乐山市市中区2018.1八年级上数学期末考试题
四川省乐山市八年级上学期数学期末考试试卷
![四川省乐山市八年级上学期数学期末考试试卷](https://img.taocdn.com/s3/m/9b031834c8d376eeafaa3105.png)
四川省乐山市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分.) (共10题;共30分)1. (3分) (2018八上·芜湖期末) 一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A . 3cmB . 4cmC . 7cmD . 11cm2. (3分) (2018七下·防城港期末) 在平面直角坐标系中,点P(3,4)位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (3分)(2017·上思模拟) 正比例函数y=3x的大致图象是()A .B .C .D .4. (3分)下列不等式不能化成x>-2的是()A . x+4>2B . x->-C . -2x>-4D . x>-15. (3分) (2019八上·下陆期末) 如图为用直尺和圆规作一个角等于已知角,那么能得出∠A′O′B′=∠AOB 的依据是运用了我们学习的全等三角形判定()A . 角角边B . 边角边C . 角边角D . 边边边6. (3分)下列命题中,正确的有()①Rt△ABC中,已知两边长分别为3和4,则第三边长为5;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,C,若a2+c2=b2 ,那么∠C=90°;④若△ABC中,∠A:∠B:∠C=1:5:6,则△ABC是直角三角形.A . 1个B . 2个C . 3个D . 4个7. (3分)下列说法错误的是()A . Rt△ABC中,AB=3,BC=4,则AC=5B . 极差能反映一组数据的变化范围C . 经过点A(2,3)的双曲线一定经过点B(-3,-2)D . 连接菱形各边中点所得的四边形是矩形8. (3分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A . ①②③B . ①②C . ①③D . ②③9. (3分) (2019九上·南关期末) 我国古代数学《九章算术》中,有个“井深几何”问题:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1尺=10寸),问井深几何?其意思如图所示,则井深BD 的长为()A . 12尺B . 56尺5寸C . 57尺5寸D . 62尺5寸10. (3分) (2017八下·常州期末) 如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2),作点P关于点A的对称点P1 ,作点P1关于点B的对称点P2 ,作点P2关于点C的对称点P3 ,作点P3关于点D的对称点P4 ,作点P4关于点A的对称点P5 ,作点P5关于点B的对称点P6 ,…,按此规律操作下去,则点P2017的坐标为()A . (2,0)B . (0,2)C . (0,﹣2)D . (﹣2,0)二、填空题(本题有8小题,每小题3分,共24分) (共8题;共24分)11. (3分) (2019八下·东台期中) 若分式有意义,则x的取值范围是________.12. (3分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式________13. (3分) (2018八上·珠海期中) 点M与点N(-2,-3)关于y轴对称,则点 M 的坐标为________.14. (3分)(2016·湖州) 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是________.15. (3分)如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠B的度数是________ 度16. (3分) (2019八下·北京期中) 在平面直角坐标系xOy中,二元一次方程ax+by=c的图象如图所示.则当x=3时,y的值为________.17. (3分) (2019七下·哈尔滨期中) 在△ABC中,∠ACB=60°,CE为△ABC的角平分线,AC边上的高BD 与CE所在的直线交于点F,若∠ABD:∠ACF=2:3,则∠BEC的度数为________.18. (3分) (2017九上·台州月考) 如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为________.三、解答题(本题有6小题,共46分) (共6题;共46分)19. (8分) (2017七下·大冶期末) 解不等式组,并把解集在数轴上表示出来.20. (6分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种不同方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.答案涂在答卷相应的位置.21. (6分)(2014·扬州) 已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P 点处.(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.22. (8分)在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A′BO′,点O,A旋转后的对应点为O′,A′,记旋转角为β.(1)如图1,若β=90°,求AA′的长;(2)如图2,若β=120°,求点O′的坐标.23. (8分) (2016八上·淮阴期末) 如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1 , y2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A,B两地相距________千米;货车的速度是________千米/时.(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数表达式;(3)客、货两车何时相遇?24. (10.0分) (2019九上·江都月考) 如图1,一次函数y=﹣x+10的图象交x轴于点A,交y轴于点B.以P(1,0)为圆心的⊙P与y轴相切,若点P以每秒2个单位的速度沿x轴向右平移,同时⊙P的半径以每秒增加1个单位的速度不断变大,设运动时间为t(s)(1)点A的坐标为________,点B的坐标为________,∠OAB=________°;(2)在运动过程中,点P的坐标为________,⊙P的半径为________(用含t的代数式表示);(3)当⊙P与直线AB相交于点E、F时①如图2,求t= 时,弦EF的长;②在运动过程中,是否存在以点P为直角顶点的Rt△PEF,若存在,请求出t的值;若不存在,请说明理由(利用图1解题).参考答案一、选择题(本题有10小题,每小题3分,共30分.) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题有8小题,每小题3分,共24分) (共8题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本题有6小题,共46分) (共6题;共46分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
2018年八年级数学上期末数学试题
![2018年八年级数学上期末数学试题](https://img.taocdn.com/s3/m/7d479da6c77da26925c5b09f.png)
62084绿色红色黄色2018—2019学年度第一学期期末调研试卷八年级数学2018年1月一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1x 的取值范围是 A .3x ≥B .0x ≥C .3x >D .3x ≠2.在下列实数中,无理数是A .13BC .0D .93.9的平方根是 A .3B .3±C .D .814.下列事件中,属于不确定事件的是A .科学实验,前100次实验都失败了,第101次实验会成功B .投掷一枚骰子,朝上面出现的点数是7点C .太阳从西边升起来了D .用长度分别是3cm ,4cm ,5cm 的细木条首尾顺次相连可组成一个直角三角形 5.小明的妈妈让他在无法看到袋子里糖果的情形下从中任抽一颗.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同.如果袋中所有糖果数量统计如图所示,那么小明抽到红色糖果的可能性为 A .518 B .115C .215D . 136.甲骨文是我国一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是A B C D7.如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .扩大为原来的10倍 B .扩大为原来的20倍 C .缩小为原来的110D .不改变8.如果实数a =a 在数轴上对应点的位置如图所示,其中正确的是x -1aaA Ba -1xa-1xCD二、填空题(本题共16分,每小题2分) 9的相反数是 .10.如果分式21x x -+的值为0,那么x =.11.如果实数a .12.2017年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中圆地球轨道卫星,是我国北斗三号第一、二 颗组网卫星,开启了北斗卫星导航系统全球 组网的新时代.如图所示,在发射运载火箭时,运载火箭 的发射架被焊接成了许多的三角形,这样做的原因是:.13.如图,在Rt △ABC 中,AB =9,BC =6,∠B =90°,如果将△ABC 折叠,使A 点与BC的中点D 重合,折痕为MN ,那么线段BN 的长是 . 14. 关于x 的一元二次方程2104ax bx ++=有两个相等 的实数根,写出一组满足条件的实数a ,b 的值, a = ,b = .15.学习了等腰三角形的相关内容后,张老师请同学们交流这样一个问题:“如果一个等腰三角形的两边长分别为2和5,求它的周长”.同学们经过片刻的思考和交流后,小明同学举手讲“它的周长是9或12”,你认为小明的回答是否正确: ,你的理由是 . 16.学习了“分式的加法”的相关知识后,小明同学画出了下图:请问他画的图中①为 ,②为 .ABC D MN三、解答题 (本题共45分,每小题5分)解答应写出文字说明、证明过程或演算步骤.172.18.解方程:2410x x +-=.19.已知30a b -=,求()222a ba b a ab b -⋅+++的值.20.解方程:22111x x x -=--.21.阅读材料,并回答问题:小明在学习分式运算过程中,计算1122x x -+-的解答过程如下: 解:1122x x -+- ① ()()()()222222x x x x x x -+=-+--+ ② ()()22x x =--+ ③ 22x x =--- ④4.=- ⑤问题:(1)上述计算过程中,从 步开始出现了错误(填序号);(2)发生错误的原因是: ; (3)在下面的空白处,写出正确的解答过程:22.已知:如图,∠BAC =∠DAC .请添加一个条件 ,使得△ABC ≌△ADC ,然后再加以证明.23.已知:如图,△ABC 是等边三角形,E 是AC 上一点,D 是BC 延长线上一点,连接BE 和DE ,如果∠ABE =40°,BE =DE . 求∠CED 的度数.24.如图,电信部门要在公路m 和公路n 之间的区域内修建一座电视信号发射塔P .按照设计要求,发射塔P 到地点A 和地点B 的距离相等,到两条公路m 和公路n 的距离也相等.AB公路n公路m(1)在所给的图中,作出发射塔P 所处的位置(尺规作图,保留作图痕迹,不写作法);(2)简单说明作图的依据.DE CABBACD25.列方程解应用题:为了缓解北京市西部地区的交通拥堵现象,市政府决定修建本市的第一条磁浮地铁线路——“S1线”.该线路连接北京城区与门头沟,西起石门营,向东经苹果园,终点至慈寿寺与6号线和10号线相接.为使该工程提前4个月完成,在保证质量的 前提下,必须把工作效率提高10%.问原计 划完成这项工程需用多少个月.四、解答题 (本题共23分,第26题7分,第27、28题,每小题8分)解答应写出文字说明、证明过程或演算步骤.26.已知关于x 的一元二次方程()231230.mx m x m -+++= (1)如果该方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,当该方程的根都是整数,且4x <时,求m 的整数值.27.阅读材料:我们定义:如果一个数的平方等于1-,记作21i =-,那么这个i 就叫做虚数单位. 虚数与我们学过的实数合在一起叫做复数. 一个复数可以表示为a bi +(a ,b 均为实数)的形式,其中a 叫做它的实部,b 叫做它的虚部.复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似. 例如 计算:()()()()53453483.i i i i i ++-=++-=- 根据上述材料,解决下列问题: (1)填空:3i = ,4i = ; (2)计算:()22i +; (3)将11ii+-化为a bi +(a ,b 均为实数)的形式(即化为分母中不含i 的形式).28.已知:在△ABC 中,∠CAB =90°,AB =AC .(1) 如图1,P ,Q 是BC 边上两点,AP =AQ ,∠BAP =20°,求∠AQB 的度数; (2) 点P ,Q 是BC 边上两动点(不与B ,C 重合),点P 在点Q 左侧,且AP =AQ ,点Q 关于直线AC 的对称点为M ,连接AM ,PM . ① 依题意将图2补全;② 小明通过观察和实验,提出猜想:在点P ,Q运动的过程中,始终有PM =. 他把这个猜想与同学们进行交流,通过讨论,形成以下证明猜想的思路:(Ⅰ)要想证明PM =,只需证△APM 为等腰直角三角形; (Ⅱ)要想证明△APM 为等腰直角三角形,只需证∠P AM =90°,P A =AM ;…请参考上面的思路,帮助小明证明PM =.图1 图2ABCPQABC2018—2019学年度第一学期期末调研试卷八年级数学答案及评分参考 2018年1月三、解答题(本题共45分,每小题5分) 17.计算(本小题满分5分)2.解:原式22=-………………………………………………………………3分4=-…………………………………………………………………………5分18.解方程(本小题满分5分)2410x x +-=.解:24414x x ++=+………………………………………………………………………1分()225x +=…………………………………………………………………………2分2x +=3分∴12x =-,22x =-………………………………………………………5分 19.(本小题满分5分) 解:()222a ba b a ab b -⋅+++()()2a ba b a b -=⋅++……………………………………………………………………2分.a ba b-=+…………………………………………………………………………………3分 当30a b -=,即3a b =时,原式31.32a b b b a b b b --===++……………………………………5分20.解方程(本小题满分5分)22111x x x -=--. 解:()()2222211111x x x x x x ---=--- …………………………………………1分 ()2121x x x +-=- ……………………………………………………………2分2221x x x +-=- ………………………………………………………………3分 2212x x x +-=-+1.x = ………………………………………………………………4分经检验1x =是增根,舍去.∴ 原方程无解.……………………………………………………………………5分 21.阅读材料,并回答问题(本小题满分5分) 解:(1)从第③步开始出现错误;………………………………………………………1分 (2)略;………………………………………………………………………………2分 (3)1122x x -+- ()()()()222222x x x x x x -+=-+--+ ()()()()2222x x x x --+=+- (3)分()()422x x -=+-……………………………………………………………………4分24.4x =--…………………………………………………………………………5分 22.(本小题满分5分) 解:(1)添加条件正确;………………………………………………………………1分 (2)证明正确. ……………………………………………………………………5分 23.(本小题满分5分)解:∵ △ABC 是等边三角形,∴ ∠ABC =∠ACB =60°. …………………………… 2分 ∵ ∠ABE =40°,∴ ∠EBC =∠ABC -∠ABE =60°-40°=20°.……… 3分 ∵ BE =DE ,∴ ∠D =∠EBC =20°. ……………………………… 4分∴ ∠CED =∠ACB -∠D =60°-20°=40°. ……………………………………… 5分DEAB24.(本小题满分5分) 解:(1)作图正确;………………………………………………………………………2分 (2)理由正确. ……………………………………………………………………5分 25.列方程解应用题(本小题满分5分)解:设原计划完成这项工程需用x 个月.………………………………………………1分由题意得 ()11110%.4x x +=-………………………………………………………2分 解得 44.x =……………………………………………………………………………3分经检验44x =是原方程的解,并且符合题意. ………………………………………4分 答:原计划完成这项工程需用44个月.…………………………………………………5分四、解答题(本题共23分,第26题7分,第27、28题,每小题8分) 26.(本小题满分7分)解:(1)由题意 m ≠0, ……………………………………………………………… 1分 ∵ 方程有两个不相等的实数根,∴ △>0. …………………………………………………………………… 2分即 22[3(1)]4(23)(3)0m m m m -+-+=+>.得 m ≠﹣3. …………………………………………………………………… 3分 ∴ m 的取值范围为m ≠0和m ≠﹣3; (2)∵ 23(1)230mx m x m -+++=.∴ 2(3)m ∆=+, ∴ 33(3)2m m x m+±+=.∴ 132x m =+,21x =.……………………………………………………… 5分 当 132x m=+是整数时,可得m =1或m =﹣1或m =3.…………………………………………………… 6分∵ 4x <,∴ m 的值为﹣1或3 . ……………………………………………………… 7分27.(本小题满分8分) 解:(1)填空:3i i =-,41i =;………………………………………………………2分(2)计算:()2224444134i i i i i +=++=+-=+;…………………………………5分(3)化简:()()()()22211121212.1111112i i i i i ii i i i i +++++-=====--+---………………………8分八年级数学试卷 第 11 页 共 11 页 28.(本小题满分8分)解:(1)∵ △ABC 为等腰直角三角形,…………………………………………………1分∴ ∠B =45°.∴ ∠APC =∠BAP +∠B =65°.∵ AP =AQ ,∴ ∠AQB =∠APC =65°. ………………………………………………………2分(2)① 补全图形,如图所示. ………………………………………………………3分证明:如图,连接CM . ∵ △ABC 为等腰直角三角形,∴ ∠B =∠ACB ,∠BAC =90°. 又∵ AP =AQ ,∴ ∠APQ =∠AQB . ∴ ∠APB =∠AQC .∴ △APB ≌△AQC (AAS ). ………………………………………………4分 ∴ ∠1=∠2 .又∵ 点Q 关于直线AC 的对称点为M ,连接AM ,CM .∴ △AMC ≌△AQC . ………………………………………………………5分 ∴ ∠2=∠3,AM=AQ .∴ ∠1=∠3 .又∵∠BAC =∠P AC +∠1=90°,∠P AM =∠P AC +∠3,∴ ∠PAM =∠BAC =90°.………………………………………………………6分 又∵ AP=AQ ,AM=AQ .∴ AP=AM . ……………………………………………………………………7分 ∴ △P AM 为等腰直角三角形,∴由勾股定理得.PM ………………………………………………8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2018年八年级上册数学期末考试试卷及答案
