年北京中考数学试卷及答案
北京中考数学试题(含答案及解析版)
2021年北京市高级中等学校招生考试数学试卷一、选择题〔此题共16分,每题2分〕第1-8题均有四个选项,符合题意的选项只有..一个。
1. 以下几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如下图,那么正确的结论是〔A 〕>4a 〔B 〕>0b c - 〔C 〕>0ac 〔D 〕>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为〔A 〕⎩⎨⎧=-=21y x 〔B 〕⎩⎨⎧-==21y x 〔C 〕⎩⎨⎧=-=12y x 〔D 〕⎩⎨⎧-==12y x4. 被誉为“中国天眼〞的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。
每个标准足球场的面积为7140m 2,那么FAST 的反射面总面积约为〔A 〕231014.7m ⨯ 〔B 〕241014.7m ⨯ 〔C 〕25105.2m ⨯ 〔D 〕26105.2m ⨯5. 假设正多边形的一个外角是o60,那么该正多边形的内角和为〔A 〕o360 〔B 〕o540 〔C 〕o720 〔D 〕o9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为〔A 〕3 〔B 〕32 〔C 〕33 〔D 〕34 7. 跳台滑雪是冬季奥运会比赛工程之一,运发动起跳后的飞行路线可以看作是抛物线的一局部,运发动起跳后的竖直高度y 〔单位:m 〕与水平距离x 〔单位:m 〕近似满足函数关系()02≠=+=a c bx ax y 。
以下图记录了某运发动起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运发动起跳后飞行到最高点时,水平距离为8. 上图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-; ④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。
2022年北京市中考数学试卷-含答案详解
2022年北京市中考数学真题一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下面几何体中,是圆锥的为( )A. B.C. D.2. 截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为( )A. 26.2883×1010B. 2.62883×1011C. 2.62883×1012D. 0.262883×10123. 如图,利用工具测量角,则∠1的大小为( )A. 30°B. 60°C. 120°D. 150°4. 实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. a<−2B. b<1C. a>bD. −a>b5. 不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A. 14B. 13C. 12D. 346. 若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A. −4B. −14C. 14D. 47. 图中的图形为轴对称图形,该图形的对称轴的条数为( )A. 1B. 2C. 3D. 58. 下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x,其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本大题共8小题,共24.0分)9. 若√x−8在实数范围内有意义,则实数x的取值范围是.10. 分解因式:xy2−x=.11. 方程2x+5=1x的解为.12. 在平面直角坐标系xOy中,若点A(2,y1),B(5,y2)在反比例函数y=kx(k>0)的图象上,则y1y2(填“>”“=”或“<”).13. 某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为双.14. 如图,在ΔABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则SΔACD =.15. 如图,在矩形ABCD中,若AB=3,AC=5,AFFC =14,则AE的长为.16. 甲工厂将生产的I号、II号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中I号、II号产品的重量如下:包裹编号I号产品重量/吨II号产品重量/吨包裹的重量/吨A516B325C235D437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I号产品不少于9吨,且不多于11吨,写出一中满足条件的装运方案(写出要装运包裹的编号);(2)如果装运的I号产品不少于9吨,且不多于11吨,同时装运的II号产品最多,写出满足条件的装运方案(写出要装运包裹的编号).三、计算题(本大题共2小题,共12.0分)17. 计算:(π−1)0+4sin45∘−√8+|−3|.18. 解不等式组:{2+x>7−4x, x<4+x2.四、解答题(本大题共10小题,共80.0分。
北京市2021年中考数学试卷(含答案)
与分配到 t 生产线的吨数的比为
.第二天开工前,该企业按第一天的分配结果分配了 5 吨原材料后,
又给 生产线分配了 h 吨原材料,给 t 生产线分配了 自分配到的所有原材料,且加工时间相同,则 h 的值为
吨原材料.若两条生产线都能在一天内加工完各 .
2
三、解答题 17.计算: sin困u 香 l 香
应为( )
A.u善l困地 lul
B.l善困地 lul
C.l善困地 lull
D.l困善地 lulu
3.如图,点 在直线 t 上,
.若
ܥl u ,则 t 的大小为( )
A. u
B.iu
C. u
D.困u
4.下列多边形中,内角和最大的是( )
A. 5.实数
B.
C.
在数轴上的对应点的位置如图所示,下列结论中正确的是(
证明:在 t 中, t ▲ ܥ, 是 的中点, t ▲ (填推理的依据).
∵直线 t 表示的方向为东西方向, ∴直线 表示的方向为南北方向.
3
21.已知关于 的一元二次方程
ih 香 h ܥu .
(1)求证:该方程总有两个实数根;
(2)若 h t u ,且该方程的两个实数根的差为 2,求 h 的值.
D. )
A. t
B. t
C. 香 t u
D.
u
6.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )
A.li 7.已知 i
B.l ܥl虀i地 ii ܥl地 困 i
ܥu
C.l i困 ܥll困 .若
为整数且
D. ul
香 l ,则 的值
为( )
北京市中考数学试卷及答案(完整版)
北京市中考数学试卷及答案(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)2021年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2021-2021)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-答案:D解析:(0)a a ≠的倒数为1a ,所以,43-的倒数是34- 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
2020年北京市中考数学试卷(含解析)打印版
2020年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.圆锥C.三棱柱D.长方体2.(2分)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033.(2分)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠54.(2分)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.5.(2分)正五边形的外角和为()A.180°B.360°C.540°D.720°6.(2分)实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A.2B.﹣1C.﹣2D.﹣37.(2分)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.B.C.D.8.(2分)有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系二、填空题(本题共16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围是.10.(2分)已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是.11.(2分)写出一个比大且比小的整数.12.(2分)方程组的解为.13.(2分)在平面直角坐标系xOy中,直线y=x与双曲线y=交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为.14.(2分)如图,在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是(写出一个即可).15.(2分)如图所示的网格是正方形网格,A,B,C,D是网格线交点,则△ABC的面积与△ABD的面积的大小关系为:S△ABC S△ABD(填“>”,“=”或“<”).16.(2分)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序.三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1++|﹣2|﹣6sin45°.18.(5分)解不等式组:19.(5分)已知5x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)+x(x﹣2)的值.20.(5分)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=∠BAC()(填推理的依据).∴∠ABP=∠BAC.21.(6分)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.(5分)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.23.(6分)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=,BD=8,求EF的长.24.(6分)小云在学习过程中遇到一个函数y=|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0123…y01…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x ≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.25.(5分)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.26.(6分)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.27.(7分)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.28.(7分)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=x+2上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(2,),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.2020年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】根据三视图可得到所求的几何体是柱体,可得几何体的名称.【解答】解:该几何体是长方体,故选:D.2.(2分)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:36000=3.6×104,故选:C.3.(2分)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5【分析】根据对顶角定义和外角的性质逐个判断即可.【解答】解:A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误;故选:A.4.(2分)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.5.(2分)正五边形的外角和为()A.180°B.360°C.540°D.720°【分析】根据多边形的外角和等于360°,即可求解.【解答】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B.6.(2分)实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A.2B.﹣1C.﹣2D.﹣3【分析】先判断b的范围,再确定符合条件的数即可.【解答】解:因为1<a<2,所以﹣2<﹣a<﹣1,因为﹣a<b<a,所以b只能是﹣1.故选:B.7.(2分)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.B.C.D.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两次记录的数字之和为3的情况,再利用概率公式即可求得答案.【解答】解:列表如下:12123234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为=,故选:C.8.(2分)有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【分析】根据题意可得容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系式,进而判断出相应函数类型.【解答】解:设容器内的水面高度为h,注水时间为t,根据题意得:h=0.2t+10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.故选:B.二、填空题(本题共16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围是x≠7.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:若代数式有意义,则x﹣7≠0,解得:x≠7.故答案为:x≠7.10.(2分)已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是1.【分析】根据方程的系数结合根的判别式△=0,即可得出关于k的一元一次方程,解之即可得出k值.【解答】解:∵关于x的方程x2+2x+k=0有两个相等的实数根,∴△=22﹣4×1×k=0,解得:k=1.故答案为:1.11.(2分)写出一个比大且比小的整数2或3(答案不唯一).【分析】先估算出和的大小,再找出符合条件的整数即可.【解答】解:∵1<<2,3<<4,∴比大且比小的整数2或3(答案不唯一).故答案为:2或3(答案不唯一).12.(2分)方程组的解为.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为.故答案为:.13.(2分)在平面直角坐标系xOy中,直线y=x与双曲线y=交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为0.【分析】联立方程组,可求y1,y2的值,即可求解.【解答】解:∵直线y=x与双曲线y=交于A,B两点,∴联立方程组得:,解得:,,∴y1+y2=0,故答案为:0.14.(2分)如图,在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是BD=CD(写出一个即可).【分析】由题意可得∠ABC=∠ACD,AB=AC,即添加一组边对应相等,可证△ABD与△ACD全等.【解答】解:∵AB=AC,∴∠ABD=∠ACD,添加BD=CD,∴在△ABD与△ACD中,∴△ABD≌△ACD(SAS),故答案为:BD=CD.15.(2分)如图所示的网格是正方形网格,A,B,C,D是网格线交点,则△ABC的面积与△ABD的面积的大小关系为:S△ABC=S△ABD(填“>”,“=”或“<”).【分析】分别求出△ABC的面积和△ABD的面积,即可求解.【解答】解:∵S△ABC=×2×4=4,S△ABD=2×5﹣×5×1﹣×1×3﹣×2×2=4,∴S△ABC=S△ABD,故答案为:=.16.(2分)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序丙、丁、甲、乙.【分析】先判断出丙购买票之后,剩余3号左边有6个座位,4号右边有5个座位,进而得出甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排,即可得出结论.【解答】解:根据题意,丙第一个购票,只能购买3,1,2,4号票,此时,3号左边有6个座位,4号右边有5个座位,即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排,①第二个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买,即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12,14),或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8,10)、甲(12,14);②第二个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票,此时,四个人购买的票全在第一排,即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,11,13),或丙(3,1,2,4)、乙(5,7,9)、丁(6,8,10,12,14)、甲(11,13),因此,第一个是丙购买票,丁只要不是最后一个购买票的人,都能使四个人购买的票全在第一排,故答案为:丙、丁、甲、乙.三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1++|﹣2|﹣6sin45°.【分析】直接利用负整数指数幂的性质以及二次根式的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=3+3+2﹣6×=3+3+2﹣3=5.18.(5分)解不等式组:【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5x﹣3>2x,得:x>1,解不等式<,得:x<2,则不等式组的解集为1<x<2.19.(5分)已知5x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)+x(x﹣2)的值.【分析】直接利用乘法公式以及单项式乘多项式运算法则化简进而把已知代入得出答案.【解答】解:(3x+2)(3x﹣2)+x(x﹣2)=9x2﹣4+x2﹣2x=10x2﹣2x﹣4,∵5x2﹣x﹣1=0,∴5x2﹣x=1,∴原式=2(5x2﹣x)﹣4=﹣2.20.(5分)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=∠BAC(同弧所对的圆周角等于圆心角的一半)(填推理的依据).∴∠ABP=∠BAC.【分析】(1)根据作法即可补全图形;(2)根据等腰三角形的性质和同弧所对圆周角等于圆心角的一半即可完成下面的证明.【解答】解:(1)如图,即为补全的图形;(2)证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=∠BAC(同弧所对的圆周角等于圆心角的一半),∴∠ABP=∠BAC.故答案为:∠BPC,同弧所对的圆周角等于圆心角的一半.21.(6分)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.【分析】(1)根据菱形的性质得到BD⊥AC,∠DAO=∠BAO,得到AE=OE=AD,推出OE∥FG,求得四边形OEFG是平行四边形,根据矩形的判定定理即可得到结论;(2)根据菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=AD=5;由(1)知,四边形OEFG 是矩形,求得FG=OE=5,根据勾股定理得到AF==3,于是得到结论.【解答】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,∴AE=OE=AD,∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF==3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.22.(5分)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【分析】(1)先根据直线平移时k的值不变得出k=1,再将点A(1,2)代入y=x+b,求出b的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2)代入y=x+b,得1+b=2,解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.23.(6分)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=,BD=8,求EF的长.【分析】(1)连接OD,根据圆周角定理得到∠ADB=90°,根据平行线的性质得到∠AOF=∠B,根据切线的性质得到∠CDO=90°,等量代换即可得到结论;(2)根据三角形中位线定理得到OE=BD=8=4,设OD=x,OC=3x,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OF⊥AD,∴OF∥BD,∴∠AOF=∠B,∵CD是⊙O的切线,D为切点,∴∠CDO=90°,∴∠CDA+∠ADO=∠ADO+∠BDO=90°,∴∠CDA=∠BDO,∵OD=OB,∴∠ODB=∠B,∴∠AOF=∠ADC;(2)∵OF∥BD,AO=OB,∴AE=DE,∴OE=BD=8=4,∵sin C==,∴设OD=x,OC=3x,∴OB=x,∴CB=4x,∵OF∥BD,∴△COF∽△CBD,∴=,∴=,∴OF=6,∴EF=OF﹣OE=6﹣4=2.24.(6分)小云在学习过程中遇到一个函数y=|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而减小,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而减小,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而减小.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0123…y01…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x ≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.【分析】(1)利用一次函数或二次函数的性质解决问题即可.(2)利用描点法画出函数图象即可.(3)观察图象可知,x=﹣2时,m的值最大.【解答】解:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而减小,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而减小,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,观察图象可知,x=﹣2时,m的值最大,最大值m=×2×(4+2+1)=,故答案为25.(5分)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为173(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 2.9倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.【分析】(1)结合表格,利用加权平均数的定义列式计算可得;(2)结合以上所求结果计算即可得出答案;(3)由图a知第1个10天的分出量最分散、第3个10天分出量最为集中,根据方差的意义可得答案.【解答】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为≈173(千克),故答案为:173;(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的≈2.9(倍),故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知,第1个10天的分出量最分散、第3个10天分出量最为集中,∴s12>s22>s32.26.(6分)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.【分析】(1)根据抛物线的对称性解决问题即可.(2)由题意点(x1,0),(x2,0)的中垂线与x的交点的坐标大于,利用二次函数的性质判断即可.【解答】解:(1)由题意y1=y2=c,∴x1=0,∵对称轴x=1,∴M,N关于x=1对称,∴x2=2,∴x1=0,x2=2时,y1=y2=c.(2)∵抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,当x1+x2=3,且y1=y2时,对称轴x=,观察图象可知满足条件的值为:t≤.27.(7分)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【分析】(1)由三角形的中位线定理得DE∥BC,DE=,进而证明四边形CEDF是矩形得DE=CF,得出CF,再根据勾股定理得结果;(2)过点B作BM∥AC,与ED的延长线交于点M,连接MF,证明△ADE≌△BDM得AE=BM,DE =DM,由垂直平分线的判定定理得EF=MF,进而根据勾股定理得结论.【解答】解:(1)∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=BC,∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°,∴四边形CEDF是矩形,∴DE=CF=BC,∴CF=BF=b,∵CE=AE=a,∴EF=;(2)AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED=∠BMD,∠CBM=∠ACB=90°,∵D点是AB的中点,∴AD=BD,在△ADE和△BDM中,,∴△ADE≌△BDM(AAS),∴AE=BM,DE=DM,∵DF⊥DE,∴EF=MF,∵BM2+BF2=MF2,∴AE2+BF2=EF2.28.(7分)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2∥P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=x+2上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(2,),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.【分析】(1)根据平移的性质,以及线段AB到⊙O的“平移距离”的定义判断即可.(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=x+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),过点E作EH⊥MN于H,解直角三角形求出EH即可判断.(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′和等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,点A′与M重合时,AA′的值最小,当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.解直角三角形求出AA′即可.【解答】解:(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2∥P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O的“平移距离”.故答案为:P1P2∥P3P4,P3.(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=x+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),过点E作EH⊥MN于H,∵OM=2,ON=2,∴tan∠NMO=,∴∠NMO=60°,∴EH=EM•sin60°=,观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为.(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′,等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,当点A′与M重合时,AA′的值最小,最小值=OA﹣OM=﹣1=,当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.由题意A′H=,AH=+=3,∴AA′的最大值==,∴≤d2≤.。
