协方差传播率

协方差传播率
协方差传播率

第三章 协方差传播律

一、 公式汇编

广义传播律

T YY XX T ZZ XX T YZ XX D FD F D KD K D FD K ?=?=??=?220022

002200()()()T YY XX T ZZ XX YZ XX Q F Q F Q K Q K Q F Q K σσσσσσ?=??=??=?T YY XX T ZZ XX YZ XX Q FQ F Q KQ K Q FQ K ?

=??=??=?

独立观测值权倒数

2

22

1122

1111

Z n n

f f f P L P L P L P ?????????=+++ ? ? ??????????

方差与协因数阵

202020XX XX YY YY XY XY

D Q D Q D Q σσσ===22022

020i ii

j jj ji ij

Q Q Q σσσσσσ===

221

00XX XX XX D Q P σσ-==

202i i

p σσ=

二、 解题指南

1.观测值及其方差阵 写成向量、矩阵形式

,XX X D

2 按要求写出函数式,对函数式求全微分,写成矩阵形式 函数式

),,2,1(),,,,(21n i X X X f Z n i i ==

全微分

写成矩阵形式:

dZ KdX =

3应用协方差传播律求方差或协方差阵。

T ZZ XX D KD K =

三、 例题讲解

在三角形ABC 中观测三个内角 ,将闭合差平均分配后得到各角值及其方差阵为:

1

23?4010'30"??5005'20"?8944'10"L L L L ????????==?????????

????? ??633363336LL D --????=--????--?? 解:1.观测量 及其方差

123????L L L L ????=???????

? ??633363336LL D --????=--????--?? 2.写出函数式

12

3

3

??sin sin ??sin sin a b L L S S S S L

L

== 线性化

013

2

3

??ln ln ln sin ln sin ??ln ln ln sin ln sin a b

S S L L S S L

L =+-=+-

1133

2

2

3

3

????cot cot ????cot cot a a a b

b

b

dS S L dL S L dL dS S L dL S L dL

=-=-

1

2

3

???,,L

L L 已知边长S0=1500.000m,求Sa 、Sb 的长度及他们的协方差阵 Dss

写成矩阵形式

11

332

33???cot 0cot ???0cot cot ?a a a b b b dL

dS S L S L dS dL dS S L S L dL ??????-??==??????

-???

????????

?

1

313

2

33??cot cot ?0???cot cot ?0a a a b b b S L S L dL dS dS dL dS S L S L dL ρρρ

ρ????-?

?????

?

?==?????

???????-???????

?

133?1146041??09625?dL dL KdL dL ρ????-??==????-????????

3.应用协方差传播律求方差或协方差阵

263311460114604136309620962533645Dss ρ--????

-??????=--???

???-??????----????

2

1.860.770.77 1.32Dss cm -??=??-??

四、练习题

1. 已知观测值1L ,2L 的中误差12σσσ==,120σ=,设11225,2X L Y L L =+=-,

12Z L L =。试求X ,Y ,Z 的中误差。

2. 设有不等精度的独立观测值1L 、2L 及3L ,他们的中误差分别为1σ、2σ及3σ,试求

下列各函数的中误差。

1)、1110F k L L =+ (10,k L 为常数) 2)、2

3

213F L L =- 3)、2

31231()2

F L L L =+-

3. 设有观测向量[]1

2

331

T L L L L =,其协方差阵为400030002LL D ??

??=??????

分别求下列函数的

的方差:(1)1133F L L =-;(2)2233F L L =

4. 在水准测量中,设每站观测高差的中误差均为1mm ,今要求从已知点推算待定点的高

程中误差不大于5cm ,问可以设多少站?

5. 有一角度测4个测回,得中误差为0.42〃,问再增加多少个测回其中误差为0.28〃?

6. 已知观测值向量21

L 的权阵为5224LL P -??

=?

?

-??

,试求观测值的权1L P 和2L P 7. 在某一个三角形中,各个角的中误差分别是4''±、3''±、2''±。求此三角形闭合差的

中误差。

8. 已知一组观测值321,,L L L ,其方差阵是I D LL =?3

3,有函数∑==

3

1

i i

i L

a x 、∑==

3

1

i i

i L

b y 。

求向量???

?

??=y x Z 的方差阵。

9.

已知随机向量13?L 的自协方差阵是?

???

? ??--=210130004LL

D

。求函数向量?