![2018年八年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/45677b94cf84b9d529ea7a5a.png)
八年级上册数学期末试卷及答案(总分 100分答卷时间 120分钟)一、 选择题:本大题共 8 小题,每小题 2 分,共 16 分.在每小题给出得分评卷人的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入....题前括号内.【】 1. 计算( a 2 ) 3 的结果是A . a 5B . a 6C .a 8D . 3 a 2【】 2. 若正比例函数的图像经过点(-1,2),则这个图像必经过点A .( 1,2)B . (- 1,- 2)C . ( 2,- 1)D .( 1,- 2)【 】 3. 下列图形是轴对称图形的是A .B .C .D .【】 4. 如图,△ ACB ≌△ A ’CB ’,∠ BCB ’=30°,则∠ ACA ’的度数为A .20°B . 30°AC . 35°D .40°B【】5.一次函数 y=2x -2 的图象不经过 的象限是 ...A .第一象限B .第二象限C .第三象限D .第四象限B(第4题)【】 6. 从实数2,1, 0, , 4 中,挑选出的两个数都是无理数的为132,4D .2,A .,0B . ,4C .3【】 7. 若 a0 且 a x 2 , a y3 ,则 ax y的值为千米s/A .-1B . 12 D .3 3C .232 【】 8. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走1 的路程 s(单位:千米)与时间 t(单位:分)之间的函数关系如图所示.放学后如果O按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为A .12 分B .10 分C .16 分D .14 分AC610t/分(第 8题)得分评卷人二、填空题:本大题共10 小题,第9~ 14题,每小题 2 分,第15~ 18题,每小题 3分,共 24 分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:2x31x2=.810.一次函数y(2 k4) x 5 中,y随x增大而减小,则k 的取值范是.11.分解因式:m2n mn2=.A12.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,D 交 AC 于点 D,交 BC 于点 E. 已知∠ BAE=16°,则∠ C 的度数为.B E C(第 12题)13.计算:( 1)2009-(- 3)0+ 4 =.14.当s t1时,代数式 s22st t 2的值为.y215.若x25( y16)20,则x+y=.BO xy kx b A( 1, 2),y 2x AB(16.如图,直线经过点和点 2 0),直线(第 16 题)过点 A,则不等式2x kx b 0的解集为.17.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为 66°,那么在大量角器上对应的度数为__________ °(只需写出 0°~ 90°的角度).(第 17 题)18.已知△ABC中,AB =BC≠AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出个.三、解答题:本大题共 10小题,共 60 分.解答时应写出文字说明、证明过程或演算步骤.得分评卷人(19~20 题,第 19 题 6 分,第 20 题 5 分,共 11 分)19.(1)化简:(a 2b)( a 2b)1b (a 8b) .(2)分解因式:x32x2x .220.如图,一块三角形模具的阴影部分已破损.( 1)如果不带残留的模具片到店铺加工一块与原来的模具△ABC的形状和大小完全相同的模具△A B C ,需要从残留的模具片中度量出哪些边、角?请简要说明理由.( 2)作出模具△A B C的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).AB C(第 20 题)得分评卷人(第 21题 5分,第 22题5分,共 10分)21.已知x25x14 ,求 x 1 2x 12x 1 1 的值.22.如图,直线l1:y x 1与直线 l 2:y mx n 相交于点 P(1, b) .(1)求b的值;(2)不解关于x,x y 10y 的方程组请你直接写出它的解.mx y n0yl1b PO1xl2得分评卷人(第 23题 5分,第 24题 6分,共 11分)(第 22题)23.如图,在平面直角坐标系xoy 中, A( 15),,B( 1,0), C(4,3) .(1)在图中画出△ABC关于y轴的对称图形△A1B1C1;(2)写出点 A1,B1,C1的坐标.y6A4C2-5BO5x-2(第 23题)八年级试卷、教案24.如图,四边形ABCD 的对角线 AC 与 BD 相交于 O 点,∠ 1=∠2,∠ 3=∠ 4.求证: ( 1) △ ABC≌△ ADC ;( 2) BO=DO.BA 13C 2O4D(第 24 题)得分评卷人(第 25题 6分,第 26题 6分,共 12分)25.只利用一把有刻度的直尺,用度量的方法,按下列要求画图:...( 1) 在图 1 中用下面的方法画等腰三角形ABC 的对称轴.①量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点 D ;②画直线 AD,即画出等腰三角形ABC 的对称轴.( 2)在图 2 中画∠ AOB 的对称轴,并写出画图的方法.【画法】ABB C O A图 1图 226.已知线段AC与BD相交于点O,连结AB、DC,E为OB的中点,F为OC的中点,连结 EF (如图所示).(1)添加条件∠ A=∠ D,∠ OEF =∠ OFE,求证: AB=DC.(2)分别将“∠ A=∠ D”记为①,“∠ OEF=∠OFE ”记为②,“ AB=DC”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题(选择“真”或“假”填入空格,不必证明).ADOE FB C(第 26 题)八年级试卷、教案八年级数学(参考答案)一、选择题(本题共8 小题;每小题 2 分,共 16 分)1.B 2.D3.A4.B 5.B6.D 7.C 8.D二、填空题 (本大题共10 小题,第9~14 题,每小题 2 分,第 15~18 题,每小题3分,共 24分.)9. 1x510.k <-211. m n(m-n)12.37°13.014.144 15. 916.- 2<x<- 117. 48°18. 7三、解答题 ( 本大题共 10 小题,共60分.)19.解:( 1)(a2b)( a2b)18b) b(a2a 24b 21ab4b 2,,,,,,,,,,,,,,,,,,,, 4 分2a 21ab ,,,,,,,,,,,,,,,,,,,,,,,,, 6 分2( 2)x32x2x=x( x2x1),,,,,,,,,,,,,,,,,,,,,, 3 分=x( x1)2,,,,,,,,,,,,,,,,,,,,,, 5 分20.( 1)只要度量残留的三角形模具片的∠B,∠ C 的度数和边 BC 的长,因为两角及其夹边对应相等的两个三角形全等.,,,,,,,,,,, 3 分(2)按尺规作图的要求,正确作出 A B C 的图形.,,,,,,,,,,, 5 分21.解:x 1 2x1x121=2x2x 2 x1( x22x1)1,,,,,,,,,,,,,,,,, 2 分= 2x2x 2 x1x22x 1 1,,,,,,,,,,,,,,,,, 3 分=x25x1,,,,,,,,,,,,,,,,,,,,,,,,,,, 4 分当x2 5x 14 时,原式 = ( x25x) 114115 ,,,,,,,,,,,,,,,,, 5 分22.解:( 1)∵(1,b) 在直线 y x1 上,∴当 x1时, b112.,,,,,,,,,,,,,,,,, 3 分x1,5 分( 2)解是,,,,,,,,,,,,,,,,,,,,,,,,,y 2.23.( 1)画图正确;,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 分( 2)A1(1,5),B1(1,0),C1(4,3) ,,,,,,,,,,,,,,,,,, 5 分24.证明 :( 1) 在△ ABC 和△ ADC 中八年级试卷、教案1 2AC AC 34∴△ ABC≌△ ADC .,,,,,,,,,,,,,,,,,,,,, 3 分(2)∵△ ABC≌△ ADC∴AB=A D,,,,,,,,,,,,,,,,,,,,,,,,,, 4 分又∵∠ 1=∠2∴ BO=DO ,,,,,,,,,,,,,,,,,,,,,,,,, 6 分25. ( 1) 画图正确 ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 分( 2) ①利用有刻度的直尺 , 在∠ AOB 的边 OA、OB 上分别截取 OC、 OD, 使 OC=OD;②连接 CD, 量出 CD 的长 , 画出线段 CD 的中点 E;③画直线 OE, 直线 OE 即为∠ AOB 的对称轴 . ,,,,,,,,,,,, 6 分(作图正确 2 分,作法正确 2 分)26.( 1)∵∠ OEF=∠ OFE∴ OE=OF ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 分∵E 为 OB 的中点, F 为 OC 的中点,∴ OB=OC,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 分又∵∠ A=∠D ,∠ AOB=∠ DOC,△ AOB≌△ DOC,,,,,,,,,,,,,,,,,,,,,,,, 4 分∴ AB=DC ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 5 分( 2)假 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 6 分27.( 1)B( 2,2) ;,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 分(2)∵等腰三角形OBD 是轴对称图形,对称轴是l,∴点 O 与点 C 关于直线 l 对称,∴直线 AC 与直线 l 的交点即为所求的点P.,,,,,,,,,,,,,, 3 分把 x=2 代入y 1 x2,得y=1,2∴点 P 的坐标为 ( 2, 1) ,,,,,,,,,,,,,,,,,,,,,,, 4 分(3)设满足条件的点Q 的坐标为( m,1 m2 ),由题意,得1m 21m 22m 或m ,,,,,,,,,,,,,,,,, 6 分224或 m 4 ,,,,,,,,,,,,,,,,,,,,,,7 分解得m344∴点 Q 的坐标为(4, 4),,,,,,,,,,,,,,8 分,)或(33( 漏解一个扣 2 分)28.( 1)1; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 分(2)易得 y乙=50x- 25,,,,,,,,,,,,,,,,,,,,,,,,, 2 分当 x=5 时, y=225,即得点 C( 5,225).由题意可知点 B( 2, 60),,,,,,,,,,,,,,,,,,,,, 3 分设 BD 所在直线的解析式为 y=kx+b,八年级试卷、教案5k b 225, k 55,∴b 解得b50.2k 60.∴ BD 所在直线的解析式为 y=55x - 50.,,,,,,,,,,,,,,,5 分当 y=300 时, x=70.11答:甲家庭到达风景区共花了706 分h . ,,,,,,,,,,,,,,,,,11( 3)符合约定. ,,,,,,,,,,,,,,,,,,,,,,7 分由图象可知:甲、乙两家庭第一次相遇后在 B 和 D 相距最远.在点 B 处有 y 乙 -y= -5x+25= -5×2+25=15 ≤15;在点 D 有 y —y 乙 =5x -25=75≤ 15.,,,,,,,,,,,,,,,,,8 分11。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)(2)
![2018-2019学年 八年级(上)期末数学试卷(有答案和解析)(2)](https://img.taocdn.com/s3/m/04facd41f242336c1fb95e01.png)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.下列图形是轴对称图形的是()A.B.C.D.2.病毒H7N9的直径为0.000000028米,用科学记数法表示这个病毒直径的大小,正确的是()A.28×10﹣9B.2.8×10﹣8C.0.28×10﹣7D.2.8×10﹣63.若分式有意义,则x的取值范围是()A.x≠0B.x≠3C.x≠﹣3D.x≠﹣4.下列式子正确的是()A.(2a2)3=6a6B.2a2×a4=2a8C.(a+2)2=a2+4D.a﹣2=5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠B=∠E B.BC∥EF C.∠BCA=∠F D.∠A=∠EDF6.如图,直尺经过一副三角尺中的一块三角板DCB的顶点B,若∠C=30°,∠ABC=20°,则∠DEF度数为()A.25°B.40°C.50°D.80°7.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为()A.18或21B.21C.24或18D.188.在平面直角坐标系内,点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,则x+y的值为()A.0B.﹣1C.2D.﹣39.如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线,若∠FCE=52°,则∠A的度数为()A.38°B.34°C.32°D.28°10.体育测试中,甲和乙进行400米跑测试,甲的速度是乙的1.6倍,甲比乙少用了30秒,设乙的速度是x米/秒,则所列方程正确的是()A.40×1.6x﹣30x=400B.﹣=30C.﹣=30D.﹣=3011.如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若DE=2,则AC的值为()A.4B.6C.8D.1012.在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB 边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°二、填空题(本题共6小题,每小题4分,共24分)13.因式分解:x2﹣9=.14.从3cm、4cm、5cm、7cm的四根小棒中任取三根,能围成个三角形.15.若式子a2﹣2a+1+|b﹣2|=0,则ab=.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BD:DC=4:3,点D到AB 的距离为6,则BC等于.17.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.18.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三、解答题(本题共8小题,共90分)19.(8分)解分式方程:=+20.(10分)先化简,后求值:(1﹣)÷(),其中a=3.21.(10分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.22.(12分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=2,b=﹣1,直接写出a,b的“如意数”c;(2)如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.23.(12分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B.(1)求证:AB=AC;(2)若∠D比∠BAC大15°,求∠BAC的度数.24.(12分)某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?25.(12分)等腰直角△ABC中,BC=AC,∠ACB=90°,将该三角形在直角坐标系中放置.(1)如图(1),过点A作AD⊥x轴,当B点为(0,1),C点为(3,0)时,求OD的长;(2)如图(2),将斜边顶点A、B分别落在y轴上、x轴上,若A点为(0,1),B点为(4,0),求C点坐标;26.(14分)数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:(1)已知AB=AC=6,∠BAC=120°,点P在BC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是;(2)为进一步运用该结论,小明发现当AP最短时,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于点D,点E、F分别是AD、AP边上的动点,连接PE、EF,小明尝试探索PE+EF 的最小值,为转化EF,小明在AB上截取AN,使得AN=AF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP=3,AB=6,AP=3,则PE+EF 的最小值为;(3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,点D是CD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000000028用科学记数法表示2.8×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵分式有意义,∴x+3≠0.解得:x≠﹣3.故选:C.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.【分析】根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂解答即可.【解答】解:A、(2a2)3=8a6,错误;B、2a2×a4=2a6,错误;C、(a+2)2=a2+4a+4,错误;D、,正确;故选:D.【点评】此题考查单项式乘单项式、幂的乘方、完全平方公式和负整数幂,关键是根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂法则解答.5.【分析】等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:∵AB=DE,BC=EF,∴要使△ABC≌△DEF,只要满足∠B=∠E或AC=BC即可,故选:A.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【分析】依据三角形外角性质,即可得到∠BAD,再根据平行线的性质,即可得到∠DEF的度数.【解答】解:∵∠C=30°,∠ABC=20°,∴∠BAD=∠C+∠ABC=50°,∵EF∥AB,∴∠DEF=∠BAD=50°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.