半导体二极管的结构

合集下载

半导体二极管(Diode)

半导体二极管(Diode)

上页
下页
返回
模拟电子技术基础
[解] 理想 恒压
VDD = 10 V IO = VDD/ R = 10 / 2 = 5 (mA) UO = 10 0.7 = 9.3 (V) IO = 9.3 / 2 = 4.65 (mA)
折线 IO = (VDD-Vth)/ (R+rd) = (10-0.5 )/ (2+0.2) = 4.318 (mA)
上页 下页 返回
模拟电子技术基础
2.4
二极管基本电路及其分析方法
二极管是一种非线性器件,一般采用非线性电路
分析方法。主要介绍模型分析法。 2.4.1 2.4.2 二极管V-I特性的建模 模型分析法应用举例
上页
下页
返回
模拟电子技术基础
2.4.1 二极管V-I特性的建模
1. 理想模型(ideal model)
模拟电子技术基础
2.3 半导体二极管(Diode)
二极管 :一个PN结就是一个二极管。
半导体二极管的类型与结构
二极管的V-I特性
★二极管的参数
上页
下页
返回
模拟电子技术基础
2.3.1 半导体二极管的类型与结构
硅管
(1) 按使用的半导体材料不同分为
锗管 面结型(junction type) 点接触型(point contact type)
上页 下页 返回
模拟电子技术基础
2
限幅电路
用来让信号在预置的电平范围内,有选择地传输一部分。
例3:理想二极管电路中 vi= Vm sinωt V,求输出波形v0。
vi
Vm
VR
解: Vi> VR时,二极管导通,vo=vi。

第1章 半导体二极管和晶体管

第1章 半导体二极管和晶体管

型求出 IO 和 UO 的值。
+ UD -
解:
1、理想模型
UO = V = 6 V
E
IO = E / R = 6 / 6 = 1 (mA)
+
2 V ID
R UR
6KΩ
-
2、恒压降模型
UO = E – UD = 6 0.7 = 5.3 (V) IO = UO / R = 5.3 / 6 = 0.88 (mA)
反向击穿电压 I/mA 反向饱和电流
硅几 A
锗几十~几百 A UBR
硅管的温度稳
IS
O
U/V
定性比锗管好 反向 饱和电流
36
(二)极间电容
第三节、半导体二极管
C
1、PN结存在等效结电容
PN结中可存放电荷,相 当一个电容。
PN
+ ui –
R
– 2、对电路的影响:外加交流电源
+
时,当频率高时,容抗小,对PN
14
第一节、半导体的导电特性
N型半导体
多一个 价电子
4
+5
4
掺杂
4
4
4
15
本征激发
第一节、半导体的导电特性
N型半导体
4
+5
4
掺杂
正离子
电子
4
4
4
多子-------电子 少子-------空穴
N型半导体示意1图6
第一节、半导体的导电特性
P型半导体
多一个 空穴
4
+3
4
掺杂
4
4
4
17
本征激发
第一节、半导体的导电特性