2024年北京市中考数学试卷真题及其答案
2024年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2分)如图,直线AB和CD相交于点O,OE⊥OC.若∠AOC=58°,则∠EOB的大小为()A.29°B.32°C.45°D.58°3.(2分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b>﹣1B.|b|>2C.a+b>0D.ab>04.(2分)若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则实数c的值为()A.﹣16B.﹣4C.4D.165.(2分)不透明袋子中仅有红、黄小球各一个,两个小球除颜色外无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,则两次摸出的都是红球的概率是()A.B.C.D.6.(2分)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为4×1017Flops(Flops是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到mFlops,则m的值为()A.8×1016B.2×1017C.5×1017D.2×10187.(2分)下面是“作一个角使其等于∠AOB”的尺规作图方法.(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)作射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;以点C′为圆心,CD长为半径画弧,两弧交于点D′;(3)过点D′作射线O′B′,则∠A′O′B′=∠AOB.上述方法通过判定△C ′O ′D ′≌△COD 得到∠A ′O ′B ′=∠AOB ,其中判定△C ′O ′D ′≌△COD 的依据是()A.三边分别相等的两个三角形全等B.两边及其夹角分别相等的两个三角形全等C.两角及其夹边分别相等的两个三角形全等D.两角分别相等且其中一组等角的对边相等的两个三角形全等8.(2分)如图,在菱形ABCD 中,∠BAD =60°,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90°得到菱形A ′B ′C ′D ′,两个菱形的公共点为E ,F ,G ,H .对八边形BFB ′GDHD ′E 给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等.上述结论中,所有正确结论的序号是()A.①③B.①④C.②③D.②④二、填空题(共16分,每题2分)9.(2分)若在实数范围内有意义,则实数x 的取值范围是.10.(2分)分解因式:x 3﹣25x =.11.(2分)方程的解为.12.(2分)在平面直角坐标系xOy 中,若函数的图象经过点(3,y 1)和(﹣3,y 2),则y 1+y 2的值是.13.(2分)某厂加工了200个工件,质检员从中随机抽取10个工件检测了它们的质量(单位:g ),得到的数据如下:50.0349.9850.0049.9950.0249.9950.0149.9750.0050.02当一个工件的质量x (单位:g )满足49.98≤x ≤50.02时,评定该工件为一等品.根据以上数据,估计这200个工件中一等品的个数是.14.(2分)如图,⊙O 的直径AB 平分弦CD (不是直径).若∠D =35°,则∠C =°.15.(2分)如图,在正方形ABCD 中,点E 在AB 上,AF ⊥DE 于点F ,CG ⊥DE 于点G .若AD =5,CG =4,则△AEF 的面积为.第14题第15题16.(2分)联欢会有A,B,C,D四个节目需要彩排,所有演员到场后节目彩排开始.一个节目彩排完毕,下一个节目彩排立即开始.每个节目的演员人数和彩排时长(单位:min)如下:节目A B C D演员人数102101彩排时长30102010已知每位演员只参演一个节目.一位演员的候场时间是指从第一个彩排的节目彩排开始到这位演员参演的节目彩排开始的时间间隔(不考虑换场时间等其他因素).若节目按“A﹣B﹣C﹣D”的先后顺序彩排,则节目D的演员的候场时间为min;若使这23位演员的候场时间之和最小,则节目应按的先后顺序彩排.三、解答题(共68分,第17-19题每题5分,第20-21题每题6分,第22-23题每题5分,第24题6分,第25题5分,第26题6分,第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:.18.(5分)解不等式组:.19.(5分)已知a﹣b﹣1=0,求代数式的值.20.(6分)如图,在四边形ABCD中,E是AB的中点,DB,CE交于点F,DF=FB,AF∥DC.(1)求证:四边形AFCD为平行四边形;(2)若∠EFB=90°,tan∠FEB=3,EF=1,求BC的长.21.(6分)为防治污染,保护和改善生态环境,自2023年7月1日起,我国全面实施汽车国六排放标准6b阶段(以下简称“标准”).对某型号汽车,“标准”要求A类物质排放量不超过35mg/km,A,B两类物质排放量之和不超过50mg/km.已知该型号某汽车的A,B两类物质排放量之和原为92mg/km.经过一次技术改进,该汽车的A类物质排放量降低了50%,B类物质排放量降低了75%,A,B两类物质排放量之和为40mg/km.判断这次技术改进后该汽车的A类物质排放量是否符合“标准”,并说明理由.22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=﹣kx+3的图象交于点(2,1).(1)求k,b的值;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值既大于函数y=kx+b的值,也大于函数y=﹣kx+3的值,直接写出m的取值范围.23.(5分)某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制).对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息.a.教师评委打分:86889091919191929298b.学生评委打分的频数分布直方图如图(数据分6组:第1组82≤x<85,第2组85≤x<88,第3组88≤x<91,第4组91≤x<94,第5组94≤x<97,第6组97≤x≤100):c.评委打分的平均数、中位数、众数如下:平均数中位数众数教师评委9191m学生评委90.8n93根据以上信息,回答下列问题:①m的值为,n的值位于学生评委打分数据分组的第组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为,则91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前.5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评委1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是,表中k(k为整数)的值为.24.(6分)如图,AB是⊙O的直径,点C,D在⊙O上,OD平分∠AOC.(1)求证:OD∥BC;(2)延长DO交⊙O于点E,连接CE交OB于点F,过点B作⊙O的切线交DE的延长线于点P.若,PE=1,求⊙O半径的长.25.(5分)小云有一个圆柱形水杯(记为1号杯).在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来.新水杯(记为2号杯)示意图如图.当1号杯和2号杯中都有VmL 水时,小云分别记录了1号杯的水面高度h 1(单位:cm )和2号杯的水面高度h 2单位:cm ),部分数据如下:V /mL 040100200300400500h 1/cm 0 2.5 5.07.510.012.5h 2/cm2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h 1与V ,h 2与V 之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL 水时,2号杯的水面高度与1号杯的水面高度的差约为cm (结果保留小数点后一位);②在①的条件下,将2号杯中的一部分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为cm (结果保留小数点后一位).26.(6分)在平面直角坐标系xOy 中,已知抛物线y =ax 2﹣2a 2x (a ≠0).(1)当a =1时,求抛物线的顶点坐标;(2)已知M (x 1,y 1)和N (x 2,y 2)是抛物线上的两点.若对于x 1=3a ,3≤x 2≤4,都有y 1<y 2,求a 的取值范围.27.(7分)已知∠MAN =α(0°<α<45°),点B ,C 分别在射线AN ,AM 上,将线段BC 绕点B 顺时针旋转180°﹣2α得到线段BD ,过点D 作AN 的垂线交射线AM 于点E .(1)如图1,当点D 在射线AN 上时,求证:C 是AE 的中点;(2)如图2,当点D 在∠MAN 内部时,作DF ∥AN ,交射线AM 于点F ,用等式表示线段EF 与AC 的数量关系,并证明.28.(7分)在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C ′在⊙O 上或其内部,且∠ACB =α,则称点C 是弦AB 的“α可及点”.(1)如图,点A (0,1),B (1,0).①在点C 1(2,0),C 2(1,2),中,点是弦AB 的“α可及点”,其中α=°;②若点D 是弦AB 的“90°可及点”,则点D 的横坐标的最大值为;(2)已知P 是直线上一点,且存在⊙O 的弦MN ,使得点P 是弦MN 的“60°可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.2024年北京市中考数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、图形是中心对称图形,不是轴对称图形,不符合题意;B、图形是中心对称图形,也是轴对称图形,符合题意;C、图形不是中心对称图形,也不是轴对称图形,不符合题意;D、图形不是中心对称图形,是轴对称图形,不符合题意,故选:B.2.(2分)如图,直线AB和CD相交于点O,OE⊥OC.若∠AOC=58°,则∠EOB的大小为()A.29°B.32°C.45°D.58°【解答】解:∵OE⊥OC,∴∠COE=∠DOE=90°,∵∠BOD=∠AOC=58°,∴∠EOB=90°﹣58°=32°.故选:B.3.(2分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b>﹣1B.|b|>2C.a+b>0D.ab>0【解答】解:由数轴得,﹣2<b<﹣1,2<a<3,∴|b|<2,a+b>0,ab<0,故选:C.4.(2分)若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则实数c的值为()A.﹣16B.﹣4C.4D.16【解答】解:因为关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,所以Δ=(﹣4)2﹣4c=0,解得c=4.故选:C.5.(2分)不透明袋子中仅有红、黄小球各一个,两个小球除颜色外无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,则两次摸出的都是红球的概率是()A.B.C.D.【解答】解:列表如下:红黄红(红,红)(红,黄)黄(黄,红)(黄,黄)共有4种等可能的结果,其中两次摸出的都是红球的结果有1种,∴两次摸出的都是红球的概率为.故选:A.6.(2分)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为4×1017Flops(Flops是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到mFlops,则m的值为()A.8×1016B.2×1017C.5×1017D.2×1018【解答】解:由题意可得:4×1017×5=2×1018.故选:D.7.(2分)下面是“作一个角使其等于∠AOB”的尺规作图方法.(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)作射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;以点C′为圆心,CD长为半径画弧,两弧交于点D′;(3)过点D′作射线O′B′,则∠A′O′B′=∠AOB.上述方法通过判定△C′O′D′≌△COD得到∠A′O′B′=∠AOB,其中判定△C′O′D′≌△COD的依据是()A.三边分别相等的两个三角形全等B.两边及其夹角分别相等的两个三角形全等C.两角及其夹边分别相等的两个三角形全等D.两角分别相等且其中一组等角的对边相等的两个三角形全等【解答】解:由作图过程可得,OC=OD=O'C'=O'D',C'D'=CD,∴△C′O′D′≌△COD(SSS),∴判定△C′O′D′≌△COD的依据是三边分别相等的两个三角形全等.故选:A.8.(2分)如图,在菱形ABCD中,∠BAD=60°,O为对角线的交点.将菱形ABCD绕点O逆时针旋转90°得到菱形A′B′C′D′,两个菱形的公共点为E,F,G,H.对八边形BFB′GDHD′E给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O到该八边形各顶点的距离都相等;④点O到该八边形各边所在直线的距离都相等.上述结论中,所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:延长BD和DB,连接OH,∵菱形ABCD,∠BAD=60°,∴∠BAO=∠DAO=30°,∠AOD=∠AOB=90°,∵菱形ABCD绕点O逆时针旋转90°得到菱形A'B'C'D',∴点A′,D′,B′,C′一定在对角线AC,BD上,且OD=OD'=OB=OB',OA=OA'=OC=OC',∴AD'=C'D,∠D'AH=∠DC'H=30°,∵∠D′HA=∠DHC′,∴△AD'H≌△C'DH(AAS),∴D′H=DH,C′H=AH,同理可证D'E=BE,BF=B'F,B'G=DG,∵∠EA'B=∠HC'D=30°,A′B=C′D,∠A'BE=∠C'DH=120°,∴△A'BE≌△C'DH(ASA),∴DH=BE,∴DH=BE=D′H=D′E=BF=FB′=B′G=DG,∴该八边形各边长都相等,故①正确;根据角的平分线的性质定理,得点O到该八边形各边所在直线的距离都相等,故④正确;根据题意,得∠ED'H=120°,∵∠D'OD=90°,∠OD'H=∠ODH=60°,∴∠D'HD=150°,∴该八边形各内角不相等,故②错误;∵OD=OD′,D′H=DH,OH=OH,∴△D'OH≌△DOH(SSS),∴∠D'OH=∠DOH=45°,∠D'HO=∠DHO=75°,∴OD≠OH,∴点O到该八边形各顶点的距离不相等,故③错误;故选:B.二、填空题(共16分,每题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围是x≥9.【解答】解:根据题意得x﹣9≥0,解得:x≥9.故答案为:x≥9.10.(2分)分解因式:x3﹣25x=x(x+5)(x﹣5).【解答】解:x3﹣25x,=x(x2﹣25),=x(x+5)(x﹣5).11.(2分)方程的解为x=﹣1.【解答】解:x +(2x +3)=03x +3=0x =﹣1,经检验,x =﹣1是原方程的解.12.(2分)在平面直角坐标系xOy 中,若函数的图象经过点(3,y 1)和(﹣3,y 2),则y 1+y 2的值是.【解答】解:∵函数的图象经过点(3,y 1)和(﹣3,y 2),∴y 1=,y 2=﹣,∴y 1+y 2=0.故答案为:0.13.(2分)某厂加工了200个工件,质检员从中随机抽取10个工件检测了它们的质量(单位:g ),得到的数据如下:50.0349.9850.0049.9950.0249.9950.0149.9750.0050.02当一个工件的质量x (单位:g )满足49.98≤x ≤50.02时,评定该工件为一等品.根据以上数据,估计这200个工件中一等品的个数是160.【解答】解:∵满足49.98≤x ≤50.02时,评定该工件为一等品,∴抽取10个工件的一等品有49.98,50.00,49.99,50.02,49.99,50.01,50.00,50.02,共计8个,∴估计这200个工件中一等品的个数是200×=160,故答案为:160.14.(2分)如图,⊙O 的直径AB 平分弦CD (不是直径).若∠D =35°,则∠C =55°.【解答】解:设AB 与CD 相交于点E ,∵⊙O 的直径AB 平分弦CD (不是直径),∴AB ⊥CD ,∴∠DEB =90°,∵∠D=35°,∴∠B=90°﹣∠D=55°,∴∠C=∠B=55°,故选:55.15.(2分)如图,在正方形ABCD中,点E在AB上,AF⊥DE于点F,CG⊥DE于点G.若AD=5,CG=4,则△AEF的面积为.【解答】解:∵四边形ABCD是正方形,∴AD=CD,∠ADC=DAE=90°,∵AF⊥DE,CG⊥DE,∴∠AFD=∠CGD=90°,∵∠ADF+∠CDG=∠ADF+∠DAF,∴∠CDG=∠DAF,∴△CDG≌△DAF(AAS),∴AF=DG==3,DF=CG=4,同理可得∠EAF=∠ADF,又∠AFE=∠AFD,∴△AFE∽△DFA,∴,即,∴EF=,=AE•EF=.∴S△AEF故答案为:.16.(2分)联欢会有A,B,C,D四个节目需要彩排,所有演员到场后节目彩排开始.一个节目彩排完毕,下一个节目彩排立即开始.每个节目的演员人数和彩排时长(单位:min)如下:节目A B C D演员人数102101彩排时长30102010已知每位演员只参演一个节目.一位演员的候场时间是指从第一个彩排的节目彩排开始到这位演员参演的节目彩排开始的时间间隔(不考虑换场时间等其他因素).若节目按“A﹣B﹣C﹣D”的先后顺序彩排,则节目D的演员的候场时间为60min;若使这23位演员的候场时间之和最小,则节目应按B﹣D﹣C﹣A的先后顺序彩排.【解答】解:根据题意,节目D的演员的候场时间为:30+10+20=60(min);若使这23位演员的候场时间之和最小,则节目应按:B﹣D﹣C﹣A顺序排序,即1×10+10×10+10×20=310(min),故答案为:60;B﹣D﹣C﹣A.三、解答题(共68分,第17-19题每题5分,第20-21题每题6分,第22-23题每题5分,第24题6分,第25题5分,第26题6分,第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:.【解答】解:=1+﹣2×+=.18.(5分)解不等式组:.【解答】解:解不等式3(x﹣1)<4+2x得,x<7,解不等式得,x>﹣1,所以不等式组的解集为:﹣1<x<7.19.(5分)已知a﹣b﹣1=0,求代数式的值.【解答】解:∵a﹣b﹣1=0,∴a﹣b=1,======3.20.(6分)如图,在四边形ABCD中,E是AB的中点,DB,CE交于点F,DF=FB,AF∥DC.(1)求证:四边形AFCD为平行四边形;(2)若∠EFB=90°,tan∠FEB=3,EF=1,求BC的长.【解答】(1)证明:∵E是AB的中点,∴AE=BE,∵DF=BF,∴EF是△ABD的中位线,∴EF∥AD,∴CF∥AD,∵AF∥CD,∴四边形AFCD为平行四边形;(2)解:由(1)知,EF是△ABD的中位线,∴AD=2EF=2,∵∠EFB=90°,tan∠FEB=3,∴BF=3EF=3,∵DF=FB,∴DF=BF=3,∵AD∥CE,∴∠ADF=∠EFB=90°,∴AF==,∵四边形AFCD为平行四边形,∴CD=AF=,∵DF=BF,CE⊥BD,∴BC=CD=.21.(6分)为防治污染,保护和改善生态环境,自2023年7月1日起,我国全面实施汽车国六排放标准6b阶段(以下简称“标准”).对某型号汽车,“标准”要求A类物质排放量不超过35mg/km,A,B两类物质排放量之和不超过50mg/km.已知该型号某汽车的A,B两类物质排放量之和原为92mg/km.经过一次技术改进,该汽车的A类物质排放量降低了50%,B类物质排放量降低了75%,A,B两类物质排放量之和为40mg/km.判断这次技术改进后该汽车的A类物质排放量是否符合“标准”,并说明理由.【解答】解:这次技术改进后该汽车的A类物质排放量符合“标准”,理由如下:设该汽车的A类物质排放量为x mg/km,则该汽车的B类物质排放量为(92﹣x)mg/km,根据题意得(1﹣50%)x+(1﹣75%)(92﹣x)=40,解得x=68,∴这次技术改进后该汽车的A类物质排放量(1﹣50%)x=34,∵“标准”要求A类物质排放量不超过35mg/km,∴这次技术改进后该汽车的A类物质排放量符合“标准”.22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=﹣kx+3的图象交于点(2,1).(1)求k,b的值;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值既大于函数y=kx+b的值,也大于函数y=﹣kx+3的值,直接写出m的取值范围.【解答】解:(1)∵直线y=﹣kx+3点(2,1),∴﹣2k+3=1,解得k=1,将点(2,1)代入y=x+b得:2+b=1,解得b=﹣1.(2)∵当x>2时,对于x的每一个值,函数y=mx(m≠0)的值既大于函数y=x﹣1的值,也大于函数y=﹣x+3的值,∴m≥1.∴m的取值范围是m≥1.23.(5分)某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制).对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息.a.教师评委打分:86889091919191929298b.学生评委打分的频数分布直方图如图(数据分6组:第1组82≤x<85,第2组85≤x<88,第3组88≤x<91,第4组91≤x<94,第5组94≤x<97,第6组97≤x≤100):c.评委打分的平均数、中位数、众数如下:平均数中位数众数教师评委9191m学生评委90.8n93根据以上信息,回答下列问题:①m的值为91,n的值位于学生评委打分数据分组的第4组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为,则<91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前.5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评委1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是甲,表中k(k为整数)的值为92.【解答】解:(1)①由题意得,教师评委打分中91出现的次数最多,故众数m=91.45名学生评委打分数据的中位数是第23个数,故n的值位于学生评委打分数据分组的第4组;故答案为:91;4;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为,则=×(88+90+91+91+91+91+92+92)=90.75,∴<91.故答案为:<;(2)甲选手的平均数为×(93+90+92+93+92)=92,乙选手的平均数为×(91+92+92+92+92)=91.8,∵丙在甲、乙、丙三位选手中的排序居中,∴丙选手的平均数大于或等于乙选手的平均数,∵5名专业评委给乙选手的打分为91,92,92,92,92,=×[4×(92﹣91.8)2+(91﹣91.8)2]=0.16,乙选手的方差S2乙5名专业评委给丙选手的打分为90,94,90,94,k,∴乙选手的方差小于丙选手的方差,∴丙选手的平均数大于乙选手的平均数,小于或等于甲选手的平均数,∴93+90+92+93+92≥90+94+90+94+k>91+92+92+92+92,∴92≥k>91,∵k为整数,∴k(k为整数)的值为92,故答案为:92.24.(6分)如图,AB是⊙O的直径,点C,D在⊙O上,OD平分∠AOC.(1)求证:OD∥BC;(2)延长DO交⊙O于点E,连接CE交OB于点F,过点B作⊙O的切线交DE的延长线于点P.若,PE=1,求⊙O半径的长.【解答】(1)证明:连接AC交OD于H,∵AB是⊙O的直径,∴AC⊥BC,∵OD平分∠AOC,∴∠AOD=∠COD,∴=,∴OD⊥AC,∴OD∥BC;(2)解:∵OE∥BC,∴△OEF∽△BCF,∴=,∴设OE=5x,BC=6x,∵AO=OB,OH∥BC,∴AH=CH,∴OH=BC=3x,∵PB是⊙O的切线,∴∠OBP=90,∴∠PBO=∠AHO,∵∠BOP=∠AOH,∴△AOH∽△POB,∴,∴,∴x =或x =0(不合题意舍去),∴OE =,∴⊙O 半径的长为.25.(5分)小云有一个圆柱形水杯(记为1号杯).在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来.新水杯(记为2号杯)示意图如图.当1号杯和2号杯中都有VmL 水时,小云分别记录了1号杯的水面高度h 1(单位:cm )和2号杯的水面高度h 2单位:cm ),部分数据如下:V /mL 040100200300400500h 1/cm 0 2.5 5.07.510.012.5h 2/cm2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h 1与V ,h 2与V 之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL 水时,2号杯的水面高度与1号杯的水面高度的差约为 1.2cm (结果保留小数点后一位);②在①的条件下,将2号杯中的一部分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为8.5cm (结果保留小数点后一位).【解答】解:(1)设h 1=kV ,将(100,2.5)代入得:2.5=100k ,解得k =,∴h 1=V ,∵V =40,∴h 1=1.0,故答案为:1.0.(2)如图所示,(3)①当V =320ml 时,h 1=8.0cm ,由图象可知相差约为1.2cm .故答案为:1.2.②在①的条件下两杯相差1.2cm ,此时h 1大约是7.9,加上0.6约为8.5cm .故答案为:8.5.26.(6分)在平面直角坐标系xOy 中,已知抛物线y =ax 2﹣2a 2x (a ≠0).(1)当a =1时,求抛物线的顶点坐标;(2)已知M (x 1,y 1)和N (x 2,y 2)是抛物线上的两点.若对于x 1=3a ,3≤x 2≤4,都有y 1<y 2,求a 的取值范围.