??? ??=3221L L L Z 的方差阵。

10. 对一个梯形的上底、下底和高分别观测了n 次,一次测量的中误差分别为:σ上、σ下、

σ高,梯形面积的平均值由A =(上底+下底)×高÷2 决定,试求该平均值的中误差A

σ的计算表达式。

11. 已知观测值向量L ,其协因数阵为单位阵。有如下方程:

L BX V -=,

0=-L B BX B T T ,

L B B B X T T 1)(-=,V L L

+=? 式中:B 为已知的系数阵,B B T

为可逆矩阵。

求(1)协因数阵XX Q 、L L Q ??;(2)证明V 与X 和L

?均互不相关。

五、思考题

1.误差传播定律是用来解决什么问题的?试述应用误差传播定律解决问题实际步骤。

2.三角形闭合差是真误差?如何由三角形闭合差计算测角中误差?

3.为什么要引进权的概念?权是怎样定义的如何,理解单位权中误差,单位权观测值、

单位权的概念?

4.权有没有单位?举例说明

5.指出水准测量的两种定权公式,式中符号各代表什么意义?

6.导线测量中的观测量是什么?如何定权?

7.协因数传播律与误差传播律有何异同?

8.协因数如何定义的,为什么要引入协因数的概念?

9.方差阵、协因数阵、权阵之间的关系。

方差分析和协方差分析,协变量和控制变量

方差分析和协方差分析,协变量和控制变量 方差分析 方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。 方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。 假定条件和假设检验? 1. 方差分析的假定条件为:(1)各处理条件下的样本是随机的。(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。(4)各处理条件下的样本方差相同,即具有齐效性。 2. 方差分析的假设检验假设有K个样本,如果原假设H0样本均数都相同,K个样本有共同的方差σ,则K个样本来自具有共同方差σ和相同均值的总体。如果经过计算,组间均方远远大于组内均方,则推翻原假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义。否则承认原假设,样本来自相同总体,处理间无差异。 作用 一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。经过方差分析若拒绝了检验假设,只能说

期望、方差协方差

随机变量的数字特征 一、数学期望E(x)的性质: 性质一:常数C,E(C)=C; 性质二:X为随机变量,C为常数,则E(CX)=CE(X); 性质三:X,Y为随机变量,则E(X+Y)=E(X)+E(Y); 性质三:X,Y为相互独立的随机变量时,E(XY)=E(X)E(Y) 二、方差的性质:D(X)=E(X2)-[E(X)]2 性质一:C为常数,则D(C)=0; 性质二:X为随机变量,C为常数,则 D(CX)=C2D(X) D(X±C)=D(X) 性质三:X,Y为相互独立随机变量 D(X±Y)=D(X)+D(Y) 当X,Y不相互独立时: D(X±Y)=D(X)+D(Y)±2COV(X,Y); 关于协方差COV(X+Y,X-Y)=D(X)-D(Y)的证明? 证:由COV(X,Y)=E(XY)-E(X)E(Y) 得 COV(X+Y,X-Y)=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y) =E(X^2-Y^2)-{[E(X)+E(Y)][E(X)-E(Y)]} =E(X^2)-E(Y^2)-E(X)E(X)+E(Y)E(Y) =E(X^2)-E(X)E(X)-[E(Y^2)-E(Y)(Y)]

=D(X)-D(Y) 三、常用函数期望与方差: ⑴(0-1)分布: ①分布律:P{X=K}=p^k(1-p)^1-k,k=0,1,2...(0=1,00) ②数学期望:λ ③方差:λ ⑷均匀分布U(a,b): ①分布律:f(X)=1/(b-a), a0; f(X)=0, X≦0;

方差与协方差理解

§2 方差、协方差与相关系数 方差 例1 比较甲乙两人的射击技术,已知两人每次击中环数分布为: ξ:7 8901 0601...?? ??? η:67891001 02040201.....?? ???. 问哪一个技术较好 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于 ()E E ξξ-=E E ξξ-=0对一切随机变量均成立,即ξ的离差正负相消,因此 用()E E ξξ-是不恰当的. 我们改用()2 E E ξξ-描述取值ξ的离散程度,这 就是方差. 定义 1 若()2 E E ξξ-存在,为有限值,就称它是随机变量ξ的方差(variance),记作Var ξ, Var ξ=()2E E ξξ- (1) 但Var ξ的量纲与ξξ的标准差(standard deviation). 方差是随机变量函数()2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的计算公式