半导体二极管工作原理

半导体二极管工作原理

半导体二极管工作原理
半导体二极管是一种基本的电子器件,其工作原理基于真空二极管的热阴极和阳极间的电子流动现象。

半导体二极管由P
型和N型半导体材料构成,形成一个PN结。

在PN结中,由于P型半导体内含有多余的空穴(正电荷载体),而N型半导体内含有多余的自由电子(负电荷载体)。

当N型半导体接触到P型半导体时,多余的自由电子和空穴
会进行扩散。

由于自由电子迁移到P区,形成负离子,而空
穴迁移到N区,形成正离子。

这就导致PN结的两侧形成了一个带有固定电荷的区域,称为耗尽层。

当外加一个电压到二极管时,如果正电压加在P区,而负电
压加在N区,这就称为正向偏置。

在正向偏置下,正电压将
加速电子和空穴的运动。

自由电子将迁移到P区,而空穴将
迁移到N区,这样当电流通过二极管时,电子就会在PN结处再次重组,产生电子空穴对,并且继续流动到外部电路。

因此,二极管在正向偏置下成为导电状态,也被称为ON(导通)状态。

相反地,如果负电压加在P区,而正电压加在N区,这称为
反向偏置。

在反向偏置下,负电压阻止了电子和空穴的运动,这使得电流无法通过PN结。

因此,二极管在反向偏置下处于
非导电状态,也被称为OFF(截止)状态。

总之,半导体二极管的工作原理基于PN结的形成和正反向偏
置下电子和空穴的运动。

这使得二极管可以用作整流、变压、开关和放大等许多电子电路中的基本组件。

半导体二极管

半导体二极管

(1-4)
1. 4 二极管的主要参数
1. 最大整流电流 IFM
在规定的环境温度和散热条件下,二极管长 期使用时,所允许流过二极管的最大正向平 均电流。
2. 最高反向工作电压URM
通常称耐压值或额定工作电压,是指保证二 极管截止的条件下,允许加在二极管两端的 最大反向电压。手册上给出的最高反向工作 电压URM一般是击穿电压UBR的一半。
(1-5)
3. 反向电流 IR
指二极管未击穿时的反向电流。反向电流 越小越好。通常反向电流数值很小,但受 温度影响很大,温度越高反向电流越大, 一般温度每升高10o,反向电流约增大一倍。 硅管的反向电流较小,锗管的反向电流要 比硅管大几十到几百倍。
4. 最最高工作频率fM
指保证二极管导向导电作用的最高工作频 率。当工作频率超过fM时,二极管将失去导 向导电性。
模拟电子技术
半导体二极管
1. 1 半导体二极管的结构和符号
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线
基片
面接触型
二极管的ห้องสมุดไป่ตู้路符号: 阳极
阴极
(1-2)
二极管的主要特性---单向导电
1、二极管的偏置:二极管单向导电的特性,只有外加一定极 性的电压(称为偏置)才能表现出来。阳极电位高于阴极 电位称为二极管的正向偏置,反之称为反向偏置。
2、二极管的主要特性:单向导电,即正向导通,反向截止。 或曰:只能一个方向导电,另一个方向不导电,即由阳极 向阴极可以顺利的流电流,反方向不流电流。
只能一个方向 电,
(1-3)
1. 3 二极管的伏安特性
I
反向击穿 电压UBR

1.2 半导体二极管

1.2 半导体二极管

面接触型管子的特点是,PN 结的结面积大,能通过较大电流,但结电容也大,适用于低频较低整流电路。

半导体二极管半导体二极管是由一个PN 结构成的二端元件。

其端钮有确定的命名,即一端叫阳极a ,一端叫阴极k 。

1.2 半导体二极管1.2.1 半导体二极管结构和类型(1)点接触型二极管(2)面接触型二极管(3)平面型二极管点接触型管子的特点是,PN 结的结面积小,因而结电容小,主要用于高频检波和开关电路。

既不能通过较大电流,也不能承受高的反向电压。

平面型管子的特点是,PN 结的结面积大时,能通过较大电流,适用于大功率整流电路;结面积较小时,结电容较小,工作频率较高,适用于开关电路。

1.结构2. 分类普通二极管特殊二极管变容二极管发光二极管光电二极管激光二极管二极管稳压二极管稳压光电转换调谐按材料的不同,常用的二极管有硅管和锗管两种;按其用途二极管分为普通二极管和特殊二极管两大类:整流、滤波、限幅、钳位、检波及开关等。

忽略正向导通压降和电阻,二极管相当短路;二极管反向截止时忽略反向饱和电流,反向电阻无穷大,二极管相当开路路。

I S uiU R 二极管是一种非线性元件,其特性就是PN 结的特性,而电流i D 与两端的电压u D 的关系近似为:1.2.2 二极管的伏安特性普通二极管是应用PN 结的饱和区、死区和导通区的特性制成的二端元件。

电路符号为:(1)伏安关系(2)理想二极管)(1-=T D V u S D e I i I S —反向饱和电流;V T —温度的电压当量,当常温(T=300K )时,V T =26mV 。

在正常工作范围内,当电源电压远大于二极管正向导通压降时,可将二极管当作理想二极管处理,其伏安特性如图示。

k a D最大整流电流又称为额定正向平均电流,是指二极管长时间使用时,允许通过的最大正向平均电流。

此值取决于PN 结的面积、材料和散热情况。

1.2.3 二极管的主要电参数1)最大整流电流I F2)最高反向工作电压U R3)最大反向电流I RM I F I RM ui U R 最大反向电流是指二极管加上最高反向工作电压时的反向电流值。

半导体发光二极管

半导体发光二极管
半导体发光二极管
一、导言
二、基本结构 三、主要参数 四、工艺简介
一、导言
• 最早在60年代初期出现GaAsP红色发光器件, 进而出现GaP掺锌氧对的红色器件,GaP掺氮 的黄绿器件等等。十年后这些器件实现大批量 生产。到了80年代中期出现了GaAlAs发光二极 管,其发光亮度有了大幅度提高。到了1990年, Hewlett-Packard公司和东芝公司分别提出了一 种以AlGaIn材料为基础的新型发光二极管。由 于AlGaIn在光谱的红到黄绿部分均可得到很高 的发光效率,使LED的应用得到大大发展。
发光二极管的基本结构(续)
• 树脂分为主剂和硬化剂两部分,有的 树脂在主剂中加入了颜料,因此得到了 各种颜色的主剂,而大多数树脂主剂出 厂时是一种淡蓝色的液体,封装时根据 需要加入不同颜料,硬化剂是一种无色 透明的液体。在树脂中加入适量的散射 剂可以提高发光的均匀性,增大散射角, 但同时法向发光强度降低。
2.1 管芯 管芯是一个由化合物半导体组成的PN结。
由不同材料制成的管芯可以发出不同的颜色。 即使同一种材料,通过改变掺入杂质的种类或 浓度,或者改变材料的组份,也可以得到不同 的发光颜色。下表是不同颜色的发光二极管所 使用的发光材料。
表<1> 不同颜色的发光二极管所使用的发光材料
发光颜色 发光材料 发光颜色 发光材料
Emission Area 0.254×0.254
P Electrode GaP P Epi Layer GaP N Epi Layer GaP N Substrate
N Electrode
图<2> LED芯片图形
发光二极管的基本结构(续)
• 当有电流通过PN结时产生发光,发光颜色 取决于芯片材料,而发光强度除了和材料 有关外,还和通过PN结电流的大小以及封 装形式有关。电流越大,发光强度越高, 但当电流达到一定程度时出现光的饱和, 这时电流再增加,光强不再增加。封装时 芯片到出光面距离越远,发光强度越高, 但角度也越小。

