2016学年八年级数学期末考试题
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
山东省菏泽市单县度八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省某某市单县2015-2016学年度八年级数学上学期期末考试试题一、选择题(本题共10小题,每小题3分,共30分)1.下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.有一个角是60°的等腰三角形是等边三角形C.顶角相等的两个等腰三角形全等D.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等2.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元3.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF4.某次射击训练中,一小组的成绩如下表所示:环数789人数23已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.5人B.6人C.4人D.7人5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是()A.1对B.2对C.3对D.4对6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠AFB C.∠BED D.∠ABF7.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=38.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB 于点G,下列说法正确的是()A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1D.无法判断10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题(本题共10小题,每小题3分,共30分)11.如图,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品是.12.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.13.计算+的结果为.14.如图,有一条直的宽纸带,按如图折叠,则∠1的度数为.15.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,DE⊥AB,且DE:DB=3:5,则DB的长为.16.已知=,则=.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n=.18.计算÷(1﹣)的结果是.19.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.20.对于两个不相等的有理数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{﹣,}=的解为.三、解答题(满分60分)21.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若△ABC与△DBC的周长分别是40cm,24cm,求AB的长.22.(1)求作:△ABC,使AB=AC=a,∠B=∠α(保留作图痕迹,不写作法);(2)解方程:=﹣.23.已知,如图,AB∥CD,E是AB的中点,CE=DE,求证:AC=BD.24.某校要从新入学的两名体育特长生李勇、X浩中挑选一人参加校际跳远比赛,在跳远专项测试以及以后的6次跳远选拔赛中,他们的成绩(单位:cm)如下表所示:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 602 X浩596 578 596 628 590 631 595 (1)把X浩同学7次测试成绩的平均数,李勇同学7次测试成绩的方差填在表格相应位置出.(方差的结果保留一位小数)(2)请你分析两人成绩的特点.(3)经查阅历届比赛的资料,成绩若达到6.00m,就很可能得到冠军,你认为应选去参数夺冠军比较有把握.(4)以往的该项最好成绩的记录是6.15m,若想要打破记录,你认为应选去参赛.25.如图,∠ABC=90°,D、E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:△AFM≌△DFC;(2)AD与MC垂直吗?并说明理由.26.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票,下面是两个小伙伴的对话:小亮:如果今天看演出,我们每人一X票,正好会差两X票的钱.小颖:过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一X票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴的人数.某某省某某市单县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.有一个角是60°的等腰三角形是等边三角形C.顶角相等的两个等腰三角形全等D.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等【考点】命题与定理.【分析】利用全等三角形的判定、等边三角形的判定分别判断后即可确定正确的选项.【解答】解:A、两条直角边对应相等的两个直角三角形全等,正确,是真命题;B、有一个角是60°的等腰三角形是等边三角形,正确,是真命题;C、顶角相等的两个等腰三角形相似但不全等,故错误,是假命题;D、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等,正确,是真命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定等知识,属于基础定理,难度不大.2.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元【考点】众数;中位数.【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).3.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF【考点】全等三角形的判定.【分析】要使△ABC≌△DEF,已知AB=ED,BE=CF,具备了两条边对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:可添加AC=DF,或AB∥DE或∠B=∠DEF,证明添加AC=DF后成立,∵BE=CF,∴BC=EF,又AB=DE,AC=DF,∴△ABC≌△DEF.故选D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.4.某次射击训练中,一小组的成绩如下表所示:环数789人数23已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.5人B.6人C.4人D.7人【考点】加权平均数.【专题】图表型.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数,据此列出方程,再求解.【解答】解:设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得:x=5人.故选A.【点评】本题主要考查了平均数的概念.一组数据的平均数等于所有数据的和除以数据的个数.5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故选D.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠AFB C.∠BED D.∠ABF【考点】全等三角形的判定与性质.【分析】利用“边边边”求出△ABC和△DEB全等,再根据全等三角形对应角相等可得∠ACB=∠DBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:在△ABC和△DEB中,∵,∴△ABC≌△DEB(SSS),∴∠ACB=∠DBE,在△BCF中,由三角形的外角性质得,∠ACB+∠DBE=∠A FB,∴∠ACB=∠AFB.故选B.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和,难点在于准确确定出全等三角形的对应角.7.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④A C=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB 于点G,下列说法正确的是()A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1D.无法判断【考点】三角形的外角性质;平行线的性质.【分析】根据角平分线的定义得到∠1=∠ECF,根据平行线的性质得到∠F=∠ECF,根据三角形的外角的性质列式计算即可.【解答】解:∵CE平分∠ACD,∴∠1=∠ECF,∵FG∥CE,∴∠F=∠ECF,∵∠FCD=∠3+∠BAC,∠BAC=∠2+∠F,∴∠FCD=∠3+∠2+∠F,∴∠1+∠ECF=∠3+∠2+∠F,∴∠2+∠3=∠1,故选:C.【点评】本题考查的是三角形的外角的性质、平行线的性质以及角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题(本题共10小题,每小题3分,共30分)11.如图,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品是书.【考点】轴对称图形.【分析】根据轴对称图形的性质得出这个单词,进而得出答案.【解答】解:如图所示:这个单词是BOOK,所指的物品是书.故答案为:书.【点评】此题主要考查了轴对称图形的性质,正确得出单词的名称是解题关键.12.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是 2.8 .【考点】方差;众数.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]==2.8.故答案为:2.8.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.13.计算+的结果为 1 .【考点】分式的加减法.【专题】计算题;分式.【分析】原式第一项约分后,两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.如图,有一条直的宽纸带,按如图折叠,则∠1的度数为75°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据平行线的性质得出∠EDC=∠EFA=30°,∠1+∠BDC=180°,根据折叠求出∠EDB=75°,代入求出即可.【解答】解:∵AB∥CD,∴∠EDC=∠EFA=30°,∠1+∠BDC=180°,根据折叠得出∠EDB=(180°﹣30°)=75°,∵∠BFD=∠EFA=30°,∴∠1=180°﹣75°﹣30°=75°,故答案为:75°.【点评】本题考查了翻折变换,平行线的性质的应用,能灵活运用平行线的性质进行推理是解此题的关键.15.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,DE⊥AB,且DE:DB=3:5,则DB的长为25 .【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,根据比例求出CD的长,即可得解.【解答】解:∵AD是∠BAC的平分线交BC于D,∠C=90°,DE⊥AB,∴CD=DE,∵BC=40,DE:DB=3:5,∴CD=×40=15,∴DE=CD=15,∴BD=BC﹣CD=25,故答案为:25.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.16.已知=,则=.【考点】比例的性质.【分析】直接利用已知将原式变形得出a,b的关系,进而得出答案.【解答】解:∵=,∴6a+3b=3a+5b,则3a=2b,故a=b,故==.故答案为:.【点评】此题主要考查了比例的性质,得出a,b的关系是解题关键.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n= 1008 .【考点】规律型:数字的变化类.【分析】通过观察题中给定的等式发现存在1+3+5+…+2n﹣1=n2的规律,令2015=2n﹣1,即可求得结论.【解答】解:观察1=12;1+3=22;1+3+5=32;1+3+5+7=42,可知,1+3+5+…+2n﹣1=n2,∴2015=2n﹣1,∴n=÷2=1008.故答案为:1008.【点评】本题考查了数字的变换,解题的关键是发现1+3+5+…+2n﹣1=n2的规律.18.计算÷(1﹣)的结果是.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8 cm.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【专题】探究型.