Var ξ=2()d ()x E F x ξ ξ+∞ -∞-?=22()(),,()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-= ()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ=()2 2 E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η. 解 利用(3)式 2 E ξ= ∑=i i i x P x ) (2 ξ=72×+82×+92×=, Var ξ= ()2 2E E ξξ-=82=. 同理, Var η= ()2 2 E E ηη-= = > Var ξ, 所以η取值较ξ分散. 这说明甲的射击技术较好. 例2 试计算泊松分布P(λ)的方差. 解 2 2 01 ! (1)!k k k k E k e k e k k λ λ λλξ∞ ∞ --====-∑∑ 1 1(1) (1)! (1)!k k k k k e e k k λ λ λλ∞ ∞ --===-+--∑∑ 2 ! ! j j j j j e e j j λ λ λλλ λ∞ ∞ --===+∑∑ 2 λλ=+ 所以Var ξ=22 λλλλ+-=. 例3 设ξ服从[ a, b ]上的均匀分布U [a, b],求Var ξ.

23. 协方差分析

23. 协方差分析 一、基本原理 1. 基本思想 在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。如果忽略这些因素的影响,则有可能得到不正确的结论。这种影响的变量称为协变量(一般是连续变量)。 例如,研究3种不同的教学方法的教学效果的好坏。检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。 协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。 协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。 协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。 当有一个协变量时,称为一元协方差分析,当有两个或两个以上

的协变量时,称为多元协方差分析。 2. 协方差分析需要满足的条件 (1)自变量是分类变量,协变量是定距变量,因变量是连续变量;对连续变量或定距变量的协变量的测量不能有误差; (2)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;协变量的回归系数(即各回归线的斜率)是相同的,且不等于0,即各组的回归线是非水平的平行线。否则,就有可能犯第一类错误,即错误地接受虚无假设; (3) 自变量与协变量相互独立,若协方差受自变量的影响,那么协方差分析在检验自变量的效应之前对因变量所作的控制调整将是偏倚的,自变量对因变量的间接效应就会被排除; (4)各样本来自具有相同方差σ2的正态分布总体,即要求各组方差齐性。 二、协方差理论 1. 观测值=均值+分组变量影响+协变量影响+随机误差. 即 ()ij i ij ij y u t x x βε=++-+ (1) 其中,X 为所有协变量的平均值。 注:在方差分析中,协变量影响是包含在随机误差中的,在协方差分析中需要分离出来。 用协变量进行修正,得到修正后的y ij (adj)为 (adj)()ij ij ij i ij y y x x u t βε=--=++

概率论与数理统计:协方差和相关系数

协方差和相关系数 对二维随机变量),(Y X ,我们除了讨论X 与Y 的期望和方差之外,还 需讨论X 与Y 之间相互关系的数字特征,本节主要讨论这方面的数字特征。 § 协方差和相关系数 协方差的定义与性质 定义 设(,)X Y 是二维随机变量.若{[()][()]}E X E X Y E Y --存在,则称它为随 机变量 X 与Y 的协方差,记为Cov(,)X Y ,即 Cov(,){[()][()]}X Y E X E X Y E Y =--. 常用下面的式子计算协方差 Cov(,){[()][()]}X Y E X E X Y E Y =--()()()E XY E X E Y =-. 注:(1)X 与Y 的协方差),(Y X Cov 实质上是二维随机变量X 与Y 的函数 )]([()]([(Y E Y X E X -?-的期望,它是一个常数。 (2)当),(Y X 为二维离散型随机变量时,其分布律为 }{),2,1,,2,1(,, =====j i y Y x X P P j i ij ,则 ij i i j i P Y E y X E x Y X Cov )]()][([),(1 1 --= ∑∑∞=∞ =; (3)当),(Y X 为二维连续型随机变量时,),(y x f 为),(Y X 的联合概率密度函数,则dxdy y x f Y E y X E x Y X Cov ),())(())((),(--= ?? +∞∞-+∞ ∞ -。 (4)利用期望的性质可得到协方差有下列计算公式: )()()(),(Y E X E XY E Y X Cov -= 证明: ) ()()( )()()()()()()( )] ()()()([ )] ())(([(),(Y E X E XY E Y E X E Y E X E Y E X E XY E Y E X E Y XE Y X E XY E Y E Y X E X E Y X Cov -=+--=+--=--= 此公式是计算协方差的重要公式,特别地取Y X =时,有

