太阳光跟踪系统设计

合集下载

单轴太阳能光伏发电自动跟踪控制系统设计

单轴太阳能光伏发电自动跟踪控制系统设计

单轴太阳能光伏发电自动跟踪控制系统设计引言:太阳能光伏发电已经成为可再生能源中最受关注的一种技术。

光伏发电效率受到太阳光照的影响,传统的固定光伏发电系统效率较低。

为了优化光伏发电系统的效率,设计了一种单轴太阳能光伏发电自动跟踪控制系统,能够根据太阳位置自动调整光伏板的角度,最大限度地提高太阳能的利用效率。

一、系统工作原理:该单轴太阳能光伏发电自动跟踪控制系统由光敏电阻、测量电路、控制电路和执行机构组成。

光敏电阻负责感应太阳光照强度,传递给测量电路进行电信号转换。

控制电路接收到转换后的信号,并与事先设定的峰值进行比较。

然后,根据比较结果来控制执行机构,使光伏板按需自动调整角度。

二、光敏电阻的选择:光敏电阻是该系统中最重要的一个元件,因为它直接影响到系统的准确度和稳定性。

在选择光敏电阻时,需要考虑以下因素:光敏电阻的特性曲线、光敏电阻的响应时间、光敏电阻的阻值范围等。

一般建议选择具有较高灵敏度和稳定性的光敏二极管。

三、测量电路设计:测量电路的作用是将光敏电阻的电信号转换为适合控制电路处理的电信号。

测量电路一般由信号放大器、滤波器和模数转换器构成。

信号放大器用于放大光敏电阻产生的微弱电信号,滤波器用于去除噪声和杂散信号,模数转换器用于将模拟信号转换为数字信号。

在设计过程中,需要合理设置放大系数和滤波参数,以确保测量电路的准确性和稳定性。

四、控制电路设计:控制电路是系统的核心部分,其功能是根据光敏电阻测量电路输出的信号,与事先设定的峰值进行比较,并根据比较结果来控制执行机构进行角度调整。

控制电路一般由比较器、运算放大器和逻辑电路构成。

比较器用于将输入信号与参考信号进行比较,运算放大器用于放大比较结果的差别,逻辑电路用于判断角度调整方向,并控制执行机构的运动。

五、执行机构设计:执行机构是该系统中最关键的部分,其功能是根据控制电路的指令,使光伏板按需自动调整角度。

常见的执行机构有两种:电动执行机构和气动执行机构。

光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计一、本文概述随着全球能源危机和环境问题的日益严重,可再生能源的开发和利用受到了越来越多的关注。