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.20.对于两个不相等的有理数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{﹣,}=的解为x=1或x=﹣3 .【考点】解分式方程.【专题】新定义;分式方程及应用.【分析】分类讨论﹣与的大小,利用题中的新定义化简,求出解即可.【解答】解:当﹣<时,方程整理得:=,去分母得:3﹣x=2x,解得:x=1,经检验x=1是分式方程的解;当﹣>时,方程整理得:﹣=,去分母到:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=1或x=﹣3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.三、解答题(满分60分)21.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若△ABC与△DBC的周长分别是40cm,24cm,求AB的长.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE=40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案;(2)由△ABC与△DBC的周长分别是40cm,24cm,易得AB=△ABC与△DBC的周长的差.【解答】解:(1)∵DE垂直平分AB,∴∠AED=∠BED=90°,DA=DB,∵∠ADE=40°,∴∠A=∠ABD=50°,又∵AB=AC,∴∠ABC=(180°﹣50°)÷2=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°;(2)∵△ABC的周长表示为:AB+BC+CA,△DBC的周长表示为BD+BC+CD,∴(AB+BC+CA)﹣(BD+BC+CD)=AB+BC+CA﹣BD﹣BC﹣CD=AB+CA﹣BD﹣CD=AB+CA﹣DA﹣CD=AB,∵△ABC与△DBC的周长分别为40cm,24cm,∴AB=16cm.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.22.(1)求作:△ABC,使AB=AC=a,∠B=∠α(保留作图痕迹,不写作法);(2)解方程:=﹣.【考点】作图—复杂作图;解分式方程.【分析】(1)直接利用作一角等于已知角的方法进而结合已知线段得出答案;(2)首先找出最简公分母,进而去分母,解方程求出答案.【解答】解:(1)如图所示,△ABC即为所求作的三角形;(2)方程两边都乘x(x+1),得4x+2=3x﹣(x+1),解这个一元一次方程,得:x=﹣,经检验x=﹣是原方程的解.所以原方程的解是x=﹣.【点评】此题主要考查了复杂作图以及分式方程的解法,正确掌握作一角等于已知角的方法是解题关键.23.已知,如图,AB∥CD,E是AB的中点,CE=DE,求证:AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用SAS证明△AEC≌△BED,即可得到AC=BD.【解答】证明:∵CE=DE,∴∠ECD=∠EDC,∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∴∠AEC=∠BED,又∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED.∴AC=BD.【点评】本题考查了等腰三角形的性质、全等三角形的性质定理与判定定理,解决本题的关键是证明△AEC≌△BED.24.某校要从新入学的两名体育特长生李勇、X浩中挑选一人参加校际跳远比赛,在跳远专项测试以及以后的6次跳远选拔赛中,他们的成绩(单位:cm)如下表所示:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 60249.4 X浩596 578 596 628 590 631 595602 (1)把X浩同学7次测试成绩的平均数,李勇同学7次测试成绩的方差填在表格相应位置出.(方差的结果保留一位小数)(2)请你分析两人成绩的特点.(3)经查阅历届比赛的资料,成绩若达到6.00m,就很可能得到冠军,你认为应选李勇去参数夺冠军比较有把握.(4)以往的该项最好成绩的记录是6.15m,若想要打破记录,你认为应选X浩去参赛.【考点】方差;算术平均数.【分析】(1)根据众数、方差的概念计算即可;(2)从众数、方差等角度分析即可;(3)根据方差,从成绩的稳定性方面分析;(4)从最高成绩方面进行分析,超过6.15米的破纪录的可能性大.【解答】解:(1)X浩成绩的平均数为:(596+578+596+628+590+631+595)÷7=602cm,李勇的方差为:s2=[(603﹣602)2+(589﹣602)2+…+(608﹣602)2]2;填表如下:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 602 X浩596 578 596 628 590 631 595 602 (2)从成绩的平均数来看,两人的“平均水平”相同,从成绩的方差来看,李勇的成绩比X浩的稳定;(3)在跳远专项测试以及之后的6次跳远选拔赛中,李勇有5次成绩超过6米,而X浩只有两次超过6米,从成绩的方差来看,李勇的成绩比X浩的稳定,选李勇更有把握夺冠;(4)X浩有两次成绩为6.31米和6.28米,超过6.15米,而李勇没有一次达到6.15米,故选X浩.故答案为602,49.4;李勇;X浩.【点评】本题考查了方差及算术平均数的计算方法,此题结合实际问题考查了平均数、方差等方面的知识,体现了数学来源于生活、服务于生活的本质.25.如图,∠ABC=90°,D、E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB 相交于点M.(1)求证:△AFM≌△DFC;(2)AD与MC垂直吗?并说明理由.【考点】全等三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】(1)易证△ADE、△AFD、△DFE为等腰直角三角形,从而可得AF=DF,∠AFM=∠DFC=90°,根据同角的余角相等可得∠AMF=∠DCF,根据AAS即可得到△AFM≌△DFC;(2)由于AD⊥DE,要证AD⊥DE,只需证DE∥MC,只需证∠ACM=∠AED=45°,只需证△MFC为等腰直角三角形即可.【解答】证明:(1)∵AD⊥DE,AD=DE,点F是AE的中点,∴∠AFM=∠DFC=90°,AF=DF,∠DEA=∠DAE=45°.∵∠ABC=∠AFM=90°,∴∠AMF+∠MAC=90°,∠DCF+∠MAC=90°,∴∠AMF=∠DCF.在△AFM和△DFC中,∴△AFM≌△DFC;(2)AD⊥MC.理由如下:由(1)知,△AFM≌△DFC,∴FM=FC.∴△FMC是等腰直角三角形,∴∠FCM=45°.∵∠FED=45°,∴∠FED=∠FCM,∴DE∥MC.∵AD⊥DE,∴AD⊥MC.【点评】本题主要考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半、全等三角形的判定与性质、平行线的判定与性质等知识,考查了分析问题与解决问题的能力.26.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票,下面是两个小伙伴的对话:小亮:如果今天看演出,我们每人一X票,正好会差两X票的钱.小颖:过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一X票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴的人数.【考点】分式方程的应用.【分析】设小伙伴的人数为x人,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.【解答】解:设小伙伴的人数为x人,根据题意,得+2=,解得x=8.经检验x=8是原方程的根且符合题意.答:小伙伴的人数为8人.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.。
2016学年度第一学期期末八年级数学考试试卷(成实中)
2016学年度第一学期期末八年级数学考试试卷一、选择题(每小题3分,满分12分)1、下列二次根式中是最简二次根式的是()A B D ((((2、下列二次三项式在实数范围内不能分解因式的是()(A)6x²+x-15 (B)3y²+7y+3 (C)x²-2xy-4y²(D)2x²-4xy+5y²3、函数y=kx的图像过点1 -5 2(,),则下列各点中,不在函数图像上的点()(A) (1,-10) (B) (-10,1) (C) ( 0,0) (D) (-1,10)4、下列各组线段中,能够组成直角三角形的是()(A)8、10、12;(B)10、12、15;(C)12、16、20;(D)16、20、25.二、填空题(每小题2分,满分30分)5.6的一个有理化因式是.7、方程3x²=2x的根是.8、在实数范围内分解因式:x²-x-3= .9、某小队同学在新年时互送一张贺年卡,总共收到卡片110张,这个小队共有人.10、函数.11、如果正比例函数的图像过点(1,-2),则它的函数解析式是.12、如果m<-2,那么反比例函数m+2y=x的图像在象限.13、如果正比例函数y=(m-3)x中,y的值随x的增大而减小,那么m的取值范围是.14、直角三角形的两个锐角互余的逆命题是.15、到一个角的两边距离相等的点的轨迹是.16、已知A,B两点的坐标是A(0,2),B(-1,1),则AB= .17、在RTΔABC中,∠A=90º,a=4,b=3,则c= .18、在ΔABC中,若a=10,b=24,c=26,则∠C= 度.19、如图:在ΔABC中,∠C=90º,EF是AB的中垂线,若∠FAC=16º,则∠B= 度.第1页,共4页CA三、解答题 (25题4分,26题4分,其它每题6分,满分44分)20、 21、用配方法解方程:x ²-2=22、已知关于x 的方程mx ²+(2m-2)x+m=1有两个实数根,求m 的取值范围.23、若y 与2x 成正比例,且函数图像经过点A (-1,4),求y 与x 的函数解析式.24、已知正比例函数y ₁=K ₁x 和反比例函数 22K y =x的比例系数k ₁和k ₂互为倒数,且正比例函数的图像经过点(2,1). (1)求这两个函数解析式.(2)如果y=y ₁+y ₂,求当x= y 的值是多少?第2页,共4页25、如图,已知△ABC 中,AB=AC ,点D 在BC 边上, ∠DAC=90°AD= 12CD , 求∠BAC 的度数.26、如图:已知∠MON 及线段a ,点G 在ON 上, 求作点P ,使点P 到OM 、ON 的距离相等,且PG=a.27、已知:如图,在△ABC 中,∠ACB=90°,∠A=30°, EF 垂直平分AC ,点D 在BC 的延长线上,2CD=AE , 求证:(1)△DFC ≅△EFA ;(2)DF=BE.四、解答题 (28题6分,29题8分,满分14分)28、 某公司进了一批同型号的手机,这种手机的进价为每部1200元,出售价是进价的1.5倍,由于销售不景气,连续两次降价,但每部手机仍可赚258元,如果两次降价的百分率相同,求这个百分率.第3页,共4页B CAD EFAB CD· Ga O NM29、如图,已知在∆ABC 中,∠C=90º,∠B=30º,AC=6,点D 、E 、F 分别在边BC 、AC 、AB 上(点E 、F 与∆ABC 顶点不重合),AD 平分∠CAB , EF ⊥AD ,垂足为H.(1) 求证:AE=AF ;(2) 设CE=x ,BF=y ,求y 与x 之间的函数解析式, 并写出定义域;(3)当∆DEF 是直角三角形时,求出BF 的长.第4页,共4页答案:一选择题:1、(D )2、(D )3、(B )4、(C ) 二、填空题121225 67x =0x =3891110x 111y=-2x1213m 31415169019372021x x 22m 1m 0123y=-4x 24y=≤≤≠ ;、,;、( 、人;、;、、二、四; 、; 、两个锐角互余的三角形是直角三角形;、这个角的平分线;、;、;三解答题、 、且;、;、02x y=25BAC=120262x 272810%29y=6+x 0x 6∠ ,, 、;、略;四、解答题、略; 、 、,定义域:,A BCDE F A BCD。
2015-2016学年八年级下学期期末质量检测数学试题带答案
E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。
2016-2017学年八年级下期末数学试题含答案
2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。
四川省凉山彝族自治州西昌市凉山州2015-2016学年八年级上学期数学期末考试试卷及参考答案
A . 2对 B . 3对 C . 4对 D . 5对 13. 计算(﹣2)2015+22014等于( )
A . 22015 B . ﹣22015 C . ﹣22014 D . 22014
14. 已知分式方程
=1的解是非负数,则m的值是( )
A . m≤﹣1 B . m≤﹣1且m≠﹣2 C . m≥﹣1 D . m≥﹣1且m≠2 15. 若x2﹣2x﹣1=0(x≠0),则x+ 的值是( )
19. 若关于x的分式方程
无解,则m的值是________.