相关系数与协方差的关系

探究协方差与相关系数 罗燕 摘要:协方差),(Y X Cov 是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数),(Y X Corr 。从而可以引进相关系数),(Y X Corr 去刻画二维随机变量两个分量间相互关联程度。且事实表明,相关系数明显被广泛应用。本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。 关键字:协方差),(Y X Cov 相关系数),(Y X Corr 相互关联程度 1 协方差、相关系数的定义及性质 设(X ,Y )是一个二维随机变量,若E{ [ X-E(X) ] [ Y -E(Y) ] }存在,则称此数学期望为X 与Y 的协方差,并记为Cov(X,Y)=E{ [ X-E(X) ] [ Y -E(Y) ] },特别有Cov(X,X)=)(X Var 。 从协方差的定义可以看出,它是X 的偏差“X-E(X) ”与Y 的偏差“Y -E(Y)”的乘积的数学期望。由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下: ·当Cov(X,Y)>0时,称X 与Y 正相关,这时两个偏差 [ X-E(X) ] 与[ Y -E(Y) ] 同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X 与Y 同时增加或同时减少,这就是正相关的含义。 ·当Cov(X,Y)<0时,称X 与Y 负相关,这时X 增加而Y 减少,或Y 增加而X 减少,这就是负相关的含义。 ·当Cov(X,Y)=0时,称X 与Y 不相关。 也就是说,协方差就是用来描述二维随机变量X 与Y 相互关联程度的一个特征数。协方差Cov(X,Y)是有量纲的量,譬如X 表示人的身高,单位是米(m ),Y 表示人的体重,单位是公斤(k g ),则Cov(X,Y)带有量纲(m ·kg )。为了消除量纲的影响,对协方差除以相同量纲的量,就得到一个新的概念—相关系数,它的定义如下: 设(X ,Y )是一个二维随机变量,且)(X Var >0,)(Y Var >0.则称 ),(Y X C o r r =)()() ,(Y Var X Var Y X Cov =y x Y X Cov σσ),( 为X 与Y 的(线性)相关系数。 利用施瓦茨不等式我们不难得到-1≤),(Y X Corr ≤1.也就是说相关系数是介于-1到1之间的,并且可以对它作以下几点说明: ·若),(Y X Corr =0,则称X 与Y 不相关。不相关是指X 与Y 没有线性关系,但也有可能有其他关系,比如平方关系、立方关系等。 ·若),(Y X Corr =1,则称X 与Y 完全正相关;若),(Y X Corr =-1,则称X 与Y 完全,负相关。

协方差分析理论与案例

协方差分析理论与案例 假设我们有N 个个体的K 个属性在T 个不同时期的样本观测值,用it y ,it x ,…,N,t=1,…,T,k=1,…,K 表示。一般假定y 的观测值是某随机实验的结果,该实验结果在属性向量x 和参数向量θ下的条件概率分布为(,)f y x θ。使用面板数据的最终目标之一就是利用获取的信息对参数θ进行统计推断,譬如常假设假定的y 是关于x 的线性函数的简单模型。协方差分析检验是识别样本波动源时广泛采用的方法。 方差分析:常指一类特殊的线性假设,这类假设假定随机变量y 的期望值仅与所考察个体所属的类(该类由一个或多个因素决定)有关,但不包括与回归有关的检验。而协方差分析模型具有混合特征,既像回归模型一样包含真正的外生变量,同时又像通常的方差一样允许每个个体的真实关系依赖个体所属的类。 常用来分析定量因素和定性因素影响的线性模型为: *,1,,,1,,it it it it it y x u i N t T αβ'=++=???=??? 从两个方面对回归系数估计量进行检验:首先,回归斜率系数的同质性;其 次,回归截距系数的同质性。检验过程主要有三步: (1) 检验各个个体在不同时期的斜率和截距是否都相等; (2) 检验(各个体或各时期的)回归斜率(向量)是否都相等; (3) 检验各回归截距是否都相等。 显然,如果接受完全同同质性假设(1),则检验步骤中止。但如果拒绝了完全同质性性假设,则(2)将确定回归斜率是否相同。如果没有拒绝斜率系数的同质性假设,则(3)确定回归截距是否相等。(1)是从(2)、(3)分离出来的。 基本思想:在作两组或多组均数1y ,2y ,…,k y 的假设检验前,用线性回归分析方法找出协变量X 与各组Y 之间的数量关系,求得在假定X 相等时修定均数1y ',2y ',…,k y '然后用方差分析比较修正均数间的差别,这就是协方差分析的基本思想。 协方差分析的应用条件:⑴要求各组资料都来自正态总体,且各组的方差相等;(t 检验或方差分析的条件)⑵各组的总体回归系数i β相等,且都不等于0(回归方程检验)。因此,应用协方差分析前,要对资料进行方差齐性检验和回归系数的假设检验(斜率同质性检验),只有满足上述两个条件之后才能应用,否则不宜使用。 ⑴各比较组协变量X 与分析指标Y 存在线性关系(按直线回归分析方法进行判断)。 ⑵各比较组的总体回归系数i β相等,即各直线平行(绘出回归直线,看是否