【分析】根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为8时,解答出即可.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.8.【分析】直接利用关于y轴对称点的性质进而得出x,y的值,即可得出答案.【解答】解:∵点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,∴2y+1=y﹣1,x﹣6=﹣2x解得:y=﹣2,x=2,故x+y=0.故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.9.【分析】利用等腰三角形的三线合一求出∠ECD,再求出∠ACB即可解决问题.【解答】解:∵CE=CD,FE=FD,∴∠ECF=∠DCF=52°,∴∠ACB=180°﹣104°=76°,∵AB=AC,∴∠B=∠ACB=76°,∴∠A=180°﹣152°=28°,故选:D.【点评】本题考查等腰三角形的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】先分别表示出甲和乙跑400米的时间,再根据甲比乙少用了30秒列出方程即可.【解答】解:设乙的速度是x米/秒,则甲跑400米用的时间为秒,乙跑400米用的时间为秒,∵甲比乙少用了30秒,∴方程是﹣=30,故选:C.【点评】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出甲、乙的速度,以及甲和乙跑400米所用的时间,根据时间差列方程即可.11.【分析】依据含30°角的直角三角形的性质,即可得到AD的长,再根据角平分线的性质,即可得到CD的长,进而得出AC的长.【解答】解:∵∠A=30°,DE垂直平分AB,DE=2,∴AD=BD=4,∴∠ABD=∠A=30°,∴∠DBC=∠ABD=30°,即BD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴CD=DE=2,∴AC=4+2=6,故选:B.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题注意掌握数形结合思想的应用.12.【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=140°,求得∠E+∠F=40°,根据等腰三角形的性质即可得到结论.【解答】解:作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB 于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=40°,∴∠EDF=140°,∴∠E+∠F=40°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=40°,∴∠PDQ=140°﹣40°=100°,故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,三角形的内角和,正确的作出图形是解题的关键.二、填空题(本题共6小题,每小题4分,共24分)13.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.【分析】三角形三条边的特性:任意两边的长度和大于第三边,任意两边的长度差小于第三边.根据此特性,进行判断.【解答】解:3cm、4cm、5cm和7cm的四根木棒中,其中共有以下方案可组成三角形:取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;取3cm,5cm,7cm;由于7﹣3<5<7+3,能构成三角形;取4cm,5cm,7cm;由于7﹣4<5<7+4,能构成三角形.所以有3种方法符合要求.故答案为:3.【点评】本题主要考查三角形三条边的关系:任意两边的长度和大于第三边,任意两边的长度差小于第三边.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出答案.【解答】解:∵a2﹣2a+1+|b﹣2|=0,∴(a﹣1)2+|b﹣2|=0,∴a﹣1=0,b﹣2=0,解得:a=1,b=2,则ab=2.故答案为:2.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.16.【分析】先根据角平分线的性质得出CD的长,再由BD:DC=4:3求出BD的长,进而可得出结论.【解答】解:∵在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点D到AB的距离为6,∴CD=6.∵BD:DC=4:3,∴BD=CD=×6=8,∴BC=6+8=14.故答案为:14.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.17.【分析】根据共走了45米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.【解答】解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.【点评】本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.18.【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC =BP或AC=BN进行计算即可.【解答】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.【点评】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本题共8小题,共90分)19.【分析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到原分式方程的解.【解答】解:去分母:4=3x﹣6+x+2解得:x=2,经检验当x=2时,x﹣2=0,所以x=2是原方程的增根,此题无解【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当a=3时,原式==2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.【分析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.【解答】证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可【解答】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点评】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.23.【分析】(1)根据SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)在△AED与△AEC中,∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;(2)∵∠B=∠C,∵∠D比∠BAC大15°,∴∠BAC+∠BAC+15°+∠BAC+15°=180°,解得,∠BAC=50°.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△AED与△AEC全等.24.【分析】(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.【解答】解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据题意,得:=4×,解得:x=0.4,经检验:x=0.4是原分式方程的解,所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,根据题意,得:0.4m+0.2(40﹣m)≤11.5,解得:m≤17.5,又m≥14,∴14≤m≤17.5,则整数m的值可以是14,15,16,17,所以商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.25.【分析】(1)通过证明△BOC≌△CDA,可得CD=OB=1,即可求OD的长;(2)过点C作CF⊥y轴,CE⊥x轴,通过证明△ACF≌△BCE,可得BE=AF,CF=CE,可证四边形CEOF是正方形,可得CF=OE=OF=CE,即可求点C坐标.【解答】解:(1)∵B点为(0,1),C点为(3,0)∴OB=1,OC=3∵∠ACB=90°,∴∠BCO+∠ACD=90°,且∠BCO+∠OBC=90°∴∠ACD=∠OBC,且AC=BC,∠BOC=∠ADC=90°,∴△BOC≌△CDA(AAS)∴CD=OB=1∴OD=OC+CD=4(2)如图,过点C作CF⊥y轴,CE⊥x轴,∵A点为(0,1),B点为(4,0),∴AO=1,BO=4∵CF⊥y轴,CE⊥x轴,∠AOB=90°,∴四边形CEOF是矩形,∴∠ECF=90°,∴∠FCA+∠ACE=90°,且∠ACE+∠BCE=90°,∴∠FCA=∠BCE,且AC=BC,∠CFA=∠CEB=90°,∴△ACF≌△BCE(AAS)∴BE=AF,CF=CE,∴矩形CEOF是正方形∴CF=OE=OF=CE,∴OA+AF=OB﹣BE∴2AF=OB﹣OA∴AF=∴OF=∴点C(,)【点评】本题考查了全等三角形的判定和性质,坐标与图形性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.26.【分析】(1)如图1中,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.由△EAN≌△EAF (SAS),推出EN=EF,推出PE+EF=PE+NE,推出当P,E,N共线且与PH重合时,PE+PF 的值最小,最小值为线段PH的长.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【解答】解:(1)如图1中,作AH⊥BC于H.∵AB=AC=6,AH⊥BC,∴∠BAH=∠CAH=∠BAC=60°,∴AH=AB•cos60°=3,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为3.故答案为3.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.∵∠EAN=∠EAF,AN=AF,AE=AE,∴△EAN≌△EAF(SAS),∴EN=EF,∴PE+EF=PE+NE,∴当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长,∵•AB•PH=•PA•PB,∴PH==,∴PE+EF的最小值为.故答案为.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,最小值为5,∴PC的最小值为5.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。
八年级上册乐山数学压轴题 期末复习试卷综合测试(Word版 含答案)
![八年级上册乐山数学压轴题 期末复习试卷综合测试(Word版 含答案)](https://img.taocdn.com/s3/m/ee97987fd5bbfd0a78567308.png)
八年级上册乐山数学压轴题 期末复习试卷综合测试(Word 版 含答案)一、压轴题1.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b dy +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点.(1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.2.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.3.如图,直线112y x b =-+分别与x 轴、y 轴交于A ,B 两点,与直线26y kx =-交于点()C 4,2.(1)b = ;k = ;点B 坐标为 ;(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.4.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达) 5.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0Bb 满足|21|280a b a b --+-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.6.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上; ②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ; (3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值. 7.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P与C重合时,求直线DP的函数解析式;(2)如图②,当P在BC边上,将矩形沿着OP折叠,点B对应点B'恰落在AC边上,求此时点P的坐标.(3)是否存P在使BDP∆为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.8.已知在△ABC中,AB =AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.9.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l,2l,3l上,90BAC∠=︒,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向1l作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变ABC的形状.如图2,AB AC=,120BAC∠=︒,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变ABC的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线1l,2l,3l上,且1l与2l之间的距离为1,2l与3l 之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.10.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒). (1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?11.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.12.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21) 【解析】 【分析】(1)根据融合点的定义3a c x +=,3b dy +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH=90°、∠TDH=90°、∠HTD=90°三种情况,分别求解即可.【详解】解:(1)x=-17233a c++==,y=54333b d++==,故点C是点A、B的融合点;(2)①由题意得:x=433a c t++=,y=2533b d t++=,则3-4t x=,则()23-452-13xy x+==;②令x=0,y=-1;令y=0,x=12,图象如下:③当∠THD=90°时,∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E (t ,2t +5),点T (4,7),点D (4,0),且点T (x ,y )是点D ,E 的融合点.∴4=13(4+t ) ∴t =8,∴点E (8,21); 当∠HTD =90°时,由于EH 与x 轴不平行,故∠HTD 不可能为90°; 故点E 的坐标为:(2,9)或(8,21). 【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解. 2.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+2或9﹣2或6时,△APQ 为等腰三角形. 【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--, 即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点, ∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3), 把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72, ∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0), ∴当Q 在A . C 之间时,AQ =2+7−t =9−t ,∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9,∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3,∴273322t -<或3273.22t -< 解得7<t <9或9<t <11.③存在; 设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去),当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.3.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()-,()4,()0,4-或()5,4.【解析】 【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解; (2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解. 【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2), ∴2=4k -6, ∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b , ∴b =4,∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8, ∴点B (0,4),点A (8,0), 故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形, ∴EF BO =, ∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形.(3)存在.此时Q 点坐标为()-,()4,()0,4-或()5,4. 理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.4.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S△COD = S△OB'C + S△OB'D∴'' 222 CO OD CO B M OD B E ⨯⨯⨯=+∴353(3)51 222n⨯⨯-⨯=+解得:193n=,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.5.