20. △ABC中,∠ABC和∠ACB的平分线交于点O,OD⊥BC于D,△ABC的面积18,AB=6,AC=8,OD=2,则BC 的长是________.
三、解答题
21. 计算:0.25×(﹣ )﹣2+( ﹣π)0+( )2 .
22. 化简求值:( +1)÷
A . 2 B . ﹣2 C . ±2 D . 2
二、填空题
16. 计算(2a﹣2bc3)2(﹣3ab5c﹣2)2=________. 17. 如图,点D在BC上,AB=AC=BD,AD=DC,则∠BAC的度数是________.
18. 如图△ABC中,AB=AC,DE⊥AB,D是AB的中点,DE交AC于E点,连结BE,BC=10cm, △BEC的周长是24cm,那么AB的长是________.
6. 如图,AC与BD交于O点,∠1=∠2,下列不能使△ABO≌△DCO的条件是( )
A . ∠A=∠D B . AC=BD C . AB=DC D . ∠ABC=∠DCB 7. 已知x﹣y=﹣3,xy=2,则(x+3)(y﹣3)的值是( ) A . ﹣6 B . 6 C . 2 D . ﹣2 8. 已知等腰三角形一腰上的高与另一腰的夹角是40°,则这个等腰三角形的底角是( )
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
2016-2017学年度下学期期末考试八年级数学试卷(含答案)
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
广东省东莞市2015-2016学年八年级下学期期末考试数学试题(WORD版)
广东省东莞市2015-2016学年八年级下学期期末考试数学试题(WORD 版)广东省东莞市2015—2016学年度第二学期期末考试卷八年级数学(总分100分,90分钟完卷)一、选择题:每小题2分,共20分 1.若式子有意义,则x 的取值范围是( ) A .x ≥B .x >C .x ≤D .x <2.一次函数y=﹣2x +1的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.衡量一组数据波动大小的统计量是( ) A .平均数 B .众数 C .中位数 D .方差 4.的结果是( ) A .B .C .D .25.某篮球队5名主力队员的身高(单位:cm )分别是174,179,180,174,178,则这5名队员身高的中位数是( ) A .174B .177C .178D .1806.在Rt △ABC 中,∠B=90°,∠C=30°,AC=2,则AB 的长为( ) A .1B .2C .D .7.下列各组线段中,能够组成直角三角形的一组是( ) A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .4cm ,5cm ,6cmD .1cm ,cm ,cm8.如图,在△ABC 中,点E 、F 分别是AB 、AC 的中点,则下列结论不正确的是( )A .EF ∥BCB .BC=2EFC .∠AEF=∠BD .AE=AF9.在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=8,BD=6,AB=5,则△AOB 的周长为( ) A .11B .12C .13D .1410.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离为S ,则S 关于t 的函数图象大致为( )A .B .C .D .二、填空题:每小题3分,共15分11.已知数据:5,7,9,10,7,9,7,这组数据的众数是 .12.一次函数y=(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是 . 13.已知a=,b=,则ab= .14.如图,三个正方形恰好围成一个直角三角形,它们的面积如图所示,则正方形A 的面积为 . 15.如图,已知点P 是正方形ABCD 的对角线BD 上的一点,且BP=BC ,则∠PCD 的度数是 .14题 15题三、解答题(一):每小题5分,共25分 16.(5分)计算:(+3)÷2﹣3.17.(5分)为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.(1)求出以上表格中a= ,b= ;(2)计算该2路公共汽车平均每班的载客量是多少? 18.(5分)如图,在四边形ABCD 中,∠BAD=∠BCD ,∠1=∠2,求证:四边形ABCD 是平行四边形.19.(5分)将直线l 1:y=2x ﹣3向下平移2个单位后得到直线l 2. (1)写出直线l 2的函数关系式;(2)判断点P (﹣1,3)是否在直线l 2上?20.(5分)如图,在△ABC 中,D 为BC 上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD 的长.四、解答题(二):每小题8分,共40分 21.(8分)观察下列各式,发现规律: 载客量/人 组中值 频数(班次)1≤x <21 11 2 21≤x <41 a 8 41≤x <61b20班级____________________姓名__________________学号_______________________ 密 封 线=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):=;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.22.(8分)某商场连续5个月统计了A、B两种品牌冰箱的销售情况(单位:台).A品牌:15,16,17,13,14B品牌:10,14,15,20,16(1)求出A品牌冰箱数据的方差;(2)已知B品牌冰箱月销售量的平均数为=15,方差为S B2=10.4,你认为这两种品牌冰箱哪一种的月销量比较稳定?23.(8分)如图,在□ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD 边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.24.(8分)如图,直线y=kx+b与坐标轴相交于点M(3,0),N(0,4).(1)求直线MN的解析式;(2)根据图象,写出不等式kx+b≥0的解集;(3)若点P在x轴上,且点P到直线y=kx+b的距离为,直接写出符合条件的点P的坐标.25.(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为等边三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)求证:BE=CF;(2)当点E,F在BC,CD上滑动时,四边形AECF的面积是否发生变化?如果不变,求出这个定值,如果变化,说明理由.2015-2016学年广东省东莞市八年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题2分,共20分1.A.2.C 3.D.4.C.5.C.6.A.7.D.8.D.9.B.10.C.二、填空题:每小题3分,共15分11.7.12.m>﹣2.13.﹣2.14.36.15.22.5°.三、解答题(一):每小题5分,共25分16.解:原式=(4+3)÷2﹣3×=2+﹣2=.17.解:(1)a=31,b=51,(2)=43(次)答:该2路公共汽车平均每班的载客量是43次.18.证明:∵∠1=∠2,∴AB∥CD,∵∠BAD=∠BCD∴∠BAD﹣∠1=∠BCD﹣∠2,∴∠CAD=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形.19.解:(1)直线y=2x﹣3向下平移2个单位得到的函数解析式为y=2x﹣3﹣2=2x﹣5;(2)当x=﹣1时,y=2×(﹣1)﹣5=﹣7≠3,∴P(﹣1,3)不在直线l2上.20.(1)证明:∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD 2,∴△ACD 是直角三角形,且∠C=90°;(2)解:在Rt△ACB中,∠C=90°∴BC===8,∴BD=BC﹣CD=8﹣3=5.四、解答题(二):每小题8分,共40分21.解:(1)根据题意得:=5;=6;故答案为:5;6;(2)====2015;(3)归纳总结得:=(n+1)(自然数n≥1).22.解:(1)=(15+16+17+13+14)÷5=15(台)∴= [(15﹣15)2+(16﹣15)2+(17﹣15)2+(13﹣15)2+(14﹣15)2]=2;(2)∵B品牌冰箱月销售量的方差为S B2=10.4,A品牌冰箱月销售量的方差为2,∴<S B2,∴A 品牌冰箱月销售量比较稳定,B品牌冰箱月销售量不稳定.23.(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL)),∴DQ=PQ,设AQ=x,则DQ=PQ=6﹣x在Rt△APQ中,AQ2+AP2=PQ2∴x2+22=(6﹣x)2,解得:x=∴AQ 的长是.24.解:(1)∵直线y=kx+b与坐标轴相交于点M(3,0),N(0,4),所以,解得:,∴直线MN的解析式为:y=﹣x+4;(2)根据图形可知,当x≤3时,y=kx+b在x轴及其上方,即kx+b≥0,则不等式kx+b≥0的解集为x≤3;(3)如图,作△OMN的高OA.在Rt△OMN中,∵OM=3,ON=4,∠MON=90°,∴MN==5.∵S△OMN=MN•OA=OM•ON,∴OA===,∴点P的坐标是(0,0);在x轴上作O关于M的对称点为(6,0),易得(6,0)到直线y=kx+b 的距离也为,所以点P的坐标是(0,0)或(6,0).25.(1)证明:∵在菱形ABCD中,∠BAD=120°,∴∠B=60°,∠BAC=∠BAD=60°,∴△ABC为等边三角形,∴AB=BC=AC.∵△AEF为等边三角形,∴AE=AF,∠EAF=60°,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF,∴△BAE≌△CAF,∴BE=CF;(2)解:四边形AECF的面积不会发生变化.理由如下:∵△BAE≌△CAF,∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,∵△ABC的面积是定值,∴四边形AECF的面积不会发生变化.如图,作AH⊥BC于点H.∵AB=AC=BC=4,∴BH=BC=2,AH=AB•sin∠B=4×=2,∴S四边形AECF=S△ABC=BC•AH=×4×2=4.。
四川省成都市金堂县2016-2017学年八年级上学期数学期末考试试卷及参考答案
四川省成都市金堂县2016-2017学年八年级上学期数学期末考试试卷一、单选题1. 下列实数是无理数的是()A . ﹣1B .C . 3.14D .2. 在平面直角坐标系中,点A(-2,1)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. 9的算术平方根是()A . 3B .C . 9D .4. 以下列各组数据为三角形的三边,能构成直角三角形的是()A . 4cm,8cm,7cmB . 2cm,2cm,2cmC . 2cm,2cm,4cmD . 6cm,8cm ,10cm5. 在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A . (-2,-3)B . (2,-3)C . (-3,2)D . (2,3)6. 如图,,∠1=54°,则∠2的度数为()A . 36°B . 54°C . 126°D . 144°7. 已知是方程的解,则k的值为()A . 3B . 4C . 5D . ﹣58. 如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A . 丁B . 丙C . 乙D . 甲9. 一次函数的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. 如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是()A .B .C .D .11.若,则x= ________二、填空题12. 如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为________ .13. 在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P (x , y )、P (x , y )两点,若x >x , 则y ________y (填“>”或“<”).14. 如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1), 平行于X 轴,则点C 的坐标为________.15. 已知:m 、n 为两个连续的整数,且m < <n ,则mn的平方根 =________16. 有长度为9cm,12cm ,15cm,36cm ,39cm 的五根木棒,从中任取三根可搭成(首尾连接)直角三角形的概率为________.17. 