其中,光伏发电作为一种清洁、可再生的能源形式,具有广泛的应用前景。

然而,传统的光伏发电系统往往存在固定安装、无法有效跟踪太阳位置的问题,导致能量接收效率不高。

因此,本文旨在设计一种光伏发电自动跟踪系统,以提高光伏电池板的能量接收效率,从而推动光伏发电技术的发展和应用。

本文首先介绍了光伏发电的基本原理和现状,分析了传统光伏发电系统存在的问题和不足。

然后,详细阐述了光伏发电自动跟踪系统的设计原理和实现方法,包括硬件设计和软件编程两个方面。

在硬件设计方面,介绍了系统的主要组成部分,如传感器、电机驱动器等,并阐述了它们的工作原理和选型依据。

在软件编程方面,介绍了系统的控制算法和程序流程,包括太阳位置计算、电机控制等。

本文对所设计的光伏发电自动跟踪系统进行了实验验证和性能分析,证明了该系统的有效性和优越性。

也指出了该系统存在的不足之处和改进方向,为未来的研究提供了参考和借鉴。

通过本文的研究和设计,旨在为光伏发电领域提供一种高效、可靠的自动跟踪系统解决方案,推动光伏发电技术的进一步发展和应用,为实现可持续发展和环境保护做出贡献。

二、光伏发电原理及关键技术光伏发电是利用光生伏特效应将光能直接转换为电能的发电方式。

当太阳光照射到光伏电池上时,光子与光伏电池内的半导体材料相互作用,激发出电子-空穴对。

这些被激发的电子和空穴在光伏电池内部电场的作用下分离,形成光生电流,从而实现光能向电能的转换。

光伏发电的关键技术主要包括光伏电池材料的选择、光伏电池的结构设计、光电转换效率的提升以及系统的集成与优化。

光伏电池材料是光伏发电的基础,常用的材料有单晶硅、多晶硅、非晶硅以及薄膜光伏材料等。

不同材料具有不同的光电转换效率和成本,因此在选择时需要综合考虑性能和经济性。

光伏电池的结构设计也是影响光伏发电效率的重要因素。

《2024年太阳能自动跟踪系统的设计与实现》范文

《2024年太阳能自动跟踪系统的设计与实现》范文

《太阳能自动跟踪系统的设计与实现》篇一一、引言随着环境保护和可再生能源的日益重视,太阳能的利用成为了全球关注的焦点。

太阳能自动跟踪系统作为一种提高太阳能利用效率的重要手段,其设计与实现显得尤为重要。

本文将详细阐述太阳能自动跟踪系统的设计原理、实现方法和应用前景。

二、系统设计目标本系统的设计目标是为了提高太阳能的利用率和发电效率,通过自动跟踪太阳的运动,使太阳能电池板始终面向太阳,从而最大限度地接收太阳辐射。

同时,系统应具备操作简便、稳定可靠、成本低廉等特点。

三、系统设计原理太阳能自动跟踪系统主要由传感器、控制系统和执行机构三部分组成。

传感器负责检测太阳的位置,控制系统根据传感器的数据控制执行机构进行相应的动作,使太阳能电池板能够自动跟踪太阳。

1. 传感器部分:传感器采用光电传感器或GPS传感器,实时检测太阳的位置。

光电传感器通过检测太阳光线的强度和方向来确定太阳的位置,而GPS传感器则通过接收卫星信号来确定地理位置和太阳的位置。

2. 控制系统部分:控制系统是太阳能自动跟踪系统的核心部分,负责接收传感器的数据,并根据数据控制执行机构的动作。

控制系统采用微处理器或单片机等控制器件,通过编程实现控制算法。

3. 执行机构部分:执行机构主要负责驱动太阳能电池板进行动作。

常见的执行机构有电机、齿轮、导轨等,通过控制执行机构的动作,使太阳能电池板能够自动跟踪太阳。

四、系统实现方法1. 硬件实现:太阳能自动跟踪系统的硬件主要包括传感器、控制系统和执行机构。

传感器和执行机构的选择应根据实际需求和预算进行选择,而控制系统的硬件则需根据所采用的微处理器或单片机等器件进行设计。

2. 软件实现:软件实现主要包括控制算法的编写和系统调试。

控制算法的编写应根据传感器的数据和执行机构的动作进行编程,通过控制算法实现太阳能电池板的自动跟踪。

系统调试则需要对整个系统进行测试和调整,确保系统的稳定性和可靠性。

五、应用前景太阳能自动跟踪系统的应用前景广阔,可以广泛应用于太阳能发电、太阳能热水器、太阳能干燥等领域。

基于arduino的光伏追光系统设计

基于arduino的光伏追光系统设计

基于arduino的光伏追光系统设计基于Arduino的光伏追光系统设计引言:随着环境保护和可再生能源的重要性日益突显,光伏发电作为一种清洁能源形式正迅速发展。

然而,光伏发电的效率往往受到太阳光角度和光照强度的影响。

为了最大限度地提高光伏发电的效率,追踪太阳光的方向并保持太阳光直射是至关重要的。

本文将介绍基于Arduino的光伏追光系统设计,以提高光伏发电的效率。

第一部分:系统组成和原理光伏追光系统主要由Arduino控制器、太阳光传感器、直流电机和光伏阵列组成。

其原理是通过太阳光传感器检测光线方向,并由Arduino控制器控制直流电机旋转光伏阵列,使其保持与太阳光直射的角度。

第二部分:系统硬件设计1. 主控制器:使用Arduino UNO作为系统的主控制器。

Arduino UNO 具有良好的可编程性和广泛的硬件支持,适合用于各种控制系统。

2. 太阳光传感器:使用光敏电阻或光电二极管作为太阳光传感器。

这些传感器可以根据光照强度的变化产生相应的电压变化,从而检测光线方向。

3. 直流电机:使用带有驱动电路的直流电机作为光伏阵列的转动装置。

直流电机可以根据Arduino控制器的指令旋转光伏阵列。

4. 光伏阵列:使用光伏电池组成光伏阵列,根据太阳光的角度和方向来调整其位置。