方差与协方差理解

§2方差、协方差与相关系数 2.1方差 例1 比较甲乙两人的射击技术,已知两人每次击中环数分布为 p 8 9<6 7 8 9 10^ 巴.Q1 0.6 01 丿 ” :vQ1 0.2 0.4 0.2 01 丿 问哪一个技术较好? 首先看两人平均击中环数,此时 E =E =8,从均值来看无法分辩孰优孰劣 ?但从直观上 看,甲基本上稳定在 8环左右,而乙却一会儿击中 10环,一会儿击中6环,较不稳定.因此 从直观上可以讲甲的射击技术较好 . 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的 离散程度. 称-E 为随机变量 对于均值 E 的离差(deviation ),它是一随机变量.为了给出一个描述 离散程度的数值,考虑用 E -E ,但由于E -E = ^ - E =0对一切随机变量均 成立,即' 2 的离差正负相消,因此用 E -E 是不恰当的.我们改用 E E 描述取 值的离散程度,这就是方差 Vat=EZ 叮 deviatio n ). 2 方差是随机变量函数(一 一E 」)的数学期望,由§的⑸式,即可写出方差的计算公式 (x 「E )2P 「二 xj,离散型, 巴 产(x-E?2 dFKx) f 「(x-E?2 pKx)dx ,连续型. Var - ■ = a - = L -°0 进一步,注意到 E G —E ? 2 = E F -2春 +(E : )2] = E ?2 -(E ? )2 即有 许多情况,用(3)式计算方差较方便些 例1(续)计算例1中的方差Var 与Var . 定义1 2 存在,为有限值, 就称它是随机变量 ■的方差(varianee),记作 Var -, 但Var ?的量纲与 不同,为了统一量纲,有时用 Var ,称为 的标准差(standard (1) Var _E 2_ E

03 第三节 协方差及相关系数

第三节 协方差及相关系数 对多维随机变量, 随机变量的数学期望和方差只反映了各自的平均值与偏离程度,并没能反映随机变量之间的关系. 本节将要讨论的协方差是反映随机变量之间依赖关系的一个数字特征. 内容分布图示 ★ 引言 ★ 协方差的定义 ★ 协方差的性质 ★ 例1 ★ 例2 ★ 相关系数的定义 ★ 相关系数的性质 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 矩的概念 ★ 协方差矩阵 ★ n 维正态分布的概率密度 ★ n 维正态分布的几个重要性质 ★ 例7 ★ 内容小结 ★ 课堂练习 ★ 习题4-3 内容要点: 一、 协方差的定义 定义 设),(Y X 为二维随机向量,若 )]}()][({[Y E Y X E X E -- 存在, 则称其为随机变量X 和Y 的协方差, 记为),(Y X Cov ,即 )]}.()][({[),cov(Y E Y X E X E Y X --= 按定义, 若),(Y X 为离散型随机向量,其概率分布为 ),2,1,(},{ ====j i p y Y x X P ij j i 则 ∑--=j i j i Y E y X E x E Y X ,)]}.()][({[),cov( 若),(Y X 为连续型随机向量, 其概率分布为),,(y x f 则 ? ? +∞∞-+∞∞ ---=dxdy y x f Y E y X E x E Y X ),()]}()][({[),cov(. 此外, 利用数学期望的性质, 易将协方差的计算化简. ). ()()()()()()()()()()]} ()][({[),cov(Y E X E XY E Y E X E X E Y E Y E X E XY E Y E Y X E X E Y X -=+--=--= 特别地, 当X 与Y 独立时, 有 .0),cov(=Y X 二、协方差的性质 1. 协方差的基本性质 );(),cov()1(X D X X = );,cov(),cov()2(X Y Y X = ),cov(),cov()3(Y X ab bY aX =,其中b a ,是常数;

协方差和相关系数

二维随机变量的期望与方差 对于二维随机变量,如果存在,则 称为二维随机变量的数学期望。 1 、当( X ,Y ) 为二维离散型随机变量时 2 、当( X ,Y ) 为二维连续型随机变量时 例题 2.39 设,求。与一维随机变量函数的期望一样,可求出二维随机变量函数的期望。 对二维离散型随机变量( X ,Y ) ,其函数的期望为 对二维连续型随机变量( X ,Y ) ,其函数的期望为