关于x ,y 的二元一次方程组 中, 方程组的解中的 或 相等,则m 的值为________.18. 如图,直线y=x+6与x 轴、y 轴分别交于点A 和点B ,x 轴上有一点C (﹣4,0),点P 为直线一动点,当PC+PO 值最小时点P 的坐标为________19. 如图,在平面直角坐标系中,函数y=2x 和y=﹣x 的图象分别为直线 ,,过点(1,0)作x 轴的垂线交 于点A , 过点A 作y 轴的垂线交 于点A, 过点A 作x 轴的垂线交 于点A , 过点A 作y 轴的垂线交 于点A , …依次进行下去,则点A 的坐标为________三、 解答题20.计算:(1)(2)21. 解方程组:22. 把长方形 沿对角形线AC 折叠,得到如图所示的图形,已知∠BAO=30°,(1) 求∠AOC 和∠BAC 的度数;(2) 若AD= ,OD= ,求CD 的长11122212121122334201523. 食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产甲、乙两种饮料共100瓶,需加入同种添加剂260克,其中甲饮料每瓶需加添加剂2克,乙饮料每瓶需加添加剂3克,饮料加工厂生产了甲、乙两种饮料各多少瓶?24. 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m -35m 之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =,小明调查了户居民,并补全图1;(2) 每月每户用水量的中位数落在之间,众数落在之间;(3) 如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?25. 如图,在平面直角坐标系中,一次函数y=-x+b 的图象与正比例函数y=kx 的图象都经过点B (3,1)(1) 求一次函数和正比例函数的表达式;(2) 若直线CD 与正比例函数y=kx 平行,且过点C (0,-4),与直线AB 相交于点D ,求点D 的坐标.(注:二直线平行, 相等)(3) 连接CB ,求三角形BCD 的面积.26. 甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y (米)与他们出发的时间x (秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计).33(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?27.已知中, .点从点出发沿线段移动,同时点从点出发沿线段的延长线移动,点、移动的速度相同,与直线相交于点 .(1)如图①,当点为的中点时,求的长;(2)如图②,过点作直线的垂线,垂足为,当点、在移动的过程中,设,是否为常数?若是请求出的值,若不是请说明理由.(3)如图③,E为BC的中点,直线CH垂直于直线AD,垂足为点H,交AE的延长线于点M;直线BF垂直于直线AD,垂足为F;找出图中与BD相等的线段,并证明.28. 如图①,等腰直角三角形ABC的顶点A的坐标为,C的坐标为,直角顶点B在第四象限,线段AC与x轴交于点D.将线段DC绕点D逆时针旋转90°至DE.(1)直接写出点B、D、E的坐标并求出直线DE的解析式.(2)如图②,点P以每秒1个单位的速度沿线段AC从点A运动到点C的过程中,过点P作与x轴平行的直线PG,交直线DE于点G,求与△DPG的面积S与运动时间t的函数关系式,并求出自变量t的取值范围.(3)如图③,设点F为直线DE上的点,连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FE以每秒个单位的速度运动到E后停止.当点F的坐标是多少时,是否存在点M在整个运动过程中用时最少?若存在,请求出点F的坐标;若不存在,请说明理由.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.。
山东省潍坊市寿光市度八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省潍坊市寿光市2015-2016学年度八年级数学上学期期末考试试题一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°7.下列分式中,是最简分式的是()A.B.C.D.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=19.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:.14.若分式的值为零,则x的值为.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为,方差为.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为cm.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?某某省潍坊市寿光市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】根据分式的定义直接判断得出即可.【解答】解:只有,,8﹣,符合分式的定义,一共有3个.故选:C.【点评】此题主要考查了分式的定义,准确把握分式定义是解题关键.3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差【考点】统计量的选择;众数.【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【解答】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.【点评】考查了众数、平均数、中位数和标准差意义,比较简单.4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对【考点】全等三角形的判定.【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边和对应高不一定相等,故面积相等的两个三角形不一定全等.【解答】解:因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故选C.【点评】本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定【考点】角平分线的性质;平行线之间的距离.【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥B C于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°【考点】平行四边形的性质.【分析】首先根据题意画出图形,然后由四边形ABCD是平行四边形,可得对角相等,邻角互补,又由在▱ABCD中,∠A:∠B:∠C=2:3:2,即可求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠C+∠D=180°,∵∠A:∠B:∠C=2:3:2,∴∠D=×180°=108°.故选D.【点评】此题考查了平行四边形的性质.注意结合题意画出图形,利用图形求解是关键.7.下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【专题】探究型.【分析】将选项中式子进行化简,不能化简的选项即是所求的最简分式.【解答】解:,,,不能化简.故选D.【点评】本题考查最简分式,解题的关键是明确最简分式的定义.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【考点】作图—基本作图;坐标与图形性质;角平分线的性质.【专题】压轴题.【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b 的数量关系.【解答】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.【点评】此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.9.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】根据已知条件分析,题目中给出了三角形的边相等,两条垂线,可得一对角相等,加上图形中的对顶角相等,条件满足了ASA,答案可得.【解答】解:∵AB⊥BC,DE⊥BC,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,要根据已知选择方法.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m=x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m【考点】三角形中位线定理.【专题】应用题.【分析】根据三角形中位线定理可得MN∥AB,MN=AB,然后可得△CMN∽△CAB,根据相似三角形面积比等于相似比的平方,线段的中点定义进行分析即可.【解答】解:∵AC,BC的中点M,N,∴MN∥A B,MN=AB,∴△CMN∽△CAB,∴S△M:S△ACB=(MN:AB)2,∴S△M:S△ACB=4:1,∴S△CMN=S△ABC,故A描述错误;∵M是AC中点,∴CM:CA=1:2,故B描述正确;∵AC,BC的中点M,N,∴MN∥AB,故C描述正确;∵MN的长为12m,MN=AB,∴AB=24m,故D描述正确,故选:A.【点评】此题主要考查了三角形的中位线,以及相似三角形的性质,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【考点】正方形的判定;线段垂直平分线的性质.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【考点】命题与定理.【分析】把一个命题的题设和结论互换就得到它的逆命题.【解答】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.若分式的值为零,则x的值为﹣2 .【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得|x|﹣2=0,x﹣2≠0,由|x|﹣2=0,解得x=2或x=﹣2,由x﹣2≠0,得x≠2,综上所述,得x=﹣2,故答案为:﹣2.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=35°.【考点】等腰三角形的性质.【专题】计算题.【分析】根据AD=AE,BD=EC,∠ADB=∠AEC=105°,可知△ADB≌△AEC,可得出AB=AC,根据等腰三角形的性质即可解答.【解答】解:∵AD=AE,BD=EC,∠ADB=∠AEC=105°,∴△ADB≌△AEC,∴AB=AC,∴∠B=∠C=40°,在△AEC中,∠CAE+∠C+∠AEC=180°,∴∠CAE=180°﹣40°﹣105°=35°,故答案为:35°.【点评】本题考查了等腰三角形的性质,属于基础题,关键是先求出AB=AC,再根据等腰三角形等边对等角的关系即可.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩90分.【考点】加权平均数.【分析】根据加权平均数的计算公式求解即可.【解答】解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,95这三个数的平均数,对平均数的理解不正确.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为3x﹣2 ,方差为9S2.【考点】方差;算术平均数.【分析】一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;一组数据中的每一个数都变为原数的n倍,它的方差变为原数据的n2倍;依此规律求解即可.【解答】解:∵一组数据x1,x2…,x n的平均数为x,方差为S2,∴另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数=(3x1﹣2+3x2﹣2+…+3x n﹣2)=[3(x1+x2+…+x n)﹣2n]=3x﹣2,原来的方差S2=[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],现在的方差s2=[(3x1﹣2﹣3x+2)2+(3x2﹣2﹣3x+2)2+…+(3x n﹣2﹣3x+2)2]=[9(x1﹣x)2+9(x2﹣x)2+…+9(x n﹣x)2]=9S2.故答案为3x﹣2,9S2.【点评】本题考查了平均数与方差,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为10 cm.【考点】平行四边形的性质;解一元一次方程.【分析】根据平行四边形的对边相等可列出方程,从而解出a,这样就可得出各边的长,继而得出周长.