第三部分:系统软件设计1. 传感器数据读取:首先,在Arduino控制器上配置太阳光传感器,并编写程序读取传感器的数据。

Arduino控制器将实时获取传感器的数据以确定光线的方向。

2. 光伏阵列调整:根据太阳光的方向和角度,编写程序控制直流电机调整光伏阵列的位置。

程序将根据传感器数据计算光伏阵列与太阳光直射的角度,并将指令发送到直流电机来旋转光伏阵列。

3. 稳定性控制:为了确保光伏阵列可以迅速而准确地跟踪太阳光的位置,程序需要定期读取传感器数据,并进行稳定性控制。

可以使用PID控制算法来确保追踪的准确性和稳定性。

第四部分:系统性能测试和优化1. 小范围测试:首先,对系统进行小范围测试,观察光伏阵列是否能够准确地跟踪太阳光的位置。

基于PLC的二维极轴太阳光自动追踪系统的设计

基于PLC的二维极轴太阳光自动追踪系统的设计

郑 晓斌 林 立 生 ( 福建船政交 7 )
摘 要
太 阳 光 自动 追 踪 系统 的追 踪 策 略 采 用程 序 控 制 和 传 感 器控 制 相 结合 的方 法 , 使 用粗 追 踪 和 精 确 追 踪 两种 模 式 , 实现 对
t a ge s s u ch as K ey wor ds : pr ogr amm a bl e l ogi c co n t r ol , au t o ma t i c t r ac k i n g s ys t e m, i n t el l i ge nt l i gh t i n t e n s i t y s e n s or
太 阳 光 线 方位 角与 高度 角 的精 确 追踪 。将 全 年 每 半 个 月的 太 阳追 踪 参数 为标 准值 , 粗追踪就是利用 P L C 查表 的 方 式 来 实 现; 同 时也 对 光 强智 能 传 感 器 硬 件 合 理 设 计 以及 电机 拖 动 模 块 进 行 了重 点 的探 讨 , 使 得 系统 具 有 较 小 的 追踪 精 度 误 差 , 抗
干扰 能 力越 强等 诸 多优 点 。 关键 词 : 可 编程 序 控 制 器 , 自动 追 踪 系统 , 光 强智 能 传 感 器
Ab s t r a c t
S ol ar a u t o mat i c t r a ck i ng s ys t e m f or t r ac k i n g s t r a t eg y a do pt s t h e pr o g r a m c on t r o l an d t r a n s du ce r c on t r o l m e t h ods , u s i n g c o ar s e t r ac k i n g an d pr e ci s e t r a c k i n g o f t wo k i n ds o f mo de, r ea l i z es t o t h e r a y s o f t h e s u n a z i mu t h an d el e v a t i on an gl e pr e —

基于嵌入式系统的光伏平单轴跟踪系统设计

基于嵌入式系统的光伏平单轴跟踪系统设计

基于嵌入式系统的光伏平单轴跟踪系统设计光伏平单轴跟踪系统是一种通过控制太阳能光伏阵列的角度来实现最大化能量收集的系统。

在这个系统中,嵌入式系统起到了关键的角色,负责控制光伏阵列的角度并实时进行跟踪。

首先,光伏平单轴跟踪系统的设计需要考虑到系统的稳定性和精度。

为此,我们可以选择一款高性能的嵌入式微控制器作为硬件平台,并在其上运行专门设计的软件。

嵌入式系统应该具备高速、高精度的数据处理和控制能力,以确保光伏阵列能够在各种天气条件下实时进行准确的角度调整。

其次,在软件设计方面,嵌入式系统需要实现准确的光源跟踪算法。

一种常用的算法是最大光照度追踪算法,通过实时检测太阳光的强度变化来调整光伏阵列的角度。

该算法可以通过采集光强度传感器的数据,并与事先设定的阈值进行比较,确定光伏阵列的最佳角度。

嵌入式系统需要能够根据算法计算得到的角度,控制电机或其他执行器来实现角度调整。

此外,嵌入式系统还需要具备良好的用户界面,以便用户对光伏平单轴跟踪系统进行设置和监控。

用户界面可以通过液晶显示屏、按键等元件实现,使用户能够方便地设置光伏阵列的跟踪模式、角度范围等参数,并实时监测光伏阵列的工作状态。

最后,在硬件设计方面,嵌入式系统需要与光伏阵列、电机等硬件设备进行良好的接口。

可以通过使用传感器来检测光伏阵列的角度和光强度,通过使用电机控制器来控制电机的运行以实现角度调整。

嵌入式系统还需要具备电源管理功能,以确保整个系统能够正常工作并具备适应不同工作条件的能力。

总的来说,基于嵌入式系统的光伏平单轴跟踪系统设计需要考虑到系统的稳定性、精度和用户友好性。

通过选择适当的硬件平台、设计高效的算法、合理设计硬件接口和用户界面,可以实现一款高性能的光伏平单轴跟踪系统,从而提高光伏发电系统的能量收集效率。

太阳光自动跟踪系统课程设计

太阳光自动跟踪系统课程设计

太阳光自动跟踪系统课程设计太阳光自动跟踪系统,听起来是不是有点高大上?其实说白了,就是一个能自动跟着太阳转的设备,简单点说,就是“阳光大追踪”。

你是不是已经想象到那个阳光照射下来,跟着阳光走,一直不离不弃的场景了?其实这就是太阳能发电的一个重要环节,咱们把它搞得聪明一点,让它自己动起来,追着太阳走,这样能更好地吸收阳光,提高发电效率。