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)21280a b a b --+-=, 又∵|21|0a b --≥280a b +-, |21|0a b ∴--=280a b +-=,即210280a b a b --=⎧⎨+-=⎩,解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.6.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,102a【解析】【分析】 (1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a ==,即可求得BF【详解】(1)①连接AD ,如图1.∵点C与点D关于直线l对称,∴AC = AD.∵AB= AC,∴AB= AC = AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE ,(3)如图3,取AC 的中点O ,连接OB ,OF ,BF ,,F 是以AC 为直径的圆上一点,设AC 中点为O ,∵在△BOF 中,BO+OF≥BF ,当B 、O 、F 三点共线时BF 最长; 如图,过点O 作OH ⊥BC ,∵∠BAC=90°,2a ,∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,∴∠COH=∠HCO=45°,∴OH=HC , ∴2OC HC =, ∵点O 是AC 中点,AC 2a ,∴2OC a =, ∴OH HC a ==,∴BH=3a ,∴10BO a =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点, ∴2OF OC a ==,∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.7.(1)y=43x+2;(2)(103,10);(3)存在, P 坐标为(6,6)或(6,7+2)或(6,10-27).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610b k b =⎧⎨+=⎩, 解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)设P (m ,10),则PB=PB′=m ,如图2,∵OB′=OB=10,OA=6,∴AB′=22OB OA '-=8,∴B′C=10-8=2,∵PC=6-m ,∴m 2=22+(6-m )2,解得m=103 则此时点P 的坐标是(103,10); (3)存在,理由为:若△BDP 为等腰三角形,分三种情况考虑:如图3,①当BD=BP 1=OB-OD=10-2=8,在Rt △BCP 1中,BP 1=8,BC=6,根据勾股定理得:CP1=22-=,8627∴AP1=10-27,即P1(6,10-27);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E=228627-=,∴AP3=AE+EP3=27+2,即P3(6,27+2),综上,满足题意的P坐标为(6,6)或(6,27+2)或(6,10-27).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.8.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.(1)5;(2)221;(3)221 【解析】【分析】 (1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b , ∴2221=4a a +,2222=4b b +,解得:3=a ,23=b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=433, ∴AB=22AP BP +=()22AM PM BP ++=221;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2, ∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:NP=23, ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:QM=3,∴AM=23=CN ,∴PC=CN-NP=AM-NP=433, 在△BPC 中,BP 2+CP 2=BC 2,即BC=22224322123BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=221.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.10.(1)6-2t ;(2)全等,理由见解析;(3)83;(4)经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇【解析】【分析】(1)根据题意求出BP ,由PC=BC-BP ,即可求得;(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C ,利用SAS 判定BPD △和CQP 全等即可;(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC ,再根据路程=速度×时间公式,求点P 的运动时间,然后求点Q 的运动速度即得;(4)求出点P 、Q 的路程,根据三角形ABC 的三边长度,即可得出答案.【详解】(1)由题意知,BP=2t ,则PC=BC-BP=6-2t ,故答案为:6-2t ;(2)全等,理由如下:∵p Q V V =,t=1,∴BP=2=CQ ,∵AB=8cm ,点D 为AB 的中点,∴BD=4(cm ),又∵PC=BC-BP=6-2=4(cm ),在BPD △和CQP 中BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴BPD △≌CQP (SAS )故答案为:全等.(3)∵p Q V V ≠,∴BP CQ ≠,又∵BPD △≌CPQ ,∠B=∠C ,∴BP=PC=3cm ,CQ=BD=4cm ,∴点,P Q 运动时间322BP t ==(s ), ∴48332Q CQ V t===(cm/s ), 故答案为:83; (4)设经过t 秒时,P 、Q 第一次相遇,∵2/p V cm s =,8/3Q V cm s =, ∴2t+8+8=83t ,解得:t=24此时点Q 走了824643⨯=(cm ),∵ABC 的周长为:8+8+6=22(cm ),∴6422220÷=,∴20-8-8=4(cm ),经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇,故答案为:24s ,在 BC 边上相遇.【点睛】考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.11.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.12.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=22+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED=2CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD:AF=1:2AF=2x,∵△ECD都是等腰直角三角形,CF⊥DE,∴DF=EF,由(1)、(2)可得,在Rt△FAE中,EF 3x ,∵AE 2+AD 2=2CD 2,∴2223)x x ++=,解得x =1,∴AB =+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。
乐山市市中区2018.1八年级上期末数学考试题
![乐山市市中区2018.1八年级上期末数学考试题](https://img.taocdn.com/s3/m/1c26de30647d27284b7351c3.png)
乐山市市中区2017-2018学年度上期期末供题考试八年级数学试卷(2018.1)(满分150分,120分钟完卷)一.选择题(每小题3分,共39分)1.16的平方根是(C)A.-4 B.4 C.±4D.±22.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是(A)A.2,3,4 B.3,4,5 C.6,8,10 D.1,,3.市中学八年级一班同学纷纷捐出自己的零花钱,为建档立卡的贫困学生献爱心,该班第2小组8名同学捐款数额如下(单位:元):16,12,20,15,50,20,20,20.这组捐款数据中,“20”出现的频率是(A)A.12B.25C.310D.144.如果□×2a2b=﹣6a3b3,则□内应填的式子是(B)A.3ab2B.﹣3ab2C.-ab2D.-3b25.如图,B,D,E,C四点共线,且△ABD≌△ACE,若∠AEC=105°,则∠DAE的度数等于(D)A.60°B.50°C.40°D.30°解:∵△ABD≌△ACE,∴∠ADB=∠AEC=105°,∴∠ADE=∠AED=75°,∴∠DAE=180°﹣75°﹣75°=30°,6.下列命题是真命题的是(C)A.如果|a|=2,那么a=2 B.同位角相等C.如果a是有理数,那么a是实数D.两边一角对应相等的两个三角形全等解:A、如果|a|=2,那么a=2,是假命题,应为:如果|a|=2,那么a=±2,故本选项错误;B、同位角相等,是假命题,故本选项错误;C、如果a是有理数,那么a是实数,是真命题,故本选项正确;D、两边一角对应相等的两个三角形全等,是假命题,故本选项错误.7.若(x+m)(x-4)中不含x的一次项,则m的值为(A )A.4B.-4C.0D.4或-48.《几何原本》是古希腊数学家所著的一部数学著作,共13卷,这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍,这位古希腊数学家是( D ) A.利玛窦 B.高斯 C.李善兰 D.欧几里得9.如图是各洲面积占地球大陆总面积的扇形统计图,下列说法正确的是( B )①面积最大的是亚洲;②非洲占总面积的14③南美洲、北美洲、非洲共占总面积的50%;④南美洲的面积是大洋洲面积的2倍.A.①②B.①④C.①②④D.①②③④解:①亚洲的面积占陆地总面积的29.3%,占的最多,则七大洲中面积最大的是亚洲,故本选项正确;②非洲约占陆地总面积的20%,不正确;③南美洲、北美洲、非洲三大洲的面积的和是:12%+16.1%+20.2%=48.3%,不正确;④南美洲的面积占陆地总面积的12%,大洋洲面积占陆地总面积的6%,则南美洲的面积是大洋洲面积的2倍,正确;10.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于(A)A.a+b B.a﹣b C.2a+b D.a+2b解:∵ED垂直且平分BC,∴BE=CE.AB=a,AC=b.∴AB=AE+BE=AE+CE=a∴△AEC的周长为:AE+EC+AC=a+b.11.已知实数x,y,m++=,且y为负数,则m的取值范围是(D)x y mA.m>-3 B.m<-3 C.m<3D.m>312.如图,长为a,宽为b的长方形的周长为22,面积为24,则a2b+ab2 -2a-2b的值为(C)A.66 B.121 C.242 D.36913.如图,△ABC中,BC的垂直平分线与∠BAC的邻补角平分线相交于点D,DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF ②CA-AB=2AE ③∠BDC+∠FAE=180°④C、D、F在一条直线上。
2018年八年级上数学期末考试试卷(5套)
![2018年八年级上数学期末考试试卷(5套)](https://img.taocdn.com/s3/m/9b406d02650e52ea55189818.png)
图28、下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④ A 、②③④ B 、①②③ C 、①②④ D 、①②④ 9、等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80° 10、如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是 ( )A B C D二、耐心填一填(本大题共6小题,每小题4分,共24分.)11、32c ab -的系数是 ,次数是 。
12、Rt △ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm . 13、若1242+-kx x 是完全平方式,则k=_____________。
14一个汽车牌在水中的倒影为 ,则该车牌照号码____________.。
15、已知,如图2:∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,若以“SAS”为依据,还要添加的条件为______________________。
16、对于实数a ,b ,c ,d ,规定一种运算a b c d=ad-bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x= 。
三、小心求一求(本小题8分)17、因式分解:(1)x 2-4(x -1) (2) 44y x -四、在心算一算(18小题8分,19小题8分,共16分)18、计算题:(1))22(4)25(22a a a +-+ (2)233)(21)(4⎥⎦⎤⎢⎣⎡--⨯-x y y x19、(本小题8分)先化简,再求值。
2018学年人教版八年级数学上期末试卷(2021年整理)
![2018学年人教版八年级数学上期末试卷(2021年整理)](https://img.taocdn.com/s3/m/040c62fa6bd97f192279e9e2.png)
2018学年人教版八年级数学上期末试卷(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018学年人教版八年级数学上期末试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018学年人教版八年级数学上期末试卷(word版可编辑修改)的全部内容。
2018人教版八年级数学上期末试卷及详细解答一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列图案属于轴对称图形的是( )A.B.C. D.2.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)3.已知三角形两边长分别为7、11,那么第三边的长可以是()A.2 B.3 C.4 D.54.下列计算正确的是( )A.(a3)2=a6B.a•a2=a2C.a3+a2=a6D.(3a)3=9a35.一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.106.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )A.335°B.255°C.155°D.150°7.下列从左到右的运算是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy8.若等腰三角形的两边长分别为6和8,则周长为( )A.20或22 B.20 C.22 D.无法确定9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为( )A.8 B.16 C.24 D.32二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0。
2018年八年级数学上学期期末测试卷.doc
![2018年八年级数学上学期期末测试卷.doc](https://img.taocdn.com/s3/m/f0b602befe4733687f21aa9e.png)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ :名姓__ _ _ _ _ _ _ :数号_ _ _ _ _ _ _ _ :级班_ _ _ _ _ _ _ _ :级年2018 年八年级数学上学期期末测试卷(满分 150 分考试时间120分)一二三题总1-- 9-120 21 22 23 24 24 25 26 27 28 29号19 分8 8得分一、选择题:相信自己,把每题的一个正确答案填入括号内(每题 4 分,共 32 分)。
1、以下计算正确的选项是()( A ) a3 +a 2 =a 5(B)a3·a2=a6(C)(a3)2=a6(D)(3a)3 =3a 32、以下图形中,既是轴对称图形,又是中心对称图形的是()( A )平行四边形(B)等边三角形(C)菱形(D)梯形3、已知:a>b ,则以下各式中正确的选项是()(A )-3a> -3b(B)-a/3>-b/3(C)3-a>3-b(D)a-3>b-34、一副扑克牌(去掉大小王),随意抽取此中一张是方块的时机是()( A ) 1/3(B)1/4(C)1/5(D)13/545、要使正五边形旋转后,与自己重合,起码应将它绕中心逆时针方向旋转()( A ) 30o(B)45 o(C)60 o(D)72o6、如图( 1)是国际奥林匹克运动会会旗的标记图案,它由五个半径同样的圆构成的,象征着五大洲体育健儿,为发展奥林匹克精神而团结起来,联手拼搏,那么这个图案是()图形。
(A)旋转对称(B)轴对称图 1( C )中心对称(D)既是轴对称又是中心对称7、如图( 2 )在矩形ABCD中,BE均分∠ABC,AB=5cm,DE=3cm,则矩形ABCD周长为()E D ( A ) 16cm (B ) 20cmA( C ) 24cm ( D )26cm B B图 2 C8、如图( 3 )在直角梯形ABCD 中,AD||BC ,∠A= 90o,∠C =45 o,AD = 3cm ,AB = 4cm ,则底边 BC =___________A D( A ) 3 cm ( B ) 4cm (C ) 6 cm ( D ) 7 cm BC图 3二、仔细填一填,相信聪慧的你必定能够把正确答案填入空格(每题 3 分,共 30 分)。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
![2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)](https://img.taocdn.com/s3/m/63eeb32ca76e58fafab0034d.png)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
2018学年第一学期期末考试八年级数学试卷参考答案_736
![2018学年第一学期期末考试八年级数学试卷参考答案_736](https://img.taocdn.com/s3/m/ec4333786c85ec3a87c2c5ed.png)