【解答】解:(1)将a =1代入得y =x 2﹣2x =(x ﹣1)2﹣1,∴顶点坐标为(1,﹣1);(2)由题得,y 1=a •(3a )2﹣2a 2•3a =3a 3,y 2=﹣2a 2x 2,∵y 1<y 2,∴y 2﹣y 1=a (﹣2ax 2﹣3a 2)=a (x 2﹣3a )(x 2+a )>0,①当a >0时,(x 2﹣3a )(x 2+a )>0,∴或,解得x 2>3a 或x 2<﹣a ,∵3≤x 2≤4,∴3a <3或﹣a >4,∴a <1或a <﹣4,∵a >0,∴0<a <1;②当a <0时,(x 2﹣3a )(x 2+a )<0,∴或,解得3a <x 2<﹣a ,∵3≤x 2≤4,∴,解得a <﹣4,综上,0<a <1或a <﹣4.27.(7分)已知∠MAN =α(0°<α<45°),点B ,C 分别在射线AN ,AM 上,将线段BC 绕点B 顺时针旋转180°﹣2α得到线段BD ,过点D 作AN 的垂线交射线AM 于点E .(1)如图1,当点D 在射线AN 上时,求证:C 是AE 的中点;(2)如图2,当点D 在∠MAN 内部时,作DF ∥AN ,交射线AM 于点F ,用等式表示线段EF 与AC 的数量关系,并证明.【解答】(1)证明:连接CD,由题意得:BC=BD,∠CBD=180°﹣2α,∴∠BDC=∠BCD,∵∠BDC+∠BCD+∠CBD=180°,∴,∴∠BDC=∠A,∴CA=CD,∵DN⊥AN,∴∠1+∠A=∠2+∠BDC=90°,∴∠1=∠2,∴CD=CE,∴CA=CE,∴点C是AE的中点;(2)解:EF=2AC,在射线AM上取点H,使得BH=BA,取EF的中点G,连接DG,∵BH=BA,∴∠BAH=∠BHA=α,∴∠ABH=180°﹣2α=∠CBD,∴∠ABC=∠HBD,∵BC=BD,∴△ABC≌△HBD(SAS),∴AC=DH,∠BHD=∠A=α,∴∠FHD=∠BHA+∠BHD=2α,∵DF∥AN,∴∠EFD=∠A=α,∠EDF=∠3=90°,∵G 是AE 的中点,∴GF =GD ,EF =2GD ,∴∠GFD =∠GDF =α,∴∠HGD =2α,∴∠HGD =∠FHD ,∴DG =DH ,∵AC =DH ,∴DG =AC ,∴EF =2AC .28.(7分)在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C ′在⊙O 上或其内部,且∠ACB =α,则称点C 是弦AB 的“α可及点”.(1)如图,点A (0,1),B (1,0).①在点C 1(2,0),C 2(1,2),中,点C 2是弦AB 的“α可及点”,其中α=45°;②若点D 是弦AB 的“90°可及点”,则点D 的横坐标的最大值为;(2)已知P 是直线上一点,且存在⊙O 的弦MN ,使得点P 是弦MN 的“60°可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.【解答】解:(1)①反过来思考,由相对运动理解,作出⊙O 关于AB 的对称圆⊙O ,∵若点C 关于直线AB 的对称点C '在⊙O 上或其内部,且∠ACB =α,则称点C 是弦AB 的“α可及点”,∴点C 应在⊙O '的圆内或圆上,∵点A (0,1),B (1,0),∴OA =OB =1,∵∠AOB =90°,∴∠ABO =∠OAB =45°,由对称得:∠O 'BA =O 'AB =45°,∴△O ′BA 为等腰直角三角形,∴O '(1,1),设⊙O 半径为R ,则,故C 1在⊙O '外,不符合题意;C 2O '=2﹣1=1=R ,故C 2在⊙O '上,符合题意;,故C 3在⊙O '外,不符合题意,∴点C 2是弦AB 的“α可及点”,可知B ,O ′,C 2三点共线,∵,∴,故答案为:C 2,45;②取AB 中点为H ,连接DH ,∵∠ADB=90°,∴HD=HA=HB,∴点D在以H为圆心,HA为半径的AB上方半圆上运动(不包括端点A、B),∴当DH∥x轴时,点D横坐标最大,∵OA=OB=1,∠AOB=90°,∴,∴,∵点A(0,1),B(1,0),∴,∴,∴点D的横坐标的最大值为,故答案为:;(2)反过来思考,由相对运动理解,作出⊙O关于AB的对称圆⊙O',∵若点C关于直线AB的对称点C′在⊙O上或其内部,且∠ACB=α,则称点C是弦AB的“α可及点”,∴点C应在⊙O'的圆内或圆上,∴点P需要在⊙O'的圆内或圆上,作出△MPN的外接圆⊙O″,连接O″M,O″N,∴点P在以O″为圆心,MO″为半径的上运动(不包括端点M、N),∴∠MO″N=2∠MPN=120°,∴∠O″MN=30°,由对称得点O,O'在MN的垂直平分线上,∵△MPN的外接圆为⊙O″,∴点O″也在MN的垂直平分线上,记OO'与NM交于点Q,∴,∴,随着MN的增大,⊙O'会越来越靠近⊙O,当点O'与点O″重合时,点P在⊙O'上,即为临界状态,此时MN最大,,连接O″P,OP,∵OP≤OO″+O″P,∴当MN最大,时,此时△MNP为等边三角形,由上述过程知,∴,∴当r=1,OP的最大值为2,设,则,解得:,记直线与⊙O交于T,S,与y轴交于点K,过点S作SL⊥x轴,当x=0,,当y=0时,,解得x=1,∴与x轴交于点T(1,0),∴,∵OT=OS,∴△OTS为等边三角形,∴∠TOS=60°,∴,∴,∴t的取值范围是.。
北京市2020年部编人教版中考数学试题及答案(word精析版)
北京市2020年中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)(2020•北京)2的相反数是()A.2B.﹣2 C.﹣D.考点:相反数.分析:根据相反数的概念作答即可.解答:解:根据相反数的定义可知:2的相反数是﹣2.故选:B.点评:此题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(4分)(2020•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:300 000=3×105,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2020•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.考点:概率公式.分析:由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.解答:解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)(2020•北京)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥考点:由三视图判断几何体.分析:如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.解答:解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选C.点评:本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.5.(4分)(2020•北京)某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5考点:众数;加权平均数.分析:根据众数及平均数的概念求解.解答:解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选A.点评:本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.(4分)(2020•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米考点:函数的图象.分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.解答:解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.点评:此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.7.(4分)(2020•北京)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8考点:垂径定理;等腰直角三角形;圆周角定理.分析:根据圆周角定理得∠BOC=2∠A=45°,由于圆O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.解答:解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵圆O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.(4分)(2020•北京)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.考点:动点问题的函数图象.分析:根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.解答:解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选A.点评:本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP的长度的变化情况是解题的关键.二、填空题(本题共16分,每小题4分)9.(4分)(2020•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式进行分解即可.解答:解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).点评:此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.10.(4分)(2020•北京)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.考点:相似三角形的应用.分析:根据同时同地物高与影长成正比列式计算即可得解.解答:解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.点评:本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.(4分)(2020•北京)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y= (k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).考点:反比例函数图象上点的坐标特征.专题:开放型.分析:先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B点的反比例函数解析式即可.解答:解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y= (k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一).点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(4分)(2020•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为(﹣3,1),点A2020的坐标为(0,4);若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为﹣1<a<1且0<b<2.考点:规律型:点的坐标.分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可;再写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.解答:解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=503余2,∴点A2020的坐标与A2的坐标相同,为(0,4);∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴,,解得﹣1<a<1,0<b<2.故答案为:(﹣3,1),(0,4);﹣1<a<1且0<b<2.点评:本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(本题共30分,每小题5分)13.(5分)(2020•北京)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.解答:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.(5分)(2020•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣5﹣+=﹣4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(5分)(2020•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母、去括号,移项、合并同类项,系数化成1即可求解.解答:解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)(2020•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.考点:整式的混合运算—化简求值.分析:先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.解答:解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.点评:此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.17.(5分)(2020•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.考点:根的判别式.专题:计算题.分析:(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.解答:(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.(5分)(2020•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.考点:分式方程的应用.分析:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.解答:解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,由题意得=解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.点评:此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.四、解答题(本题共20分,每小题5分)19.(5分)(2020•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.考点:菱形的判定;平行四边形的性质;解直角三角形.分析:(1)先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.点评:本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20.(5分)(2020•北京)根据某研究院公布的2020~2020年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2020~2020年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2020 3.882020 4.122020 4.352020 4.562020 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2020到2020年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2020年成年国民年人均阅读图书的数量约为5本;(3)2020年某小区倾向图书阅读的成年国民有990人,若该小区2020年与2020年成年国民的人数基本持平,估算2020年该小区成年国民阅读图书的总数量约为7500本.考点:扇形统计图;用样本估计总体;统计表.分析:(1)1直接减去个部分的百分数即可;(2)设从2020到2020年平均增长幅度为x,列方程求出x的值即可;(3)根据(2)的结果直接计算.解答:解:(1)m%=1﹣1.0%﹣15.6%﹣2.4%﹣15.0%=66%,∴m=66.(2)设从2020到2020年平均增长幅度为x,列方程得,3.88×(1+x)4=4.78,1+x≈1.05,x≈0.05,4.78×(1+0.05)≈5.(3)990÷0.66×5=7500,故2020年该小区成年国民阅读图书的总数量约为7500本.故答案为5,7500.点评:本题考查了扇形统计图,能从图表中找到相关信息并加以利用是解题的关键.21.(5分)(2020•北京)如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC 的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.考点:切线的性质;全等三角形的判定与性质;勾股定理.分析:(1)连接OC,由C是的中点,AB是⊙O的直径,则OC⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.解答:(1)证明:连接OC,∵C是AB的中点,AB是⊙O的直径,∴O⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∴OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.点评:本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.22.(5分)(2020•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.考点:相似三角形的判定与性质;勾股定理;解直角三角形.分析:根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AD=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.解答:解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.点评:本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2020•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.24.(7分)(2020•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.考点:四边形综合题.分析:(1)根据题意直接画出图形得出即可;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案.解答:解:(1)如图1所示:(2)如图2,连接AE,则∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.点评:此题主要考查了正方形的性质以及勾股定理和等腰三角形的性质等知识,利用轴对称的性质得出对应边相等是解题关键.25.(8分)(2020•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?考点:二次函数综合题.分析:(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.解答:解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t≥1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.点评:本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
2024年北京市中考真题数学试卷含答案解析
2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
2022年北京市中考数学试卷及答案
2022年北京市中考试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面几何体中,是圆锥的为()A.B.C.D.2.将262883000000用科学记数法表示应为()A.1026.288310⨯B.112.6288310⨯C.122.6288310⨯D.120.26288310⨯3.如图,利用工具测量角,则1∠的大小为()A.30︒B.60︒C.120︒D.150︒4.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.2a<-B.1b<C.a b>D.a b->5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.346.若关于x的一元二次方程20x x m++=有两个相等的实数根,则实数m的值为()A.4-B.14-C.14D.47.图中的图形为轴对称图形,该图形的对称轴的条数为()A .1B .2C .3D .58.下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ; ②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ; ③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x .其中,变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是( )A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)98x -x 的取值范围是 . 10.分解因式:2xy x -= . 11.方程215x x=+的解为 . 12.在平面直角坐标系xOy 中,若点1(2,)A y ,2(5,)B y 在反比例函数(0)ky k x=>的图象上,则1y 2y (填“>”“ =”或“<” ).13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号 35 36 37 38 39 40 41 42 43 销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为 双.14.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥.若2AC =,1DE =,则ACD S ∆= .15.如图,在矩形ABCD 中,若3AB =,5AC =,14AF FC =,则AE 的长为 .16.甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的重量及包裹中Ⅰ号、Ⅱ号产品的重量如下: 包裹编号 Ⅰ号产品重量/吨 Ⅱ号产品重量/吨 包裹的重量/吨A 5 1 6 B3 2 5 C2 3 5 D 4 3 7 E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案 (写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案 (写出要装运包裹的编号).三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 17.计算:0(1)4sin 458|3|π-+︒--. 18.解不等式组:274,42x x xx +>-⎧⎪⎨+<⋅⎪⎩.19.已知2220x x +-=,求代数式2(2)(1)x x x +++的值.20.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明. 三角形内角和定理:三角形三个内角的和等于180︒. 已知:如图,ABC ∆,求证:180A B C ∠+∠+∠=︒. 方法一证明:如图,过点A 作//DE BC .方法二证明:如图,过点C 作//CD AB .21.如图,在ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE CF =. (1)求证:四边形EBFD 是平行四边形;(2)若BAC DAC ∠=∠,求证:四边形EBFD 是菱形.22.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象过点(4,3),(2,0)-,且与y 轴交于点A . (1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是(填“甲”“乙”或“丙”).24.如图,AB是O的直径,CD是O的一条弦,AB CD⊥,连接AC,OD.(1)求证:2∠=∠;BOD A(2)连接DB,过点C作CE DB⊥,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为O的切线.25.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:)m 与水平距离x (单位:)m 近似满足函数关系2()(0)y a x h k a =-+<.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下: 水平距离/x m0 2 5 8 11 14竖直高度/y m20.00 21.40 22.75 23.20 22.75 21.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系2()(0)y a x h k a =-+<; (2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24y x =--+.记该运动员第一次训练的着陆点的水平距离为1d ,第二次训练的着陆点的水平距离为2d ,则1d 2d (填“>”“ =”或“<” ).26.在平面直角坐标系xOy 中,点(1,)m ,(3,)n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为直线x t =.(1)当2c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点0(x ,0)(1)m x ≠在抛物线上.若m n c <<,求t 的取值范围及0x 的取值范围.27.在ABC ∆中,90ACB ∠=︒,D 为ABC ∆内一点,连接BD ,DC ,延长DC 到点E ,使得CE DC =. (1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF .若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2.若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.28.在平面直角坐标系xOy 中,已知点(,)M a b ,N .对于点P 给出如下定义:将点P 向右(0)a 或向左(0)a <平移||a 个单位长度,再向上(0)b 或向下(0)b <平移||b 个单位长度,得到点P ',点P '关于点N 的对称点为Q ,称点Q 为点P 的“对应点”. (1)如图,点(1,1)M ,点N 在线段OM 的延长线上.若点(2,0)P -,点Q 为点P 的“对应点”. ①在图中画出点Q ;②连接PQ ,交线段ON 于点T ,求证:12NT OM =;(2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在O 上运动时,直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).答案与解析一、选择题(共16分,每题2分)1.解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.2.