不信?你往下看,保证让你眼前一亮。

咱得知道,太阳能发电要靠阳光。

你想呀,太阳一出来,咱们就等着吸收它的能量,但光照强度不同的时候,怎么能最有效地利用太阳能呢?这时候,咱们就得用太阳光自动跟踪系统了。

这个系统呢,通俗点说,就是给光伏电池板装上一双“眼睛”,让它能看到太阳,然后根据太阳的位置,自动调整角度。

就像咱们平常看电影的时候,电视遥控器能调节角度一样,太阳光自动跟踪系统就能调整光伏板的方向,使其始终对准太阳,保证最大限度地吸收太阳能。

你要是问,为什么不直接让太阳能板朝一个固定的方向就行了呢?唉,这问题可难不倒我。

因为太阳从早到晚的路径是不一样的。

早上从升起,下午落到西方,你要是把光伏板固定不动,太阳照射的角度就会一直变化,结果呢,电池板吸收的太阳能就不够多,效率也就大打折扣了。

对吧?就像你一整天都对着太阳背面站,怎么可能晒到好太阳?不过,太阳光自动跟踪系统就不同了,它能通过一系列巧妙的装置,全天候调节板子的角度,始终保持最优的光照位置。

这一切的核心其实就是那些传感器。

别看它们个头不大,作用可不小。

它们会感应太阳的位置,然后通过控制系统计算出光伏板应该转到什么角度。

然后,电机一启动,板子就开始转动,跟着太阳跑。

这过程啊,看着真是简单,实际操作起来,可是有一套复杂的技术在里面。

你想想,传感器得精确,电机得有劲,还得考虑到各种环境因素,比如风速、温度啥的。

这就像是在和太阳斗智斗勇,你追我赶,谁也不愿意掉队。

其实你仔细想想,太阳光自动跟踪系统就像是一个忠实的小跟班。

它总是默默地执行着它的任务,似乎没什么大不了的,但它的努力却决定了电池板的吸收效率。

太阳追踪器控制系统设计

太阳追踪器控制系统设计

南京信息职业技术学院毕业设计论文系部专业题目太阳追踪器控制系统设计指导教师评阅教师完成时间: 20**年 4月19日毕业设计(论文)中文摘要毕业设计(论文)外文摘要目录一绪论 (1)二太阳能自动追踪器的现状 (2)2.1 压差式太阳能跟踪器 (2)2.2 控放式太阳追踪器 (2)2.3 时钟跟踪器 (2)2.4 比较控制式太阳跟踪器 (2)三太阳能自动跟踪器存在的问题 (4)四结构设计 (5)五传感器 (6)5.1高精度传感器 (6)5.2大角度传感器 (7)六控制策略及程序设计 (8)七触摸屏控制界面设计 (10)结论 (12)致谢 (13)参考文献 (14)附件1:PLC控制程序 (15)一绪论太阳能光伏发电是改善生态环境、提高人类生存质量的绿色能源之一,研究太阳能发电技术意义重大。

如何提高太阳能电池光电转换率则是光伏发电能否推广应用的根本所在。

太阳能是一种低密度、间歇性、空间分布不断变化的能源,与常规能源有本质上的区别。

这就对太阳能的收集与利用提出了更高的要求。

提高太阳能电池光伏电池最大功率,可以从太阳能电池的材质上入手,或从逆变电源设计上入手[1];另一途径是让太阳能电池跟着阳光旋转,使太阳能电池与阳光入射角保持垂直,以达到光能最大获取率[2]。

这要依靠太阳跟踪器来实现。

太阳跟踪器[3~5],故名思意,基本功能就是使光伏阵列随着太阳而转动。

太阳能跟踪器根据结构和控制原理不同有单轴控制和双轴控制。

一般双轴系统可提高发电量35%左右,单轴系统可提高2O%左右,聚光型跟踪系统会更高[6]。

本文主要阐述一种双轴太阳跟踪器控制系统的设计方案。

二太阳能自动追踪器的现状2.1 压差式太阳能跟踪器压差式跟踪器的原理是:当入射太阳光发生偏射时,密闭容器的两侧受光面积不同,会产生压力差,在压力的作用下,使装跟踪器重新对准太阳。