半导体二极管ppt课件

半导体二极管ppt课件

快 恢 复 二 极 管
形形色色的二极管
肖 特 基 二 极 管
二极管的封装 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值
用于电视机、收音机、电源装置等电子产品中
的各种不同外形的二极管如下图所示。二极管
通常用塑料、玻璃或金属材料作为封装外壳,
五、二极管的检测 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值
用万用表检测普通二极管的好坏 测试图如图所示
1、万用表置于R×1k挡。测量正向电阻时,万用表的黑表
笔接二极管的正极,红表笔接二极管的负极。
2、万用表置于R×1k挡。测量反向电阻时,万用表的红表
稳压管在电路中主要 功能是起稳压作用。
击穿 特性
稳压管的伏安特性曲线
正向 特性
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
形形色色的二极管
高频二极管
阻尼二极管
金属封装整流二极管
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
发光二极管
形形色色的二极管
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
高,主要用于信号检测、取样、小电流整流等
整流二极管(2CZ、2DZ等系列)的IFM较大,fM很

半导体分立元件--二极管

半导体分立元件--二极管

半导体分立元件半导体二极管半导体二极管是用半导体材料(主要是硅或锗的单晶)而制成,故又称为晶体二极管(俗称二极管)。

二极管的主要电性能是“单向导电性”,是一种有极性的二端元件(一种典型的非线性元件)。

二极管在电路中主要用作整流、限幅箱位、检波等,在数字电路中用作开关器件。

基本知识1、二极管。

自然界的物质按其导电能力的大小分为导体、半导体、绝缘体。

导体具有良好的导电性能,其电阻率一般小于10-6Ω·m,如铜和银;绝缘体导电能力很差或不导电,其电阻率往往在108Ω·m以上,如橡胶、陶瓷等;而半导体的导电能力介于导体与绝缘体之间,如纯净的硅在常温下的电阻率为2×103Ω·m。

半导体材料(如硅和锗)都是4价元素,其最外层的4个价电子与其相邻的原子核组成“共介键”结构,所以在温度极低时(如绝对零度时)半导体不导电,在常温下,纯净的半导体的导电能力也很弱。

2、半导体的主要特点。

半导体与导体和绝缘体相比有两个显著特点:一是其“热敏性”与“光敏性”。

例如当环境温度每升高8℃时,纯净硅的电阻率会降低一半左右(即导电能力提高一倍),且光线的照射也会明显地影响半导体的导电性能,人们利用半导体的这一性能,就可以制成各种热敏元件(如热敏电阻)、光敏元件(如光敏电阻、光电管)等;其二是半导体的“掺杂性”。