2018学年第一学期期末考试八年级数学试卷参考答案和评分标准一、选择题(本大题共6小题,每小题2分,满分12分) 1、C 2、D 3、B 4、A 5、D 6、A 二、填空题(本大题共12小题,每小题2分,满分24分) 7、3; 8、2≥x ; 9、3,021==x x ; 10、21; 11、面积相等的两个三角形全等; 12、 减小; 13、()800111522=-x ;14、01≠<m m 且; 15、⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛+-417341732x x ; 16、231y y y <<; 17、10; 18、233t . 三、简答题(本大题共5小题,每小题6分,满分30分) 19.1)---362351062+-+-=…………………………3分 1036-= ……………………………………………3分20. 配方法解方程:021322=+-x x . 41232-=-x x ………………………………………………2分165432=⎪⎭⎫ ⎝⎛-x ………………………………………………1分 45434543-=-=-x x 或…………………………………1分 45434543-=+=x x 或……………………………………1分 所以,原方程的根是4543454321-=+=x x ,……1分FE DC BA21. 解:Θ1y 与x 成正比例,2y 与()2-x 成反比例∴设()0,2,212211≠-==k k x k y x k y ……………………………2分Θ21y y y -= ∴设()022121≠--=k k x k x k y ……………………………1分又当2-=x 时,7-=y ;当3=x 时,13=y∴⎪⎩⎪⎨⎧=--=+-13374122121k k k k ……………………………1分 解得⎩⎨⎧-==4321k k ……………………………1分 ∴y 关于x 的函数解析式为:243-+=x x y ……………………………1分22.说明:角平分线作对2分; 圆作对2分;结论2分(漏掉一个点扣1分)23.如图,已知:△ABC 中,AD ⊥BC 于D 点,AD 与BE 相交于点F ,且BF=AC ,DF=DC . (1)求证:△BDF ≌△ADC ;(2)若AF=6,FD=2,试求△ABC 的面积. 证明:(1)ΘAD ⊥BC∴︒=∠=∠90ADC ADB ……………………………………(1分)在Rt △BDF 和Rt △ADC 中⎩⎨⎧==DCDF ACBF ∴ Rt △BDF ≌Rt △ADC (H.L )……………………………………(2分)(2)由(1)知Rt △BDF ≌Rt △ADC∴BD=AD=6+2=8……………………………………………1分 ∴BC=BD+CD=10……………………………………………1分 401082121=⨯⨯=•=∴∆BC AD S ABC …………………1分G FECBA四、解答题(本大题3小题,每小题8分,满分24分) 24.设道路的宽应该为x 米.…………1分依据题意得 ()570)20(232=--x x .……………………………3分 整理,得 035362=+-x x . ……………………………1分 解得351=x ,12=x .…………………………………………1分351=x 不符合题意,应舍去∴1=x ……………………………………………………1分答:道路的宽应该为1米.……………………1分25.证明:(1) BD EF ⊥……………………………………………1分联结DE∵△ABC 中,∠ABC=90°, E 为AC 的中点 ∴AC BE 21=………………………………………………………………1分 ∵过点C 作BE 的垂线,交BE 于点G ∴ο90=∠CGE∵过点A 作BE 的平行线,两直线相交于点D ∴ο90=∠=∠CGE CDA∵△ACD 中,∠CDA=90°, E 为AC 的中点 ∴AC DE 21=………………………………………………………………1分 ∴BE=DE∵BE=DE ,F 是BD 的中点∴BD EF ⊥………………………………1分 (2) 设x AC 2=,则x BE =,x AD -=13…………………………1分 在Rt △ACD 中,∵222CD AD AC +=∴()()2221362x x -+=……………………………1分解得341-=x (不符合题意,舍去)5=x ……………………………1分 ∴10=AC …………………………………………………………1分26.解:(1)设正比例函数的解析式y=kx(k≠0) 将A (2,2)代入y=kx 得 2=2k ,k=1∴正比例函数解析式为y=x…………………………………………(2分) 将B (m ,3)代入m=3……………………………………………(1分) (2)设反比例函数解析式为y =kx (k ≠0) 则C (2,K2) D (3,K3)……(1分) 则AC=2−K2 BD=3−k3 而AC 与BD 间距离为1M QP GF EDCBAEM P ()Q GFDCBA∴()4533222121=⎪⎭⎫ ⎝⎛-+-=+=k k BD AC S ABDC 梯………………………(1分) 解得k=3 ∴反比例函数解析式为y =3x ………………………………………(1分) (3)据题意得:A (2,2) B (3,3) D (3,1)∴AB=√2 AD=√2 BD=2 ∴AB=AD ∴△ABD 是等腰三角形…(1分) 又∵()()4222222=+=+AD AB ,4222==BD∴AB 2+AD 2=BD 2 ∴△ABD 是直角三角形,且∠BAD=90゜……(1分)综上所述,△ABD 是等腰直角三角形五、综合题(满分10分,2分+4分+4分)27.(1)垂直 …………………………………………………………………2分 (2)如图所示,延长QA 至M 点,使MA=AQ ,联结ME ,MF. ………1分 则FA 是MQ 的中垂线∴PM=PQ ……………………………………………1分 易知△AQG ≌△AME∴QG=ME ,∠G=∠MEA ……………………………1分 在Rt △EFG 中 ∵∠G+∠GEF=90°∴∠MEA+∠GEF=90°∴222PM PE EM =+ ∴222PQ PE GQ =+………………………………1分 (3)如图所示,由(2)易知222PQ PE GQ =+ 又在Rt △PQF 中222PQ PF FQ =+∴22222PF FQ PQ PE GQ +==+………………1分 在Rt △EFG 中, ∵∠G=30°,EF=3 ∴EG=6 ∴333622=-=FG∵x PF =,y GQ =∴x PE -=3,y FQ -=33………………………1分 ∴()()22222333x yPQ x y +-==-+∴()30333≤<+=x x y ………………………………2分。
八年级上册乐山数学全册全套试卷综合测试(Word版 含答案)
![八年级上册乐山数学全册全套试卷综合测试(Word版 含答案)](https://img.taocdn.com/s3/m/a6e07a91aaea998fcc220eea.png)
八年级上册乐山数学全册全套试卷综合测试(Word版含答案)一、八年级数学三角形填空题(难)1.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.2.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.3.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.4.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.【答案】242cm.【解析】【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=12×12×4=24cm2.考点:1.三角形的面积;2.三角形三边关系.5.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为_____.【答案】10°【解析】【分析】根据直角三角形两锐角互余求出∠B ,根据翻折变换的性质可得∠CA′D=∠A ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵∠ACB =90°,∠A =50°,∴∠B =90°﹣50°=40°,∵折叠后点A 落在边CB 上A ′处,∴∠CA ′D =∠A =50°,由三角形的外角性质得,∠A ′DB =∠CA ′D ﹣∠B =50°﹣40°=10°.故答案为:10°.【点睛】本题考查了翻折变换,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,翻折前后对应边相等,对应角相等.6.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)7.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.8.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.9.已知:如图,ABC∆三条内角平分线交于点D,CE⊥BD交BD的延长线于E,则∠DCE=( )A.12BAC∠B.12CBA∠C.12ACB∠D.CDE∠【答案】A 【解析】【分析】根据角平分线的性质以及三角形的外角性质可推导出DCE ∠与BAC ∠的关系.【详解】由题意知,ECD BDC 90∠∠=-︒由三角形内角和定理得,BAC 180ABC ACB ∠∠∠=︒-+DBC DCB 180BDC ∠∠∠+=︒-∵点D 是ΔABC 三条内角平分线的交点∴ABC 2DBC ∠∠= ACB 2DCB ∠∠=()BAC 180ABC ACB ∠∠∠=︒-+()1802DBC DCB ∠∠=︒-+()1802180BDC ∠=︒-︒-2BDC 180∠=-︒1BAC BDC 902∠∠=-︒ ∴1ECD BAC 2∠∠=故答案选A.【点睛】本题考查角平分线的性质以及三角形的外角性质.10.如图:在△ABC 中,G 是它的重心,AG ⊥CD ,如果32BG AC ⋅=,则△AGC 的面积的最大值是( )A .3B .8C .43D .6 【答案】B【解析】分析:延长BG 交AC 于D .由重心的性质得到 BG =2GD ,D 为AC 的中点,再由直角三角形斜边上的中线等于斜边的一半,得到AC =2GD ,即有BG =AC ,从而得到AC 、GD 的长.当GD ⊥AC 时,△AGC 的面积的最大,最大值为:12AC •GD ,即可得出结论. 详解:延长BG 交AC 于D .∵G 是△ABC 的重心,∴BG =2GD ,D 为AC 的中点.∵AG ⊥CG ,∴△AGC 是直角三角形,∴AC =2GD ,∴BG =AC .∵BG •AC =32,∴AC 322,GD =22当GD ⊥AC 时,.△AGC 的面积的最大,最大值为:12AC•GD=142222⨯⨯=8.故选B.点睛:本题考查了重心的性质.解题的关键是熟知三角形的重心到顶点的距离等于它到对边中点距离的2倍.11.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°【答案】B【解析】分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23 (∠ABC+∠ACB)=2 3×120°=80°. 在△BMC 中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°. ∴∠BMN=12×100°=50°; 故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.12.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【答案】B【解析】【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D+∠4+∠F ,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B .【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.三、八年级数学全等三角形填空题(难)13.如图,ABC ∆中,90ACB ∠=︒,8cm AC ,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.【答案】235或7或8 【解析】【分析】易证∠MEC =∠CFN ,∠MCE =∠CNF .只需MC =NC ,就可得到△MEC 与△CFN 全等,然后只需根据点M 和点N 不同位置进行分类讨论即可解决问题.【详解】①当0≤t <4时,点M 在AC 上,点N 在BC 上,如图①,此时有AM =2t ,BN =3t ,AC =8,BC =15.当MC =NC 即8−2t =15−3t 时全等,解得t =7,不合题意舍去;②当4≤t <5时,点M 在BC 上,点N 也在BC 上,如图②,若MC =NC ,则点M 与点N 重合,即2t−8=15−3t ,解得t =235;当5≤t<233时,点M在BC上,点N在AC上,如图③,当MC=NC即2t−8=3t−15时全等,解得t=7;④当233≤t<232时,点N停在点A处,点M在BC上,如图④,当MC=NC即2t−8=8,解得t=8;综上所述:当t等于235或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等.故答案为:235或7或8.【点睛】本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.14.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和36,求△ED F的面积________.【答案】6【解析】【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【详解】作DM=DE 交AC 于M ,作DN ⊥AC ,∵AD 是△ABC 的角平分线,DF ⊥AB ,∴DF=DN ,∵DE=DG ,∴DG=DM,∴Rt△DEF≌Rt△DMN(HL ),∵DG=DM , DN ⊥AC ,∴MN=NG ,∴△DMN ≌△DNG ,∵△ADG 和△AED 的面积分别为48和36,∴S △MDG =S △ADG -S △ADM =48-36=12,∴S △DEF =12S △MDG =12⨯12=6,故答案为:6【点睛】本题考查了角平分线的性质及全等三角形的判定及性质,正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求是解题关键.15.如图,52A ∠=︒,O 是ABC ∠、ACB ∠的角平分线交点,P 是ABC ∠、ACB ∠外角平分线交点,则BOC ∠=______︒,BPC ∠=_____︒,联结AP ,则PAB ∠=______︒,点O ____(选填“在”、“不在”或“不一定在”)直线AP 上.【答案】116 64 26 在【解析】【分析】∠ABC+∠ACB=180°-∠A ,∠OBC+∠OCB= 12(∠ABC+∠ACB ), ∠BOC=180°-(∠OBC+∠OCB),据此可求∠BOC的度数;∠BCP= 12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC,据此可求∠BPC的度数;作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,利用角平分线的性质定理可证明PG=PH,于是可证得AP平分∠BAC,据此可求∠PAB的度数;同理可证OA平分∠BAC,故点O在直线AP上.【详解】解:∵O点是∠ABC和∠ACB的角平分线的交点,∴∠OBC+∠OCB= 12(∠ABC+∠ACB)= 12(180°-∠A)=90°- 12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°+ 12∠A=90°+ 12∠A=90°+26°=116°;如图,∵BP、CP为△ABC两外角的平分线,∴∠BCP= 12∠BCE=12(∠A+∠ABC),∠PBC= 12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC=180°- 12[∠A+(∠A+∠ABC+∠ACB)]=180°- 12(∠A+180°)=90°- 12∠A=90°-26°=64°.如图,作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,连接AP,∵BP、CP为△ABC两外角的平分线,PG⊥AB,PH⊥AC,PK⊥BC,∴PG=PK,PK=PH,∴PG=PH,∴AP平分∠BAC,∴PAB∠=26°同理可证OA平分∠BAC,点O在直线AP上.故答案是:(1) 116 ;(2) 64;(3) 26;(4) 在.【点睛】此题主要考查了角平分线的性质定理和判定定理及三角形内角和定理,熟知定理并正确作出辅助线是解题关键.16.如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD 之间的距离等于____.【答案】2【解析】过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.点睛:本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E、O、G三点共线.17.如图,AB=BC且AB⊥BC,点P为线段BC上一点,PA⊥PD且PA=PD,若∠A=22°,则∠D的度数为_________.【答案】23°【解析】解:过D作DE⊥PC于E.∵PA⊥PD,∴∠APB+∠DPE=90°.∵AB⊥BC,∴∠A+∠APB=90°,∴∠A=∠DPE=22°.在△ABP和△PED中,∵∠A=∠DPE,∠B=∠E=90°,PA=PD,∴△ABP≌△PED,∴AB=PE,BP=DE.∵AB=BC,∴BC=PE,∴BP=CE.∵BP=DE,∴CE=DE,∴∠DCE=45°,∴∠PDC=∠DCE-∠DPC=45°-22°=2 3°.故答案为:23°.18.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;其中正确的是_________【答案】①②③【解析】如图,(1)∵AC=AD,∠CAD=30°,∴∠ACD=∠ADC=18030752-=,∵CE⊥DC,∴∠DCE=90°,∴∠ACE=∠ACD+∠DCE=165°.故①正确;(2)由(1)可知:∠ACB=∠DCE=90°,∴∠ACE-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE,∴BE=AD=BC.故②正确;(3)延长AD交BE于点F,∵△ACD≌△BCE,∴∠2=∠CAD=30°,∵AC=BC,∠ACB=90°,∴∠CAB=∠3=45°,∴∠1=∠CAB-∠CAD=15°,∴∠AFB=180°-∠1-∠2-∠3=90°,∴AD⊥BE.故③正确;综上所述:正确的结论是①②③.四、八年级数学全等三角形选择题(难)19.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个【答案】D【解析】分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD和EFGC都为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.20.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.【详解】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,如图,当点D在AB上时,∵△BCD≌△∠ACE,∴∠CAE=∠CBD=60°,∴∠DAE=∠BAC+∠CAE=120°,∴∠BDE-∠AED=∠DAE=120°,③错误故正确的结论有①②④,故选C.【点睛】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握21.如图,在等腰直角△ABC中,∠ACB=90°,点O为斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等三角形有三对;②△ABC的面积等于四边形CDOE面积的倍;③DE2+2CD•CE=2OA2;④AD2+BE2=2OP•OC.正确的有()个.A.1 B.2 C.3 D.4【答案】C【解析】【分析】结论(1)正确.因为图中全等的三角形有3对;结论(2)错误.由全等三角形的性质可以判断;结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【详解】结论(1)正确,理由如下:图中全等的三角形有3对,分别为△AOC ≌△BOC ,△AOD ≌△COE ,△COD ≌△BOE . 由等腰直角三角形的性质,可知OA=OC=OB ,易得△AOC ≌△BOC .∵OC ⊥AB ,OD ⊥OE ,∴∠AOD=∠COE .在△AOD 与△COE 中,∴△AOD ≌△COE (ASA ),同理可证:△COD ≌△BOE .结论(2)错误.理由如下:∵△AOD ≌△COE ,∴S △AOD =S △COE ,∴S 四边形CDOE =S △COD +S △COE =S △COD +S △AOD=S △AOC =S △ABC即△ABC 的面积等于四边形CDOE 的面积的2倍.