根据密闭容器内所装介质的不同,可分为重力差式,气压差式,和液压式。

该机构结构简单,制作费用低,纯机械控制,不需要电子控制部分及外接电源。

基于单片机的光伏板自动跟踪系统设计

基于单片机的光伏板自动跟踪系统设计

基于单片机的光伏板自动跟踪系统设计随着现代科技的不断发展,太阳能光伏板已经成为了绿色能源领域的重要组成部分。

传统的光伏板只能在固定的角度接收阳光,这导致了能量利用率的低下。

为了解决这一问题,人们提出了光伏板自动跟踪系统的设计方案。

本文将介绍一个基于单片机的光伏板自动跟踪系统的设计原理和实现方法。

一、设计原理光伏板自动跟踪系统的设计原理是根据光照角度的变化来调整光伏板的角度,使其始终与太阳保持最佳的接收角度,从而最大程度地提高能量利用效率。

光伏板自动跟踪系统的设计包括两个主要部分:光敏元件和控制系统。

光敏元件通常是光敏电阻或光敏二极管,它们的电阻值或电压随着光照强度的变化而变化。

而控制系统则是使用单片机进行控制,根据光敏元件获取的光照信息来调整光伏板的角度。

二、设计实现1.光敏元件的选择光敏元件的选择非常重要,它决定了系统对光照的敏感程度。

常用的光敏元件包括光敏电阻和光敏二极管。

光敏电阻的电阻值随光照强度的变化而变化,而光敏二极管的导通电流也随光照强度的变化而变化。

根据具体情况,选择适合自己系统的光敏元件。

2.单片机的选择单片机作为控制系统的核心,需要选择一个性能稳定的单片机。

一般来说,常用的单片机有STC89C52、AT89C51等。

这些单片机都有着丰富的外设资源和稳定的性能,非常适合作为光伏板自动跟踪系统的控制核心。

3.系统电路设计在选择好光敏元件和单片机之后,需要设计系统的电路。

通常来说,系统的电路包括光敏元件的接入电路、单片机的控制电路和电机的驱动电路。

光敏元件的接入电路需要将它的电压或电阻值转换成单片机可以接受的电信号,单片机的控制电路需要根据光照信息来控制电机的转动方向和转动速度,而电机的驱动电路则需要提供足够的电流来驱动电机的正常工作。

4.软件程序设计软件程序设计是整个系统设计中最重要的一部分。

软件程序需要根据光敏元件获取的光照信息来控制电机的转动,以使光伏板始终与太阳保持最佳的接收角度。

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计解决方案:跟踪系统驱动器接口电路步进电机驱动电路限位信号采集电路太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。

但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。

跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。

光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。

光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。

而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。

该系统适用于各种需要跟踪太阳的装置。

该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。

系统总体设计本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。

跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。

太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。

太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。

太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。

系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。

上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。

太阳光自动跟踪控制器设计 OPA2132

太阳光自动跟踪控制器设计 OPA2132

太阳光自动跟踪控制器设计摘要近年,能源是人类面临经济发展和环境维护平衡需要解决的最根本最重要的问题。

太阳能是一种极为丰富的清洁能源,同时通常最普遍且最方便使用的是电能。

随着现代的能源越来越少,有些能源趋于匮乏状态。

所以我们就根据实际情况设计了一个“太阳光自动跟踪控制器”。

现在,我们居住的家园以太阳光最为普遍,它给我们带来了光和热,我们就要合理的利用光和热,来为我们服务。

我们就通过设计的“太阳光自动跟踪控制器”来实现太阳光跟踪。

我们设计的是根据光转换电来实现功能,首先,我们选光敏传感器来实现光电转换,其次,通过OPA2132PA来实现差分运算放大,再由继电器实现电机的正、反转,去控制翻转板的运动。

从而实现太阳光自动跟踪。

光敏传感器分别由两只光敏电阻串联交叉组合而成,每一组的两只光敏电阻中的一只为比较器的上偏置电阻,另一只为下偏置电阻:一只检测太阳光照,另一只检测环境光照,送至比较器输入端的比较电平始终为两者光照之差。

所以,本控制器能使太阳能接收装置四季全天候跟踪太阳光,调试简单,成本不高,运行可靠。

[关键词]:光敏电阻,OPA2132PA,继电器,直流电机,光电池翻转板。

目录摘要 (1)目录 (III)引言 (5)1 毕业设计的基本任务 (5)2 已有的实验基础和预期结果 (5)3 毕业设计所完成的主要内容 (5)第一章自动跟踪控制器概论 (6)1.1 概述 (6)1.2 设计原则 (6)1.2.1 通用性 (6)1.2.2 实用性 (6)1.3 系统组成及功能 (6)1.3.1 太阳光自动跟踪控制器的组成 (6)1.3.2 功能及工作原理介绍 (7)第二章设计方案与原理概述 (10)2.1 设计的要求 (10)2.1.1 光敏传感器 (10)2.1.2 OPA2132PA运算放大器 (10)2.1.3 继电器 (10)2.2 方案论证 (11)2.2.1 运算放大器的选择 (11)2.3 工作原理分析 (11)2.4 设计中注意的问题 (13)2.4.1 集成电路的选择和使用 (13)第三章设计实现 (14)3.1 PROTEL99SE概述 (14)3.2 电路原理图设计 (14)3.2.1 Protel99SE电路原理图常用工具栏 (14)3.2.2 电路原理图的设计步骤 (14)3.3 印制电路板设计 (15)3.3.1 Protel印制电路板设计工具的应用 (15)3.3.2 PCB布局布线规则 (15)3.3.3 印制电路板设计注意事项 (16)3.4 PROTEL99SE的一些小窍门 (17)3.5 PCB板的安装焊接 (17)3.5.1 元器件的安装 (18)3.5.2 PCB板的焊接 (18)第四章调试 (21)4.1 电路板元件的安装和焊接 (21)4.1.1 元器件的安装 (21)4.1.2 电路板元件的焊接 (21)4.2 电路板的调试 (22)4.2.1 装配工艺检查 (22)4.2.2 通电测试 (22)总结 (24)参考文献 (25)致谢 (26)附录 (I)附录1:太阳光自动跟踪控制器原理图 (I)附录2:太阳光自动跟踪控制器PCB板 (II)附录3:采用LM358作运放的原理图 (III)附录4:元器件清单 (IV)附录5:太阳光自动跟踪控制器实物图 (V)引言1 毕业设计的基本任务本毕业设计的基本任务是学习掌握自动跟踪控制器的基本原理和技术的实现,并在此基础上对该控制器进行扩展。