指在纯净的半导体内掺入微量的杂质,半导体的导电能力就急剧增强。

例如在单晶硅中掺入百分之一的某种杂质,其导电能力将增加一百万倍。

人们正是利用半导体的这一独特性质。

做成“杂质半导体”,从而制造出各种不同性质、不同用途的半导体器件,如半导体二极管、三极管、场效应管和集成电路等。

3、杂质半导体。

(1)N型半导体(电子型半导体)。

在纯净的半导体中掺入5价元素就得到N型半导体。

5价杂质其最外层的5个价电子除与半导体组成共价键外就多余一个电子(自由电子)。

所以N型半导体中自由电子为“多子”,空穴为“少子”。

半导体二极管

半导体二极管

半导体二极管引言半导体二极管是一种常见的电子元件,广泛应用于各种电路中。

作为一种离子流控制器,二极管在电子学中扮演着重要角色。

本文将介绍半导体二极管的基本原理、结构和工作方式,以及在电子设备中的应用。

一、半导体二极管的基本原理半导体二极管基于半导体材料的特性而工作。

半导体材料是一种介于导体和绝缘体之间的材料,具有在不同条件下改变电阻性质的能力。

当特定电压施加到二极管的两个端口时,会产生特定的电流流动。

这是因为半导体材料具有能够控制电子流动的能力。

二、半导体二极管的结构半导体二极管通常由一个PN结构构成。

PN结是由一段N型半导体和一段P型半导体相接而成的。

N型半导体含有过量的自由电子,而P型半导体则含有过量的空穴。

当PN结连接时,自由电子和空穴会发生迁移,形成电子流和电流。

二极管还有多种包装形式,如玻璃管、塑料封装和金属封装等。

不同的包装形式适用于不同的应用场合,如航空、军事、汽车、电脑等领域。

三、半导体二极管的工作方式半导体二极管具有单向导电性,也就是电流只能在一个方向上流动。

这是因为PN结在不同电压下会产生不同的电流分布。

当正向偏置电压施加到二极管上时,电流会通过PN结而流动。

这时,电子从N型半导体区域流向P型半导体区域,形成正向电流。

相反,当反向偏置电压施加到二极管上时,PN结会变为势垒状态,电流不会流动。

四、半导体二极管的应用半导体二极管在电子设备中有着广泛的应用。

以下是一些常见的应用场景。

1. 整流器:二极管常用于整流电路中,将交流电转化为直流电。

在电子设备中,直流电是许多电路和元件所需的。

2. 信号检测:半导体二极管可以用于信号检测和解调。

通过将信号输入到二极管中,可以检测和过滤特定频率的信号。

3. 功率放大器:二极管可以作为功率放大器的基础元件。

通过控制输入信号和电流的关系,可以实现放大和调节电流的功能。

4. 光电二极管:光电二极管是一种特殊的二极管,能够将光能转化为电能。

这种二极管常用于光电传感器和光通信等领域。

关于半导体二极管-文档资料

关于半导体二极管-文档资料


伏安特性曲线
iD (mA)
100 75℃ 80 60 40 20
iD(mA)
100 80 60 40 2 uD(v) -80 -40 20
20℃
-200-100
-10 1 -20 -30 (μA)
o
o
0.4 0.8 -0.1
uD (v)
-0.2
~
结论:二极管的伏安特性对温度很敏感,温度升高时, 正向特性曲线向左移,反向特性曲线向下移。
(1)半波整流电路
T
u1 u2
VD
u2
RL O
t
UL
uL
O
t
(a)半波整流电路
(b)半波整流输入输出的电压波形 图1.4 半波整流
图1.4(a)所示为纯电阻负载的半波整流电路,由交流变压器T,整流 二极管VD和负载电阻RL组成。其中u1表示电网电压,u2表示变压器 次级边电压。设u2=U2sinωt,由于二极管的单向导电性的作用,当 电源电压为正半周时,二极管承受正向的电压而导通,有电流流过负 载,负载上得到一个上正下负的电压,当忽略二极管上的电压降时, 负载上的电压uL等于电源变压器次级边的电压u2;当电源电压为负半 周时,二极管承受反向电压而截止,没有电流流过负载,此时,负载 上的电压uL=0。 整流波形如图1.4(b)所示。由图1.4可以看出,一个周期内负载上只 有半个电压波形输出,方向是单方向的,大小却是变化的,称脉动直 流电压,它的大小常用一个周期内的平均值来表示。


二极管有单向导电性,同时在正反向工作区和击穿 区还有一些电气特性。 主要作用:
2、检波(AM接收机内) 3、限幅或者钳位(运放输出端经常可以见到) 4、高速开关(我常用1N4148作开关) 5、稳压(各种类型的稳压二极管) 6、变容(FM接收机里面可能用到) 7、发光(LED,还有一些激光二极管)

半导体二极管的结构及特性

半导体二极管的结构及特性

第1章 半导体二极管
U反(向B电R场) 使雪U电子崩0加速击,动能穿增大:,反撞击向电场使电子加速,动能增大,撞击
使自由电子数突增。 2 半导体二极管的结构及特性
2 半导体二极管的结构及特性 第1章 半导体二极管
(击穿电压 > 6V, 正温度系数) 第1章 半导体二极管
击穿电压在 6 V左右时,温度系数趋近零。
N型锗 金锑
p
合金
N
外壳
触丝 负极引线
底座
点接触型
面接触型
P型支持衬底
集成电路中平面型
第1章 半导体二极管
0 U Uth iD = 0
iD /mA 正向特性
Uth
=
0.5 0.2
V V
(硅管) (锗管)
U (BR) IS
反 向
反向特性O
Uth
uD /V 死区
U UD(on)
=
Uth 0.6
iD 急剧上升
0.7 V 硅管0.7
V

电压
0.2 0.3 V 锗管0.2 V
穿
U(BR) U 0 iD = IS < 0.1 A(硅) 几十A (锗)
第1章 半导体二极管
U < U 反向电流急剧增大 (反向击穿) 反向电场使电子加速,动能增大,撞击
—U(PBNR结) 未损U 坏,0 断电即恢(复B。R)
UD(on)以 2 2.
– 50 – 25
–0.01 0 0.2 0.4 uD / V
–0.02
锗管的 伏安特性
T升高时,
iD / mA 90C
60
20C
UD(on)以 2 2.5 mV/ C下降
40 20

第五章半导体二极管(1)

第五章半导体二极管(1)

P
耗尽层
N
I 内电场方向
外电场方向
V
R
PN 结外加正向电压
(三)PN结 2、PN结的特性
(2)PN结外加反向电压
fla sh 3
PN结反偏 外电场与内电场方向相同 飘移>扩散 PN结变厚 有利于漂移进行 外部电源不断提供电荷 产生较小的反向电流I反 PN结反向截止
P
耗尽层
N
IS
内电场方向
外电场方向
若忽略管压降,二极管可看作短路,UAB = 0 V
流过
D2
的电流为
ID2
12 3
4mA
D2 起钳位作用, D1起隔离作用。
例4: 当VA = 3V,VB = 0V时,分析输出端的电位VY。
+6V
∵ UDB > UDA
DA
VA
R
∴ DB 优先导通, DA截止。 理想二极管:VY = VB = 0V
VY 锗二极管:VY = VB + UD = 0.3V
绝缘体--有的物质几乎不导电,称为绝缘体,如橡皮、 陶瓷、塑料和石英
半导体--另有一类物质的导电特性处于导体和绝缘体之 间,称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物 等。
本征半导体是纯净的晶体结构的半导体。
无杂质 稳定的结构
1、本征半导体的结构
现代电子学中,用的最多的半导体是硅和锗,它们的最外层 电子(价电子)都是四个。
反向截止时相当于开路。
否则,正向管压降
硅0.6~0.7V 锗0.2~0.3V
例1: 分析输出电压和二极管上电压的波形。
假设二极管为理想二极管。
Tr a D io
u2
2U
++