结论(3)正确,理由如下:∵△AOD ≌△COE ,∴CE=AD ,∴CD+CE=CD+AD=AC=OA ,∴(CD+CE )2=CD 2+CE 2+2CD•CE=DE 2+2CD•CE=2OA 2;结论(4)正确,理由如下:∵△AOD ≌△COE ,∴AD=CE ;∵△COD ≌△BOE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:CD 2+CE 2=DE 2,∴AD 2+BE 2=DE 2.∵△AOD ≌△COE ,∴OD=OE ,又∵OD ⊥OE ,∴△DOE 为等腰直角三角形,∴DE 2=2OE 2,∠DEO=45°.∵∠DEO=∠OCE=45°,∠COE=∠COE ,∴△OEP ∽△OCE ,∴,即OP•OC=OE 2.∴DE 2=2OE 2=2OP•OC ,∴AD 2+BE 2=2OP•OC .综上所述,正确的结论有3个,故选C .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.22.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒, ∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠, ∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明. 23.如图,已知等腰Rt △ABC 和等腰Rt △ADE ,AB=AC=4,∠BAC=∠EAD=90°,D 是射线BC 上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=时,四边形AECB 的周长为10524++;⑤ 当BD=32B 时,ED=5AB ;其中正确的有( )A .5个B .4个C .3 个D .2个【答案】B【解析】解:∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;∵BD =2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;当BD =32BC 时,CD =12BC ,∴DE =221322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=10BC =5AB .故⑤错误. 故选B .点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.24.如图, AB=AC ,AD=AE , BE 、CD 交于点O ,则图中全等三角形共有( )A .五对B .四对C .三对D .二对【答案】A【解析】如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;∴图中共有5对全等三角形.故选A.五、八年级数学轴对称三角形填空题(难)25.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECM (AAS ),∴CE =AB =6,∵AC =BC =2AB =23,∴BE =23﹣6;③若MA =ME 则∠MAE =∠AEM =45°∵∠BAC =90°,∴∠BAE =45°∴AE 平分∠BAC∵AB =AC ,∴BE =12BC =3. 故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.26.如图,已知等边ABC ∆的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.【答案】6【解析】【分析】作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出124CG BC ==,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.【详解】解:如图示:作CG ⊥MN 于G ,∵△ABC 和△CEF 是等边三角形,∴AC=BC ,CE=CF ,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE ,即∠ACE=∠BCF ,在△ACE 与△BCF 中AC BC ACE BCFCE CF =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCF (SAS ),又∵AD 是三角形△ABC 的中线∴∠CBF=∠CAE=30°,∴124CG BC ==, 在Rt △CMG 中,2222543MG CM CG =-=-,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .27.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.28.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM=22AB BM-=43;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22-=43,MO OB∴Rt△ABM中,AM=22AB BM+=47.综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.29.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键30.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.六、八年级数学轴对称三角形选择题(难)31.已知点M(2,2),且2,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .2B .(0,4)C .(4,0)D .2) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且2,且点P 在坐标轴上 当22OM OP ==时P 点坐标为:()(22,0,0,22±± ,A 满足; 当22MO MP ==P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.32.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32以及BC=12,可得DE=8,利用中位线定理可求出PQ.【详解】∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=12DE=4.故选:B.【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.33.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B.BE⊥ACC .△CFG 为等边三角形D .FG ∥BC 【答案】B【解析】试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.34.如果三角形有一个内角为120°,且过某一顶点的直线能将该 三角形分成两个等腰三角形,那么这个三角形最小的内角度数是( )A .15°B .40C .15°或20°D .15°或40° 【答案】C【解析】【分析】依据三角形的一个内角的度数为120°,且过某一顶点能将该三角形分成两个等腰三角形,运用分类思想和三角形内角和定理,即可得到该三角形其余两个内角的度数.【详解】如图1,当∠A=120°,AD=AC,DB=DC时,∠ADC=∠ACD=30°,∠DBC=∠DCB=15°,所以,∠DBC=15°,∠ACB=30°+15°=45°;故∠ABC=60°,∠C=80°;如图2,当∠BAC=120°,可以以A为顶点作∠BAD=20°,则∠DAC=100°,∵△APB,△APC都是等腰三角形;∴∠ABD=20°,∠ADC=∠ACD=40°,如图3,当∠BAC=120°,以A为顶点作∠BAD=80°,则∠DAC=40°,∵△APB,△APC都是等腰三角形,∴∠ABD=20°,∠ADC=100°,∠ACD=40°.故选C.【点睛】本题主要考查了三角形内角和定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的性质以及三角形内角和定理.35.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,故选A.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.36.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A.13B.15C.18D.21【答案】A【解析】根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB的垂直平分线交AC于D,得到AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.。
2018-2019学年四川省乐山市夹江县八年级(上)期末数学试卷(附详解)
![2018-2019学年四川省乐山市夹江县八年级(上)期末数学试卷(附详解)](https://img.taocdn.com/s3/m/f6798e33b80d6c85ec3a87c24028915f804d843a.png)
2018-2019学年四川省乐山市夹江县八年级(上)期末数学试卷1.下列实数中,无理数是()A. 4.5B. √22C. √9 D. 132.若x2−2(a−3)x+25是完全平方式,那么a的值是()A. −2,8B. 2C. 8D. ±23.使两个直角三角形全等的条件是()A. 一锐角对应相等B. 一条直角边和一个锐角对应相等C. 一条边对应相等D. 两锐角对应相等4.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A. 9,12,15B. 7,24,25C. 6,8,10D. 3,5,75.为了了解长沙市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A. 长沙市2018年中考数学成绩B. 被抽取的400名考生C. 被抽取的400名考生的中考数学成绩D. 4006.若993−99能被k整除,则k不可能是()A. 50B. 97C. 98D. 1007.如图,如图下列条件中,不能证明△ABD≌△ACD的是()A. BD=DC,AB=ACB. ∠ADB=∠ADC,∠BAD=∠CADC. ∠B=∠C,∠BAD=∠CADD. ∠B=∠C,BD=DC8.如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数为()A. 58°B. 56°C. 62°D. 60°9. 在Rt △ABC 中,∠C =90°,AB =5,AC =3,点P为边AB 上一动点(且点P 不与点A ,B 重合),PE ⊥BC 于E ,PF ⊥AC 于F ,点M 为EF 中点,则PM 的最小值为( ) A. 54 B. 125 C. 43D. 6510. 在数学中,为了书写简便,我们通常和式:1+2+3+⋯+(n −1)+n ,记作∑k n k=1,即:∑k n k=1=1+2+3+⋯+(n −1)+n.如:∑(4k=1x +k)=(x +1)+(x +2)+(x +3)+(x +4).那么,化简∑(3k=1x −k −1)的结果是( )A. x −9B. 3x −3C. −3x +1D. 3x −911. 计算√36的结果等于______.12. 计算:20182−2018×2017=______.13. 在一个样本中,50个数据分别落在5个小组内,第一、二、三、五组数据的频数分别为2、8、15、5,则第四小组数据的频数为______14. 如图,在△ABC 中,AB =AC =5,点P 是BC 边上的一个动点,则AP 2+BP ⋅PC 等于______.15. 如图,AD//BC ,BG ,AG 分别平分∠ABC 与∠BAD ,GH ⊥AB ,HG =5,则AD 与BC 之间的距离是______.16. 已知(x 2−x +1)6=a 12x 12+a 11x 11+⋯+a 2x 2+a 1x +a 0,则a 12+a 10+a 8+⋯+a 2+a 0=______.17. 计算:−12018+√25−|1−√2|+√−83−√(−3)218.已知A是一个多项式,单项式B等于2x,某同学计算A÷B时,把A÷B误写成A+B,结果得出5x4−4x3+3x2,求A÷B.19.用反证法证明:在一个三角形中,至少有一个内角小于或等于60°.20.已知:y=√1−8x+√8x−1+12,求代数式√xy+yx+2−√xy+yx−2的值.21.(1)分解因式:(x+9)(x−1)−8x;(2)已知x3=y4,求(x−2y)2−(x−y)(x+y)−2y2的值.22.如图,某港口P位于南北方向的海岸线上,甲、乙两艘渔船同时离开港口,各自沿一固定方向航行,若甲船每小时航行12海里,乙船每小时航行16海里,它们离开港口2小时后分别位于点Q、R处,且相距40海里,如果知道甲船沿北偏东75°方向航行,你知道乙船沿哪个方向航行吗?请说明理由.23.设中学生体质健康综合评定成绩满分为100分,规定:85~100为A级;75~85为B级;60~75为C级;60分以下为D级.现随机抽取盐湖区某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题(1)在这次调查中,一共抽取了______名学生;α=______;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为______度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?24.如图,在△ABC中,AB=BC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,AD与BE的交点为F,连接CF.(1)求证:BF=AC;(2)求证:若CD=√2,求线段AD的长.25.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550−1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707−1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a> 0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式______;=log a M−log a N(a>0,a≠1,M>0,N>0).(2)证明log a MN(3)拓展运用:计算log32+log36−log34=______.26.如图,已知在△ABC中,∠BAC=90°,AB=AC,BC=8,点D是BC的中点,点E是BC边上一动点(点E不与点B和点C重合),连接AE,过点C作CF⊥AE于F,交射线AD 于点G.(1)当点E在点D的左侧运动时(如图1所示),求证:△ABE≌△CAG;(2)当点E在点D的右侧运动时(如图2所示),(1)中的结论是否成立,请说明理由;(3)当点E运动到何处时,CG=5,并求出此时BE的长.答案和解析1.【答案】B【解析】解:A、4.5是有理数,错误;B、√2是无理数,正确;2C、√9=3是有理数,错误;D、1是有理数,错误;3故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】A【解析】解:∵(x±5)2=x2±10x+25,∴−2(a−3)=±10,∴a=−2或8,故选:A.根据完全平方公式即可求出答案.本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.3.【答案】B【解析】解:A、错误,全等三角形的判定必须有边的参与;B、正确,符合判定AAS或ASA;C、错误,全等的两个直角三角形的判定只有一条边对应相等不行;D、错误,全等三角形的判定必须有边的参与;故选:B.根据已知及全等三角形的判定方法进行分析,从而得到答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.【答案】D【解析】解:A、92+122=152,能构成直角三角形,故正确;B、72+242=252,能构成直角三角形,故正确;C、62+82=102,能构成直角三角形,故正确;D、32+52≠72,不能构成直角三角形,故错误.故选:D.由已知得其符合勾股定理的逆定理才能构成直角三角形,对选项一一分析,选出正确答案.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.【答案】C【解析】解:为了了解长沙市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.故选:C.直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而分析得出答案.此题主要考查了样本的定义,正确把握定义是解题关键.6.【答案】B【解析】解:993−99=99×(992−1)=99×(99−1)×(99+1)=98×99×100∵993−99能被k整除,∴k可能是98、99、100,∴k不可能是97.故选:B.应用提取公因式法、平方差公式,把993−99因式分解,判断出k不可能是哪个数即可.此题主要考查了因式分解的应用,要熟练掌握,注意平方差公式的应用.7.【答案】D【解析】解:A、BD=DC,AB=AC,再加上公共边AD=AD可利用SSS定理判定△ABD≌△ACD,故此选项不合题意;B、∠ADB=∠ADC,∠BAD=∠CAD再加上公共边AD=AD可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;C、∠B=∠C,∠BAD=∠CAD再加上公共边AD=AD可利用AAS定理判定△ABD≌△ACD,故此选项不合题意;D、∠B=∠C,BD=DC再加上公共边AD=AD,没有ASS定理判定△ABD≌△ACD,故此选项符合题意;故选:D.根据全等三角形的判定方法分别进行分析即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【答案】C【解析】【分析】本题主要考查等腰三角形的性质及外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.设∠ADE=x°,则∠B+18°=x°+12°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【解答】解:设∠ADE=x°,且∠BAD=18°,∠EDC=12°,∴∠B+18°=x°+12°,∴∠B=x°−6°,∵AB=AC,∴∠C=∠B=x°−6°,∴∠DEA=∠C+∠EDC=x°−6°+12°=x°+6°,∵AD=DE,∴∠DEA=∠DAE=x°+6°,在△ADE中,由三角形内角和定理可得x+x+6+x+6=180,解得x=56,即∠ADE=56°,∴∠DAE=62°.故选C.9.【答案】D【解析】解:在Rt△ABC中,∵∠ACB=90°,AB=5,AC=3,∴BC=√52−32=4,∵PE⊥BC于E,PF⊥AC于F,∴∠PEC=∠PFC=∠EPF=90°,∴四边形CEPF是矩形,∵M是EF的中点,∴延长PM经过点C,∴EF=CP,PM=12EF=12PC,当PC⊥AB时,PC=4×35=125,∴PM的最小值为65,故选:D.首先证明四边形CEPF是矩形,因为M是EF的中点,推出延长PM经过点C,推出EF=CP,可得PM=12EF=12PC,求出PC的最小值可得PM的最小值.此题考查了矩形的判定与性质、勾股定理、直角三角形的斜边上的高的求法,注意当CP ⊥AB 时,CP 最小.10.【答案】D【解析】解:由题意可得,∑(3k=1x −k −1)=(x −1−1)+(x −2−1)+(x −3−1)=x −1−1+x −2−1+x −3−1=3x −9,故选:D .