太阳光自动跟踪仪系统设计论文

太阳光自动跟踪仪系统设计论文

太阳光自动跟踪仪系统设计论文内蒙古科技大学本科生毕业设计说明书题目:太阳光自动跟踪仪系统设计以常规能源为基础的能源结构随着资源的不断耗用将愈来愈不适应可持续发展的需要,加速开发利用以太阳能为主体的可再生能源己成为人们的共识。

光伏发电系统可以直接将太阳光能转换为高品位能源—电能。

由于太阳在天空中的位置是不断变化的,为此本文采用了自动跟踪系统。

介绍了目前国内太阳跟踪器的发展现状,各类跟踪器的性能特点。

对目前跟踪器存在的问题进行了分析,提出了新型自适应复精度太阳跟踪平台和通过单片机控制步进电机的太阳跟踪平台的系列方案。

关键词:太阳能自动跟踪摘要 (I)Abstract (II)第一章绪论太阳能光伏发电概述 (1)1.1 开发新能源的迫切需要 (1)1.2 光伏发电的特点 (1)1.3 光伏发电的现状及发展前景 (2)1.4 光伏发电系统的简单介绍 (4)1.5 本课题研究目的及所做的工作 (5)第二章光伏电池的研究与分析 (6)2.1 光伏电池的原理 (6)2.1.1 光伏电池的光伏效应 (6)2.1.2 光伏电池的物理模型 (7)2.2 光伏电池的输出特性及其影响因素 (9)2.2.1 光伏电池的I-V和P-V特性曲线 (9)2.2.2 光伏电池的主要参数 (10)2.2.3 太阳的光照强度对光伏电池转换效率的影响 (11)2.2.4 温度对光伏电池输出特性的影响 (12)第三章光伏发电系统中聚光器的研究与设计 (13)3.1 聚光比 (13)3.2 典型聚光器的性能分析 (14)3.2.1抛物面反射镜的聚光性能 (14)3.2.2复合抛物面(CPC)聚光器 (16)3.2.3折射式菲涅尔聚光器 (17)3.3 聚光器的选择和开发 (19)3.3.1 聚光器的选择 (19)3.3.2 CPC聚光器的实际应用设计 (20)第四章光伏电池最大功率点的跟踪 (22)4.1 最大功率点跟踪及其实现目标 (22)4.2 常用最大功率点跟踪方法比较 (22)4.2.1 电压反馈法 (22)4.2.2 扰动法 (23)4.2.3 电导增量法 (25)4.3 最大功率点控制方法的选择及改进—断续扰动法 (26)第五章自动跟踪系统 (27)5.1 自动跟踪器的研究概况 (27)5.1.1 国内太阳能自动跟踪器的研究现状 (27)5.1.2 目前太阳能自动跟踪器所存在的问题 (29)5.1.3 新型跟踪平台的开发 (31)5.2 自适应复精度太阳跟踪平台 (31)5.2.1 太阳位置探测单元 (32)5.2.2 信号处理与控制单元 (34)5.2.3 动力单元 (37)5.2.4 实际电路 (39)5.3 通过单片机控制步进电机的太阳跟踪平台 (41)5.3.1 自动跟踪系统的工作原理 (41)5.3.2 传感器光敏二极管的工作过程 (41)5.3.3 步进电机及其特性 (44)5.3.4 基于单片机ADμC812控制的驱动电路 (46)5.3.5 自动跟踪的控制电路 (54)5.3.6 软件流程 (54)第六章蓄电池 (56)6.1 蓄电池的概念 (56)6.2 光伏发电系统蓄电池的选用 (56)6.3 铅酸蓄电池的电池反应 (57)6.4 铅酸蓄电池的充放电特性 (58)6.5蓄电池容量的设计及其充电特性 (60)6.5.1 蓄电池容量的设计 (60)6.5.2蓄电池的充电特性 (61)第七章结论 (62)参考文献 (63)致谢 (64)第一章绪论太阳能光伏发电概述1.1开发新能源的迫切需要人们很难想象,如果没有电人类的生活会变成什么样子。