半导体二极管的分类(德惠)

半导体二极管的分类(德惠)

半导体三极管之所以叫双极性晶体管是因为导电时有两种
粒子参与导电,以NPN管为例,中间是P形,两边是N形,等
于就是两个PN结,电子由发射极(假设以他在左边为例)的 N区开始经正向电压到达P区,再由集电极那边的反偏电压把 电子扫向右边(集电极)的N区,于此同时,空穴也也在电场 的作用下,与电子的运动方向相反的方向运动,电子和空穴的 一起运动构成了NPN管 的电流,因为他有电子和空穴两种粒 子参与导电,所以称为双极性晶体管,与之对应的是单极性晶 体管,也就是MOS管,他只有电子或者空穴的其中一种参与 导电。!
2.三极管的类型 三极管的种类很多,可以从不同的角度分 类: (1)按极性不同,可分为NPN型三极管和 PNP型三极管, NPN型三极管比较常用。 (2)按材料不同,可分为硅三极管和锗三 极管。(硅三极管比锗三极管的热稳定性 好, 锗三极管反向电流大,受温度影响也大。) (3)按工作频率不同,可分为低频三极管 和高频三极管。 (4)按工作功率不同,可分为小功率三极 管和大功率三极管。 (5)按用途不同,可分为放大管和开关管。
二 半导体三极管
2.1 三极管的结构、符号和分类 2.2 三极管的电流放大作用 2.3 三极管的特性曲线 2.4 三极管的主要参数及其温度影响 2.5 特殊三极管
半导体三极管又称双极结型晶体管(通常简 称三极管或晶体管),半导体三极管是应用最广 泛的半导体器件。由半导体三极管组成的放大电 路,其主要作用是将微弱的电信号(电压,电流) 放大成为所需要的较强的电信号。例如,把反应 温度、压力、速度等物理量的微弱电信号进行放 大,去推动执行元件(如继电器、电动机、指示 仪表等)执行。因此半导体三极管及其放大电路 在生产、科研及日常生活中得到了广泛的应用。

二极管的结构及性能特点

二极管的结构及性能特点

PN结主要的特性就是其具有单方向导电性,即在PN加上适当的正向电压(P 区接电源正极,N区接电源负极),PN结就会导通,产生正向电流。

若在PN结上加反向电压,则PN结将截止(不导通),正向电流消失,仅有极微弱的反向电流。

当反向电压增大至某一数值时,PN结将击穿(变为导体)损坏,使反向电流急剧增大。

(二)普通二极管1.二极管的基本结构二极管是由一个PN结构成的半导体器件,即将一个PN结加上两条电极引线做成管芯,并用管壳封装而成。

P型区的引出线称为正极或阳极,N型区的引出线称为负极或阴极,如图所示。

普通二极管有硅管和锗管两种,它们的正向导通电压(PN结电压)差别较大,锗管为0.2~0.3V,硅管为0.6~0.7V。

2.点接触型二极管如图所示,点接触型二极管是由一根根细的金属丝热压在半导体薄片上制成的。

在热压处理过程中,半导体薄片与金属丝接触面上形成了一个PN结,金属丝为正极,半导体薄片为负极。

点接触型二极管的金属丝和半导体的金属面很小,虽难以通过较大的电流,但因其结电容较小,可以在较高的频率下工作。

点接触型二极管可用于检波、变频、开关等电路及小电流的整流电路中。

3.面接触型二极管如图所示,面接触型二极管是利用扩散、多用合金及外延等掺杂质方法,实现P型半导体和N型半导体直接接触而形成PN结的。

面接触型二极管PN结的接触面积大,可以通过较大的电流,适用于大电流整流电路或在脉冲数字电路中作开关管。

因其结电容相对较大,故只能在较低的频率下工作。

二极管的分类及其主要参数一.半导体二极管的分类半导体二极管按其用途可分为:普通二极管和特殊二极管。

普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等;特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。

二.半导体二极管的主要参数1.反向饱和漏电流I R指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。

在常温下,硅管的IR 为纳安(10-9A)级,锗管的IR为微安(10-6A)级。

半导体二极管的结构和分类

半导体二极管的结构和分类

半导体二极管的构成的,其基本 特性就是PN结的特性,它的伏安特性曲线形象的反 映了半导体二极管的单向导电性和反向击穿特性。 二极管的伏安特性呈非线性,二极管是非线性器件。
• 二极管的基本结构是一个PN结,将PN结加上欧姆接触电 极和外引线,再用管壳封装起来,就成为一个二极管,如 下图(箭头所指:正向导通,反向截止):
面接触型的二极管的特点是:PN结面积大,结电容 大,一般只用在低频电路中,常用于整流。国产2CP系列、 2CZ系列的二极管都是面接触型二极管。
平面型二极管的特点是:PN结的面积可大可小。结 面积小的,其结电容也小,国产2CK系列二极管就属于这 种类型,多用在信号检测和数字电路中;结面积大的,其 结电容也大,多用于大功率整流电路中。
二极管的种类很多,可按不同方法进行分类。 (1)按PN结的半导体材料分有:硅(Si)二极管、
锗(Ge)二极管及砷化镓(GaAs)二极管等。 (2)按二极管的内部结构分有:点接触型、面接触 型及平面型等。 三种结构各有特点,其用途也不同。
点接触型二极管的特点是:PN结面积小,因而结电 容小,允许流过的电流小(几十毫安以下),适用于调制 信号的检波。如收音机、通信机等常用的国产 2AP1~2AP7和2AP9~2AP17等2AP系列及2CZ系列的二 极管,都是点接触型锗二极管。
三种二极管的内部结构示意图如下:
(3)按用途不同,二极管可分为检波二极管、整流 二极管、高压整流二极管、稳压二极管、开关二 极管、发光二极管、光电二极管及磁敏二极管等。
二极管的伏安特性曲线
二极管最重要的特性就是单向导电性,可以 用伏安特性来说明。所谓伏安特性是指二极 管两端所加电压与通过它的电流之间的关系, 可用曲线形象地表示出来。如图:

电子技术基础--第一章--半导体二极管及其基本电路

电子技术基础--第一章--半导体二极管及其基本电路

(二)P型半导体
在本征半导体中掺入三价元素如B
+4
++34
+4
+4
+4
+4
因留下的空穴很容易俘获 电子,使杂质原子成为负 离子。三价杂质 因而也
称为受主杂质。
+4
+43
+4
空穴是多子 (杂质、热激发) 自由电子是少子(热激发)
本节中的有关概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • 自由电子、空穴 • 多数载流子、少数载流子 • N型半导体、P型半导体
(b)锗二极管2AP15的伏安特性曲线
iDIS(euD/UT 1)
• 死区电压Uth
– 硅二极管的死区电压一般为0.5V,锗二极管 的死区电压一般为0.1V。
• 硅二极管正向导通电压约为0.7V,锗二 极管正向导通电压约为0.2V。
• 反向击穿电压UBR 。
三、温度对二极管的伏安特性的 影响
N区空穴(少子)向P区漂移 同时进行
P区自由电子(少子)向N区漂移 4. 刚开始,扩散运动大于漂移运动,
最后,扩散运动等于漂移运动,达到动态平衡
扩散运动 漂移运动
多子从浓度大向浓度小的区域扩散,称扩散运动 扩散运动产生扩散电流。扩散电流的真实方向是 从P区指向N区的 。
少子在电场的作用下向对方漂移,称漂移运动。 漂移运动产生漂移电流。漂移电流的真实方向是从 N区指向P 区的 。
本征半导体中的自由电子和空穴成对出现
四、本征半导体的特性
(1)热敏特性 (2)光敏特性 (3)搀杂特性
三种方式都可使本征半导体中的载流子数目增加,导电 能力增强,但是并不是当做导体来使用,因为与导体相 比,导电能力还差得远。