根据题意,可以写出∑(3k=1x −k −1)=(x −1−1)+(x −2−1)+(x −3−1),然后去括号、合并同类项即可.本题考查整式的加减、新定义,解答本题的关键是明确去括号的法则和合并同类项的方法.11.【答案】6【解析】解:√36=6.故答案为:6.直接根据算术平方根的概念解答即可.此题考查的是算术平方根,掌握算术平方根的概念是解决此题关键.12.【答案】2018【解析】解:20182−2018×2017=2018(2018−2017)=2018×1=2018.故答案为:2018.把2018当作公因式提出来,计算得结果.本题考查了因式分解的提公因式法.解决本题亦可:20182−2018×2017=20182−2018(2018−1)=20182−20182+2018=2018.13.【答案】20【解析】解:由题意知:第四小组的频数=50−(2+8+15+5)=20,故答案为:20根据频数之和等于样本容量计算.本题主要考查了频数的计算,属于基础题.14.【答案】25【解析】解:如图,过点A作AM⊥BC于M,在Rt△ABM中,AB2=AM2+BM2,在Rt△APM中,AP2=AM2+MP2,∴AB2−AP2=BM2−MP2=(BM+MP)(BM−MP)=CP(CM−MP)=BP⋅CP,即AB2=AP2+BP⋅CP=52=25,故答案为:25.过点A作AM⊥BC于M,利用勾股定理得在Rt△ABM中,AB2=AM2+BM2,在Rt△APM中,AP2=AM2+MP2,所以AB2−AP2=BM2−MP2=(BM+MP)(BM−MP),从而得出答案.本题主要考查了等腰三角形的性质,勾股定理,平方差公式等知识,对已知代数式进行适当的变形是解题的关键.15.【答案】10【解析】解:过点G作GF⊥BC于F,交AD于E,∵AD//BC,GF⊥BC,∴GE⊥AD,∵AG是∠BAD的平分线,GE⊥AD,GH⊥AB,∴GE=GH=5,∵BG是∠ABC的平分线,FG⊥BC,GH⊥AB,∴GF=GH=5,∴EF=GF+GE=10,故答案为:10.过点G作GF⊥BC于F,交AD于E,根据角平分线的性质得到GF=GH=5,GE=GH=5,计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.【答案】365【解析】解:∵(x2−x+1)6=a12x12+a11x11+⋯+a2x2+a1x+a0,∴当x=1时:∵(x2−x+1)6=a12+a11+⋯+a2+a1+a0=1,①;当x=−1时,(x2−x+1)6=a12−a11+⋯+a2−a1+a0=729,②∴①+②=2(a12+a10+a8+a6+a4+a2+a0)=730,∴a12+a10+a8+⋯+a2+a0=365.故此题答案为:365.通过观察可知,若令x=1,即可求a12+a10+a8+⋯+a2+a0的值.本题考查了代数式求值.解题的关键是找出x的特殊值.17.【答案】解:原式=−1+5−(√2−1)−2−3=4−√2+1−2−3=−√2.【解析】直接利用二次根式以及立方根的定义和绝对值的性质化简进而得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:根据题意得:A +B =5x 4−4x 3+3x 2,∵B =2x ,∴A =5x 4−4x 3+3x 2−2x ,则A ÷B =(5x 4−4x 3+3x 2−2x)÷2x =52x 3−2x 2+32x −1.【解析】由题意确定出A ,求出所求即可.此题考查了整式的除法,以及整式的加减,熟练掌握运算法则是解本题的关键. 19.【答案】证明:假设在一个三角形中没有一个角小于或等于60°,即都大于60°, 那么,这个三角形的三个内角之和就会大于180°,这与定理“三角形的三个内角之和等于180°”相矛盾,∴在一个三角形中,至少有一个内角小于或等于60°.【解析】根据反证法的一般步骤、三角形内角和定理证明.本题考查的是反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.20.【答案】解:1−8x ≥0,x ≤188x −1≥0,x ≥18,∴x =18,y =12,∴原式=x+y xy √xy +x−y xy √xy =2y √xy =1.【解析】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y的值代入化简后的式子计算即可.21.【答案】解:(1)原式=x2−x+9x−9−8x =x2−9=(x+3)(x−3);(2)∵x3=y4,∴x=34y,∴(x−2y)2−(x−y)(x+y)−2y2=x2−4xy+4y2−x2+y2−2y2=−4xy+3y2=−4⋅34y⋅y+3y2=−3y2+3y2=0.【解析】(1)先去括号,合并同类项,再根据平方差公式分解因式即可;(2)求出x=34y,再根据完全平方公式和平方差公式进行计算,合并同类项,最后代入求出答案即可.本题考查了分解因式和整式的化简与求值,能正确根据整式的运算法则进行化简是解此题的关键.22.【答案】解:由题意可得:∠APQ=75°,PQ=12×2=24(海里),PR=16×2=32(海里),在△PQR中,∵PQ2+PR2=242+322=1600,QR2=402=1600,∴PQ2+PR2=QR2,∴△PQR是直角三角形,且∠QPR=90°,∴∠BPR=180°−∠APQ−∠QRP=180°−75°−90°=15°,∴乙船沿南偏东15°方向航行.【解析】直接利用勾股定理逆定理得出△PQR是直角三角形,进而得出方向角.此题主要考查了勾股定理的应用以及方向角,正确得出△PQR是直角三角形是解题关键.23.【答案】解:(1)100;24%;(2)等级为C的人数是:100−24−48−8=20(人),补图如下:(3)72;=160(人),(4)根据题意得:2000×8100答:该校D级学生有160人.【解析】【分析】此题考查了是条形统计图和扇形统计图的综合运用,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:48÷48%=100(人),a=24×100%=24%;100故答案为:100,24%;(2)见答案;(3)扇形统计图中C级对应的圆心角为20100×360°=72°;故答案为:72;(4)见答案.24.【答案】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,{∠CAD=∠FBD AD=BD∠ADC=∠BDF,∴△ADC≌△BDF(ASA),∴BF=AC,(2)解:∵△ADC≌△BDF,∴DF=CD=√2,在Rt△CDF中,CF=√CD2+DF2=√2+2=2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+√2.【解析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD= BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC≌△BDF,根据全等三角形对应边相等可得BF=AC即可;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.本题考查了全等三角形的判定与性质,勾股定理的应用,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,以及线段垂直平分线上的点到线段两端的距离相等的性质,熟记各性质并准确识图是解题的关键.25.【答案】解:(1)3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m−n,由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N(a>0,a≠1,M>0,N>0);(3)1.【解析】【分析】本题考查新定义,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(3)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【解答】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)见答案;(3)log32+log36−log34,=log3(2×6÷4),=log33,=1,故答案为:1.26.【答案】证明:(1)在Rt△ABC中,∵AB=AC,∴∠B=∠ACB=45°.∵点D是BC的中点,∴∠CAG=12∠BAC=45°,∴∠B=∠CAG.∵CF⊥AE,∴∠ACG+∠CAF=90°.∵∠BAE+∠CAF=90°,∴∠ACG=∠BAE,在△BAE和△ACG中,{∠ACG=∠BAE AB=AC∠B=∠CAG,∴△BAE≌△ACG(ASA);解:(2)结论仍然成立,即△BAE≌△ACG.理由如下:在Rt△ABC中,∵AB=AC,∴∠B=∠ACB=45°.∵点D是BC的中点,∴∠CAG=12∠BAC=45°,∴∠B=∠CAG.∵CF⊥AE,∴∠ACG+∠CAF=90°.∵∠BAE+∠CAF=90°,∴∠ACG=∠BAE,∴△BAE≌△ACG(ASA);解:(3)在Rt△ABC中,∵AB=AC,点D是BC的中点,∴AD⊥BC,CD=AD=BD=12CB=4,在Rt△CDG中,DG=√CG2−CD2=3.点E在运动的过程中,分两种情况讨论:①当点E在点D的左侧运动时,AG=AD−DG=1,∵△BAE≌△ACG,∴BE=AG=1;②当点E在点D的右侧运动时,AG=AD+DG=7,∵△BAE≌△ACG,∴BE=AG=7.综上所述,BE的值为1或7.【解析】(1)根据等腰直角三角形的性质得到∠B=∠ACB,根据同角的余角相等得到∠ACG=∠BAE,根据ASA证明△BAE≌△ACG;(2)同理即可证明△BAE≌△ACG;(3)根据直角三角形的性质求出AD,根据勾股定理求出DG,根据全等三角形的性质得出两种情况下BE的长.本题考查的是全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.第21页,共21页。
四川省乐山市八年级上学期末数学试卷
![四川省乐山市八年级上学期末数学试卷](https://img.taocdn.com/s3/m/5f144c5583c4bb4cf6ecd124.png)
四川省乐山市八年级上学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·洪泽模拟) 下列式子中,属于最简二次根式的是()A .B .C .D .2. (2分) (2015八下·临河期中) 在三边分别为下列长度的三角形中,是直角三角形的是()A . 9,12,14B . 2,,C . 4,3,D . 4,3,53. (2分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A . (3,1)B . (3,)C . (3,)D . (3,2)4. (2分) (2017八下·和平期末) 给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形,下列说法:①如图①,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH是平行四边形.②如图②,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH是菱形③在(2)中增加条件∠APB=∠CPD=90°,其他条件不变,则中点四边形EFGH是正方形其中,正确的有()A . 0个B . 1个C . 2个D . 3个5. (2分)要清楚地表明一位病人的体温变化情况,应选用的统计图为()A . 扇形统计图B . 折线统计图C . 条形统计图D . 以上都可以6. (2分)(2017·河南模拟) 如图,等边△ABC边长为2,四边形DEFG是平行四边形,DG=2,DE=3,∠GDE=60°,BC和DE在同一条直线上,且点C与点D重合,现将△ABC沿D→E的方向以每秒1个单位的速度匀速运动,当点B 与点E重合时停止,则在这个运动过程中,△ABC与四边形DEFG的重合部分的面积S与运动时间t之间的函数关系图象大致是()A .B .C .D .7. (2分)下列判定中,正确的个数有()(1)一组对边平行,一组对边相等的四边形是平行四边形;(2)对角线互相平分且相等的四边形是矩形;(3)对角线互相垂直的四边形是菱形;(4)有一个角是直角的四边形是矩形;(5)有四个角是直角的四边形是矩形;(6)对角线互相垂直平分且相等的四边形是正方形.A . 2个B . 3个C . 4个D . 5个8. (2分)如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A . 60°B . 33°C . 30°D . 23°9. (2分) (2017七下·莆田期末) 如果关于x的不等式(m﹣1)x<m﹣1的解集为x>1,那么m的取值范围是()A . m≠1B . m<0C . m>1D . m<110. (2分) (2017七下·莆田期末) 若x>y,则下列式子错误的是()A . x﹣3>y﹣3B . ﹣3x>﹣3yC . x+3>y+3D . >11. (2分)把方程x+1=4y+ 化为y=kx+b的形式,正确的是()A . y= x+1B . y= x+C . y= x+1D . y= x+12. (2分) (2016八下·番禺期末) 如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为()A . x≥mB . x≥2C . x≥1D . y≥2二、填空题 (共5题;共5分)13. (1分) (2017八下·河东期末) 如果有意义,那么字母x的取值范围是________.14. (1分)(2011·南通) 如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y= x相切.设三个半圆的半径依次为r1、r2、r3 ,则当r1=1时,r3=________.15. (1分)(2018·港南模拟) 如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为________.16. (1分) (2016八下·青海期末) 如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=6,DB=8,则四边形ABCD的周长为________.17. (1分) (2016八上·连州期末) 如图,△ABC的角平分线BO、CO相交于点O,∠A=120°,则∠BOC=________.三、解答题 (共4题;共20分)18. (5分)(1)计算:2(-)+.(2)先化简,再求值:(a﹣1+)÷(a2+1),其中a=-1.19. (5分)(2020·郑州模拟) 先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+ .20. (5分)已知方程组与有相同的解,求m,n的值.21. (5分)计算:31+(﹣102)+(+39)+(+102)+(﹣31)参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共4题;共20分)18-1、19-1、20-1、21-1、。
四川省乐山市八年级上学期数学期末模拟试卷
![四川省乐山市八年级上学期数学期末模拟试卷](https://img.taocdn.com/s3/m/ef5f667752d380eb62946d9f.png)
四川省乐山市八年级上学期数学期末模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共36分)1. (3分)在下列实数中,无理数是()A . 0B .C .D . 62. (3分)(2018·齐齐哈尔) 我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A . 众数B . 平均数C . 中位数D . 方差3. (3分) (2017九上·芜湖开学考) 一顶点重合的两个大小完全相同的边长为3的正方形ABCD和正方形AB′C′D′,如图所示,∠DAD′=45°,边BC与D′C′交于点O,则四边形ABOD′的周长是()A . 6B . 6C . 3D . 3+34. (3分)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有“笑脸”和“爱心”两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置的需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A . 14元B . 15元C . 16元D . 17元5. (3分) (2017七下·费县期中) 如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A . 30°B . 60°C . 90°D . 120°6. (3分)已知直线l过点(3,0),并且垂直于x轴,从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,使两个函数图象的交点在直线l的左侧,则这样的有序数组(p,q)共有()A . 5组B . 6组C . 7组D . 8组7. (3分)(2018·滨州模拟) 如图,小手盖住的点的坐标可能为()A . (-4,-5)B . (-4,5)C . (4,5)D . (4,-5)8. (3分) (2018八下·黄浦期中) 一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A .B .C .D . .9. (3分)已知点M(a-1,-a+3)向右平移3个单位,之后又向下移7个单位,得到点N、若点N恰在第三象限的角平分线上,则a的值为()A . 2B . 0C . 3D . -310. (3分)若与-8ab2x是同类项,则x+y的值是()A . -1B . 0C . 1D . 211. (3分)(2016·台湾) 表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x 至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400600MAT手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A . 500B . 516C . 517D . 60012. (3分)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=2,ON=6,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是()A . 2B .C . 20D . 2二、填空题 (共4题;共12分)13. (3分)数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成统计图(如图所示),根据统计图,全班每位同学答对的题数所组成的一组数据的中位数为m ,众数为n ,则m+n=________.14. (3分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________ .15. (3分) (2018九下·鄞州月考) 如图,在△ABC中,AB=2,AC=,∠BAC=105°,△ABD,△ACE,△BCF都是等边三角形,则四边形AEFD的面积为________.16. (3分)(2020·上海模拟) 已知直线与轴和y轴的交点分别是(1,0)和,那么关于的不等式的解集是________.三、解答题 (共7题;共52分)17. (8分)×18. (6分) (2015七下·简阳期中) 已知方程组与有相同的解,求m,n的值.19. (6分)在数学、外语、语文3门学科中,某校一年级开展了同学们最喜欢学习哪门学科的调查(一年级共有200人).(1)调查的问题是什么?(2)调查的对象是谁?(3)在被调查的200名学生中,有40人最喜欢学语文,60人最喜欢学数学,80人最喜欢学外语,其余的人选择其他,求最喜欢学数学这门学科的学生占学生总数的比例;(4)根据调查情况,把一年级的学生最喜欢学习某学科的人数及其占学生总数的百分比填入下表:语文外语数学其他人数占学生总数的百分比20. (6分)在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.21. (8分) (2017七下·杭州月考) 为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?22. (8分) (2017九下·武冈期中) 阅读理解:(1)如图(1),等边△ABC内有一点P到顶点A,B,C的距离分别为3,4,5,则∠APB=________.分析:由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌________,这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB 的度数.(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:BE2+CF2=EF2.23. (10分) (2017七上·深圳期末) 某织布厂有 150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣 4 件,制衣一件需要布 1.5m,将布直接出售,每米布可获利 2 元,将布制成衣后出售,每件可获利 25 元,若每名工人只能做一项工作,且不计其他因素,设安排 x 名工人制衣.(1)一天中制衣所获利润________ 元(用含 x 的式表示);(2)一天中销售剩余的布所获利润为________ 元(用含 x 的式表示);(3)一天当中安排________ 名工人制衣时,所获利润为 13712 元;(4)一年按 300 天计算,一年中这个工厂所获利润最大值为多少元?参考答案一、单选题 (共12题;共36分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共12分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共52分)17-1、18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、23-4、。