解:11262883000000 2.6288310=⨯.故选:B.3.解:根据对顶角相等的性质,可得:130∠=︒,故选:A.4.解:根据图形可以得到:2012a b-<<<<<;所以:A、B、C都是错误的;故选:D.5.解:列表如下:所有等可能的情况有4种,其中第一次摸到红球、第二次摸到绿球的有1种情况,所以第一次摸到红球、第二次摸到绿球的概率为14,故选:A.6.解:根据题意得△2140m=-=,解得14m=.故选:C.7.解:如图所示,该图形有5条对称轴,故选:D .8.解:汽车从A 地匀速行驶到B 地,根据汽车的剩余路程y 随行驶时间x 的增加而减小,故①符合题意; 将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y 随放水时间x 的增大而减小,故②符合题意; 用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x 的二次函数,故③不符合题意; 所以变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是①②. 故选:A .二、填空题(共16分,每题2分) 9.解:8x -在实数范围内有意义,80x ∴-,解得:8x . 故答案为:8x . 10.解:2xy x -,2(1)x y =-, (1)(1)x y y =-+.故答案为:(1)(1)x y y -+. 11.解:去分母得:25x x =+, 解得:5x =,检验:把5x =代入得:(5)0x x +≠,∴分式方程的解为5x =.故答案为:5x =. 12.解:0k >,∴反比例函数(0)ky k x=>的图象在一、三象限, 520>>,∴点1(2,)A y ,2(5,)B y 在第一象限,y 随x 的增大而减小,12y y ∴>,故答案为:>.13.解:根据统计表可得,39号的鞋卖的最多, 则估计该商场进鞋号需求最多的滑冰鞋的数量为1240012040⨯=(双). 故答案为:120.14.解:过D 点作DH AC ⊥于H ,如图,AD 平分BAC ∠,DE AB ⊥,DH AC ⊥, 1DE DH ∴==,12112ACD S ∆∴=⨯⨯=.故答案为:1.15.解:四边形ABCD 是矩形, 90ABC ∴∠=︒,//AD BC , 3AB =,5AC =,2222534BC AC AB ∴=--=, //AD BC ,EAF BCF ∴∠=∠,AEF CBF ∠=∠, EAF BCF ∴∆∆∽,14AF FC =, ∴14AE AF BC FC ==, ∴144AE =, 1AE ∴=,故答案为:1.16.解:(1)选择ABC 时,装运的I 号产品重量为:53210++=(吨),总重6551619.5++=<(吨),符合要求;选择ABE 时,装运的I 号产品重量为:53311++=(吨),总重6581919.5++=<(吨),符合要求; 选择AD 时,装运的1号产品重量为:549+=(吨),总重671319.5+=< (吨),符合要求; 选择ACD 时,装运的I 号产品重量为:52411++=(吨),总重6571819.5++=<(吨),符合要求; 选择BCD 时,装运的1号产品重量为:3249++=(吨),总重5571719.5++=<(吨),符合要求; 选择DCE 时,装运的I 号产品重量为:4239++=(吨),总重7582019.5++=>(吨),不符合要求; 选择BDE 时,装运的I 号产品重量为:34310++=(吨),总重5782019.5++=>(吨),不符合要求; 选择ACE 时,装运的I 号产品重量为53311++=(吨),总重65819++=(吨),符合要求, 综上,满足条件的装运方案有ABC 或ABE 或AD 或ACD 或BCD 或ACE .故答案为:ABC (或ABE 或AD 或ACD 或BCD 或)ACE ;(2)选择ABC 时,装运的Ⅱ号产品重量为:1236++=(吨);选择ABE 时,装运的Ⅱ号产品重量为:1258++=(吨);选择AD 时,装运的Ⅱ号产品重量为:134+= (吨);选择ACD 时,装运的Ⅱ号产品重量为:1337++= (吨);选择BCD 时,装运的Ⅱ号产品重量为:2338++= (吨);选择ACE 时,Ⅰ产品重量:52310++= 且91011;Ⅱ产品重量:1359++=,故答案为:ACE .三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.解:原式143=+-13=+ 4=.18.解:由274x x +>-,得:1x >, 由42x x +<,得:4x <, 则不等式组的解集为14x <<.19.解:2(2)(1)x x x +++22221x x x x =++++2241x x =++,2220x x +-=,222x x ∴+=,∴当222x x +=时,原式22(2)1x x =++221=⨯+41=+5=.20.证明:方法一://DE BC ,B BAD ∴∠=∠,C CAE ∠=∠,180BAD BAC CAE ∠+∠+∠=︒,180B BAC C ∴∠+∠+∠=︒;方法二://CD AB ,A ACD ∴∠=∠,180B BCD ∠+∠=︒,180B ACB A ∴∠+∠+∠=︒.21.证明:(1)在ABCD 中,OA OC =,OB OD =,AE CF =.OE OF ∴=,∴四边形EBFD 是平行四边形;(2)四边形ABCD 是平行四边形,//AB DC ∴,BAC DCA ∴∠=∠,BAC DAC ∠=∠,DCA DAC ∴∠=∠,DA DC ∴=,∴平行四边形ABCD 为菱形,DB EF ∴⊥,∴平行四边形EBFD 是菱形.22.解:(1)把(4,3),(2,0)-分别代入y kx b =+得4320k b k b +=⎧⎨-+=⎩, 解得121k b ⎧=⎪⎨⎪=⎩,∴函数解析式为112y x =+, 当0x =时,1112y x =+=, A ∴点坐标为(0,1);(2)当1n 时,当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值.23.解:(1)1(10101099839810)8.610m =⨯+++++++++=; (2)甲同学的方差2_S 甲,乙同学的方差2_S 乙,2_S 甲,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为1(7829410)8.6258⨯+⨯+⨯+=; 乙同学的最后得分为1(3792103)8.6258⨯⨯+⨯+⨯=; 丙同学的最后得分为1(8293103)9.1258⨯⨯+⨯+⨯=, ∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.24.证明:(1)如图,连接AD ,AB 是O 的直径,AB CD ⊥,∴BC BD =,CAB BAD ∴∠=∠,2BOD BAD ∠=∠,2BOD A ∴∠=∠;(2)如图,连接OC,F为AC的中点,∴⊥,DF AC∴=,AD CD∴∠=∠,ADF CDF=,BC BD∴∠=∠,CAB DABOA OD=,∴∠=∠,OAD ODA∴∠=∠,CDF CABOC OD=,∴∠=∠,CDF OCD∴∠=∠,OCD CAB=,BC BC∴∠=∠,CAB CDE∴∠=∠,CDE OCD∠=︒,90E∴∠+∠=︒,CDE DCE90∴∠+∠=︒,OCD DCE90即OC CE⊥,OC为半径,∴直线CE为O的切线.25.解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),k=,∴=,23.208h即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当0x =时,20.00y =,代入2(8)23.20y a x =-+得: 220.00(08)23.20a =-+,解得:0.05a =-,∴函数关系式为:20.05(8)23.20y x =--+;(2)设着陆点的纵坐标为t ,则第一次训练时,20.05(8)23.20t x =--+,解得:8x =或8x =,∴根据图象可知,第一次训练时着陆点的水平距离18d =+ 第二次训练时,20.04(9)23.24t x =--+,解得:9x =+或9x =,∴根据图象可知,第二次训练时着陆点的水平距离29d =, 20(23.20)25(23.24)t t -<-,∴<12d d ∴<,故答案为:<.26.解:(1)将点(1,)m ,(3,)n 代入抛物线解析式,∴93m a b c n a b c =++⎧⎨=++⎩, m n =,93a b c a b c ∴++=++,整理得,4b a =-,∴抛物线的对称轴为直线4222b a x a a-=-=-=; 2t ∴=,2c =,∴抛物线与y 轴交点的坐标为(0,2).(2)m n c <<,93a b c a b c c ∴++<++<,解得43a b a -<<-,34a b a ∴<-<, ∴34222a b a a a a <-<,即322t <<. 当32t =时,02x =; 当2t =时,03x =.0x ∴的取值范围023x <<.27.(1)证明:在BCD ∆和FCE ∆中,BC CF BCD FCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()BCD FCE SAS ∴∆≅∆,DBC EFC ∴∠=∠,//BD EF ∴,AF EF ⊥,BD AF ∴⊥;(2)解:由题意补全图形如下:CD CH =.证明:延长BC 到F ,使CF BC =,连接AF ,EF ,AC BF ⊥,BC CF =,AB AF ∴=,由(1)可知//BD EF ,BD EF =,222AB AE BD =+,222AF AE EF ∴=+,90AEF ∴∠=︒,AE EF ∴⊥,BD AE ∴⊥,90DHE ∴∠=︒,又CD CE =,CH CD CE ∴==.28.解:(1)①由题意知,(21,01)P '-++,(1,1)P '∴-,如图,点Q 即为所求;②连接PP ',45P PO MOx '∠=∠=︒,//PP ON '∴,P N QN '=,PT QT ∴=,12NT PP '∴=, PP OM '=,12NT OM ∴=; (2)如图,连接PO ,并延长至S ,使OP OS =,延长SQ 到T ,使ST OM =,由题意知,//PP OM ',PP OM '=,P N NQ '=,2TQ MN ∴=,1MN OM ON t =-=-,22TQ t ∴=-,1(22)21SQ ST TQ t t ∴=-=--=-,PS QS PQ PS QS -+,PQ ∴的最小值为PS QS -,PQ 的最大值为PS QS +,PQ ∴长的最大值与最小值的差为()()242PS QS PS QS QS t +--==-.。
2023年北京市中考数学试题和答案解析
2023年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.A.23.9×107B.2.39×108C.2.39×109D.0.239×1091.(2分)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )解:239000000=2.39×108,故选:B.【解答】A.B.C.D.2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项不合题意;C、原图是轴对称图形,不是中心对称图形,故此选项不合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【解答】A.36°B.44°C.54°D.63°3.(2分)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为( )解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD-∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD-∠COD=90°-36°=54°.故选:C.【解答】A.-1<-a<a<1B.-a<-1<1<a C.-a<-1<a<1D.-1<-a<1<a 4.(2分)已知a-1>0,则下列结论正确的是( )解:∵a-1>0,∴a>1,∴-a<-1,∴-a<-1<1<a,故选:B.【解答】A.-9B.−94C.94D.9 5.(2分)若关于x的一元二次方程x2-3x+m=0有两个相等的实数根,则实数m的值为( )解:∵关于x 的一元二次方程x 2-3x +m =0有两个相等的实数根,∴Δ=b 2-4ac =(-3)2-4m =0,解得m =94.故选:C .【解答】A .30°B .150°C .360°D .1800°6.(2分)正十二边形的外角和为( )解:因为多边形的外角和为360°,所以正十二边形的外角和为:360°.故选:C .【解答】A .14B .13C .12D .347.(2分)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )解:先后两次抛掷同一枚质地均匀的硬币,总共有四种等可能结果,分别是:(正,正)、(正,反)、(反,正)、(反,反),则第一次正面向上、第二次反面向上的概率是14,故选:A .【解答】A .①②B .①③C .②③D .①②③8.(2分)如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB <BC ,∠A =∠C =90°,△EAB ≌△BCD ,连接DE .设AB =a ,BC =b ,DE =c ,给出下面三个结论:①a +b <c ;②a +b >a 2+b 2;③2(a +b )>c .上述结论中,所有正确结论的序号是( )√√解:①过点D 作DF ∥AC ,交AE 于点F ;过点B 作BG ⊥FD ,交FD 于点G .∵DF ∥AC ,AC ⊥AE ,∴DF ⊥AE .又∵BG ⊥FD ,∴BG ∥AE ,∴四边形ABGF 为矩形.同理可得,四边形BCDG 也为矩形.∴FD =FG +GD =a +b .∴在Rt △EFD 中,斜边c >直角边a +b .故①正确.②∵△EAB ≌△BCD ,∴AE =BC =b ,∴在Rt △EAB 中,BE =AB 2+AE 2=a 2+b 2.∵AB +AE >BE ,∴a +b >a 2+b 2.故②正确.③∵△EAB ≌△BCD ,∴∠AEB =∠CBD ,又∵∠AEB +∠ABE =90°,∴∠CBD +∠ABE =90°,∴∠EBD =90°.∵BE =BD ,∴∠BED =∠BDE =45°,∴BE =a 2+b 2=c •sin 45°=22c .∴c =2a 2+b 2.∵[2(a +b )]2=2(a 2+2ab +b 2)=2(a 2+b 2)+4ab >2(a 2+b 2),【解答】√√√√√√√√二、填空题(共16分,每题2分)∴2(a +b )>2(a 2+b 2),∴2(a +b )>c .故③正确.故选:D .√√√9.(2分)若代数式5x −2有意义,则实数x 的取值范围是 .解:由题意得:x -2≠0,解得:x ≠2,故答案为:x ≠2.【解答】10.(2分)分解因式:x 2y -y 3= .解:x 2y -y 3=y (x 2-y 2)=y (x +y )(x -y ).故答案为:y (x +y )(x -y ).【解答】11.(2分)方程35x +1=12x的解为 .解:方程两边同时乘以2x (5x +1)得,3×2x =5x +1,∴x =1.检验:把x =1代入2x (5x +1)=12≠0,且方程左边=右边.∴原分式方程的解为x =1.【解答】12.(2分)在平面直角坐标系xOy 中,若函数y =kx(k ≠0)的图象经过点A (-3,2)和B (m ,-2),则m 的值为.解:∵函数y =k x(k ≠0)的图象经过点A (-3,2),∴k =-3×2=-6,∴反比例函数的关系式为y =-6x ,又∵B (m ,-2)在反比例函数的关系式为y =-6x的图象上,∴m =−6−2=3,故答案为:3.【解答】13.(2分)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x <10001000≤x <16001600≤x <22002200≤x <2800x ≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为1000×17+650=460(只).故答案为:460.【解答】三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)14.(2分)如图,直线AD ,BC 交于点O ,AB ∥EF ∥CD ,若AO =2,OF =1,FD =2,则BE EC的值为 .解:∵AO =2,OF =1,∴AF =AO +OF =2+1=3,∵AB ∥EF ∥CD ,∴BE EC=AF FD=32,故答案为:32.【解答】15.(2分)如图,OA 是⊙O 的半径,BC 是⊙O 的弦,OA ⊥BC 于点D ,AE 是⊙O 的切线,AE 交OC 的延长线于点E .若∠AOC =45°,BC =2,则线段AE 的长为.解:∵OA 是⊙O 的半径,AE 是⊙O 的切线,∴∠A =90°,∵∠AOC =45°,OA ⊥BC ,∴△CDO 和△EAO 是等腰直角三角形,∴OD =CD ,OA =AE ,∵OA ⊥BC ,∴CD =12BC =1,∴OD =CD =1,∴OC =2OD =2,∴AE =OA =OC =2,故答案为:2.【解答】√√√√16.(2分)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A ,B 、C ,D 、E ,F 、G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,工序F 须在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E F G 所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要分钟.解:由题意得:9+9+7+9+7+10+2=53(分钟),即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,且工序A ,B 都需要9分钟完成,∴甲学生做工序A ,乙学生同时做工序B ,需要9分钟,然后甲学生做工序D ,乙学生同时做工序C ,乙学生工序C 完成后接着做工序G ,需要9分钟,最后甲学生做工序E ,乙学生同时做工序F ,需要10分钟,∴若由两名学生合作完成此木艺艺术品的加工,最少需要9+9+10=28(分钟),故答案为:53,28.【解答】17.(5分)计算:4sin 60°+(13)-1+|-2|-12.√解:原式=4×32+3+2-23=23+3+2-23=5.【解答】√√√√18.(5分)解不等式组:V Y W Y X x >x +235x −3<5+x.解:VY W Y X x >x +23①5x −3<5+x ②,解不等式①得:x >1,解不等式②得:x <2,∴原不等式组的解集为:1<x <2.【解答】19.(5分)已知x +2y -1=0,求代数式2x +4yx 2+4xy +4y2的值.解:∵x +2y -1=0,∴x +2y =1,∴2x +4yx 2+4xy +4y 2=2(x +2y )(x +2y )2=2x +2y =21=2,∴2x +4yx 2+4xy +4y2的值为2.【解答】20.(6分)如图,在⏥ABCD 中,点E ,F 分别在BC ,AD 上,BE =DF ,AC =EF .(1)求证:四边形AECF 是矩形;(2)若AE =BE ,AB =2,tan ∠ACB =12,求BC 的长.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∵BE =DF ,∴AD -DF =BC -BE ,即AF =EC ,∴四边形AECF 是平行四边形,∵AC =EF ,∴平行四边形AECF 是矩形;(2)解:∵四边形AECF 是矩形,∴∠AEC =∠AEB =90°,∵AE =BE ,AB =2,∴△ABE 是等腰直角三角形,∴AE =BE =22AB =2,∵tan ∠ACB =AE EC=12,∴EC =2AE =22,∴BC =BE +EC =2+22=32,即BC 的长为32.【解答】√√√√√√√21.(6分)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的110.某人要装裱一副对联,对联的长为100cm ,宽为27cm .若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.【解答】解:设天头长为6x cm,地头长为4x cm,则左、右边的宽为x cm,根据题意得,100+(6x+4x)=4×[27+(6x-4x)],解得x=4,答:边的宽为4cm,天头长为24cm.22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B(1,2),与过点(0,4)且平行于x 轴的直线交于点C.(1)求该函数的解析式及点C的坐标;x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.(2)当x<3时,对于x的每一个值,函数y=23解:(1)把点A(0,1),B(1,2)代入y=kx+b(k≠0)得:b=1,k+b=2,【解答】解得:k=1,b=1,∴该函数的解析式为y=x+1,由题意知点C的纵坐标为4,当y=x+1=4时,解得:x=3,∴C(3,4);(2)由(1)知:当x=3时,y=x+1=4,因为当x<3时,函数y=2x+n的值大于函数y=x+1的值且小于4,3所以当y=2x+n过点(3,4)时满足题意,3代入(3,4)得:4=2×3+n,3解得:n=2.23.(5分)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是(填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175.在选另(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为329外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于32,其次要求所选的两名学生9与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为和.解:(1)数据按由小到大的顺序排序:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,则舞蹈队16名学生身高的中位数为m =166+1662=166(cm ),众数为n =165(cm ),故答案为:166,165;(2)甲组学生身高的平均值是:162+165+165+166+1665=164.8(cm ),甲组学生身高的方差是:15×[(164.8-162)2+(164.8-165)2+(164.8-165)2+(164.8-166)2+(164.8-166)2]=2.16,乙组学生身高的平均值是:161+162+164+165+1755=165.4(cm ),乙组学生身高的方差是:15×[(165.4-161)2+(165.4-162)2+(165.4-164)2+(165.4-165)2+(165.4-175)2]=25.04,∵25.04>2.6,∴甲组舞台呈现效果更好.故答案为:甲组;(3)∵168,168,172的平均数为13(168+168+172)=16913(cm ),且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329,∴数据的差别较小,可供选择的有170cm ,172cm ,平均数为:15(168+168+170+172+172)=170(cm ),方差为:15[(168-170)2+(168-170)2+(170-170)2+(172-170)2+(172-170)2]=3.2<329,∴选出的另外两名学生的身高分别为170cm 和172cm .故答案为:170cm ,172cm .【解答】24.(6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分∠ABC ,∠B AC =∠ADB .(1)求证DB 平分∠ADC ,并求∠BAD 的大小;(2)过点C 作CF ∥AD 交AB 的延长线于点F ,若AC =AD ,BF =2,求此圆半径的长.(1)证明:∵∠BAC =∠ADB ,∠BAC =∠CDB ,∴∠ADB =∠CDB ,∴BD 平分∠ADC ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵四边形ABCD 是圆内接四边形,∴∠ABC +∠ADC =180°,∴∠ABD +∠CBD +∠ADB +∠CDB =180°,∴2(∠ABD +∠ADB )=180°,∴∠ABD +∠ADB =90°,∴∠BAD =180°-90°=90°;(2)解:∵∠BAE +∠DAE =90°,∠BAE =∠ADE ,∴∠ADE +∠DAE =90°,∴∠AED =90°,∵∠BAD =90°,∴BD 是圆的直径,∴BD 垂直平分AC ,∴AD =CD ,∵AC =AD ,∴△ACD 是等边三角形,∴∠ADC =60°∵BD ⊥AC ,∴∠BDC =12∠ADC =30°,∵CF ∥AD ,【解答】∴∠F+∠BAD=180°,∴∠F=90°,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∵∠FBC+∠ABC=180°,∴∠FBC=∠ADC=60°,∴BC=2BF=4,∵∠BCD=90°,∠BDC=30°,∴BC=12BD,∵BD是圆的直径,∴圆的半径长是4.25.(5分)某小组研究了清洗某种含污物品的节约用水策略,部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990.方案一:采用一次清洗的方式:结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式:记第一次用水量为x1个单位质量,第二次用水量为x2个单位质量,总用水量为(x1+x 2)个单位质量,两次清洗后测得的清洁度为C.记录的部分实验数据如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5x1+x211.810.010.38.98.17.77.87.08.09.112.5C 0.990.9890.990.990.990.990.990.9880.990.990.990对以上实验数据进行分析,补充完成以下内容.(Ⅰ)选出C是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量x1和总用水量x1+x2之间的关系,在平面直角坐标系xOy中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C 0.990(填“>”“=”或”<”).解:(Ⅰ)表格如下:x 111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x 20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5x 1+x 211.810.010.38.98.17.77.87.08.09.112.5C 0.990√0.9890.990√0.990√0.990√0.990√0.990√0.9880.990√0.990√0.990√(Ⅱ)函数图象如下:由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小.故答案为:4;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19-7.7=11.3,即可节水约11.3个单位质量.故答案为:11.3;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到C <0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度,故答案为:<.【解答】26.(6分)在平面直角坐标系xOy 中,M (x 1,y 1),N (x 2,y 2)是抛物线y =ax 2+bx +c (a >0)上任意两点,设抛物线的对称轴为x =t .(1)若对于x 1=1,x 2=2,有y 1=y 2,求t 的值;(2)若对于0<x 1<1,1<x 2<2,都有y 1<y 2,求t 的取值范围.