半导体二极管

半导体二极管

半导体二极管半导体二极管是由PN结加上引出线和管壳构成的。

一、二极管的分类1、按照所用的半导体材料:可分为锗管和硅管。

2、根据其不同用途:可分为检波二极管、整流二极管、稳压二极管、开关二极管等。

3、按照管芯结构:可分为点接触型二极管(电流小,高频应用)、面接触型二极管(电流大,用于整流)及平面型二极管。

二、二极管图形符号①整流二极管:利用单向导电性把交流电变成直流电的二极管。

②稳压二极管:利用反向击穿特性进行稳压的二极管。

③发光二极管:利用磷化镓把电能转变成光能的二极管。

④光电二极管:将光信号转变为电信号的二极管。

⑤变容二极管:利用反向偏压改变 PN 结电容量的二极管三、型号命名整流二极管——2CZ82B稳压二极管——2CW50变容二极管——2AC1 等等。

四、二极管的特性单向导电性。

正向导通反向载止。

五、二极管的参数1、最大整流电流(IF) (由于电流通过PN结,使得管子发热,电流达到一定程度,管子因过热而烧坏。

)指管子长期运行时,允许通过的最大正向平均电流。

2、反向击穿电压 (VBR)指管子反向击穿时的电压。

3、最大反向工作电压VRM在实际工作时,最大反向工作电压VRM一般只按反向击穿电压VBR的一半计算。

4、反向电流IR(由于反向电流与温度有关,所以使用二极管时注意温度的影响。

)5、正向压降VF在规定的正向电流下,二极管的正向电压降。

小电流硅二极管的正向压降在中等电流水平下,约0.6V~0.8V;锗二极管约0.1V~0.3V。

6、最高工作频率fM二极管工作的上限频率,超过该频率,结电容起作用,二极管将不能很好的体现单向导电性。

六、二极管的检测1、判别正负极性万用表:R ×100 或 R×1 k 挡;将红、黑表笔分别接二极管两端。

所测电阻小时,黑表笔接触处为正极,红表笔接触处为负极。

2、质量好坏判别万用表:R 1k。

(1)若正反向电阻均为零,二极管短路;(2)若正反向电阻非常大,二极管开路。

电工电子元器件认识 - 晶体二极管结构与用途

电工电子元器件认识 - 晶体二极管结构与用途

晶体二极管结构与用途任务目标;二极管的结构,参数、和用途。

学习目标;了解二极管的结构,参数、和用途。

晶体二极管又叫半导体二极管,是半导体器件中最基础的器件,它是由半导体单晶材料(硅和锗)制成,所以也叫半导体器件。

二极管在当代汽车电路中应用较多,如发电机的整流电路(如图1所示)、音响保护电路、汽车电脑稳压电路和保护电路(如图2所示)等。

图1整流二极管图2贴片二极管1、晶体二极管的结构、电路符号和分类具有一个PN结的半导体器件称为半导体二极管,简称二极管。

晶体二极管是由一个PN结加上接触电极、引线和管壳构成的,从P区引出的线为正极或称阳极,从N区引出的线为负极或称阴极,用字母“D"表示。

晶体二极管电路符号如图3所示。

根据PN结接触面的大小,二极管可分为点接触型和面接触型两类。

如图4所示,图a)为点接触型,图b)为面接触型。

图3晶体二极管电路符号图4晶体二极管结构a)点接触型 b)面接触型点接触型二极管(一般是锗型二极管)的特点PN结的结面积小,不能通过大电流,只能通过儿十毫安以下的电流。

但是,由于其PN结的结电容小,因此,可用于高频信号的检波电路、脉冲数字电路以及微小电流的整流电路。

使用时应注意,它不能承受较高的反向电压和大电流。

面接触型二极管(一般是硅型二极管)的特点PN结的结面积大,可以通过较大的电流(儿白毫安至儿白安),但是,由于其结电容大,因此,不能用在高频电路中,只适用于低频电路和整流电路中。

在汽车上发电机整流电路中都采用面接触型二极管。

根据所用半导体材料不同可分:锗型二极管和硅型二极管两大类。

依据用途不同可分:普通二极管、整流二极管、开关二极管、稳压二极管、光电二极管、发光二极管等。

2、国产晶体二极管命名按国家标准GB249-74规定,国产二极管的型号由五个部分组成。

国产二极管型号见表5。

国产二极管型号表53、二极管的检测1)判断二极管的极性(1)从外观上识别二极管的极性二极管的极性,有的可以从外观上进行识别。

半导体二极管

半导体二极管

阴极
(b)
R


Ui -
Uz

(c)
图1.10 稳压管的伏安特性曲线、 (a)伏安特性曲线;(b)图形符号;(c)稳压管电路
半导体二极管
2)基本参数
(1)稳定电压UZ是指在规定的测试电流下,稳
压管工作在击穿区时的稳定电压。
(2)稳定电流IZ是指稳压管在稳定电压时的工作 电流,其范围在IZmin~IZmax之间。
半导体二极管
普通二极被击穿后,不能恢复,失去单向导电性, 将造成永久性损坏。
理想二极管:外加正向电压时,正向电压降和正 向电阻等于零,相当于开关闭合; 外加反向电压时,二极管截止,相当于开关断 开。
半导体二极管
三 半导体二极管的主要参数 二极管的参数是定量描述二极管性能的质量指标,
只有正确理解这些参数的意义,才能合理、正确地使 用二极管。
第二节 半导体二极管
一 基本结构和表示符号
在一个PN结的P区和N区各接出一条引线,然后再封装在管壳内,就制成一只晶体二极管。 P区引出线叫正极(或阳极)N区引出端叫负极(阴极)
半导体二极管
它的符号为:
半导体二极管又称晶体二极管,简称二极管。二极管按其 结构的不同可以分为点接触型和面接触型两类。
点接触型二极管的结构,如图1.4(a)所示。这类 管子的PN结面积和极间电容均很小,不能承受高的反向电压和 大电流,因而适用于制做高频检波和脉冲数字电路里的开关元 件,以及作为小电流的整流管。
半导体二极管
二 伏安特性 根据制造材料的不同,二极管可分为硅、锗两大
类。相应的伏安特性也分为两类。图1.5(a)所示为 硅二极管的伏安特性;图1.5(b)所示为锗二极管的伏 安特性。现以图1.5(a)所示硅二极管为例来分析二 极管的伏安特性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 晶体管及其应用电路
自然界中的物质按导电能力强弱的不同,可分为导体、绝缘 体和半导体3大类。
半导体定义及分类 半导体是导电能力介于导体和绝缘体之间的物质。常用的半导体材料 有锗(Ge)、硅(Si)和砷(As)等。完全纯净的、不含杂质的半导体叫 做本征半导体。如果在本征半导体中掺入其他元素,则称为杂质半导体。
(2) 二极管的主要参数
1、最大整流电流IF 表示允许通过二极管的最大的正向平均电流,超过此电流,将因管子超
过限度而烧坏PN结。 一般点接触型二极管的最大整流电流在几十毫安以下,面结合型二极管
的最大整流电流可达数百安培以上,有的甚至可达几千安培以上。 2、最大反向电压URM
最大反向电压是指保证二极管不被击穿而给出的最高反向工作电压,通 常是反向击穿电压的一半或三分之一 。 3、最大反向电流IRM
第六章 晶体管及其应用电路
(2)稳压二极管的主要参数
① 稳定电压UZ 稳定电压UZ就是稳压二极管在正常工作时管子两端的电压。
② 稳定电流IZ 稳压管正常使用起码的工作电流 。
③ 最大允许耗散功率PM 稳压管所允许的最大功耗,超过此值,管子将会过热击穿损坏。
第六章 晶体管及其应用电路
2. 发光二极管
最大反向电流是指二极管加最大反向电压时的反向电流值。
第六章 晶体管及其应用电路
6.1.2 特殊二极管
1. 稳压二极管 (1)稳压二极管及其伏安特性
给稳压二极管加反向电 压,使它工作在电击穿区域, 反向电流虽然在很大范围内 变化。但稳压二极管两端的 电压变化很小,利用这一性 质稳压二极管在电路中可以 实现稳压作用 。
流iL等于零,负载电压uL等于零。
第六章 晶体管及其应用电路
① 电压的平均值为: 电压的平均值是指一个周期内脉动电压的平均值,即:
U L