例题 2.40 设,求 2.41 设( X ,Y ) 服从区域A 上的均匀分布,其中A 为x 轴、y 轴及直线 围成的三角形区域,如图2-10 所示。求函数的数学期望。 随机变量的数学期望和方差的三个重要性质: 1 、 推广: 2 、设X 与Y 相互独立,则 推广:设相互独立,则 3 、设X 与Y 相互独立,则 推广:设相互独立,则 仅对性质 3 就连续型随机变量加以证明 证明3

由于X 与Y 相互独立,所以与相互独立,利用性质 2 、知道 从而有, 可以证明:相互独立的随机变量其各自的函数间,仍然相互独立。 例题 2.42 某学校流行某种传染病,患者约占,为此学校决定对全校1000 名师生进 行抽血化验。现有两个方案:①逐个化验;②按四个人一组分组,并把四个人抽到的血混合在一起化验,若发现有问题再对四个人逐个化验。问那种方案好? 2.10.2 协方差与相关系数 分析协方差与相关系数反映随机变量各分量间的关系;结合上面性质 3 的证明,可以得到以下结论: 若X 与Y 相互独立,则 可以用来刻划X 与Y 之间的某种关系。 定义设( X ,Y ) 为二维随机变量,若 存在,则称它为随机变量X 与Y 的协方差,记作或,即 特别地 故方差,是协方差的特例。计算协方差通常采用如下公式:

方差协方差和相关系数

§2 方差、协方差与相关系数 一、方差 二、协方差 三、相关系数 四、矩 一、方差 例1 例1 比较甲乙两人的射击技术,已知两人每次击中环数ξ分 布为 ξ: 789010601...?? ??? η:67 891001 02040201.....?? ???. 问哪一个技术较好? 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于 ()E E ξξ-=E E ξξ-=0对一切随机变量均成立,即ξ的离差正负相消,因此用 ()E E ξξ-是不恰当的. 我们改用()2 E E ξξ-描述取值ξ的离散程度,这就是方差. 定义1 若 () 2 E E ξξ-存在,为有限值,就称它是随机变量ξ的方差 (variance),记作Var ξ, Var ξ=()2 E E ξξ- (1) 但Var ξ的量纲与ξ ξ的标准差

(standard deviation). 方差是随机变量函数()2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的 计算公式 Var ξ=2()d ()x E F x ξ ξ+∞-∞-?=22()(),, ()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-=()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ=()2 2E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η. 解 利用(3)式 2 E ξ= ∑=i i i x P x ) (2 ξ=72×0.1+82×0.8+92 ×0.1=64.2, Var ξ=()2 2E E ξξ-=64.2--82=0.2. 同理, Var η=()2 2E E ηη-= 65.2-64 = 1.2 > Var ξ, 所以η取值较ξ分散. 这说 明甲的射击技术较好. 例2 试计算泊松分布P(λ)的方差. 解 2 2 01 ! (1)!k k k k E k e k e k k λ λ λλξ∞ ∞ --====-∑∑ 1 1(1) (1)!(1)!k k k k k e e k k λ λ λλ∞ ∞ --===-+--∑∑ 2 ! ! j j j j j e e j j λ λ λλλ λ∞ ∞ --===+∑∑ 2 λλ=+ 所以Var ξ=22 λλλλ+-=. 例3 设ξ服从[ a, b ]上的均匀分布U [a, b],求Var ξ.

协方差矩阵和相关矩阵

一、协方差矩阵 变量说明: 设为一组随机变量,这些随机变量构成随机向量,每个随机变量有m个样本,则有样本矩阵 (1) 其中对应着每个随机向量X的样本向量,对应着第i个随机单变量的所有样本值构成的向量。 单随机变量间的协方差: 随机变量之间的协方差可以表示为 (2) 根据已知的样本值可以得到协方差的估计值如下: (3) 可以进一步地简化为: (4) 协方差矩阵:

(5)其中,从而得到了协方差矩阵表达式。 如果所有样本的均值为一个零向量,则式(5)可以表达成: (6) 补充说明: 1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素C ij就是反映的随机变量X i, X j的协方差。

2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。 3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。 4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。 二、相关矩阵 相关系数: 著名统计学家卡尔·皮尔逊设计了统计指标——相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。 相关系数用r表示,它的基本公式(formula)为: 相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下:

方差与协方差理解

§2 方差、协方差与相关系数 2.1方差 例1 比较甲乙两人的射击技术,已知两人每次击中环数分布为: ξ:78901 0601...?? ??? η:67 891001 02040201.....?? ???. 问哪一个技术较好? 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于()E E ξξ-=E E ξξ-=0对一切随机变量均 成立,即ξ的离差正负相消,因此用()E E ξξ-是不恰当的. 我们改用( )2 E E ξξ-描述取 值ξ的离散程度,这就是方差. 定义1 若()2 E E ξξ-存在, 为有限值,就称它是随机变量ξ的方差(variance),记作Var ξ, Var ξ=( )2 E E ξξ- (1) 但Var ξ的量纲与ξ 不同,为了统一量纲,有时用ξ的标准差(standard deviation). 方差是随机变量函数( )2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的计算公式 Var ξ=2()d ()x E F x ξ ξ+∞ -∞-?=22()(),, ()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2) 进一步,注意到 ()2 E E ξξ-=()222E E E ξξξξ??-+??=()22E E ξξ- 即有 Var ξ= ()2 2 E E ξξ-. (3) 许多情况,用(3)式计算方差较方便些. 例1(续) 计算例1中的方差Var ξ与Var η.

方差分析与协方差分析

方差分析 方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。 方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。 方差分析的作用 一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。 经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。 方差分析的分类及举例

一、单因素方差分析 (一)单因素方差分析概念理解步骤 是用来研究一个控制变量的不同水平是否对观测变量产生 了显著影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。 例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。 单因素方差分析的第一步是明确观测变量和控制变量。例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。 单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=S SA+SSE。 单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。 (二)单因素方差分析原理总结 容易理解:在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起

方差分析与协方差分析

方差分析 方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。 方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。 方差分析的作用 一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。 经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。 方差分析的分类及举例

一、单因素方差分析 (一)单因素方差分析概念理解步骤 是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。 例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。 单因素方差分析的第一步是明确观测变量和控制变量。例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。 单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=S SA+SSE。 单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。 (二)单因素方差分析原理总结 容易理解:在观测变量总离差平方和中,如果组间离差平方和 所占比例较大,则说明观测变量的变动主要是由控制变量引起的,

方差及协方差

方差 方差和标准差: 英文:v ariation and standard dev iation 右图为计算公式Variance's f orm ula 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)即期望的偏离程度,称为X的方差。 定义 设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或D X。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。 由方差的定义可以得到以下常用计算公式: D(X)=E(X^2)-[E(X)]^2 S^2=[(x1-x拔)2+(x2-x拔)^2+(x3-x拔)^2+…+(x n-x拔)^2]/n 方差的几个重要性质(设一下各个方差均存在)。 (1)设c是常数,则D(c)=0。 (2)设X是随机变量,c是常数,则有D(c X)=(c^2)D(X)。 (3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。 (4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。 方差是标准差的平方 协方差 一、定义 协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。 回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。 方差知道吧。。。 两个不同参数之间的方差就是协方差 若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。 定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作C OV(X,Y),即C OV(X,Y)=E[(X-E(X))(Y-E(Y))]。 协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y)

方差,标准差,协方差

1.方差、标准差 引言: 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 方差是标准差的平方 方差和标准差。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的平方根,用S表示。 /* stddev返回expr的样本标准偏差。它可用作聚集和分析函数。 与stddev_samp的不同之处在于,当计算的输入数据只有一行时,stddev返回0,而stddev_samp返回null。 Oracle数据库中,标准偏差计算结果与variance用作集聚函数计算结果的平方根相等。该函数参数可取任何数字类型或是任何能隐式转换成数字类型的非数字类型。*/ /* STDDEV 功能描述:计算当前行关于组的标准偏离。(Standard Deviation) STDDEV_SAMP 功能描述:该函数计算累积样本标准偏离,并返回总体变量的平方根,其返回值与VAR_POP函数的平方根相同。 */ --sample: SELECT deptno, ename, --st_name || ' ' || last_nameemployee_name, hiredate, sal, SUM (sal) OVER (PARTITIONBY deptno ORDERBY hiredate) AS "SUM", STDDEV (sal) OVER (PARTITIONBY deptno ORDERBY hiredate) AS "STDDEV", --标准差 STDDEV_SAMP (sal) OVER (PARTITIONBY deptno ORDERBY hiredate) AS "STDDEV_SAMP", --样本标准差 VAR_POP (sal) OVER (PARTITIONBY deptno ORDERBY hiredate) AS "VAR_POP", --方差