解:(1)∵对于x 1=1,x 2=2,有y 1=y 2,∴a +b +c =4a +2b +c ,∴3a +b =0,∴ba =-3.∵对称轴为x =-b 2a=32,∴t =32.(2)∵0<x 1<1,1<x 2<2,∴12<x 1+x 22<32,x 1<x 2,∵y 1<y 2,a >0,∴(x 1,y 1)离对称轴更近,x 1<x 2,则(x 1,y 1)与(x 2,y 2)的中点在对称轴的右侧,【解答】∴x 1+x 22>t ,即t ≤12.27.(7分)在△ABC 中,∠B =∠C =α(0°<α<45°),AM ⊥BC 于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段D M 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF =DC ,连接AE ,EF ,直接写出∠AEF 的大小,并证明.(1)证明:由旋转的性质得:DM =DE ,∠MDE =2α,∵∠C =α,∴∠DEC =∠MDE -∠C =α,∴∠C =∠DEC ,∴DE =DC ,∴DM =DC ,即D 是MC 的中点;(2)∠AEF =90°,证明:如图,延长FE 到H 使FE =EH ,连接CH ,AH ,∵DF =DC ,∴DE 是△FCH 的中位线,∴DE ∥CH ,CH =2DE ,由旋转的性质得:DM =DE ,∠MDE =2α,∴∠FCH =2α,∵∠B =∠C =α,∴∠ACH =α,△ABC 是等腰三角形,∴∠B =∠ACH ,AB =AC设DM =DE =m ,CD =n ,则CH =2m ,CM =m +n ,.DF =CD =n ,∴FM =DF -DM =n -m ,∵AM ⊥BC ,∴BM =CM =m +n ,∴BF =BM -FM =m +n -(n -m )=2m ,∴CH =BF ,在△ABF 和△ACH 中,V Y YW Y Y X AB =AC ∠B =∠ACH BF =CH ,∴△ABF ≌△ACH (SAS ),∴AF =AH ,∵FE =EH ,∴AE ⊥FH ,即∠AEF =90°,【解答】28.(7分)在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和⊙O 外一点C 给出如下定义:若直线CA ,CB 中一条经过点O ,另一条是⊙O 的切线,则称点C 是弦AB 的“关联点”.(1)如图,点A (-1,0),B 1(−22,22),B 2(22,−22).①在点C 1(-1,1),C 2(−2,0),C 3(0,2)中,弦AB 1的“关联点”是 ;②若点C 是弦AB 2的“关联点”,直接写出OC 的长;√√√√√√(2)已知点M (0,3),N (655,0),对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.√解:(1)①由关联定义可知,若直线CA 、CB 中一条经过点O ,另一条是⊙O 的切线,则称点C 是弦AB 的“关联点”,∵点A (-1,0),B 1(−22,22),点C 1(-1,1),C 2(−2,0),C 3(0,2),∴直线AC 2经过点O ,且B 1C 2与⊙O 相切,∴C 2是弦AB 1的“关联点”,∵C 1(-1,1),A (-1,0)的横坐标相同,与B 1(−22,22)都位于直线y =-x 上,∴AC 1与⊙O 相切,B 1C 1经过点O ,∴C 1是弦AB 1的“关联点”;故答案为:C 1,C 2;②∵A (-1,0),B 2(22,−22),设C (a ,b ),如图所示,共有两种情况,a 、若C 1B 2与⊙O 相切,AC 经过点O ,则C 1B 2,AC 1所在直线为V W X y =x −2y =0,解得V W X x =2y =0,∴C 1(2,0),∴OC 1=2,b 、若AC 2与⊙O 相切,C 2B 2经过点O ,则直线C 2B 2,AC 2所在直线为V W X x =−1y =−x ,解得V W X x =−1y =1,∴C 2(-1,1),∴OC 2=2,综上所述,OC =2;(2)∵线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”,∵弦PQ 随着S 的变动在一定范围内变动,且M (0,3),N (655,0),OM >ON ,∴S 共有2种情况,分别位于点M 和经过点O 的MN 的垂直平分线上,如图所示,①当S 位于点M (0,3)时,MP 为⊙O 的切线,作PJ ⊥OM ,∵M (0,3),⊙O 的半径为1,且MP 是⊙O 的切线,∴OP ⊥MP ,∵PJ ⊥OM ,∴△MPO ∽△POJ ,【解答】√√√√√√√√√√√√√√√∴OP OJ =OMOP,即1OJ=3,解得OJ=13,∴PJ=Q1P 2+Q1J2=223,Q1J=23,∴PQ1=PJ2+Q1J 2=233,同理PQ2=PJ2+Q2J 2=263,∴当S位于M(0,3)时,PQ1的临界值为233和263;②当S位于经过点O的MN的垂线上的点K时,,∵M(0,3),N(655,0),∴MN=OM2+ON2=955,∴OK=OM•ONMN=2,∵⊙O的半径为1,∴∠OKZ=30°,∴△OPQ为等边三角形,∴PQ=1或3,∴当S位于经过点O且垂直于MN的直线上即点K时,PQ1的临界点为1和3,∴在两种情况下,PQ的最小值在1≤t≤233内,最大值在263≤t≤3,综上所述,t的取值范围为1≤t≤233,263≤t≤3.√√√√√√√√√√√√√√√√√√√。
2020年北京市中考数学试卷(解析版)
2020年北京市中考数学一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体【答案】D【解析】【分析】根据三视图都是长方形即可判断该几何体为长方体.【详解】解:长方体的三视图都是长方形,故选D .【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几何体.2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A. B. C. D. 50.3610⨯53.610⨯43.610⨯43610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值大于1时,n 是正数;当原数绝对值小于1时,n 是负数.【详解】解: 36000=,43.610⨯故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示形式是解题的关键.3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A【解析】【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.【详解】解:由两直线相交,对顶角相等可知A 正确;由三角形的一个外角等于它不相邻的两个内角的和可知B 选项为∠2>∠3,C 选项为∠1=∠4+∠5,D 选项为∠2>∠5.故选:A .【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.4.下列图形中,既是中心对称图形也是轴对称图形的是( )A. B.C. D.【答案】D【解析】【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【详解】解:A 、是轴对称图形,不是中心对称图形,故选项错误;B 、不是轴对称图形,也不是中心对称图形,故选项错误;C 、不是轴对称图形,是中心对称图形,故选项错误;D 、既是轴对称图形,又是中心对称图形,故选项正确.故选:D .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键.5.正五边形的外角和为( )A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和定理即可得.【详解】任意多边形的外角和都为,与边数无关360︒故选:B .【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键.6.实数在数轴上的对应点的位置如图所示.若实数满足,则的值可以是()a b a b a -<<bA . 2 B. -1 C. -2 D. -3【答案】B【解析】【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又ab a-<< 到原点的距离一定小于2b ∴观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A. B. C. D. 14131223【答案】C【解析】【分析】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:所以共4种情况:其中满足题意的有两种,所以两次记录的数字之和为3的概率是 21.42=故选C .【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】【分析】设水面高度为 注水时间为分钟,根据题意写出与的函数关系式,从而可得答案.,hcm t h t 【详解】解:设水面高度为 注水时间为分钟,,hcm t 则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.二、填空题9.若代数式有意义,则实数的取值范围是_____.17x -x 【答案】7x ≠【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】∵代数式有意义,分母不能为0,可得,即,17x -70x -≠7x ≠故答案为:.7x ≠【点睛】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10.已知关于的方程有两个相等的实数根,则的值是______.x 220x x k ++=k 【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式,0=A ∴,440k -=解得:.1k =故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.11.______.【答案】2(或3)【解析】【分析】【详解】∵1<2,34,∴小的整数是2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.12.方程组的解为________.137x y x y -=⎧⎨+=⎩【答案】21x y =⎧⎨=⎩【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:两个方程相加可得,48x =∴,2x =将代入,2x =1x y -=可得,1y =故答案为:.21x y =⎧⎨=⎩【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键.13.在平面直角坐标系中,直线与双曲线交于A ,B 两点.若点A ,B 的纵坐标分别为,xOy y x =m y x=12,y y 则的值为_______.12y y +【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,120y y +=故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD ≌ACD ,A A A 这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD (或BD=CD )【解析】【分析】证明ABD ≌ACD ,已经具备 根据选择的判定三角形全等的判定方法可得答案.A A ,,AB AC AD AD ==【详解】解:,,AB AC AD AD == 要使∴,ABD ACD A A ≌则可以添加:∠BAD=∠CAD ,此时利用边角边判定:,ABD ACD A A ≌或可以添加:,BD CD =此时利用边边边判定:,ABD ACD A A ≌故答案为:∠BAD=∠CAD 或().BD CD =【点睛】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键.15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系A A 为:______(填“>”,“=”或“<”)ABC S A ABD S A【答案】=【解析】【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.【详解】解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得个平方单位,14242ABC S =⨯⨯=A ,123111=52101513224222⨯---=-⨯⨯-⨯⨯-⨯⨯=A ABD S S S S 故有=.ABC S A ABD S A 故答案为:“=”【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到△ABD 的面积.16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:11(|2|6sin 453-+--︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=326++-32=++-5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.18.解不等式组:5322132x x x x ->⎧⎪-⎨<⎪⎩【答案】12x <<【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:5322132x x x x ->⎧⎪⎨-<⎪⎩①②解不等式①得:,1x >解不等式②得:,2x <∴此不等式组的解集为.12x <<【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.19.已知,求代数式的值.2510x x --=(32)(32)(2)x x x x +-+-【答案】,-221024x x --【解析】【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把变形后,整体2510x x --=代入求值即可.【详解】解:原式=22942x x x-+-2102 4.x x =--∵,2510x x --=∴,251x x -=∴,21022x x -=∴原式=.242-=-【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.20.已知:如图,ABC 为锐角三角形,AB=BC ,CD ∥AB .A 求作:线段BP ,使得点P 在直线CD 上,且∠ABP=.12BAC ∠作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD ∥AB ,∴∠ABP=.∵AB=AC ,∴点B 在⊙A 上.又∵∠BPC=∠BAC ( )(填推理依据)12∴∠ABP=∠BAC 12【答案】(1)见解析;(2)∠BPC ,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半【解析】【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明: 再利用圆的性质得到:∠BPC=∠BAC ,从而可得答案.,ABP BPC ∠=∠12【详解】解:(1)依据作图提示作图如下:(2)证明:∵CD ∥AB ,∴∠ABP= .BPC ∠∵AB=AC ,∴点B 在⊙A 上.又∵∠BPC=∠BAC (在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据)12∴∠ABP=∠BAC 12故答案为:∠BPC ;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF .(1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.【答案】(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO 是△DAB 的中位线,再结合已知条件OG ∥EF ,得到四边形OEFG 是平行四边形,再由条件EF ⊥AB ,得到四边形OEFG 是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=AB=AD=5,得到FG=5,最1212后BG=AB-AF-FG=2.【详解】解:(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点,∵点E 为AD 中点,∴OE 为△ABD 的中位线,∴OE ∥FG ,∵OG ∥EF ,∴四边形OEFG 为平行四边形∵EF ⊥AB ,∴平行四边形OEFG 为矩形.(2)∵点E 为AD 的中点,AD=10,∴AE=152AD =∵∠EFA=90°,EF=4,∴在Rt △AEF 中,.3===AF ∵四边形ABCD 为菱形,∴AB=AD=10,∴OE=AB=5,12∵四边形OEFG 为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.22.在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点xOy (0)y kx b k =+≠y x =(1,2).(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出1x >x (0)y mx m =≠y kx b =+m 的取值范围.【答案】(1);(2)1y x =+2m ≥【解析】【分析】(1)根据一次函数由平移得到可得出k 值,然后将点(1,2)代入可得b (0)y kx b k =+≠y x =y x b =+值即可求出解析式;(2)由题意可得临界值为当时,两条直线都过点(1,2),即可得出当时,1x =12x m >>,(0)y mx m =≠都大于,根据,可得可取值2,可得出m 的取值范围.1y x =+1x >m【详解】(1)∵一次函数由平移得到,(0)y kx b k =+≠y x =∴,1k =将点(1,2)代入可得,y x b =+1b =∴一次函数的解析式为;1y x =+(2)当时,函数的函数值都大于,即图象在上方,由下图可知:1x >(0)y mx m =≠1y x =+1y x =+临界值为当时,两条直线都过点(1,2),1x =∴当时,都大于,12x m >>,(0)y mx m =≠1y x =+又∵,1x >∴可取值2,即,m 2m =∴的取值范围为.m 2m ≥【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF ;(2)若sinC=,BD=8,求EF 的长.13【答案】(1)见解析;(2)2.【解析】【分析】(1)连接OD ,根据CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据OF ⊥AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO ,即可证明;(2)设半径为r ,根据在Rt △OCD 中,,可得,AC=2r ,由AB 为⊙O 的直径,sin 13C =3OD r OC r ==,得出∠ADB=90°,再根据推出OF ⊥AD ,OF ∥BD ,然后由平行线分线段成比例定理可得,求12OE OA BD AB ==出OE ,,求出OF ,即可求出EF .34OF OC BD BC ==【详解】(1)证明:连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠ADC+∠ODA=90°,∵OF ⊥AD ,∴∠AOF+∠DAO=90°,∵OD=OA ,∴∠ODA=∠DAO ,∴∠ADC=∠AOF ;(2)设半径为r ,在Rt △OCD 中,,1sin 3C =∴,13OD OC =∴,3OD r OC r ==,∵OA=r ,∴AC=OC-OA=2r ,∵AB 为⊙O 的直径,∴∠ADB=90°,又∵OF ⊥AD ,∴OF ∥BD ,∴,12OE OA BD AB ==∴OE=4,∵,34OF OC BD BC ==∴,6OF =∴.2EF OF OE =-=【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24.小云在学习过程中遇到一个函数.下面是小云对其探究的过程,请补充完21||(1)(2)6y x x x x =-+≥-整:(1)当时,对于函数,即,当时,随的增大而 ,且;20x -≤<1||y x =1y x =-20x -≤<1y x 10y >对于函数,当时,随的增大而,且;结合上述分析,进一步探221y x x =-+20x -≤<2y x 20y >究发现,对于函数,当时,随的增大而.y 20x -≤<y x (2)当时,对于函数,当时,与的几组对应值如下表:0x ≥y 0x ≥y x x 0121322523y116167161954872综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当0x ≥y x xOy 0x ≥时的函数的图象.y(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数0m >x l l 的图象有两个交点,则的最大值是 .21||(1)(2)6y x x x x =-+≥-m【答案】(1)减小,减小,减小;(2)见解析;(3)73【解析】【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案;(2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当时,函数有最大值,代入计算即可得到答案.2x =-【详解】解:(1)根据题意,在函数中,1y x =-∵,10k =-<∴函数在中,随的增大而减小;1y x =-20x -≤<1y x ∵,222131(24y x x x =-+=-+∴对称轴为:,1x =∴在中,随的增大而减小;221y x x =-+20x -≤<2y x 综合上述,在中,随的增大而减小;21||(1)6y x x x =-+20x -≤<y x 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当时,随的增大而增大,无最大值;0x ≥y x 由(1)可知在中,随的增大而减小;21||(1)6y x x x =-+20x -≤<y x ∴在中,有20x -≤<当时,,2x =-73y =∴m 的最大值为;73故答案为:.73【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日的厨余垃圾分出量统计图:a.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:b 时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为21,s ,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.22s 23s 222123,,s s s 【答案】(1)173;(2)2.9倍;(3)222123s s s >>【解析】【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案;(2)利用5月份的平均数除以4月份的平均数,即可得到答案;(3)直接利用点状图和方差的意义进行分析,即可得到答案.【详解】解:(1)平均数:(千克);1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=故答案为:173;(2)倍;17360 2.9÷=故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:;222123s s s >>【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.26.在平面直角坐标系中,为抛物线上任意两点,其中xOy 1122(,),(,)M x y N x y 2(0)y ax bx c a =++>.12x x <(1)若抛物线的对称轴为,当为何值时,1x =12,x x 12;y y c ==(2)设抛物线的对称轴为.若对于,都有,求的取值范围.x t =123x x +>12y y <t 【答案】(1);(2)120,2x x ==32t ≤【解析】【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为,抛物线的对称轴为,可得点M ,N 12y y c ==1x =关于对称,从而得到的值;1x =12,x x (2)根据题意知,抛物线开口向上,对称轴为,分3种情况讨论,情况1:当都位于对称轴右x t =12,x x 侧时,情况2:当都位于对称轴左侧时,情况3:当位于对称轴两侧时,分别求出对应的t 值,再12,x x 12,x x 进行总结即可.【详解】解:(1)当x=0时,y=c ,即抛物线必过(0,c ),∵,抛物线的对称轴为,12y y c ==1x =∴点M ,N 关于对称,1x =又∵,12x x <∴,;10x =22x =(2)由题意知,a >0,∴抛物线开口向上∵抛物线的对称轴为,x t =12x x <∴情况1:当都位于对称轴右侧时,即当时,恒成立12,x x 1x t ≥12y y <情况2:当都位于对称轴左侧时,即<时,恒不成立12,x x 1x 2,t x t ≤12y y <情况3:当位于对称轴两侧时,即当时,要使,必有,即12,x x 1x <2,t x t >12y y <12x t x t -<-()()2212x t x t -<-解得,122x x t +>∴3≥2t ,∴32t ≤综上所述,.32t ≤【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想.27.在中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,ABC A 交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,求EF 的长(用含的式子表示);,AE a BF b ==,a b (2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(1;(2)图见解析,,证明见解析.222EF AE BF =+【解析】【分析】(1)先根据中位线定理和线段中点定义可得,,,再根据平行四边形//DE BC 12DE BC =CE AE a ==的性质、矩形的判定与性质可得,从而可得,然后利用勾股定理即可得;DE CF =CF BF b ==(2)如图(见解析),先根据平行线的性质可得,,再根据三角形全EAD GBD ∠=∠DEA DGB ∠=∠等的判定定理与性质可得,,然后根据垂直平分线的判定与性质可得,最ED GD =AE BG =EF FG =后在中,利用勾股定理、等量代换即可得证.Rt BGF A 【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点∴DE 为的中位线,且ABC A CE AE a ==∴,//DE BC 12DE BC =∵90C ∠=︒∴18090DEC C ∠=︒-∠=︒∵DF DE ⊥∴90EDF ∠=︒∴四边形DECF 为矩形∴DE CF=11()22CF BC BF CF ∴==+∴CF BF b ==则在中,Rt CEF A EF ==(2)过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ∵//BG AC∴,EAD GBD ∠=∠DEA DGB ∠=∠∵D 是AB 的中点∴AD BD=在和中,EAD A GBD △EAD GBDDEA DGBAD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EAD GBD AAS ≅A A ∴,ED GD =AE BG =又∵DF DE⊥∴DF 是线段EG 的垂直平分线∴EF FG=∵,90C ∠=︒//BG AC ∴90GBF C ∠=∠=︒在中,由勾股定理得:Rt BGF A 222FG BGBF =+∴.222EF AE BF =+【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.28.在平面直角坐标系中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,xOy 得到⊙O 的弦(分别为点A ,B 的对应点),线段长度的最小值称为线段AB 到⊙O 的“平A B '',A B ''AA '移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦和,则这两条弦的位置关系是 ;在12PP 34P P 点中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;1234,,,P P P P(2)若点A ,B 都在直线上,记线段AB 到⊙O 的“平移距离”为,求的最小值;y =+1d 1d (3)若点A 的坐标为,记线段AB 到⊙O 的“平移距离”为,直接写出的取值范围.32,2⎛⎫⎪⎝⎭2d 2d【答案】(1)平行,P 3;(23)23722d ≤≤【解析】【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由得到的最1d OE OF =-1d 小值;(3)线段AB 的位置变换,可以看作是以点A 为圆心,半径为1的圆,只需在⊙O 内找到与之平行,32,2⎛⎫⎪⎝⎭且长度为1的弦即可.平移距离的最小值即点A 到⊙O 的最小值;平移距离的最大值即点A 到⊙O 2d 2d 的最大值,由此得出的取值范围.2d 【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线上,平移之后与圆相交,得到的弦为CD ,CD ∥AB ,过点O 作y =+OE ⊥AB 于点E ,交弦CD 于点F ,OF ⊥CD ,令,直线与x 轴交点为(-2,0),直线与x 轴夹角为0y =60°,∴.2sin 60OE ︒==由垂径定理得:,OF ==∴;1d OE OF =-=21(3)线段AB 的位置变换,可以看作是以点A 为圆心,半径为1的圆,只需在⊙O 内找到与之平行,32,2⎛⎫ ⎪⎝⎭且长度为1的弦即可;点A 到O 的距离为.52AO ==如图,平移距离的最小值即点A 到⊙O 的最小值:;2d 53122-=平移距离的最大值即点A 到⊙O 的最大值:.2d 57122+=∴的取值范围为:.2d 23722d ≤≤【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.。