四川省乐山市八年级上学期期末数学试卷
![四川省乐山市八年级上学期期末数学试卷](https://img.taocdn.com/s3/m/228ba42d770bf78a64295483.png)
四川省乐山市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选,慧眼识金! (共14题;共28分)1. (2分)如图,在□ABCD中,对角线AC, BD相交于点O,如果AC=12,BD=18, 设AB=x那么x的取值范围是()A . 12<x<18B . 6<x<30C . 3<x<15D . 6<x<92. (2分) (2018八上·泰兴月考) 下列图形中不是轴对称图形的是()A .B .C .D .3. (2分) (2015七上·宝安期末) 已知2x3y2m和﹣xny是同类项,则mn的值是()A . 1B .C .D .4. (2分)下列变形中错误的是()A . 2x2+4x﹣2=2(x+1)2﹣4B . (2a+3b)(2a﹣3b)=4a2﹣9b2C . (3x﹣1)(6x+2)=2(3x﹣1)(3x+1)D . (2a﹣5b)2=4a2﹣25b25. (2分) (2018八上·韶关期末) 要使分式有意义,则x的取值范围是()A . x≠1B . x>1C . x<1D . x≠-16. (2分) (2018七下·历城期中) 如果(x+1)(5x+a)的乘积中不含x一次项,则a为()A . -5B . 5C .D . -7. (2分) (2018九下·福田模拟) 下列运算正确的是()A . 2a+3a=5aB . (x-2)2=x2-4C . (x-2)(x-3)=x2-6D . a8÷a4=a28. (2分) (2018八上·北京期中) 下列各式中,从左到右的变形是因式分解的是()A .B .C .D .9. (2分) (2019八上·德清期末) 小明在研究矩形的时候,利用直尺和圆规作出了如图的图形,依据尺规作图的痕迹,可知∠a的度数为().A . 56°B . 68°C . 28°D . 34°10. (2分) (2018八上·黑龙江期末) 下列度数不可能是多边形内角和的是()A . 360°B . 720°C . 810°D . 2 160°11. (2分)(2019·呼和浩特模拟) 下列运算正确是()A . a3+a3=a6B . (a+b)2=a2+b2C .D . ﹣6a+112. (2分) (2020八上·绵阳期末) 如图所示,在边长为 a 的正方形中挖去一个边长为 b 的小正方形 (a >b) ,再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是()A . a2 - b2 = (a + b)(a - b)B . (a + b) 2 = a2 + 2ab + b2C . (a - b) 2 = a2 - 2ab + b2D . (a + 2b)(a - b) = a2 + ab - 2b213. (2分) (2017八下·垫江期末) 如图,正方形ABCD的边长为3,E是BC中点,P为BD上一动点,则PE+PC 的最小值为()A .B . 2C .D . 214. (2分) (2017八下·宜兴期中) 如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1.将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1 , B2 ,B3 ,…,则B2014的坐标为()A . (1343,0)B . (1342,0)C . (1343.5,)D . (1342.5,)二、填空题 (共6题;共6分)15. (1分)(2016·孝感) 分解因式:2x2﹣8y2=________.16. (1分) (2019七下·温州期中) 若为整数,且,则 =________.17. (1分) (2018八上·东台月考) 如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC 的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乐山市市中区2017-2018学年度上期期末供题考试八年级数学试卷(2018.1)(满分150分,120分钟完卷)一.选择题(每小题3分,共39分)1.16的平方根是(C)A.-4 B.4 C.±4D.±22.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是(A)A.2,3,4 B.3,4,5 C.6,8,10 D.1,,3.市中学八年级一班同学纷纷捐出自己的零花钱,为建档立卡的贫困学生献爱心,该班第2小组8名同学捐款数额如下(单位:元):16,12,20,15,50,20,20,20.这组捐款数据中,“20”出现的频率是(A)A.12B.25C.310D.144.如果□×2a2b=﹣6a3b3,则□内应填的式子是(B)A.3ab2B.﹣3ab2C.-ab2D.-3b25.如图,B,D,E,C四点共线,且△ABD≌△ACE,若∠AEC=105°,则∠DAE的度数等于(D)A.60°B.50°C.40°D.30°解:∵△ABD≌△ACE,∴∠ADB=∠AEC=105°,∴∠ADE=∠AED=75°,∴∠DAE=180°﹣75°﹣75°=30°,6.下列命题是真命题的是(C)A.如果|a|=2,那么a=2 B.同位角相等C.如果a是有理数,那么a是实数D.两边一角对应相等的两个三角形全等解:A、如果|a|=2,那么a=2,是假命题,应为:如果|a|=2,那么a=±2,故本选项错误;B、同位角相等,是假命题,故本选项错误;C、如果a是有理数,那么a是实数,是真命题,故本选项正确;D、两边一角对应相等的两个三角形全等,是假命题,故本选项错误.7.若(x+m)(x-4)中不含x的一次项,则m的值为(A )A.4B.-4C.0D.4或-48.《几何原本》是古希腊数学家所著的一部数学著作,共13卷,这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍,这位古希腊数学家是( D ) A.利玛窦 B.高斯 C.李善兰 D.欧几里得9.如图是各洲面积占地球大陆总面积的扇形统计图,下列说法正确的是( B )①面积最大的是亚洲;②非洲占总面积的14③南美洲、北美洲、非洲共占总面积的50%;④南美洲的面积是大洋洲面积的2倍.A.①②B.①④C.①②④D.①②③④解:①亚洲的面积占陆地总面积的29.3%,占的最多,则七大洲中面积最大的是亚洲,故本选项正确;②非洲约占陆地总面积的20%,不正确;③南美洲、北美洲、非洲三大洲的面积的和是:12%+16.1%+20.2%=48.3%,不正确;④南美洲的面积占陆地总面积的12%,大洋洲面积占陆地总面积的6%,则南美洲的面积是大洋洲面积的2倍,正确;10.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于(A)A.a+b B.a﹣b C.2a+b D.a+2b解:∵ED垂直且平分BC,∴BE=CE.AB=a,AC=b.∴AB=AE+BE=AE+CE=a∴△AEC的周长为:AE+EC+AC=a+b.11.已知实数x,y,m++=,且y为负数,则m的取值范围是(D)x y mA.m>-3 B.m<-3 C.m<3D.m>312.如图,长为a,宽为b的长方形的周长为22,面积为24,则a2b+ab2 -2a-2b的值为(C)A.66 B.121 C.242 D.36913.如图,△ABC中,BC的垂直平分线与∠BAC的邻补角平分线相交于点D,DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF ②CA-AB=2AE ③∠BDC+∠FAE=180°④C、D、F在一条直线上。
其中正确的是( B )A.①②B.①②③C.①②④D.①②③④解:过点D作DG⊥BC∵DG垂直平分BC,∴BD=CD角平分线到角两边的距离相等,∴DE=DF,∴Rt△CDE≌Rt△BDF,∴∠BDF=∠CDE,CE=BF,∠FBD=∠DCE,∵DE=DF,且DE⊥AC,DF⊥AB∵AD=AD,∴Rt△AFD≌Rt△AED,∴AE=AF,∴CA-AB=CE+ AE-AB=BF+AE-AB=AB+AE+AE-AB=2AE∴∠BDC=∠180°﹣(∠DBC+∠DCB)=180°﹣(∠DBC+∠ACB+∠DCA)=180°﹣(∠FBD+∠DBC+∠ACB)=180°﹣(∠ABC+∠ACB)=∠BAC∴∠BDC+∠FAE= 180°或利用四边形AEFD的内角关系。
二.填空题(每小题3分,共30分)14.使有意义的x的取值范围是x≥2.解:根据题意,得2x﹣4≥0,解得,x≥2;15.因式分解:2312x-= )2-xx2)((3+16.命题:“两直线平行,内错角相等”的逆命题是内错角相等,两直线平行17.如图,已知正方体的体积为1,那么它的面对角线长18.如图是某电视剧在各年龄段人群收视情况的条形统计图,若某住宅小区观看此电视剧的观众人数为1200人,则其中50岁以上(含50岁)的观众约有432人.解:利用条形图,可得50岁以上(含50岁)的观众频率为:0.24,0.12,∴(0.24+0.12)×1200=432人.19.如图所示,数轴上表示a、b两个实数的点的位置,化简|a2﹣b2|﹣22++=a ab b2-ab22-a220.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=22°,则∠3=50°.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴∠ABD=∠2=22°,∵∠3=∠1+∠ABD,∠1=28°,∴∠3=50°,21.如图,把同样大小的黑色棋子摆放在正多边形的边上,第一个图形需要3个黑色棋子,第二个图形需要8个黑色棋子,…,按照这样的规律摆下去,第n(n是正整数)个图形需要黑色棋子的个数是n2+2n(用含n的代数式表示).解:结合图形,发现:解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3﹣3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4﹣4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5﹣5个,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n(n+2);=n2+2n(个).22.如图,在Rt△ABC中∠C=90°,AD平分∠BAC交BC于点D,若AC=8,AB=10,且BD:8CD=5:4,则D到AB的距离为323.如果实数a、b、c满足a+2b+3c=-18,且a2+b2+c2=ab+ac+bc,则代数值a+b2+c3的值为-21.解:∵a2+b2+c2=ab+ac+bc,⇒2a2+2b2+2c2=2ab+2ac+2bc,⇒(a2﹣2ab+b2)+(a﹣2ac+c2)+(b2﹣2bc+c2)=0,⇒(a﹣b)2+(a﹣c)2+(b﹣c)2=0,∴a﹣b=0、a﹣c=0、b﹣c=0,即a=b=c,又∵a+2b+3c=-18,∴a=b=c=-3,∴a+b2+c3=-3+9-27=-21.三、(本大题共3题.每题5分,共15分)24.解:222a++2b4ab=)2(222b ab a ++ ………………………………(2分) =2)(2b a +. ………………………………… (5分) 25. 解:23)3(951254-⨯---⨯=995)5(2⨯--⨯ …………………………………(3分) =15510-=--. ………………………………(5分) 26. 解:)9()6(222234b a b a a a a -÷--÷⋅)9(3622242b a b a a -÷-= ………………………………(3分) 22254a a a =+=. ……………………………………(5分) 四、(本大题共3题.每题6分,共18分)27. 如图,电信部门要在公路m ,n 之间的S 区域修建一座电视信号发射塔P .按照设计要求,发射塔P 到区域S 内的两个城镇A ,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).解:如图所示.解:作法提示以及给分说明:(1) 作∠MON 的角平分线OD ;……(2分) (2) 作线段AB 的中垂线EF ;………(4分) (3) 在图上标明点P 的位置;………(5分) (4) 说明点P 就是发射塔的位置. …(6分)28. 先化简,再求值:()()()231121a a a +---,其中a 是最大的负整数。
解:(1)化简得:292++a a ,正确给3分;(2)1-=a ,正确给1分;(3)代值得6-,正确给2分.29. 已知:如图,点B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF . 求证:A C ∥DF证明:∵BE=CF , ∴BE +CE=CF +CE , ∴BC=EF ,在△ABC 和△DEF 中 ∵,∴△ABC ≌△DEF (SSS ), ……… 4分 ∴∠ABC=∠DEF . ……… 1分 ∴ A C ∥DF ……… 1分 五、(本大题共3题.每题8分,共24分)30. 为了更好地因材施教,某学校八年级实行数学分层教学,就是学校将该年级的数学课统一安排,上数学课时学习成绩比较接近的同学在同一个班上课,其余课每位同学回原班上课;就家长对学校这种做法的看法,某校八年级1班兴趣小组对部分学生家长做了调查,并将收集到的数据统计整理并制作了如下的统计图:(1)求这次调查的家长总数是 (2)将条形统计图补充完整。
(3)扇形统计图中“不赞成”所占的比例为⑷在扇形统计图中,表示家长“无所谓”所对的圆心角的度数是 . 解:(1)300; ……(2分)(2)条形统计图见右边;……(5分) 给分说明:非常赞同上“60”给1分, 不赞同给2分.(3)“不赞同”家长所占的比例为152; ……………………………(6分) (4)“无所谓”所对圆心角的度数为24º. ……………………………(8分) 31. 如图,在四边形ABCD 中,∠B=90°,AB=BC=4,CD=6,DA=2.求∠DAB 的度数.解:∵∠B=90°,AB=BC=4, ∴AC=,∠DAB=∠DBA=45°,3分DCBA赞同看法∵(4)2+22=62,∴AC 2+DA 2=CD 2,∴△ACD 是直角三角形,3分 ∵∠DAC 是CD 所对的角, ∴∠DAC=90°,1分∴∠DAB=∠DAC +∠BAC=90°+45°=135°.1分 32. 乘法公式的探究及应用.⑴如图1,可以求出阴影部分的面积是 a 2﹣b 2 (写成两数平方差的形式);⑵如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 (a ﹣b ) ,长是 (a +b ) ,面积是 (a +b )(a ﹣b ) (写成多项式乘法的形式)⑶比较图1,图2的阴影部分面积,可以得到乘法公式 (a +b )(a ﹣b )=a 2﹣b 2 (用式子表达)⑷应用所得的公式计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-22222201811201711411311211 解:⑴利用正方形的面积公式可知:阴影部分的面积=a 2﹣b 2;………(1分) ⑵由图可知矩形的宽是a ﹣b ,长是a +b ,所以面积是(a +b )(a ﹣b );……(4分) ⑶(a +b )(a ﹣b )=a 2﹣b 2(等式两边交换位置也可);………(5分) ⑷⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-22222201811201711411311211 )201811)(201811)(201711)(201711()411)(411)(311)(311)(211)(211(+-+-⋅⋅+-+-+-= 20182019201820172017201820172016454334322321⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯= 40362019=. ……(8分) 六、(本大题共2题.33题11分,34题13分,共24分)33. 如图1,已知点A 、C 分别在∠GBE 的边BG 、BE 上,且AB=AC ,AD ∥BE ,∠GBE 的平分线与AD 交于点D ,连接CD .(1)求证:①△ABD 是等腰三角形;②CD 平分∠ACE .(2)猜想∠BDC 与∠BAC 之间有何数量关系?并对你的猜想加以证明.⑶如图2,若∠GBE=600,AB=2,则四边形ABCD 的面积为 (请直接写出结果)解:(1)①∵AD ∥BE , ∴∠ADB=∠DBC , ∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABD=∠ADB ,∴AB=AD ;…………(2分) ②∵AD ∥BE , ∴∠ADC=∠DCE , 由①知AB=AD ,又∵AB=AC , ∴AC=AD , ∴∠ACD=∠ADC , ∴∠ACD=∠DCE ,∴CD 平分∠ACE ;……………………(5分)(2)结论:∠BDC =21∠BAC . ……………………………………(6分) 理由:∵BD 、CD 平分∠ABE 、∠ACE , ∴∠DBC =21∠ABC ,∠DCE =21∠ACE .∵∠BDC +∠DBC =∠DCE , ∴∠BDC +21∠ABC =∠DCE . ∵∠BAC +∠ABC =∠ACE ,∴∠BDC +21∠ABC =21∠ABC +21∠BAC .∴∠BDC =21∠BAC . ………………………………………(9分)(3)32. …………………………………………………………(11分) 34. 如图所示,四边形ABCD 中,AC ⊥BD 于点O ,且AO=CO=a ,BO=DO=b ,点P 为线段AC 上的一个动点.过点P 分别作PM ⊥AD,交直线AD 于M 点,作PN ⊥DC ,交直线D 于N 点.已知a 是不等式()()24216x x x +-≥+的最小整数解,b 是代数式()215y --+的最大值。