠BEF =∠BFE BE =BF (2)BD∵四边形是正方形,∴是的垂直平分线.∴,.由得,∴.∴四边形是菱形.ABCD AC BD BE =DE BF =DF (1)BE =BF BE =BF =DF =DE BEDF。
新北师大版八年级数学下册各章测试题附答案(全册)
第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017~2018学年度第二学期三月八年级质量检测
数学试卷
时间:90分钟满分:100分试卷:共4页
注意事项:
1.答题前,考生先将自己的姓名、准考证号号码填写清楚。
2.在答题卡上必须用黑色字迹的签字笔书写,字体工整清楚。
3.请按照题号顺序在各题目区域内作答,超出答题区域、在草稿纸和试卷上答题无效。
一、选择题(每题3分,共30分)
1. 如图,数轴所表示的不等式的解集是()
A. 3
x D. 3
≥
x
>
x C. 3
x B. 3
<
≤
2.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()
A.120° B.90° C.60° D.30°
3.若等腰三角形的两边长是3cm和6cm,则周长为()
A.9cm
B.12cm C.15cm D.12cm或15cm
4.下列定理中,没有逆定理的是 ( )
A.内错角相等,两直线平行B.直角三角形中两锐角互余
C.相反数的绝对值相等D.等边对等角
5.三角形内有一点到三角形三边的距离相等,则这点一定是三角形的()
A. 三条中线的交点;
B. 三边垂直平分线的交点;
C. 三条高的交点;
D. 三条角平分线的交点.
6. 如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()
A. 80°
B. 70°
C. 60°
D. 50°
7. 如图,已知AD//BC ,AE=CF ,∠AFD=∠CEB ,证明△ADF ≌△CBE 的依据是( )
A .SAS
B .AAS
C .ASA
D .HL
8.已知五个正数的和等于1,求证这五个正数中至少有一个大于或等于51,若用反证法来证明这个结论,可以假设 ( )
A .这五个正数全都小于51
B .这五个正数至少有一个小于5
1 C .这五个正数至多有一个小于51 D .这五个正数至多有一个大于或等于5
1 9.由下列条件不能判定△ABC 为直角三角形的是( )
A .∠A +∠
B =∠
C B .31=a ,41=b ,5
1=c C .(b +c )(b -c )=a 2 D. ∠A :∠B :∠C =1:2:3
10.已知关于x 的不等式
3
122-≥+x a x 的解集是1-≤x ,则a 的值是( ) A.0 B.1 C.1- D.3
1-
二、填空题(每题3分,共15分)
11.设a >b ,用“<”,或“>”填空:
(1) a+3____b+3; (2) -2a____-2b ; (3)121--a _____12
1--b 12. 如图,若AB=AC=5,BC=6,AD ⊥BC ,则AD=__________
13. 如图,△ABC 中,∠C=90°,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则点D 到AB 的距离是_________cm .
第6题图 第7题图
第13题图 第12题图
14. 如图,在△ABC中,MN是BC的垂直平分线,DC=6cm,DB=10cm,则△ACD的周长为_________cm.
15. 如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为__________.
三、解答题(第17题5分,其他每题6分,共41分)
16.(1)求下列不等式的正整数解
....
:
3
2
9-
>
+
-x
x
(2)解下列不等式,并把它的解集在数轴上表示出来:
3
1
2
1x
x
≥
+
-
17.如图,已知在两条公路OA,OB的附近有C,D两个超市,现准备在两条公路的交叉路口附近安装一个监控摄像头,要求摄像头P的位置到两个超市的距离相等,且到两条公路的距离也相等,请你找出摄像头P 的位置。
18.已知∠1=∠2,∠BAC=90°,BC=DE, AC=AE,求证△ABC≌△ADE.
D
C
B
A
M
N
第14题图第15题图
19.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,
CD是△ABC的高,且AB=4,求CD的长?
20.已知:如图,D是△ABC的BC边的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF.
求证:△ABC是等腰三角形.
21.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,求证:AE=2CE.
22.在四边形ABCD中,AB=AD=8,CD=6,
BC=10,∠A=60°,求∠ADC的度数.
四、解答题(每题7分,共14分)
23.在△ABC中,AC=BC,∠C=90°,点D在
AD上,DE⊥AB,垂足分别为E,且CD=DE.
(1)求证:AD是∠BAC的平分线;
(2)已知CD=DE=2,求AB的长.
24.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B 向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)若设AP=x,则PC=__________,QC=__________;(用含x的代数式表示)
(2)当∠BQD=30°时,求AP的长;
(3)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE的长;如果变化请说明理由.。