2022年北京市中考数学试卷 - 答案
2022年北京市中考数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.B.2.B.3.A.4.D.5.A.6.C.7.D.8.A.二、填空题(共16分,每题2分)x.9.810.(1)(1)-+.x y y11.5x=.12.>.13.120.14.1.15.1.16.解:(1)ABC(或ABE或AD或ACD或BCD或)ACE;(2)ACE.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.【解答】解:原式143=+-=+13=.418.【解答】解:由274x>,x x+>-,得:1由42x x +<,得:4x <, 则不等式组的解集为14x <<.19.【解答】解:2(2)(1)x x x +++22221x x x x =++++2241x x =++,2220x x +-=,222x x ∴+=,∴当222x x +=时,原式22(2)1x x =++221=⨯+41=+5=.20.【解答】证明:方法一://DE BC ,B BAD ∴∠=∠,C CAE ∠=∠,180BAD BAC CAE ∠+∠+∠=︒,180B BAC C ∴∠+∠+∠=︒;方法二://CD AB ,A ACD ∴∠=∠,180B BCD ∠+∠=︒,180B ACB A ∴∠+∠+∠=︒.21.【解答】证明:(1)在ABCD 中,OA OC =,OB OD =,AE CF =.OE OF ∴=,∴四边形EBFD 是平行四边形;(2)四边形ABCD 是平行四边形,//AB DC ∴,BAC DCA ∴∠=∠,BAC DAC ∠=∠,DCA DAC ∴∠=∠,DA DC ∴=,∴平行四边形ABCD 为菱形,DB EF ∴⊥,∴平行四边形EBFD 是菱形.22.【解答】解:(1)把(4,3),(2,0)-分别代入y kx b =+得4320k b k b +=⎧⎨-+=⎩, 解得121k b ⎧=⎪⎨⎪=⎩,∴函数解析式为112y x =+, 当0x =时,1112y x =+=, A ∴点坐标为(0,1);(2)当1n 时,当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值.23. 【解答】解:(1)1(10101099839810)8.610m =⨯+++++++++=;(2)甲同学的方差2_S 甲,乙同学的方差2_S 乙, 2_S 甲,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为1(7829410)8.6258⨯+⨯+⨯+=; 乙同学的最后得分为1(3792103)8.6258⨯⨯+⨯+⨯=; 丙同学的最后得分为1(8293103)9.1258⨯⨯+⨯+⨯=, ∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.24.【解答】证明:(1)如图,连接AD ,AB是O的直径,AB CD⊥,=,∴BC BD∴∠=∠,CAB BAD∠=∠,BOD BAD2BOD A∴∠=∠;2(2)如图,连接OC,F为AC的中点,∴⊥,DF AC∴=,AD CD∴∠=∠,ADF CDF=,BC BD∴∠=∠,CAB DAB=,OA OD∴∠=∠,OAD ODA∴∠=∠,CDF CAB=,OC OD∴∠=∠,CDF OCDOCD CAB ∴∠=∠,BC BC =,CAB CDE ∴∠=∠,CDE OCD ∴∠=∠,90E ∠=︒,90CDE DCE ∴∠+∠=︒,90OCD DCE ∴∠+∠=︒,即OC CE ⊥, OC 为半径,∴直线CE 为O 的切线.25. 【解答】解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20), 8h ∴=,23.20k =,即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当0x =时,20.00y =,代入2(8)23.20y a x =-+得: 220.00(08)23.20a =-+,解得:0.05a =-,∴函数关系式为:20.05(8)23.20y x =--+;(2)设着陆点的纵坐标为t ,则第一次训练时,20.05(8)23.20t x =--+,解得:8x =或8x =,∴根据图象可知,第一次训练时着陆点的水平距离18d =+ 第二次训练时,20.04(9)23.24t x =--+,解得:9x =+或9x =,∴根据图象可知,第二次训练时着陆点的水平距离29d =, 20(23.20)25(23.24)t t -<-,∴<12d d ∴<,故答案为:<.26. 【解答】解:(1)将点(1,)m ,(3,)n 代入抛物线解析式, ∴93m a b c n a b c =++⎧⎨=++⎩, m n =,93a b c a b c ∴++=++,整理得,4b a =-,∴抛物线的对称轴为直线4222b a x a a-=-=-=; 2t ∴=,2c =,∴抛物线与y 轴交点的坐标为(0,2).(2)m n c <<,93a b c a b c c ∴++<++<,解得43a b a -<<-,34a b a ∴<-<, ∴34222a b a a a a <-<,即322t <<. 当32t =时,02x =; 当2t =时,03x =.0x ∴的取值范围023x <<.27.【解答】(1)证明:在BCD ∆和FCE ∆中,BC CF BCD FCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()BCD FCE SAS ∴∆≅∆,DBC EFC ∴∠=∠,//BD EF ∴,AF EF ⊥,BD AF ∴⊥;(2)解:由题意补全图形如下:=.CD CH证明:延长BC到F,使CF BC=,连接AF,EF,⊥,BC CFAC BF=,∴=,AB AF由(1)可知//=,BD EF,BD EF222=+,AB AE BD222∴=+,AF AE EF∴∠=︒,AEF90∴⊥,AE EF∴⊥,BD AE∴∠=︒,DHE90又CD CE=,∴==.CH CD CE28.【解答】解:(1)①由题意知,(21,01)P'-++,∴-,(1,1)P'如图,点Q即为所求;②连接PP',45P PO MOx '∠=∠=︒,//PP ON '∴,P N QN '=,PT QT ∴=, 12NT PP '∴=, PP OM '=,12NT OM ∴=; (2)如图,连接PO ,并延长至S ,使OP OS =,延长SQ 到T ,使ST OM =,由题意知,//PP OM ',PP OM '=,P N NQ '=,2TQ MN ∴=,1MN OM ON t =-=-,22TQ t ∴=-,1(22)21SQ ST TQ t t ∴=-=--=-,在PQS ∆中,PS QS PS QS -<+,PQ ∴的最小值为PS QS -,PQ 的最大值为PS QS +,PQ ∴长的最大值与最小值的差为()()242PS QS PS QS QS t +--==-.。
2022年北京中考数学试题及答案
时,相当于减排二氧化碳约 2.2 亿吨.将 262 883 000 000 用科学计数法表示应为()
A. 26.28831010
B. 2.628831011
C. 2.628831012
D. 0.2628831012
【参考答案】B
3. 如图,利用工具测量角,则 1 的大小为()
A. 30°
B. 60°
又由 x 0 ,得 2 2n 0, 解得 n 1, ∴ n 的取值范围为 n 1.
23. 某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比
且喜平常度,切忌神慌乱。畅游题海后,金榜题君名。考试在即,祝你成功。
真题在手 何必模拟
选择 ABE 时,装运的 II 号产品重量为:1 2 5 8 (吨); 选择 AD 时,装运的 II 号产品重量为:1 3 4(吨); 选择 ACD 时,装运的 II 号产品重量为:1 3 3 7 (吨); 选择 BCD 时,装运的 II 号产品重量为: 2 3 3 8 (吨);
解不等式组:
x 4x. 2
【参考答案】1 x 4
2 x 7 4x? ①
【详解】解:
x
4
2
x
②
解不等式①得 x 1, 解不等式②得 x 4 , 故所给不等式组的解集为:1 x 4 .
19. 已知 x2 2x 2 0 ,求代数式 x(x 2) (x 1)2 的值.
【参考答案】5
选择 ABC 时,装运的 I 号产品重量为:5 3 2 10(吨),总重6 5 5 16 19.5(吨),
符合要求;
选择 ABE 时,装运的 I 号产品重量为:5 3 3 11(吨),总重 6 5 8 19 19.5(吨),
2022年北京市中考数学试题及答案 全市统考试题
2022年北京中考数学试题及答案全市统考第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面几何体中,是圆锥的为()A.B.C. D.【参考答案】B2.截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学计数法表示应为()A.1026.288310⨯ B.112.6288310⨯C.122.6288310⨯ D.120.26288310⨯【参考答案】B3.如图,利用工具测量角,则1∠的大小为()A.30°B.60°C.120°D.150°【参考答案】A4.实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是()A. 2a -<B.1b <C.a b >D.a b->【参考答案】D5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.34【参考答案】A6.若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为()A.4- B.14-C.14D.4【参考答案】C7.图中的图形为轴对称图形,该图形的对称轴的条数为()A.1B.2C.3D.5【参考答案】D8.下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ;③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x ,其中,变量y 与变量x 之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③【参考答案】A第二部分非选择题二、填空题(共16分,每题2分)9.在实数范围内有意义,则实数x 的取值范围是___________.【参考答案】x ≥8【详解】解:由题意得:x -8≥0,解得:x ≥8.故答案为:x ≥8.10.分解因式:2xy x -=______.【参考答案】()()11x y y +-【详解】2xy x-()21x y =-()()11x y y =+-故答案为:()()11x y y +-.11.方程215x x=+的解为___________.【参考答案】x =5【详解】解:215x x=+方程的两边同乘x (x +5),得:2x =x +5,解得:x =5,经检验:把x =5代入x (x +5)=50≠0.故原方程的解为:x =512.在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)【参考答案】>【详解】解:∵k >0,∴在每个象限内,y 随x 的增大而减小,25 <,∴1y >2y .故答案为:>.13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为________双.【参考答案】120【详解】解:根据题意得:39码的鞋销售量为12双,销售量最高,∴该商场进鞋号需求最多的滑冰鞋的数量为1240012040⨯=双.故答案为:12014.如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【参考答案】1【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.15.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【参考答案】1【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC ===,∴144AE =,∴1AE =,故答案为:1.16.甲工厂将生产的I 号、II 号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中I 号、II 号产品的重量如下:包裹编号I 号产品重量/吨II 号产品重量/吨包裹的重量/吨A 516B 325C 235D 437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I 号产品不少于9吨,且不多于11吨,写出一中满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I 号产品不少于9吨,且不多于11吨,同时装运的II 号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号).【参考答案】①.ABC(或ABE 或AD 或ACD 或BCD)②.ABE 或BCD【详解】解:(1)根据题意,选择ABC 时,装运的I 号产品重量为:53210++=(吨),总重6551619.5++=<(吨),符合要求;选择ABE 时,装运的I 号产品重量为:53311++=(吨),总重6581919.5++=<(吨),符合要求;选择AD 时,装运的I 号产品重量为:549+=(吨),总重671319.5+=<(吨),符合要求;选择ACD 时,装运的I 号产品重量为:52411++=(吨),总重6571819.5++=<(吨),符合要求;选择BCD 时,装运的I 号产品重量为:3249++=(吨),总重5571719.5++=<(吨),符合要求;选择DCE 时,装运的I 号产品重量为:4239++=(吨),总重7582019.5++=>(吨),不符合要求;选择BDE 时,装运的I 号产品重量为:34310++=(吨),总重5782019.5++=>(吨),不符合要求;综上,满足条件的装运方案有ABC 或ABE 或AD 或ACD 或BCD.故答案为:ABC(或ABE 或AD 或ACD 或BCD).(2)选择ABC 时,装运的II 号产品重量为:1236++=(吨);选择ABE 时,装运的II 号产品重量为:1258++=(吨);选择AD 时,装运的II 号产品重量为:134+=(吨);选择ACD 时,装运的II 号产品重量为:1337++=(吨);选择BCD 时,装运的II 号产品重量为:2338++=(吨);故答案为:ABE 或BCD.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:0(1)4sin 45 3.π-+--【参考答案】4【详解】解:0(1)4sin 45 3.π-+--2=1432+⨯-+=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.18.解不等式组:274,4.2x x xx +>-⎧⎪⎨+<⎪⎩【参考答案】14x <<【详解】解:274 4 2x x xx +>-⎧⎪⎨+<⎪⎩①②解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.19.已知2220x x +-=,求代数式2(2)(1)x x x +++的值.【参考答案】5【详解】解:∵2220x x +-=,∴222x x +=,∴2(2)(1)x x x +++22221x x x x =++++2241x x =++()2221x x =++221=⨯+5=20.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角和等于180°,已知:如图,ABC ∆,求证:180.A B C ∠+∠+∠=方法一证明:如图,过点A 作.DE BC ∥方法二证明:如图,过点C 作.CD AB ∥【参考答案】答案见解析【详解】证明:过点A 作//DE BC ,则B BAD ∠=∠,C EAC ∠=∠.(两直线平行,内错角相等)点D ,A ,E 在同一条直线上,180DAB BAC C ∴∠+∠+∠=︒.(平角的定义)180B BAC C ∴∠+∠+∠=︒.即三角形的内角和为180︒.21.如图,在ABCD 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.【参考答案】(1)见解析(2)见解析【小问1详解】证明:∵四边形ABCD 为平行四边形,∴AO CO =,BO DO =,∵AE CF =,∴AO AE CO CF -=-,即EO FO =,∴四边形EBFD 是平行四边形.【小问2详解】∵四边形ABCD 为平行四边形,∴AB CD ,∴DCA BAC ∠=∠,∵,BAC DAC ∠=∠∴DCA DAC ∠=∠,∴DA DC =,∴四边形ABCD 为菱形,∴AC BD ⊥,即EF BD ⊥,∵四边形EBFD 是平行四边形,∴四边形EBFD 是菱形.22.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.【参考答案】(1)112y x =+,(0,1)(2)1n ≥【小问1详解】解:将(4,3),(2,0)-代入函数解析式得,3=402k b k b +⎧⎨=-+⎩,解得121k b ⎧=⎪⎨⎪=⎩,∴函数的解析式为:112y x =+,当0x =时,得1y =,∴点A 的坐标为(0,1).【小问2详解】由题意得,112x n x +>+,即22x n >-,又由0x >,得220n -≤,解得1n ≥,∴n 的取值范围为1n ≥.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b .丙同学得分:10,10,10,9,9,8,3,9,8,10c .甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m 的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【参考答案】(1)8.6(2)甲(3)乙【小问1详解】解:丙的平均数:101010998398108.610+++++++++=,则8.6m =.【小问2详解】2222212(8.68)4(8.69)2(8.67)2(8.610) 1.0410S ⎡⎤=⨯-+⨯-+⨯-+⨯-=⎣⎦甲,222214(8.67)4(8.610)2(8.69) 1.8410S ⎡⎤=⨯-+⨯-+⨯-=⎣⎦乙,22S S < 甲乙,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.【小问3详解】由题意得,去掉一个最高分和一个最低分后的平均分为:甲:889799910=8.6258+++++++,乙:77799101010=9.758+++++++,丙:10109989810=9.1258+++++++,∵去掉一个最高分和一个最低分后乙的平均分最高,因此最优秀的是乙,故答案为:乙.24.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.【参考答案】(1)答案见解析(2)答案见解析【小问1详解】证明:设AB 交CD 于点H ,连接OC ,由题可知,OC OD ∴=,90OHC OHD ∠=∠=︒,OH OH = ,()Rt COH Rt DOH HL ∴∆≅∆,COH DOH ∴∠=∠,BCBD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠ ,2BOD A ∴∠=∠;【小问2详解】证明:连接AD ,OA OD = ,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠,∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠,180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒ ,30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒,223060COB CAO ∴∠=∠=⨯︒=︒,AB Q 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,//OC DE ∴,CE BE ⊥Q ,CE OC ∴⊥,∴直线CE 为O 的切线.25.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m)与水平距离x (单位:m)近似满足函数关系2()(0)y a x h k a =-+<.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m 02581114竖直高度y /m20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系2()(0);y a x h k a =-+<(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24.y x =--+记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为2d ,则1d ______2d (填“>”“=”或“<”).【参考答案】(1)23.20m;()20.05823.20y x =--+(2)<【小问1详解】解:根据表格中的数据可知,抛物线的顶点坐标为:()8,23.20,∴8h =,23.20k =,即该运动员竖直高度的最大值为23.20m,根据表格中的数据可知,当0x =时,20.00y =,代入()2823.20y a x =-+得:()220.000823.20a =-+,解得:0.05a =-,∴函数关系关系式为:()20.05823.20y x =--+.【小问2详解】设着陆点的纵坐标为t ,则第一次训练时,()20.05823.20t x =--+,解得:()82023.20x t =+-或()82023.20x t =--,∴根据图象可知,第一次训练时着陆点的水平距离18d =+,第二次训练时,()20.04923.24t x =--+,解得:9x =+9x =∴根据图象可知,第二次训练时着陆点的水平距离29d =,∵()()2023.202523.24t t --<,,∴12d d <.故答案为:<.26.在平面直角坐标系xOy 中,点(1,),(3,)m n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为.x t =(1)当2,c m n ==时,求抛物线与y 轴交点的坐标及t 的值;(2)点00(,)(1)x m x ≠在抛物线上,若,m n c <<求t 的取值范围及0x 的取值范围.【参考答案】(1)(0,2);2(2)t 的取值范围为322t <<,0x 的取值范围为023x <<【小问1详解】解:当2c =时,22y ax bx =++,∴当x =0时,y =2,∴抛物线与y 轴交点的坐标为(0,2);∵m n =,∴点(1,),(3,)m n 关于对称轴为x t =对称,∴1322t +==;【小问2详解】解:当x =0时,y =c ,∴抛物线与y 轴交点坐标为(0,c ),∴抛物线与y 轴交点关于对称轴x t =的对称点坐标为(2t ,c ),∵0a >,∴当x t ≤时,y 随x 的增大而减小,当x t >时,y 随x 的增大而增大,当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时,1t <,∵,m n c <<1<3,∴2t >3,即32t >(不合题意,舍去),当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,点0(,)x m 在对称轴的右侧,13t <<,此时点(3,)n 到对称轴x t =的距离大于点(1,)m 到对称轴x t =的距离,∴13t t -<-,解得:2t <,∵,m n c <<1<3,∴2t >3,即32t >,∴322t <<,∵0(,)x m ,(1,)m ,对称轴为x t =,∴012x t +=,∴013222x +<<,解得:023x <<,∴t 的取值范围为322t <<,0x 的取值范围为023x <<.27.在ABC ∆中,90ACB ∠= ,D 为ABC ∆内一点,连接BD ,DC 延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF 若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【参考答案】(1)见解析(2)CD CH =;证明见解析【小问1详解】证明:在F C E ∆和BCD ∆中,CE CD FCE BCD CF CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS FCE BCD ∆∆@,∴CFE CBD Ð=Ð,∴EF BD ∥,∵AF EF ⊥,∴BD AF ⊥.【小问2详解】解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ∠= ,CM =CB ,∴AC 垂直平分BM ,∴AB AM =,在MEC ∆和BDC ∆中,CM CBMCE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS MEC BDC ∆∆@,∴ME BD =,CME CBD Ð=Ð,∵222AB AE BD =+,∴222AM AE ME =+,∴90AEM ∠=︒,∵CME CBD Ð=Ð,∴BH EM ∥,∴90BHE AEM Ð=Ð=°,即90DHE ∠=︒,∵12CE CD DE ==,∴12CH DE =,∴CD CH =.28.在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM =(2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)【参考答案】(1)见解析(2)42t -【小问1详解】解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P',∴()'1,1P -,∵点P'关于点N 的对称点为Q ,()2,2N ,∴点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,∴点()5,3Q,在坐标系内找出该点即可;②证明:如图延长ON 至点()3,3A ,连接AQ ,∵//AQ OP ,∴AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔAQT OPT AAS ≅,∴12TA TO OA ==,∵()3,3A ,(1,1)M ,(2,2)N ,∴OA ==,OM ==ON ==,∴12TO OA ==,∴2NT ON OT =-==,∴12NT OM =;【小问2详解】解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,∵(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',∴'1PP OM ==,∵点P'关于点N 的对称点为Q ,∴'NP NQ =,又∵OP OS =,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT ,∵1NM OM ON t =-=-,∴222TQ NM t ==-,∴()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.。