太阳位置自动追踪系统的设计

太阳位置自动追踪系统的设计

太阳位置自动追踪系统的设计摘要:随着太阳能利用技术的进步,太阳能系统的效率和功率输出已经成为人们关注的焦点。

为了最大程度地提高太阳能系统的效能,太阳位置自动追踪系统应运而生。

本文将介绍原理以及实现方法,并对其应用前景进行谈论。

一、引言太阳能是一种清洁、可再生的能源,具有丰富的资源和宽广的利用前景。

然而,太阳能的效率受多种因素影响,其中太阳的位置是重要的影响因素之一。

传统的太阳能系统通常接受固定的安装角度来抓取太阳的光照,但因为太阳的位置在不息变化,这种固定角度的安装方式无法充分利用太阳能资源。

因此,对于提高太阳能利用效率至关重要。

二、原理原理基于太阳在天空中的运动规律。

太阳每天从东方升起,经过正午后逐渐西沉,最后在西方落下。

太阳位置自动追踪系统通过测量太阳的方位角和高度角,实时调整太阳能系统的朝向角度,以保持最佳的光照接见效果。

详尽而言,太阳位置自动追踪系统包含三个主要组成部分:太阳位置传感器、控制算法和驱动装置。

太阳位置传感器通常接受光电二极管或CCD摄像头来感知太阳的方位角和高度角。

控制算法负责依据传感器测量的太阳位置信息计算出太阳能系统的朝向角度,并将结果传递给驱动装置。

驱动装置依据控制信号调整太阳能系统的朝向角度,以实现太阳自动追踪。

三、太阳位置自动追踪系统的实现方法1. 太阳位置传感器的选择:太阳位置传感器是太阳位置自动追踪系统的核心组件,其准确度和响应速度直接影响系统的性能。

传感器的选择要思量其测量范围、灵敏度、抗干扰能力等因素,以满足太阳位置测量的要求。

2. 控制算法的设计:依据太阳位置传感器测量的太阳位置信息,控制算法需要能够快速准确地计算出太阳能系统的朝向角度。

控制算法可以接受传统的PID控制方法或更高级的模糊控制、神经网络控制等方法,以实现最优的追踪精度和响应速度。

3. 驱动装置的选型:驱动装置依据控制信号调整太阳能系统的朝向角度,常见的驱动装置包括电动驱动装置和液压驱动装置。

太阳能跟踪控制器设计

太阳能跟踪控制器设计

太阳能跟踪控制器设计摘要:本文对太阳能跟踪系统进行了自动跟踪系统控制部分设计。

系统采用光电检测追踪实现对太阳光线的跟踪,从而提高太阳能的利用效率。

关键词:太阳能;跟踪;光敏电阻;单片机;步进电机中图分类号:tm615 文献标识码:a 文章编号:1674-7712 (2013)08-0000-01一、太阳能自动跟踪系统总体设计(一)光源检测方案的确定1.视日运动轨迹跟踪不论是采用极轴坐标系统还是地平坐标系统,太阳运行的位置变化都是可以预测的,通过数学上对太阳轨迹的预测可完成对日跟踪。

在设定跟踪地点和基准零点后,控制系统会按照太阳的地平坐标公式自动运算太阳的高度角和方位角。

然后控制系统根据太阳轨迹每分钟的角度变化发送驱动信号,实现跟踪装置两维转动的角度和方向变化。

在日落后,跟踪装置停止跟踪,按照原有跟踪路线返回到基准零点。

优点:精度高,不受环境因素影响,但是不同地区需要设置不同的初始值,。

缺点:系统复杂,但是不同地区需要设置不同的初始值,太过于复杂。

2.光电跟踪光线在同种均匀介质中沿直线传播,不能穿过不透明物体而形成的较暗区域,形成的投影就是常说的影子,地球每天不停的自转,同时它要围绕太阳作公转,因此,地球和太阳的相对位置是在不停的变化,太阳光照射在地球上的影子也随之变化。

因此,如果在地球上的某个位置放置一个不同透光的物体,那么,这个物体在太阳光的照射下就会产生影子,而这个影子的长度也会随太阳和地球空间位置的相对变化而产生变化。

我们将影子的变化转换为电压的变化,并且通过调节机械部分来调节影子的变化从而达到调节电压的变化达到我们的目的,这样也可以构成一个闭环系统。

这样一来我们就考虑用光敏行性器件来检测太阳的变化从而实现光电跟踪。

优点:成本低,思路简单,容易实现。

缺点:容易受阴天雨天的影响。

3.采集传感器的选择方案一:采用光敏电阻作为轨迹的采集器件。

光敏电阻的值能随光强的变化而变化,光敏电阻的测量灵敏度较高。

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究太阳能双轴自动跟踪系统设计与研究一、引言近年来,随着全球对清洁能源需求的不断增加,太阳能作为一种绿色环保的能源形式,受到了广泛的关注和研究。