【解答】解:∵平行四边形的对边相等,当a﹣3=9﹣a时a﹣3=9﹣a,解得:a=6cm,即得AB=3cm、BC=2cm、CD=3cm、DA=2cm,∴平行四边形ABCD的周长是:AB+BC+CD+DA=10cm;当a﹣4=9﹣a时,a=6.5cm,即得AB=3.5cm、BC=2.5cm、CD=2.5cm、DA=2.5cm,∴AB≠BC=CD=DA,∴四边形不是平行四边形,故答案为10【点评】本题考查平行四边形的性质,需要熟练掌握平行四边形对边相等的性质,如果不能看出哪两组边为对边,可以画出草图,这样有助于分析.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先根据∠BAC=∠DAE得出∠BAD=∠CAE,再根据全等三角形的判定得出△ABD≌△ACE,解答即可.【解答】证明:∵∠BAC=∠DAE∴∠BAD=∠CAE∵∠ABD=∠ACE,AB=AC∵在△ABD与△ACE中,∴△ABD≌△ACE(ASA)∴BD=CE.【点评】本题考查了全等三角形的判定与性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)观察发现四个图形都是轴对称图形;(2)根据轴对称图形的特点设计图案即可.【解答】解:(1)这四个图案都具有的两个共同特征是:都是轴对称图形;(2)如图:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.【考点】分式的化简求值.【专题】开放型.【分析】先算小括号里的,小括号里面的先对第二项的分母分解因式,然后找出两项分母的最简公因式(x﹣1)(x+1),对小括号里的第一项的分子分母都乘以x﹣1,第二项不变,然后根据同分母相加减的法则,分母不变.只把分子相加减,再把除法统一成乘法,约分化为最简.注意化简后,代入的数不能使分母的值为0.【解答】解:===x2+1;当x=0时,原式的值为1.说明:只要x≠±1,且代入求值正确,均可记满分.【点评】分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.注意化简后,代入的数不能使分母的值为0.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.【考点】分式方程的应用.【专题】行程问题.【分析】设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.根据题意,知小汽车所用的时间比公共汽车所用的时间少3小时﹣20分=小时,列方程求解.【解答】解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时.【点评】找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.此题中关键是弄清两车的时间关系.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.【考点】平行四边形的性质;全等三角形的判定.【专题】证明题.【分析】根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?【考点】方差.【分析】(1)利用平均数计算公式、中位数解答即可;(2)先求出方差,根据方差的大小再确定哪段台阶路走起来更舒服;(3)要使台阶路走起来更舒服,就得让方差变得更小.【解答】解:(1)将甲、乙两台阶高度值从小到大排列如下,甲:10,12,15,17,18,18;乙:14,14,15,15,16,16;甲的中位数是:(15+17)÷2=16,平均数是:(10+12+15+17+18+18)=15;乙的中位数是:(15+15)÷2=15,平均数是:(14+14+15+15+16+16)=15;故两台阶高度的平均数相同,中位数不同;(2)=[(10﹣15)2+(12﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(18﹣15)2]=,=[(14﹣15)2+(14﹣15)2+(15﹣15)2+(15﹣15)2+(18﹣15)2+(18﹣15)2]=,∵乙台阶的方差比甲台阶方差小,∴乙台阶上行走会比较舒服;(3)修改如下:为使游客在两段台阶上行比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15cm(原平均数),使得方差为0.【点评】此题主要考查了方差在实际生活中的应用,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。
2015-2016学年度上学期期末考试八年级数学试卷(含答案)
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
2015-2016学年八年级下学期期末考试数学试题带答案(精品)
CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
2015-2016学年度八年级第二学期期末考试数学试题及参考答案
2015-2016学年度第二学期期末考试八年级数学试题(时间:120分钟 满分:150分)请注意:所有试题的答案均填写在答题卡上,答案写在试卷上无效。
一、选择题:(本大题共6小题,每小题3分,计18分) 1.下列式子中,为最简二次根式的是 ( ▲ ) A .10B .8C .21D .212.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B . C.D.3.与分式x--11的值相等的是( ▲ ) A .11--xB .x+-11 C .x+11D .11-x 4. 已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03>aB .03<-aC .03>+aD .03>a5.矩形具有而平行四边形不一定具有的性质是( ▲ ) A .对角线互相平分 B .两组对角相等 C .对角线相等D .两组对边相等6.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函数xky =在第一象限内的图象与△ABC 有公共点,则k 的取值范围是( ▲ ) A .32≤≤k B .42≤≤k C .43≤≤kD .5.32≤≤k二、填空题:(本大题共10小题,每小题3分,计30分)7x 的取值范围是 ▲ .8.如图,将△ABC 绕点A 按顺时针方向旋转60°得△ADE ,则∠BAD= ▲ °.9.若分式392+-x x 的值为0,则x 的值为 ▲ .10.若b a <,则2)(b a -可化简为 ▲ .11.若一元二次方程020162=-+bx ax 有一根为1-=x ,则b a -的值为 ▲ .12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是 ▲ . 13.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=5,则EF 的长为 ▲ .第8题图 第13题图 第16题图14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x ,根据题意可列方程为 ▲ . 15.已知)2,(m A 与)3,1(-m B 是反比例函数xky =图像上的两个点,则m 的值为 ▲ . 16.如图,矩形ABCD 中,AB=7cm,BC=3cm,P 、Q 两点分别从A 、B 两点同时出发,沿矩形ABCD 的边逆时针运动,速度均为1cm/s ,当点P 到达B 点时两点同时停止运动,若PQ 长度为5cm 时,运动时间为 ▲ s . 三、解答题:(本大题共10小题,计102分) 17.(本题10分)计算:(1)0)21()12(8+-+(2))32)(32(-+18.(本题10分)解下列一元二次方程: (1)x x 3322=-(用公式法解) (2)93)3(2-=-x x19.(本题8分)先化简,再求值:121441222+-÷-+-+-a a a a a a ,其中12+=a20.(本题8分)一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.21.(本题10分)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观。
上海市静安区八年级(下)期末数学试卷答案
2015-2016学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.(3分)(2016春•静安区期末)当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.【点评】本题考查了绝对值的性质,熟练掌握性质是做好此题的关键:①正有理数的绝对值是它本身;②负有理数的绝对值是它的相反数;③零的绝对值是零.2.(3分)(2016春•静安区期末)下列方程中,是无理方程的为()A.B.C.D.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.【点评】本题考查无理方程,解题的关键是明确无理方程的定义.3.(3分)(2016春•静安区期末)某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.【点评】此题主要考查了一次函数的应用、学会待定系数法确定函数解析式,正确由图象得出正确信息是解题关键,属于中考常考题型,4.(3分)(2016春•静安区期末)下列关于向量的运算,正确的是()A.B.C.D.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.5.(3分)(2016春•静安区期末)有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2016春•静安区期末)已知四边形ABCD中,AB与CD不平行,AC与BD 相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D【点评】本题考查了平行四边形的判定、全等三角形的判定和性质以及等腰梯形的判定的应用,解此题的关键是求出AD∥BC,题目的综合性较强,难度中等.二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.(3分)(2016春•静安区期末)如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k>2 .【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(3分)(2016春•静安区期末)方程x3+1=0的根是﹣1 .【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.【点评】本题考查了立方根的定义,是基础题,熟记概念是解题的关键.9.(3分)(2016春•静安区期末)方程的根是x=0 .【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.【点评】本题考查了分式方程的解,注意验根是解题的关键.10.(3分)(2016春•静安区期末)用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.【点评】本题考查用换元法使分式方程简便.换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程.应注意换元后的字母系数.11.(3分)(2016春•静安区期末)已知函数,那么= .【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.【点评】本题考查了函数值的求解,把自变量的值代入函数解析式进行计算即可,比较简单.12.(3分)(2016春•静安区期末)从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.13.(3分)(2016春•静安区期末)如果一个n边形的内角和是1440°,那么n= 10 .【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.【点评】本题主要考查多边形内角和公式,关键在于根据题意正确的列出方程,认真的解方程即可.14.(3分)(2016春•静安区期末)如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为 5 .【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.【点评】本题考查了菱形的性质以及等边三角形的判定方法;熟练掌握菱形的性质,证明三角形是等边三角形是解决问题的关键.15.(3分)(2016春•静安区期末)在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12 .【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.【点评】本题考查了三角形中位线定理和勾股定理.根据勾股定理求得AB的长度是解题的关键.16.