2020年北京市中考数学试卷(后附答案及详尽解析)
2020年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)(2020•北京)如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体2.(2分)(2020•北京)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033.(2分)(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5 4.(2分)(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.5.(2分)(2020•北京)正五边形的外角和为()A.180°B.360°C.540°D.720°6.(2分)(2020•北京)实数a 在数轴上的对应点的位置如图所示,若实数b 满足﹣a <b <a ,则b 的值可以是( )A .2B .﹣1C .﹣2D .﹣37.(2分)(2020•北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A .14B .13C .12D .238.(2分)(2020•北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系二、填空题(本题共16分,每小题2分) 9.(2分)(2020•北京)若代数式1x−7有意义,则实数x 的取值范围是 .10.(2分)(2020•北京)已知关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值是 .11.(2分)(2020•北京)写出一个比√2大且比√15小的整数 . 12.(2分)(2020•北京)方程组{x −y =13x +y =7的解为 .13.(2分)(2020•北京)在平面直角坐标系xOy 中,直线y =x 与双曲线y =mx交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为 .14.(2分)(2020•北京)如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 (写出一个即可).15.(2分)(2020•北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC S △ABD (填“>”,“=”或“<”).16.(2分)(2020•北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 .三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2020•北京)计算:(13)﹣1+√18+|﹣2|﹣6sin45°.18.(5分)(2020•北京)解不等式组:{5x −3>2x ,2x−13<x 2.19.(5分)(2020•北京)已知5x 2﹣x ﹣1=0,求代数式(3x +2)(3x ﹣2)+x (x ﹣2)的值. 20.(5分)(2020•北京)已知:如图,△ABC 为锐角三角形,AB =AC ,CD ∥AB . 求作:线段BP ,使得点P 在直线CD 上,且∠ABP =12∠BAC .作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.21.(6分)(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.(5分)(2020•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.23.(6分)(2020•北京)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=13,BD=8,求EF的长.24.(6分)(2020•北京)小云在学习过程中遇到一个函数y=16|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0121322523…y0116167161954872…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy 中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=16|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.25.(5分)(2020•北京)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.26.(6分)(2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y =ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.27.(7分)(2020•北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF 之间的数量关系,并证明.28.(7分)(2020•北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A 'B '(A ',B ′分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 得到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2020年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)(2020•北京)如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体【解答】解:该几何体是长方体,故选:D.2.(2分)(2020•北京)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×103【解答】解:36000=3.6×104,故选:C.3.(2分)(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5【解答】解:A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误;故选:A.4.(2分)(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.5.(2分)(2020•北京)正五边形的外角和为()A.180°B.360°C.540°D.720°【解答】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B.6.(2分)(2020•北京)实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A.2B.﹣1C.﹣2D.﹣3【解答】解:因为1<a <2, 所以﹣2<﹣a <﹣1, 因为﹣a <b <a , 所以b 只能是﹣1. 故选:B .7.(2分)(2020•北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A .14B .13C .12D .23【解答】解:列表如下:1 2 1 2 3 234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果, 所以两次记录的数字之和为3的概率为24=12,故选:C .8.(2分)(2020•北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系【解答】解:设容器内的水面高度为h ,注水时间为t ,根据题意得: h =0.2t +10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系. 故选:B .二、填空题(本题共16分,每小题2分) 9.(2分)(2020•北京)若代数式1x−7有意义,则实数x 的取值范围是 x ≠7 .【解答】解:若代数式1x−7有意义,则x ﹣7≠0, 解得:x ≠7. 故答案为:x ≠7.10.(2分)(2020•北京)已知关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值是 1 .【解答】解:∵关于x 的方程x 2+2x +k =0有两个相等的实数根, ∴△=22﹣4×1×k =0, 解得:k =1. 故答案为:1.11.(2分)(2020•北京)写出一个比√2大且比√15小的整数 2或3(答案不唯一) . 【解答】解:∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数2或3(答案不唯一). 故答案为:2或3(答案不唯一).12.(2分)(2020•北京)方程组{x −y =13x +y =7的解为 {x =2y =1 .【解答】解:{x −y =1①3x +y =7②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1, 则方程组的解为{x =2y =1.故答案为:{x =2y =1.13.(2分)(2020•北京)在平面直角坐标系xOy 中,直线y =x 与双曲线y =mx 交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为 0 .【解答】解:∵直线y =x 与双曲线y =mx交于A ,B 两点, ∴联立方程组得:{y =xy =m x,解得:{x 1=√m y 1=√m ,{x2=−√my2=−√m ,∴y 1+y 2=0, 故答案为:0.14.(2分)(2020•北京)如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 BD =CD (写出一个即可).【解答】解:∵AB =AC , ∴∠ABD =∠ACD , 添加BD =CD , ∴在△ABD 与△ACD 中 {AB =AC∠ABD =∠ACD BD =CD, ∴△ABD ≌△ACD (SAS ), 故答案为:BD =CD .15.(2分)(2020•北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC = S △ABD (填“>”,“=”或“<”).【解答】解:∵S △ABC =12×2×4=4,S △ABD =2×5−12×5×1−12×1×3−12×2×2=4, ∴S △ABC =S △ABD , 故答案为:=.16.(2分)(2020•北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 丙、丁、甲、乙 .【解答】解:根据题意,丙第一个购票,只能购买3,1,2,4号票, 此时,3号左边有6个座位,4号右边有5个座位,即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排, ①第二个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买, 即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12,14), 或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8,10)、甲(12,14); ②第二个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票, 此时,四个人购买的票全在第一排,即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,11,13), 或丙(3,1,2,4)、乙(5,7,9)、丁(6,8,10,12,14)、甲(11,13), 因此,第一个是丙购买票,丁只要不是最后一个购买票的人,都能使四个人购买的票全在第一排,故答案为:丙、丁、甲、乙.三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2020•北京)计算:(13)﹣1+√18+|﹣2|﹣6sin45°.【解答】解:原式=3+3√2+2﹣6×√22 =3+3√2+2﹣3√2=5.18.(5分)(2020•北京)解不等式组:{5x −3>2x ,2x−13<x 2.【解答】解:解不等式5x ﹣3>2x ,得:x >1, 解不等式2x−13<x2,得:x <2,则不等式组的解集为1<x <2.19.(5分)(2020•北京)已知5x 2﹣x ﹣1=0,求代数式(3x +2)(3x ﹣2)+x (x ﹣2)的值. 【解答】解:(3x +2)(3x ﹣2)+x (x ﹣2) =9x 2﹣4+x 2﹣2x =10x 2﹣2x ﹣4, ∵5x 2﹣x ﹣1=0, ∴5x 2﹣x =1,∴原式=2(5x 2﹣x )﹣4=﹣2.20.(5分)(2020•北京)已知:如图,△ABC 为锐角三角形,AB =AC ,CD ∥AB . 求作:线段BP ,使得点P 在直线CD 上,且∠ABP =12∠BAC . 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点; ②连接BP .线段BP 就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明. 证明:∵CD ∥AB , ∴∠ABP = ∠BPC . ∵AB =AC , ∴点B 在⊙A 上. 又∵点C ,P 都在⊙A 上,∴∠BPC =12∠BAC ( 同弧所对的圆周角等于圆心角的一半 )(填推理的依据). ∴∠ABP =12∠BAC .【解答】解:(1)如图,即为补全的图形;(2)证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC(同弧所对的圆周角等于圆心角的一半),∴∠ABP=12∠BAC.故答案为:∠BPC,同弧所对的圆周角等于圆心角的一半.21.(6分)(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.【解答】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,∴AE=OE=12AD,∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.22.(5分)(2020•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2)代入y=x+b,得1+b=2,解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.23.(6分)(2020•北京)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=13,BD=8,求EF的长.【解答】解:(1)连接OD,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OF⊥AD,∴OF∥BD,∴∠AOF=∠B,∵CD 是⊙O 的切线,D 为切点, ∴∠CDO =90°,∴∠CDA +∠ADO =∠ADO +∠BDO =90°, ∴∠CDA =∠BDO , ∵OD =OB , ∴∠ODB =∠B , ∴∠AOF =∠ADC ; (2)∵OF ∥BD ,AO =OB , ∴AE =DE , ∴OE =12BD =12×8=4, ∵sin C =OD OC =13, ∴设OD =x ,OC =3x , ∴OB =x , ∴CB =4x , ∵OF ∥BD , ∴△COF ∽△CBD , ∴OC BC =OF BD ,∴3x 4x=OF 8,∴OF =6,∴EF =OF ﹣OE =6﹣4=2.24.(6分)(2020•北京)小云在学习过程中遇到一个函数y =16|x |(x 2﹣x +1)(x ≥﹣2). 下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x <0时,对于函数y 1=|x |,即y 1=﹣x ,当﹣2≤x <0时,y 1随x 的增大而 减小 ,且y 1>0;对于函数y 2=x 2﹣x +1,当﹣2≤x <0时,y 2随x 的增大而 减小 ,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当﹣2≤x <0时,y 随x 的增大而 减小 .(2)当x ≥0时,对于函数y ,当x ≥0时,y 与x 的几组对应值如下表: x 0 12 1322523… y116167161954872…结合上表,进一步探究发现,当x ≥0时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当x ≥0时的函数y 的图象.(3)过点(0,m )(m >0)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数y =16|x |(x 2﹣x +1)(x ≥﹣2)的图象有两个交点,则m 的最大值是73.【解答】解:(1)当﹣2≤x <0时,对于函数y 1=|x |,即y 1=﹣x ,当﹣2≤x <0时,y 1随x 的增大而减小,且y 1>0;对于函数y 2=x 2﹣x +1,当﹣2≤x <0时,y 2随x 的增大而减小,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当﹣2≤x <0时,y 随x 的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l 与函数y =16|x |(x 2﹣x +1)(x ≥﹣2)的图象有两个交点, 观察图象可知,x =﹣2时,m 的值最大,最大值m =16×2×(4+2+1)=73, 故答案为7325.(5分)(2020•北京)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段 1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 173 (结果取整数); (2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 2.9 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s 12,5月11日至20日的厨余垃圾分出量的方差为s 22,5月21日至30日的厨余垃圾分出量的方差为s 32.直接写出s 12,s 22,s 32的大小关系.【解答】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为100×10+170×10+250×1030≈173(千克),故答案为:173;(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的17360≈2.9(倍),故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知,第1个10天的分出量最分散、第3个10天分出量最为集中, ∴s 12>s 22>s 32.26.(6分)(2020•北京)在平面直角坐标系xOy 中,M (x 1,y 1),N (x 2,y 2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.【解答】解:(1)由题意y1=y2=c,∴x1=0,∵对称轴x=1,∴M,N关于x=1对称,∴x2=2,∴x1=0,x2=2时,y1=y2=c.(2)∵抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,当x1+x2=3,且y1=y2时,对称轴x=3 2,观察图象可知满足条件的值为:t≤3 2.27.(7分)(2020•北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF 之间的数量关系,并证明.【解答】解:(1)∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=12BC,∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF =90°,∴四边形CEDF 是矩形,∴DE =CF =12BC ,∴CF =BF =b ,∵CE =AE =a ,∴EF =√CF 2+CE 2=√a 2+b 2;(2)AE 2+BF 2=EF 2.证明:过点B 作BM ∥AC ,与ED 的延长线交于点M ,连接MF ,则∠AED =∠BMD ,∠CBM =∠ACB =90°,∵D 点是AB 的中点,∴AD =BD ,在△ADE 和△BDM 中,{∠AED =∠BMD∠ADE =∠BDM AD =BD,∴△ADE ≌△BDM (AAS ),∴AE =BM ,DE =DM ,∵DF ⊥DE ,∴EF =MF ,∵BM 2+BF 2=MF 2,∴AE 2+BF 2=EF 2.28.(7分)(2020•北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A 'B '(A ',B ′分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 得到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 P 1P 2∥P 3P 4 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 P 3 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.【解答】解:(1)如图,平移线段AB 得到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是P 1P 2∥P 3P 4;在点P 1,P 2,P 3,P 4中,连接点A 与点P 3的线段的长度等于线段AB 到⊙O 的“平移距离”.故答案为:P 1P 2∥P 3P 4,P 3.(2)如图1中,作等边△OEF ,点E 在x 轴上,OE =EF =OF =1,设直线y =√3x +2√3交x 轴于M ,交y 轴于N .则M (﹣2,0),N (0,2√3),过点E 作EH ⊥MN 于H ,∵OM =2,ON =2√3,∴tan ∠NMO =√3,∴∠NMO =60°,∴EH =EM •sin60°=√32,观察图象可知,线段AB 到⊙O 的“平移距离”为d 1的最小值为√32.(3)如图2中,以A 为圆心1为半径作⊙A ,作直线OA 交⊙O 于M ,交⊙A 于N ,以OA ,AB 为邻边构造平行四边形ABDO ,以OD 为边构造等边△ODB ′,等边△OB ′A ′,则AB ∥A ′B ′,AA ′的长即为线段AB 到⊙O 的“平移距离”,当点A ′与M 重合时,AA ′的值最小,最小值=OA ﹣OM =52−1=32, 当点B 与N 重合时,AA ′的长最大,如图3中,过点A ′作A ′H ⊥OA 于H .由题意A ′H =√32,AH =12+52=3,∴AA ′的最大值=(32)2+32=√392, ∴32≤d 2≤√392.。
2022年北京中考数学试卷含答案解析