方差、协方差与相关系数

https://www.360docs.net/doc/657376420.html,/Probability/course/chapter3-2.htm 一、方差 例1 例1 比较甲乙两人的射击技术,已知两人每次击中环数ξ分 布为 ξ: 789010601...?? ??? η:67 891001 02040201.....?? ???. 问哪一个技术较好? 首先看两人平均击中环数,此时8E E ξη==,从均值来看无法分辩孰优孰劣. 但从直观上看,甲基本上稳定在8环左右,而乙却一会儿击中10环,一会儿击中6环,较不稳定.因此从直观上可以讲甲的射击技术较好. 上例说明:对一随机变量,除考虑它的平均取值外,还要考虑它取值的离散程度. 称ξ-E ξ为随机变量ξ对于均值E ξ的离差(deviation),它是一随机变量. 为了给出一个描述离散程度的数值,考虑用()E E ξξ-,但由于 ()E E ξξ-=E E ξξ-=0对一切随机变量均成立,即ξ的离差正负相消,因此用 ()E E ξξ-是不恰当的. 我们改用()2 E E ξξ-描述取值ξ的离散程度,这就是方差. 定义1 若 () 2 E E ξξ-存在,为有限值,就称它是随机变量ξ的方差 (variance),记作Var ξ, Var ξ=()2 E E ξξ- (1) 但Var ξ的量纲与ξ ξ的标准差(standard deviation). 方差是随机变量函数()2 E ξξ-的数学期望,由§1的(5)式,即可写出方差的 计算公式 Var ξ=2()d ()x E F x ξ ξ+∞ -∞-?=22()(),, ()()d .i i i x E P x x E p x x ξξξξ+∞ -∞?-=???-?∑?离散型,连续型 (2)

第十二章 相关与回归分析练习题

第十二章相关与回归分析 一、填空 1.如果两变量的相关系数为0,说明这两变量之间_____________。 2.相关关系按方向不同,可分为__________和__________。 3.相关关系按相关变量的多少,分为______和复相关。4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。 5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。 6.变量间的相关程度,可以用不知Y与X有关系时预测Y的全部误差E1,减去知道Y与X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。 7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y围绕每个估计值 c Y是服 从();(2)分布中围绕每个可能的 c Y值的()是相同的。 7.已知:工资(元)倚劳动生产率(千元)的回归方程为 x y c 80 10+ =,因此,当劳动生产率每增长1千元,工资就平 均增加80 元。 8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。这种分析方法,通常又称为(回归分析)。 ; 9.积差系数r是(协方差)与X和Y的标准差的乘积之比。 二、单项选择 1.欲以图形显示两变量X和Y的关系,最好创建(D )。A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是(A )。 A 都是随机变量 B 都不是随机变量 C 其中一个是随机变量,一个是常数 D 都是常数 3. 相关关系的种类按其涉及变量多少可分为( )。 A. 正相关和负相关 B. 单相关和复相关 C. 线性相关和非线性相关 D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是(B )。 A当0≤ ≤r1时,表示两变量不完全相关;B当r=0时,表示两变量间无相关; C两变量之间的相关关系是单相关;D如果自变量增长引起因变量的相应增长,就形成正相关关系。 : 5. 当变量X按一定数量变化时,变量Y也随之近似地以固定的数量发生变化,这说明X与Y之间存在( )。 A. 正相关关系 B. 负相关关系 C. 直线相关关系 D. 曲线相关关系 6.当x按一定数额增加时,y也近似地按一定数额随之增加,那么可以说x与y之间存在(A )关系。 A 直线正相关 B 直线负相关 C 曲线正相关 D 曲线负相关 7.评价直线相关关系的密切程度,当r在~之间时,表示( C )。 A 无相关 B 低度相关 C 中等相关 D 高度相关 8.两变量的相关系数为,说明( ) A.两变量不相关 B.两变量负相关 C.两变量不完全相关 D.两变量完全正相关 9.两变量的线性相关系数为0,表明两变量之间(D )。 A 完全相关 B 无关系 C 不完全相关 D 不存在线性相关 】 10.兄弟两人的身高之间的关系是( )A.函数关系 B.因果关系 C.互为因果关系 D.共变关系 11.身高和体重之间的关系是(C )。A 函数关系 B 无关系 C 共变关系 D 严格的依存关系12.下列关系中,属于正相关关系得是(A )。 A 身高与体重 B 产品与单位成本 C 正常商品的价格和需求量 D 商品的零售额和流通费率

相关文档
最新文档