太阳能光伏系统的效率取决于太阳光的照射角度,而太阳能跟踪系统能够实时调整太阳能电池板的位置,以最佳角度接收太阳光,从而提高能源转化效率。

因此,对太阳能双轴自动跟踪系统的设计与研究具有重要意义。

二、太阳能双轴自动跟踪系统的工作原理太阳能双轴自动跟踪系统主要由光敏电阻、控制电路、电机、轴承和太阳能电池板等组成。

光敏电阻用于实时感知光照强度,然后通过控制电路对电机进行驱动,使太阳能电池板跟随太阳的运动。

该系统的工作原理如下:1. 光敏电阻感知:将光敏电阻安装在太阳能电池板的一侧,用于感知光照的强度。

电阻的电阻值与光照强度呈反比关系,因此可以通过电阻值来判断光照的强弱。

2. 控制电路驱动:利用控制电路对电机进行驱动,实现太阳能电池板的双轴自动跟踪。

控制电路根据光敏电阻感知到的电阻值来判断光照的强弱,并根据一定的算法计算出电机驱动的方向和速度,以实现太阳能电池板的准确跟随。

3. 电机驱动:太阳能双轴自动跟踪系统采用两个电机,分别用于水平轴和垂直轴的驱动。

电机通过与控制电路的配合,实现太阳能电池板的水平和垂直方向的旋转,使其能够跟随太阳的运动轨迹,并保持最佳接收太阳光的角度。

4. 轴承:太阳能电池板通过轴承连接到电机,以实现旋转。

轴承设计应具有较高的承载能力和较小的摩擦阻力,确保太阳能电池板的平稳运转。

三、太阳能双轴自动跟踪系统的设计要点1. 光敏电阻的选择:选择感光度高、响应速度快、稳定性好的光敏电阻,以确保系统能够准确感知光照强度变化。

2. 控制电路的设计:控制电路要能够准确判断光敏电阻感知到的光照强度,根据一定的算法计算出电机驱动的参数,并能够稳定、准确地驱动电机。

3. 电机的选用:选择符合系统需求的电机,应考虑电机的转速、转矩和功率等参数,并能够与控制电路进行良好的配合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳光跟踪系统设计
于 晨 2011307200706 刘承通 2011307200701 杨朱萍 2011307200729 周晓玲 2011307200730

目录
1,设计理念.....................................................................................................................................2 2,创意来源.....................................................................................................................................2 3,系统框图设计 ............................................................................................................................. 3 4, 系统主要元器件选择................................................................................................................3 5,传感器设计.................................................................................................................................5 6,系统电路图设计 ......................................................................................................................... 6 7,设计难点.....................................................................................................................................7 8,MSP430F149 定时器 .................................................................................................................8 9,程序设计...................................................................................................................................10 10,结论......................................................................................................................................... 18 11 心得体会....................................................................................................................................18
2,创意来源
当今社会,随着对新能源技术的重视度加深,新能源应用技术方面也得到了 很大的发展;太阳能作为最有潜力的新型能源,其利用将是极具吸引力的。
当前由于太阳能的使用受到诸多的局限,一方面是自然条件的局限,因为太 阳的方向是时刻改变着的,而基本架设的太阳能电池板是固定不动的,这样,在 一天的时间内,固定方向的太阳能接收能力自然是有限的;另一方面是科技水平 的局限,即当前生产出来的太阳能——电能转化设备的效率并不高,以至于无法 提供较大的功率。
1
1,设计理念
太阳能是一种应用前景无限宽广的新型能源,如何高效的运用太阳能是当前 的一大研究主题,应用太阳能一方面是要有很好的光能转化效率,最基本的是要 能充分的利用能接收光照的时间,另一方面则是要降低系统设计的功耗,即尽可 能少的消耗能量。
本设计利用光敏电阻构成的测光电路对太阳光方向进行检测,将检测信息传 给 CPU,CPU 通过传来的检测信息,改变控制舵机的信号使检测系统能调整到 正对太阳光的方向,即实现了对太阳光的跟踪;太阳的方位在一天的时间中总是 在改变,能始终捕获到太阳的方向,就相当于可以提高接收光能的时间,这样就 可以尽可能多的获取太阳能。
超低功耗处理芯片的使用,及小型舵机的使用,加上系统的低功耗设计模式 (如一般分压时采用大的电阻来降低电流损耗)可以为系统尽可能的减小功耗。
本设计旨在能最大限度的使用新型能源——太阳能;因为有了对太阳光方向 的跟踪,就可以实时的将系统调整到太阳光正对的方位,如太阳能电池板等,这 样就可以获得最大的太阳光能量。
满足要求,这里选用常用的 MSP430F149 单片机作为核心处理器件;通过软件的 编程,周期的唤醒 CPU 以降低在其上的功耗。
本系统设计通过光照检测,最终达到系统能自动识别光照方向,实现自动调
2
整,始终跟踪太阳光;至于加载高性能的太阳能电池板对系统进行供电,暂时不 作扩充,但是本设计的最终目的在于配合太阳能电池板的使用,提高光能的使用 效率。
3,系统框图设计
4, 系统主要元器件选择
(1)CPU 的选择 控制系统只需要输出 PWM 调制波形即可,一般的 MSP430 系列单片机均能
相关文档
最新文档