(3分)(2016春•静安区期末)如图,已知正方形ABCD的边长为1,点E在边DC 上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC= ﹣1 .【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;【点评】本题主要考查了正方形的性质、勾股定理、角平分线的性质;熟练掌握正方形的性质,求出AF=AD是解决问题的关键.17.(3分)(2016春•静安区期末)一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为 4 .【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:4【点评】本题主要考查了待定系数法求函数解析式,代数式求值,求出一次函数解析式是解题的关键.18.(3分)(2016春•静安区期末)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD绕点A旋转后得到梯形AB1C1D1,其中B、C、D 的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:【点评】本题以旋转为背景,主要考查了全等三角形与等边三角形.解题时注意,旋转前后的对应边相等,对应点与旋转中心所连线段的夹角等于旋转角,这是解题的关键.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时需要添加适当辅助线构造三角形.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.(2016春•静安区期末)如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m= ﹣1 .【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.(8分)(2014•常熟市校级二模)先化简,再求值:,其中x=.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.21.(8分)(2016春•静安区期末)解方程:.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.【点评】本试题是考查无理方程的解法,通常这类方程都是用平方法或换元法,将无理方程化为无理方程再求解.值得注意的是解无理方程要验根.22.(8分)(2016春•静安区期末)解方程组:.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得x﹣4y=0或x+3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.【点评】本题考查了高次方程的解法,解方程组的思想是把二元二次方程组转化为二元一次方程组.23.(8分)(2016春•静安区期末)如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:,,;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD∥EC,AE∥DC,∴四边形AECD是平行四边形,∴AD=EC,∵BC=2AD,∴BE=EC,∴所有与互为相反向量的向量有、、.(2)如图﹣=,+=+=,图中.就是所求的向量.【点评】本题考查梯形、平行四边形的性质,向量等知识,解题的关键是理解向量的定义以及向量和差定义,属于中考常考题型.24.(8分)(2016春•静安区期末)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.【点评】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.25.(8分)(2016春•静安区期末)某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.【点评】此题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.(8分)(2016春•静安区期末)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C(6,1),∴,∴k=6,∴反比例函数解析式为.∵B(a,3)在该反比例的图象上,∴,∴a=2,即B(2,3),∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).方法二:∵点C(6,1)与点B(a,3)都在反比例函数的图象上,∴6×1=a×3=k,∴a=2,∴B(2,3).∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).(2)∵四边形ABCD是梯形,且点D为x轴上的一点,∴不可能出现AD∥BC的情形,只有可能AB∥CD,∵直线AB的解析式为y=x+1,∴可设直线CD的解析式为y=x+m,∵y=x+m经过点C(6,1),∴y=x﹣5,令y=x﹣5=0,得x=5,∴D(5,0),分别过点B、C作BE⊥x轴、CF⊥x轴,垂足分别为E、F,则S梯形ABCD=S△ABE+S梯形BEFC﹣S△DCF,===12.【点评】此题主要考查了反比例函数与一次函数交点问题,以及待定系数法求一次函数和反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.(10分)(2016春•静安区期末)已知:如图,在矩形ABCD中,AB=3,点E在AB 的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.【点评】本题考查四边形综合题、矩形的性质、全等三角形的判定和性质勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会构建方程解决问题,属于中考压轴题.。
襄城区2016-2017学年度上学期期末考试八年级数学试卷
襄城区2016-2017学年度上学期期末测试八年级数学试题一、选择题(每小题3分,共计30分)()1.下列轴对称图形中,对称轴的数量小于3的是:A. B. C. D.()2.以下列各组数据为边长,能构成三角形的是:A.4,4,8B. 2,4,7C. 4,8,8D. 2,2,7()3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是:A.∠ACB=∠FB.∠A=∠DC.BE=CFD.AC=DFAB CD第3题图ABOCDE第4题图AB CDE第5题图()4.观察图中尺规作图痕迹,下列说法错误的是:A.OE平分∠AOBB.点C、D到OE的距离不一定相等C.OC=ODD.点E到OA、OB的距离一定相等()5.如图所示,线段AC的垂直平分线交AB于点D,∠A=43º,则∠BDC的度数为:A.90ºB.60ºC.86ºD.43º()6.一个多边形的内角和与它的外角和的比为5:2,则这个多边形的边数为:A.8B.7C.6D.5()7.下列计算结果等于6a的是:A.24aa+ B.222aaa++ C.222aaa⋅⋅ D.23aa⋅()8.计算)31)(13(xx--结果正确的是:A.192-x B.291x- C.1692-+-xx D. 1692+-xx()9.若分式11-x有意义,则x的取值范围是:A.1≠x B. 0≠x C.1>x D.1<x()10.把分式2232yxyx-+的yx、均扩大为原来的10倍后,则分式的值:A.为原分式值的101B.为原分式值的1001C.为原分式值的10倍D.不变二、填空题(每小题3分,共18分)11.当2016=x时,分式392+-xx的值=___________.12.若5,8-==+abba,则2)(ba-=___________.13.如图,在△ABC中,∠B=63º,∠C=45º,DE⊥AC于E,DF⊥AB于F,那么∠EDF=___________.14.如图,OP平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA于D,PC=10,则PD=_________.15.等腰三角形一腰上的高与另一腰的夹角为52º,则该三角形的底角的度数为________.16.如图,∠AOB=30º,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=___________.三、解答题(共72分)17.(6分)先化简,再求值:111222---++xxxxx,其中2-=x18.(8分)如图,已知,点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=21,EC=9,求BC的长.19.(每小题3分,共计9分) 因式分解:(1)822-x(2)mnnmnm251023+-(3))(9)(2abbaa-+-20.(每小题4分,共计8分)解下列分式方程:(1)1113--=+xxx(2)031962=-+-xx21.(7分)如图,在平面直角坐标系中,△ABC的顶点A)1,0(,B)2,3(,C)4,1(均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,画出图形,并写出A2,B2,C2的坐标.22.(8分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.求高速公AOBMNP第16题图ACDEF第13题图AOBCDP第14题图AB CE FO xyABC路没有开通之前,长途客车的平均速度.23. (8分)阅读与思考:整式乘法与因式分解是方向相反的变形 由pq x q p x q x p x +++=++)())((2得))(()(2q x p x pq x q p x ++=+++利用这个式子可以将某些二次项系数是1的二次三项式分解因式, 例如:将式子232++x x 分解因式.分析:这个式子的常数项,212⨯=一次项系数213+= 所以21)21(2322⨯+++=++x x x x 解:)2)(1(232++=++x x x x请仿照上面的方法,解答下列问题:(1)分解因式:2762-+x x =___________________;(2)若82++px x 可分解为两个一次因式的积,则整数p 的所有可能值是_________________;(3)利用因式分解法解方程:01242=--x x .24. (9分) 已知:△ABC 是边长为3的等边三角形,以BC 为底边作一个顶角为120º等腰△BDC.点M 、点N 分别是AB 边与AC 边上的点,并且满足∠MDN =60º.(1)如图1,当点D 在△ABC 外部时,求证:BM+CN =MN ; (2)在(1)的条件下求△AMN 的周长;(3)当点D 在△ABC 内部时,其它条件不变,请在图2中补全图形, 并直接写出△AMN 的周长.25. (9分)如图,在平面直角坐标系中,直线AB 与坐标轴分别交于A 、B 两点,已知点A 的坐标为)8,0(,点B 的坐标为)0,8(,OC 、AD 均是△OAB 的中线,OC 、AD 相交于点F,OE ⊥AD 于G 交AB 于E.(1)点C 的坐标为__________;(2)求证:△AFO ≌△OEB ; (3)求证:∠ADO =∠EDBA BC A B CD M N图1图2OxyABCDEF G。
四川省德阳市2016-2017学年八年级下期末考试数学试题有答案
德阳市2016-2017学年下学期期末考试八年级数学试题一、选择题(本大题共12个小题,每小题3分,共36分)1,当x=-1时,函数y=-3x 的值等于( )A 3B -3C 31D -312,计算 :2+8=( )A 10B 4C 22D 32 3下列命题是真命题的是( )A ,对角线互相平分的四边形是平行四边形B ,对角线相等的四边形是矩形B ,对角线互相垂直的四边形是菱形 D ,对角线互相垂直的四边形是正方形4,某直角三角形的面积为55,其中一条直角边长为10,则其中另一直角边长为( ) A , 25 B , 52 C , 55 D , 2105,如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O,如果,AC=12,BD=18,设AB=x,那么x 的取值范围是( )A ,12<x <18B ,6<x <30C ,3<x <15D ,6<x <9 6,一个矩形的周长为100,则其一边长y 与相邻的另一边长x 的函数解析式为( )A ,y=50-x (0<x <50)B ,y=50-x (0<x ≤50) 的长为( )。
点经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是( )12,如图,正方形ABCD 的边长为a ,将正方形折叠,使D 点落在BC18如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围三、解答题(本大题共5小题,共46分)个最低分的平均分相同,求x的值;(3)在(2)的条件下,如果前3位评委的平均分的权重占40%,后4位评委的平均分权重占60%,按照此方案计算,那么选手甲的最后平均分是多少?22.某移动公司有两种电话收费方式:A:30元套餐,包含通话时间180分钟,超过180分钟的按0.15元/分钟收费,B:来电显示费6元,所有通话按0.2元/分钟收取。