1 2
0
2U 2 sin td(t)
2 U2

0.45U 2
② 电流的平均值
ID

IL

0.45 U 2 RL
③ 最高反向电压
U RM U 2M 2U 2
点接触型二极管结构如图(a)所示。其特点是PN结的面积小、 允许通过的电流小,但结电容小,因此,一般用作高频信号的检波和 小电流的整流,也可用作脉冲电路的开关管。
面接触型二极管结构如图(b)所示。其特点是PN结的面积大、 能承受较大的电流,但结电容大,主要用于低频电路和大功率的整流 电路。
第六章 晶体管及其应用电路
P
N
P 空间电荷区 N
空穴
自由电子
空穴 内电场方向
自由电子
第六章 晶体管及其应用电路
6.1 二极管及其应用 二极管工作原理
6.1.1 二极管的单向导电性
在PN结两端分别引出一个电极,外加管壳即构成晶体二极管, 又称为半导体二极管。 1.半导体二极管的结构
按照内部结构的不同,半导体二极管可分为点接触型二极管和面 接触型二极管两类。
第六章 晶体管及其应用电路
(2) 单相桥式整流电路
+
Tr + a
VD4
u1
u2
-
-
VD3
b
VD1 VD2
+ uL RL _
u2
π

uL

4π wt
(a)
π


4π wt
(b)
第六章 晶体管及其应用电路
当u2为正半周时,由于u2>0,u2的瞬时极性为a 正b负,VD1、VD3导通,VD2、VD4截止,电路形成回
半导体二极管的结构类型 二极管的电路符号
第六章 晶体管及其应用电路
2 .二极管的伏安特性
下图为伏安特性测试电路
VD1 mA
V Rp
E
R
VD1 mA
V Rp
E
R
(a) 二极管正向导通
(b) 二极管反向截止
第六章 晶体管及其应用电路
(1) 二极管正向、反向偏置特性
二极管伏安特性
锗二极管的伏安特性
第六章 晶体管及其应用电路
第六章 晶体管及其应用电路
本征半导体有两种导电的粒子,一种是带负电荷的自由电子 ,另一种是相当于带正电荷的粒子—空穴。自由电子和空穴在外 电场的作用下都会定向移动而形成电流,所以人们把它们统称为 载流子。在本征半导体中,每产生一个自由电子,必然会有一个 空穴出现,自由电子和空穴成对出现,这种物理现象称为本征激 发。由于常温下本征激发产生的自由电子和空穴的数目很少,所 以本征半导体的导电性能比较差。但当温度升高或光照增强时, 本征半导体内的自由电子运动加剧,载流子数目增多,导电性能 提高,这就是半导体的热敏特性和光敏特性。在本征半导体中掺 入微量元素后,导电性能会大幅提高,这就是半导体的掺杂特性 。在本征半导体中掺入不同的微量元素,就会得到导电性质不同 的半导体材料。根据半导体掺杂特性的不同,可制成两大类型的 杂质半导体,即P型半导体和N型半导体。
PN结具单向导电特性。
PN I
PN
第六章 晶体管及其应用电路
PN结形成 P型和N型半导体结合面两侧同类型的载流子存在浓度差 ,
N型区的多子自由电子向P型区扩散,并与P型区的空穴复合如 图 ,这样N型区由于失去电子而出现带正电的杂质层,P型区 由于得到电子而出现带负电的杂质层,因此在交界面两侧形成 一个带异性电荷的薄层,称为空间电荷区,即PN结。
VD
+
u1
u2
UL
_
iL
-
b-
u2
π 2π uL
3π 4π wt (a)
π 2π 3π 4π wt (b)
当u2为正半周时,由于u2>0, u2的瞬时极性为a正b负,二极管
VD承受正向电压而导通,iL= id ,
uL=u2 。
当u2为负半周时,由于u2>0,u2的 瞬时极性为a负b正,二极管VD承受 反向电压而截止,负载上流过的电
第六章 晶体管及其应用电路
si
si
si
多余的
电子
si
P
si
磷+5
si
si
si
N型半导体 在本征半导体硅(或锗)中掺入 少量的五价元素,例如磷(P)
si
si
si
少一个 电子
形成 空穴
si
B
si
硼+3
si
si
si
P型半导体 在本征半导体中掺入管及其应用电路
PN结是构成半导体二极管、三极管、场效应管、可控硅和半 导体集成电路等多种半导体器件的基础。
发光二极管简称为LED管,是由镓(Ga)、砷(As)、磷(P) 等化合物制成的,用这些材料制成的PN结,加上正偏电压,将电能 转化成光能而发光,
第六章 晶体管及其应用电路
6.1.3 整流、滤波及稳压二极管稳压电路
1. 常用整流电路
(1) 单相半波整流电路
u2 2U 2 sin wt
+ Tr a +
相关文档
最新文档