太原市2015-2016学年八年级上期末考试数学试卷含答案
s
2
=0.2,
s2 乙
=0.8,
s
2
=1.2.根据以上数据,这四支代表队中成绩最稳定的是()
A甲.代表队
D. 丁代表队
6.如图,一次函数 y kx b 的图象与两坐标轴的正半轴相交,则k,b的取
值范围是()
A、k >0 ,b> 0
B、k >0 ,b< 0
C、k <0 ,b> 0
太原市2015—2016学年第一学期期末考试
八年级数学
一、选择题(每小题2分,共20分)
1.下列各数中的无理数是()
1
A. 9
B.0.9
C. 9
D. 3 9
2.与点P(5,-3)关于x 轴对称的点的坐标是( )
A.(5,3)
B.(-5,3)
C.(-3,5)
D.(3,-5)
3.四根小棒的长分别是5、9、12、13,从中选择三根小棒首尾相接,搭成边长如下的四个三角形,
y 7.5t 25,这里的常数“-7.5”,“25”表示的实际意义分别是()
9.如图,已知△ABC,∠1是它的一个外角,点E为边AC上一点,点D在边
BC的延长线上,连接DE. 则下列结论中不一定正确的是()
A、∠1>∠2
B、∠1>∠2
C、∠3>∠5
D、∠4>∠5
10.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)
与行驶时间t(小时)之间的关系用如图的线段AB表示. 根据图象求得y与t的关系式为
D、k <0 ,b< 0
7.在解二元一次方程组时,我们的基本思路是“消元”,即通过“代入法”或“加
减法”将“二元”化为“一元”,这个过程体现的数学思想是()
A.数形结合思想 B. 转化思想 C. 分类讨论思想D . 类比思想
2016-2017学年第二学期八年级数学期末考试试卷(含答案)
浦东新区2016-2017学年度第二学期期末质量抽测初二数学试卷(考试时间:90分钟;满分:100分)一、选择题:(本大题共6题,每题2分,满分12分)1.下列四个函数中,一次函数是……………………………………………………………( ) (A)x x y 22-=; (B)2-=x y ; (C)11+=xy ; (D)1+=x y . 2.在平面直角坐标系中,直线1y x =-经过…………………………………………( ) (A )第一、二、三象限; (B )第一、二、四象限; (C )第一、三、四象限;(D )第二、三、四象限.3.下列四个命题中真命题是 ……………………………………………………………( ) (A)矩形的对角线平分对角; (B)菱形的对角线互相垂直平分;(C) 梯形的对角线互相垂直;(D)平行四边形的对角线相等.4.如果点C 是线段AB 的中点,那么下列结论中正确的是………………………………( ) (A )0=+BC AC (B )0=-BC AC (C )0=+BC AC (D )0=-BC AC5.从2,3,4,5,6中任取一个数,是合数的概率是…………………………………( ) (A )51; (B )52; (C )53; (D )54. 6.下列事件是必然事件的是 ……………………………………………………………( ) (A)方程34-=+x 有实数根; (B)方程0222=-+-xxx 的解是2=x ; (C)方程410x -=有实数根; (D)方程23x x =只有一个实数根.二、填空题:(本大题共12题,每题3分,满分36分) 7.一次函数23+=x y 的截距是_______________. 8.已知函数()31f x x =-,则(2)f =__________.9.已知一次函数4)2(+-=x k y ,y 随x 的增大而减小,那么k 的取值范围是_________. 10.已知一次函数123y x =+,当2y >-时,自变量x 的取值范围是_________.OADBC(第17题图)11.已知一次函数的图像与x 轴交于点(3,0),且平行于直线32--=x y ,则它的函数解析式为_______________________.12.方程04324=--x x 的根是 . 13.用换元法解分式方程23202x xx x ---=-时,如果设2x y x -=,则原方程可化为关于y 的整式方程是_________________________.14.十二边形内角和为 度.15.如果等腰梯形的一条底边长8cm ,中位线长10 cm ,那么它的另一条底边长是 cm .16.一个可以自由转动的转盘被等分成六个扇形区域,并涂上了相应的颜色,如图所示.随意转动转盘,转盘停止后,指针指向蓝色区域的概率是 .17.如图,在平行四边形ABCD 中,已知AB=5 cm , AC=12㎝,BD=6㎝,则△AOB 的周长为 ㎝.18.平行四边形ABCD 中,3,4==BC AB ,∠B =60°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AFE ,那么△AFE 与四边形AECD 重叠部分的面积是 .三、解答题:(本大题共7题,满分52分)19.(本题满分6分) 20.(本题满分6分)解方程: 011=-+-x x 解方程组:⎩⎨⎧=+=--320222y x y xy x(第16题图)蓝 蓝黄黄 红红。
2016-2017学年八年级数学下册期末综合练习(二)及答案
2016-2017学年八年级数学下册期末综合练习(二)姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A.a+a=2a B.a6÷a3=a2C.+=D.(a﹣b)2=a2﹣b2 2.下列四组数据中,不能作为直角三角形的三边长是()A.3,4,5 B.3,5,7 C.5,12,13 D.6,8,103.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A.B.C.D.4.在九龙坡区中学生初中组篮球比赛中,我校篮球队取得了全区第一名的好成绩,为了参加此次比赛,校篮球队准备购买10双运动鞋,各种尺码的统计如表所示,则这10双运动鞋尺码的众数和中位数分别为()尺码/厘米25 25.5 26 26.5 27购买量/双 2 4 2 1 1 A.25.5 26 B.26 25.5 C.26 26 D.25.5 25.55.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直6.与不是同类二次根式的是()A.B.C.D.7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=288.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.B.6 C.D.(第8题) (第9题) (第13题)9.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<310.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A.2B.2C.2+2 D.2+2二、填空题(本大题共8小题,每小题3分,共24分)11.若多边形的每一个内角均为135°,则这个多边形的边数为.12.两组数据:3,a ,2b , 5与a ,6 ,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________________________.13.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=.14.如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为.(第14题) (第15题) (第18题)15.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是.16.设a,b是方程x2+x﹣9=0的两个实数根,则a2+2a+b的值为.17.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.若成立,那么2*3=.18.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为个.三、解答题(本大题共8小题,共66分)19.解方程:(x﹣1)2﹣2(x﹣1)=0.20.计算:+4×+(﹣1).21.已知a=8,求2a2•﹣﹣的值.22.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分 数 段 频数 频率 60≤x <70 9 a 70≤x <80 36 0.4 80≤x <90 27 b 90≤x ≤100c0.2请根据上述统计图表,解答下列问题:(1)在表中,a = ,b = ,c = ; (2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?23.如图,□ABCD 的对角线AC 、BD 相交于点O ,AE =CF .(1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,无需说明理由.AD BCFE O24.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?25.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=C D.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)26.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.答案解析一、选择题1.分析:根据合并同类项、同底数幂的除法、二次根式的化简、完全平方公式解答.解:A.a+a=(1+1)a=2a,故本选项正确;B、a6÷a3=a6﹣3≠a2,故本选项错误;C、+=2+=3≠,故本选项错误;D、(a﹣b)2=a2+2ab+b2≠a2﹣b2,故本选项错误.故选A.2.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.解:A.∵32+42=52,∴此三角形为直角三角形,故选项错误;B、∵32+52≠72,∴此三角形不是直角三角形,故选项正确;C、∵52+122=132,∴此三角形为直角三角形,故选项错误;D、∵62+82=102,∴此三角形为直角三角形,故选项错误.故选B.3.分析:由x1、x2是一元二次方程3x2=6﹣2x的两根,结合根与系数的关系可得出x1+x2=﹣,x1•x2=﹣2,将其代入x1﹣x1x2+x2中即可算出结果.解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.4.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中尺码为25.5的最多,有4双,故众数是25.5;排序后处于中间位置的那个数是25.5,25.5,那么由中位数的定义可知,这组数据的中位数是25.5;故选:D.5.分析:由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.6.分析:根据同类二次根式的意义,将题中的根式化简,找到被开方数相同者即可.解:=A.=与被开方数不同,不是同类二次根式;B、=与被开方数相同,是同类二次根式;C、=与被开方数相同,是同类二次根式;D、=与被开方数相同,是同类二次根式.故选:A.7.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.8.分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.9.分析:先求出方程的解,再求出的范围,最后即可得出答案.解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选:C.10.分析:要求△BDE周长的最小值,就要求DE+BE的最小值.根据勾股定理即可得.解:过点B作BO⊥AC于O,延长BO到B′,使OB′=OB,连接DB′,交AC于E,此时DB′=DE+EB′=DE+BE的值最小.连接CB′,易证CB′⊥BC,根据勾股定理可得DB′==2,则△BDE周长的最小值为2+2.故选C.二、填空题11.分析:先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.12.分析:由题意得,解得,∴这组新数据是3,4,5,6,8,8,8,其中位数是6.解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.13.分析:根据三角形的中位线定理得到DE=BC,即可得到答案.解:∵D、E分别是边AB、AC的中点,BC=8,∴DE=BC=4.故答案为:4.14.分析:由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(﹣n,0),C点的坐标为(0,n),由A点的坐标为(﹣4,0),∠ACD=90°,用勾股定理列出方程求出n的值.解:∵直线y=x+n与坐标轴交于点B,C,∴B点的坐标为(﹣n,0),C点的坐标为(0,n),∵A点的坐标为(﹣4,0),∠ACD=90°,∴AB2=AC2+BC2,∵AC2=AO2+OC2,BC2=0B2+0C2,∴AB2=AO2+OC2+0B2+0C2,即(﹣n+4)2=42+n2+(﹣n)2+n2解得n=﹣,n=0(舍去).故答案为:.15.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又∵BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故答案为:.16.分析:由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.解答:解:∵a是方程x2+x﹣9=0的根,∴a2+a=9;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=9+(﹣1)=8.故答案为:8.17.分析:利用二次方根式的被开方数是非负数求得a=2;然后将a=2代入已知等式中求得b=﹣1;最后利用新定义运算法则知2*3=2a+3b=2×2+3×(﹣1)=4﹣3=1.解:∵,∴a=2,∴由,得2b=,解得,b=﹣1,∵X*Y=aX+bY,∴2*3=2a+3b=2×2+3×(﹣1)=4﹣3=1;故答案是1.18.分析:连接BG,根据折叠的性质得到∠1=∠2,EB=EH,BH⊥EG,则∠EBG=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,且∠3=∠4,根据等角的余交相等得到∠1=∠3,因此有∠1=∠2=∠3=∠4.解:连接BH,如图,∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,而∠1>60°,∴∠1≠∠AEH,∵EB=EH,∴∠EBH=∠EHB,又∵点E是AB的中点,∴EH=EB=EA,∴EH=AB,∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,∴∠1+∠EBH=90°,∠EBH+∠4=90°,∴∠1=∠4,∴∠1=∠3,∴∠1=∠2=∠3=∠4.则与∠BEG相等的角有3个.故答案为:3.三、解答题19.分析:本题可以运用因式分解法解方程.因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.解答:解:(x﹣1)2﹣2(x﹣1)=0,(x﹣1)(x﹣1﹣2)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3.20.分析:原式第一项利用二次根式性质化简,第二项利用立方根定义化简,最后一项利用单项式乘以多项式法则计算,即可得到结果.解:原式=10+4×(﹣)+2﹣=10﹣2+2﹣=10﹣.21.分析:由a=8>0,首先把原式子通过开方运算、分母有理化进行化简,合并同类二次根式,然后把a的值代入求值即可.解:∵a=8>0,∴原式=2a2•﹣a﹣=2a﹣a﹣===16.22.分析:(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值;(2)根据(1)中c的值,可以将频数分布直方图补充完整;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;(4)根据表格中的数据可以求得“优秀”等次的学生数.解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400, 即“优秀”等次的学生约有400人.23.分析:(1)先证出OE =OF ,再由SAS 即可证明△BOE ≌△DOF ;(2)由对角线互相平分证出四边形EBFD 是平行四边形,再由对角线相等,即可得出四边形EBFD 是矩形.解答:(1)证明:∵四边形ABCD 是平行四边形,∴BO =DO ,AO =OC∵AE =CF∴AO -AE =OC -CF即:OE =OF在△BOE 和△DOF 中,OB OD BOE DOFOE OF =⎧⎪∠=∠⎨⎪=⎩∴△BOE ≌△DOF (SAS );(2)矩形.理由:∵△BOE ≌△DOF ,∴BE =DF ,∠BEO =∠DFO ,∴BE ∥DF ,∴四边形EBFD 为平行四边形.∵BD =EF ,∴平行四边形EBFD 为矩形.24.分析: (1)等量关系为:2013年教育经费的投入×(1+增长率)2=2015年教育经费的投入,把相关数值代入求解即可;(2)2016年该区教育经费=2015年教育经费的投入×(1+增长率).解:(1)2013年教育经费:40000×15%=6000(万元)设每年平均增长的百分率为x,根据题意得:6000(1+x)2=7260,(1+x)2=1.21,∵1+x>0,∴1+x=1.1,x=10%.答:该县这两年教育经费平均增长率为10%;(2)2016年该县教育经费为:7260×(1+10%)=7986(万元),∵7986>8000,∴2016年教育经费不会达到8000万元.25.分析:(1)求出∠3=∠4,∠BOP=∠PED=90°,根据AAS证△BPO≌△PDE即可;(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBC﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中∴△ABP≌△CPD(AAS),∴AP=C D.(3)解:CD′与AP′的数量关系是CD′=AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由△OBP≌△EPD,得BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,∴CD′与AP′的数量关系是CD′=AP′26.分析:(1)可把正方形分割为四个全等的正方形,作出这些正方形的对角线,把装置放在交点处,交点到其余各个小正方形顶点的距离相等通过计算看是否适合;(2)由(1)得到启示,把正方形分割为三个长方形,左边的一个矩形的对角线能辐射的最大直径为31,看能否把三个装置放在三个长方形的对角线的交点处.解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求;(2)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=O C.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016学年番禺区第二学期八年级数学科期末测试题
【说明】1.本试卷共6页,全卷满分100分,考试时间为120分钟.考生应将答案全部填(涂) 写在答题卡相应位置上,写在本试卷上无效.考试时允许使用计算器;
2.答题前考生务必将自己的姓名、考试证号等填(涂)写到答题卡的相应位置上;
3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一.选择题 (本大题共10小题,每小题2分,满分20分.) 1.计算82⨯的结果是( ) A.10 B.4 C.8 D.±4 2.当3x =时,函数21y x =-+的值是( ) A.-5 B.3 C.7 D.5
3.若正比例函数y kx =的图象经过点()2,1,则k 的值是( ) A.-
12 B.-2 C.1
2
D.2 4.正方形的一条对角线之长为4,则此正方形的面积是( ) A.16 B.8 C.42 D.82
5.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A.
365 B.1225 C.94
D.33
6.不能判定一个四边形是平行四边形的条件是( )
A.两组对边分别平行
B.两组对边分别相等
C.一组对边平行且相等
D.一组对边平行另一组对边相等
7.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (),2a ,则关于x 的不等式
1x mx n +≥+ 的解集为( )
A.1x ≤
B.1x ≥- B.x m ≥ D.1x ≥
8.某校有甲、乙两个合唱队,两队队员的平均身高都为160cm ,标准差分别是S 甲、S 乙,且
S S >乙甲,则两个队的队员的身高较整齐的是( )
A.甲队
B.两队一样整齐
C.乙队
D.不能确定
9.学校离小明家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,然后又行驶了5分钟到家. 在下列图形中能大致描述他回家过程中离家的距离s (千米)与所用时间
t (分)之间的函数关系是( )
A B C D
10.如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B ,AD=5,则BC 的长为( )
A 31- B.31+ C.51+ D.251-
二.填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上) 11.在函数1y x =
-中,自变量x 的取值范围是 .
12.比较大小:4
15(填“>”、“=”或者“<”).
13.如图,每个小正方形的边长都为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数
为 .
14.把直线1y x =+沿x 轴向右平移2个单位,所得直线的函数解析式为 . 15.已知一组数据3,a ,4,6,7,它们的平均数是5,则这组数据的方差是 .
16.如图是“赵爽弦图”,△ABH 、△CDF 和△DAE 是四个全等的直角 三角形,四边形ABCD 和EFGH 都是正方形,如果AH=6,EF=2, 那么AB 等于 .
三.解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分6分,各题3分)
(1)计算:82-; (2)化简:2
9227
x (0x >).
18.(本小题满分6分)
在□ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF=BE ,连接AF 、BF. (1)求证:四边形BFDE 是矩形;
(2)若CF=3,BF=4,DF=5,求BC 的长,并证明AF 平分∠DAB.
19.(本小题满分7分)
已知y 是x 的一次函数,当3x =时,1y =;当2x =-时,4y =-. (1)求此一次函数的解析式;
(2)求一次函数的图象与两坐标轴的交点坐标.
20.(本小题满分7分)
如图,□ABCD 的对角线AC 、BD 相交于点O ,AE=CF. (1)求证:△BOE ≌△DOF ;
(2)连接DE 、BF ,若BD ⊥EF ,试探究四边形EBDF 的形状,并对结论给予证明.
21.(本小题满分8分)
老师想知道某校学生每天上学路上要花多少时间,于是随机选取30名同学每天来校的大时间 5 10 15 20 25 30 35 45 人数
3
3
6
12
2
2
1
1
(2)求这30名同学每天上学的平均时间.
22.(本小题满分8分)
如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH , (1)求证:∠DHO=∠DCO.
(2)若OC=4,BD=6,求菱形ABCD 的周长和面积.
23.(本小题满分8分)如图,一次函数2
23
y x =-
+的图象分别与x 轴、y 轴交于A 、B ,已线段AB 为边在第一象限内作等腰Rt △ABC ,使∠BAC=90°. (1)分别求点A 、C 的坐标;
(2)在x 轴上求一点P ,使它到B 、C 两点的距离之和最小.
24.(本小题满分9分)
甲、乙两家商场平时以同样的价格出售某种商品,“五一节”期间,两家商场都开展让利酬宾活动,
其中甲商场打8折出售,乙商场对一次性购买商品总价超过300元后的部分打7折.
(1)设商品原价为x 元,某顾客计划购此商品的金额为y 元,分别就两家商场让利方式
求出y 关于x 的函数解析式,并写出x 的取值范围,作出函数图象(不用列表); (2)顾客选择哪家商场购物更省钱?
25.(本小题满分9分)
已知,矩形ABCD 中,AB=4cm ,AD=2AB ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O.
(1)如图1,连接AF 、CE.求证四边形AFCE 为菱形,并求AF 的长;
(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一
周,即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒.当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值;
②若点P 、Q 的速度分别为1v 、2v (cm/s ),点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,试探究a 与
b满足的数量关系.。