2022年北京中考数学试卷含答案解析第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面几何体中,是圆锥的为()A. B. C. D.【答案】B 【解析】【分析】观察所给几何体,可以直接得出答案.【详解】解:A 选项为圆柱,不合题意;B 选项为圆锥,符合题意;C 选项为三棱柱,不合题意;D 选项为球,不合题意;故选B .【点睛】本题考查常见几何体的识别,熟练掌握常见几何体的特征是解题的关键.圆锥面和一个截它的平面,组成的空间几何图形叫圆锥.2.截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学计数法表示应为()A.1026.288310 B.112.6288310 C.122.6288310 D.120.26288310 【答案】B 【解析】【分析】将262883000000写成11100 na a ,n 为正整数的形式即可.【详解】解:将262883000000保留1位整数是2.62883,小数点向左移动了11位,∴262883000000112.6288310 ,故选B .【点睛】本题考查用科学计数法表示绝对值大于1的数,掌握11100 na a 中n 的取值方法是解题的关键.3.如图,利用工具测量角,则1 的大小为()A.30°B.60°C.120°D.150°【答案】A 【解析】【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,130 .故选A .【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.4.实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是()A. 2a <B.1b <C.a b >D.a b>【答案】D 【解析】【分析】根据数轴上的点的特征即可判断.【详解】解:点a 在-2的右边,故a >-2,故A 选项错误;点b 在1的右边,故b >1,故B 选项错误;b 在a 的右边,故b >a ,故C 选项错误;由数轴得:-2<a <-1.5,则1.5<-a <2,1<b <1.5,则a b >,故D 选项正确,故选:D .【点睛】本题考查了数轴上的点,熟练掌握数轴上点的特征是解题的关键.5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14 B.13C.12D.34【答案】A 【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与第一次摸到红球,第二次摸到绿球的情况,然后利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有4种等可能的结果,第一次摸到红球,第二次摸到绿球有1种情况,∴第一次摸到红球,第二次摸到绿球的概率为14,故选:A .【点睛】本题考查了画树状法或列表法求概率,列出所有等可能的结果是解决本题的关键.6.若关于x 的一元二次方程20x x m 有两个相等的实数根,则实数m 的值为()A.4B.14C.14D.4【答案】C 【解析】【分析】利用方程有两个相等的实数根,得到∆=0,建立关于m 的方程,解答即可.【详解】∵一元二次方程20x x m 有两个相等的实数根,∴∆=0,∴2140m ,解得14m,故C 正确.故选:C .【点睛】此题考查利用一元二次方程的根的情况求参数,一元二次方程的根有三种情况:有两个不等的实数根时∆>0;当一元二次方程有两个相等的实数根时,∆=0;当方程没有实数根时,∆<0,正确掌握此三种情况是正确解题的关键.7.图中的图形为轴对称图形,该图形的对称轴的条数为()A.1B.2C.3D.5【答案】D【解析】【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,一共有5条对称轴.故选:D【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.8.下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x,其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③【答案】A【解析】【分析】由图象可知:当y最大时,x为0,当x最大时,y为零,即y随x的增大而减小,再结合题意即可判定.【详解】解:①汽车从A地匀速行驶到B地,汽车的剩余路程y随行驶时间x的增大而减小,故①可以利用该图象表示;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 随放水时间x 的增大而减小,故②可以利用该图象表示;③设绳子的长为L ,一边长x ,则另一边长为12L x ,则矩形的面积为:21122y L x x x Lx,故③不可以利用该图象表示;故可以利用该图象表示的有:①②,故选:A .【点睛】本题考查了函数图象与函数的关系,采用数形结合的思想是解决本题的关键.第二部分非选择题二、填空题(共16分,每题2分)9.在实数范围内有意义,则实数x 的取值范围是___________.【答案】x ≥8【解析】【分析】根据二次根式有意义的条件,可得x -8≥0,然后进行计算即可解答.【详解】解:由题意得:x -8≥0,解得:x ≥8.故答案为:x ≥8.0)a 是解题的关键.10.分解因式:2xy x ______.【答案】 11x y y 【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】2xy x21x y11x y y 故答案为: 11x y y .【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.11.方程215x x的解为___________.【答案】x =5【解析】【分析】观察可得最简公分母是x (x +5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,再进行检验即可得解.【详解】解:215x x方程的两边同乘x (x +5),得:2x =x +5,解得:x =5,经检验:把x =5代入x (x +5)=50≠0.故原方程的解为:x =5【点睛】此题考查了分式方程的求解方法,注意掌握转化思想的应用,注意解分式方程一定要验根,12.在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x的图象上,则1y ______2y (填“>”“=”或“<”)【答案】>【解析】【分析】根据反比例函数的性质,k >0,在每个象限内,y 随x 的增大而减小,进行判断即可.【详解】解:∵k >0,∴在每个象限内,y 随x 的增大而减小,25∵<,∴1y >2y .故答案为:>.【点睛】本题考查了反比例函数的性质,熟练掌握函数的性质是解决问题的关键.13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为________双.【答案】120【解析】【分析】根据题意得:39码的鞋销售量为12双,再用400乘以其所占的百分比,即可求解.【详解】解:根据题意得:39码的鞋销售量为12双,销售量最高,∴该商场进鞋号需求最多的滑冰鞋的数量为1240012040双.故答案为:120【点睛】本题主要考查了用样本估计总体,根据题意得到39码的鞋销售量为12双,销售量最高是解题的关键.14.如图,在ABC 中,AD 平分,.BAC DE AB 若2,1,AC DE 则ACD S ____.【答案】1【解析】【分析】作DF AC 于点F ,由角平分线的性质推出1DF DE ,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC 于点F ,∵AD 平分BAC ,DE AB ,DF AC ,∴1DF DE ,∴1121122ACD S AC DF.故答案为:1.【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.15.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ,则AE 的长为_______.【答案】1【解析】【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ,∴14AE AF BC FC ,2222534BC AC AB ,∴144AE ,∴1AE ,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.甲工厂将生产的I 号、II 号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的重量及包裹中I 号、II 号产品的重量如下:包裹编号I 号产品重量/吨II 号产品重量/吨包裹的重量/吨A 516B 325C 235D 437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I 号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I 号产品不少于9吨,且不多于11吨,同时装运的II 号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号).【答案】①.ABC (或ABE 或AD 或ACD 或BCD )②.ABE 或BCD【解析】【分析】(1)从A ,B ,C ,D ,E 中选出2个或3个,同时满足I 号产品不少于9吨,且不多于11吨,总重不超过19.5吨即可;(2)从(1)中符合条件的方案中选出装运II 号产品最多的方案即可.【详解】解:(1)根据题意,选择ABC 时,装运的I 号产品重量为:53210 (吨),总重6551619.5 (吨),符合要求;选择ABE 时,装运的I 号产品重量为:53311 (吨),总重6581919.5 (吨),符合要求;选择AD 时,装运的I 号产品重量为:549 (吨),总重671319.5 (吨),符合要求;选择ACD 时,装运的I 号产品重量为:52411 (吨),总重6571819.5 (吨),符合要求;选择BCD 时,装运的I 号产品重量为:3249 (吨),总重5571719.5 (吨),符合要求;选择DCE 时,装运的I 号产品重量为:4239 (吨),总重7582019.5 (吨),不符合要求;选择BDE 时,装运的I 号产品重量为:34310 (吨),总重5782019.5 (吨),不符合要求;综上,满足条件的装运方案有ABC 或ABE 或AD 或ACD 或BCD .故答案为:ABC (或ABE 或AD 或ACD 或BCD ).(2)选择ABC 时,装运的II 号产品重量为:1236 (吨);选择ABE 时,装运的II 号产品重量为:1258 (吨);选择AD 时,装运的II 号产品重量为:134 (吨);选择ACD 时,装运的II 号产品重量为:1337 (吨);选择BCD 时,装运的II 号产品重量为:2338 (吨);故答案为:ABE 或BCD .【点睛】本题考查方案的选择,读懂题意,尝试不同组合时能否同时满足题目要求的条件是解题的关键.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:0(1)4sin 45 3.【答案】4【解析】【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解.【详解】解:0(1)4sin 45 3.2=1432=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.18.解不等式组:274,4.2x x xx【答案】14x 【解析】【分析】分别解两个一元一次不等式,再求交集即可.【详解】解:274 4 2x x xx①②解不等式①得1x ,解不等式②得4x ,故所给不等式组的解集为:14x .【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.19.已知2220x x ,求代数式2(2)(1)x x x 的值.【答案】5【解析】【分析】先根据2220x x ,得出222x x ,将2(2)(1)x x x 变形为2221x x ,最后代入求值即可.【详解】解:∵2220x x ,∴222x x ,∴2(2)(1)x x x 22221x x x x 2241x x 2221x x 2215【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将2(2)(1)x x x 变形为2221x x ,是解题的关键.20.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角和等于180°,已知:如图,ABC ,求证:180.A B C 方法一证明:如图,过点A 作.DE BC ∥方法二证明:如图,过点C 作.CD AB ∥【答案】答案见解析【解析】【分析】选择方法一,过点A 作//DE BC ,依据平行线的性质,即可得到B BAD ,C EAC ,再根据平角的定义,即可得到三角形的内角和为180 .【详解】证明:过点A 作//DE BC ,则B BAD ,C EAC .(两直线平行,内错角相等)∵点D ,A ,E 在同一条直线上,180DAB BAC C .(平角的定义)180B BAC C .即三角形的内角和为180 .【点睛】本题主要考查了平行线的性质以及三角形内角和定理的运用,熟练掌握平行线的性质是解题的关键.21.如图,在ABCD 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF .(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC 求证:四边形EBFD 是菱形.【答案】(1)见解析(2)见解析【解析】【分析】(1)先根据四边形ABCD 为平行四边形,得出AO CO ,BO DO ,再根据AE CF ,得出EO FO ,即可证明结论;(2)先证明DCA DAC ,得出DA DC ,证明四边形ABCD 为菱形,得出AC BD ,即可证明结论.【小问1详解】证明:∵四边形ABCD 为平行四边形,∴AO CO ,BO DO ,∵AE CF ,∴AO AE CO CF ,即EO FO ,∴四边形EBFD 是平行四边形.【小问2详解】∵四边形ABCD 为平行四边形,∴AB CD ,∴DCA BAC ,∵,BAC DAC ∴DCA DAC ,∴DA DC ,∴四边形ABCD 为菱形,∴AC BD ,即EF BD ,∵四边形EBFD 是平行四边形,∴四边形EBFD 是菱形.【点睛】本题主要考查了平行四边形的性质和性质,菱形的判定和性质,平行线的性质,熟练掌握菱形和平行四边形的判定方法,是解题的关键.22.在平面直角坐标系xOy 中,函数(0)y kx b k 的图象经过点(4,3),(2,0) ,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x 时,对于x 的每一个值,函数y x n 的值大于函数(0)y kx b k 的值,直接写出n 的取值范围.【答案】(1)112y x ,(0,1)(2)1n 【解析】【分析】(1)利用待定系数法即可求得函数解析式,当0x 时,求出y 即可求解.(2)根据题意112x n x 结合0x 解出不等式即可求解.【小问1详解】解:将(4,3),(2,0) 代入函数解析式得,3=402k b k b,解得121k b,∴函数的解析式为:112y x ,当0x 时,得1y ,∴点A 的坐标为(0,1).【小问2详解】由题意得,112x n x,即22x n ,又由0x ,得220n ,解得1n ,∴n 的取值范围为1n .【点睛】本题考查了待定系数法求函数解析式及解不等式,熟练掌握待定系数法求函数解析式及函数的性质是解题的关系.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a .甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【答案】(1)8.6(2)甲(3)乙【解析】【分析】(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲乙丙的平均分,再进行比较即可求解.【小问1详解】解:丙的平均数:101010998398108.610,则8.6m .【小问2详解】2222212(8.68)4(8.69)2(8.67)2(8.610) 1.0410S甲,222214(8.67)4(8.610)2(8.69) 1.8410S乙,22S S ∵甲乙,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.【小问3详解】由题意得,去掉一个最高分和一个最低分后的平均分为:甲:889799910=8.6258 ,乙:77799101010=9.758 ,丙:10109989810=9.1258,∵去掉一个最高分和一个最低分后乙的平均分最高,因此最优秀的是乙,故答案为:乙.【点睛】本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.24.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD 连接,.AC OD (1)求证:2;BOD A (2)连接DB ,过点C 作,CE DB 交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.【答案】(1)答案见解析(2)答案见解析【解析】【分析】(1)设AB 交CD 于点H ,连接OC ,证明Rt COH Rt DOH ,故可得COH DOH ,于是 BCBD ,即可得到2BOD A ;(2)连接,解出60COB ,根据AB 为直径得到90ADB ,进而得到60ABD ,即可证明//OC DB ,故可证明直线CE 为O 的切线.【小问1详解】证明:设AB 交CD 于点H ,连接OC ,由题可知,OC OD ,90OHC OHD ,OH OH ∵,Rt COH Rt DOH HL ,COH DOH ,BCBD ,COB BOD ,2COB A ∵,2BOD A ;【小问2详解】证明:连接AD ,OA OD ∵,OAD ODA ∴,同理可得:OAC OCA ,OCD ODC ,∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ,180OAD ODA OAC OCA OCD ODC ∵,30OAD ODA OAC OCA OCD ODC ,223060COB CAO ,AB Q 为O 的直径,90ADB ,90903060ABD DAO ,60ABD COB ,//OC DE ,CE BE Q ,CE OC ,直线CE 为O 的切线.【点睛】本题主要考查三角形全等的判定与性质,同弧所对的圆周角相等,圆周角定理,直线平行的判定与性质,三角形的内角和公式,证明三角形全等以及证明平行线是解题的关键.25.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2()(0)y a x h k a .某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m 02581114竖直高度y /m20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系2()(0);y a x h k a (2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24.y x 记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为2d ,则1d ______2d (填“>”“=”或“<”).【答案】(1)23.20m ; 20.05823.20y x (2)<【解析】【分析】(1)先根据表格中的数据找到顶点坐标,即可得出h 、k 的值,运动员竖直高度的最大值;将表格中除顶点坐标之外的一组数据代入函数关系式即可求出a 的值,得出函数解析式;(2)着陆点的纵坐标为t ,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标,用t 表示出1d 和2d ,然后进行比较即可.【小问1详解】解:根据表格中的数据可知,抛物线的顶点坐标为: 8,23.20,∴8h ,23.20k ,即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当0x 时,20.00y ,代入 2823.20y a x 得:220.000823.20a ,解得:0.05a ,∴函数关系关系式为: 20.05823.20y x .【小问2详解】设着陆点的纵坐标为t ,则第一次训练时, 20.05823.20t x ,解得:8x 或8x ,∴根据图象可知,第一次训练时着陆点的水平距离18d ,第二次训练时, 20.04923.24t x ,解得:9x 9x∴根据图象可知,第二次训练时着陆点的水平距离29d ,∵ 2023.202523.24t t <,,∴12d d <.故答案为:<.【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,设着陆点的纵坐标为t ,用t 表示出1d 和2d ,是解题的关键.26.在平面直角坐标系xOy 中,点(1,),(3,)m n 在抛物线2(0)y ax bx c a 上,设抛物线的对称轴为.x t (1)当2,c m n 时,求抛物线与y 轴交点的坐标及t 的值;(2)点00(,)(1)x m x 在抛物线上,若,m n c 求t 的取值范围及0x 的取值范围.【答案】(1)(0,2);2(2)t 的取值范围为322t ,0x 的取值范围为023x 【解析】【分析】(1)当x =0时,y =2,可得抛物线与y 轴交点的坐标;再根据题意可得点(1,),(3,)m n 关于对称轴为x t 对称,可得t 的值,即可求解;(2)抛物线与y 轴交点关于对称轴x t 的对称点坐标为(2t ,c ),根据抛物线的图象和性质可得当x t 时,y 随x 的增大而减小,当x t 时,y 随x 的增大而增大,然后分两种情况讨论:当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时;当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,即可求解.【小问1详解】解:当2c 时,22y ax bx ,∴当x =0时,y =2,∴抛物线与y 轴交点的坐标为(0,2);∵m n ,∴点(1,),(3,)m n 关于对称轴为x t 对称,∴1322t;【小问2详解】解:当x =0时,y =c ,∴抛物线与y 轴交点坐标为(0,c ),∴抛物线与y 轴交点关于对称轴x t 的对称点坐标为(2t ,c ),∵0a ,∴当x t 时,y 随x 的增大而减小,当x t 时,y 随x 的增大而增大,当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时,1t ,∵,m n c 1<3,∴2t >3,即32t(不合题意,舍去),当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,点0(,)x m 在对称轴的右侧,13t ,此时点(3,)n 到对称轴x t 的距离大于点(1,)m 到对称轴x t 的距离,∴13t t ,解得:2t ,∵,m n c 1<3,∴2t >3,即32t ,∴322t ,∵0(,)x m ,(1,)m ,对称轴为x t ,∴012x t ,∴013222x ,解得:023x ,∴t 的取值范围为322t ,0x 的取值范围为023x .【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.27.在ABC 中,90ACB ,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC(1)如图1,延长BC 到点F ,使得CF BC ,连接AF ,EF ,若AF EF ,求证:BD AF ;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD ,用等式表示线段CD 与CH 的数量关系,并证明.【答案】(1)见解析(2)CD CH ;证明见解析【解析】【分析】(1)先利用已知条件证明 SAS FCE BCD ,得出CFE CBD Ð=Ð,推出EF BD ∥,再由AF EF 即可证明BD AF ;(2)延长BC 到点M ,使CM =CB ,连接EM ,AM ,先证 SAS MEC BDC ,推出ME BD ,通过等量代换得到222AM AE ME ,利用平行线的性质得出90BHE AEM Ð=Ð=°,利用直角三角形斜边中线等于斜边一半即可得到CD CH .【小问1详解】证明:在FCE 和BCD 中,CE CD FCE BCD CF CB,∴ SAS FCE BCD ,∴CFE CBD Ð=Ð,∴EF BD ∥,∵AF EF ,∴BD AF .【小问2详解】解:补全后的图形如图所示,CD CH,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ,CM =CB ,∴AC 垂直平分BM ,∴AB AM ,在MEC 和BDC 中,CM CB MCE BCD CE CD,∴ SAS MEC BDC ,∴ME BD ,CME CBD Ð=Ð,∵222AB AE BD ,∴222AM AE ME ,∴90AEM ,∵CME CBD Ð=Ð,∴BH EM ∥,∴90BHE AEM Ð=Ð=°,即90DHE ,∵12CE CD DE ==,∴12CH DE =,∴CD CH .【点睛】本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明90DHE 是解题的关键.28.在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a 或向左(0)a 平移a 个单位长度,再向上(0)b 或向下(0)b 平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P 点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM (2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t ,若P为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)【答案】(1)见解析(2)42t 【解析】【分析】(1)①先根据定义和(1,1)M 求出点P'的坐标,再根据点P'关于点N 的对称点为Q 求出点Q 的坐标;②延长ON 至点 3,3A ,连接AQ ,利用AAS 证明ΔΔAQT OPT ,得到12TA TO OA ,再计算出OA ,OM ,ON ,即可求出2122NT ON OT OM ;(2)连接PO 并延长至S ,使OP OS ,延长SQ 至T ,使ST OM ,结合对称的性质得出NM 为Δ'P QT 的中位线,推出1=2NM QT ,得出 12221SQ ST TQ t t ,则 max min 2PQ PQ PS QS PS QS QS .【小问1详解】解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P 向右平移1个单位长度,再向上平移1个单位长度,得到点P',∴ '1,1P ,∵点P'关于点N 的对称点为Q , 2,2N ,∴点Q 的横坐标为: 2215 ,纵坐标为:2213 ,∴点 5,3Q ,在坐标系内找出该点即可;②证明:如图延长ON 至点 3,3A ,连接AQ ,∵//AQ OP ,∴AQT OPT ,在ΔAQT 与ΔOPT 中,AQT OPT ATQ OTP AQ OP,∴ ΔΔAQT OPT AAS ,∴12TA TO OA ,∵ 3,3A ,(1,1)M ,(2,2)N ,∴OA,OMON ,∴12TO OA ,∴2NT ON OT ,∴12NT OM ;【小问2详解】解:如图所示,连接PO 并延长至S ,使OP OS ,延长SQ 至T ,使ST OM ,∵(,)M a b ,点P 向右(0)a 或向左(0)a 平移a 个单位长度,再向上(0)b 或向下(0)b 平移b 个单位长度,得到点P',∴'1PP OM ,∵点P'关于点N 的对称点为Q ,∴'NP NQ ,又∵OP OS ,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT ,∵1NM OM ON t ,∴222TQ NM t ,∴ 12221SQ ST TQ t t ,在ΔPQS 中,PS QS PQ PS QS ,结合题意,max PQ PS QS ,min PQ PS QS ,∴ max min 242PQ PQ PS QS PS QS QS t ,即PQ 长的最大值与最小值的差为42t .【点睛】本题考查点的平移,对称的性质,全等三角形的判定,两点间距离,中位线的性质及线段的最值问题,第2问难度较大,根据题意,画出点Q 和点P'的轨迹是解题的关键.。
2020年北京市中考数学试卷【含答案;word版本试题;可编辑】
2020年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体2. 2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033. 如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠54. 下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.5. 正五边形的外角和为()A.180∘B.360∘C.540∘D.720∘6. 实数a在数轴上的对应点的位置如图所示,若实数b满足−a<b<a,则b的值可以是()A.2B.−1C.−2D.−37. 不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.14B.13C.12D.238. 有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系二、填空题(本题共16分,每小题2分)9. 若代数式1x−7有意义,则实数x的取值范围是________.10. 已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是________.11. 写出一个比√2大且比√15小的整数________.12. 方程组{x−y=13x+y=7的解为________.13. 在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为________.1 / 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……………………………………………………………最新资料推荐…………………………………………………2017 年北京市高级中等学校招生考试数学试卷学校:姓名:准考证号:考 1.本试卷共 8 页,共三道大题,29 道小题,满分 120 分。
考试时间 120 分钟。
生 2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
须 4.在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
知 5.考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共 30 分,每小题 3 分) 第 1-10 题均有四个选项,符合题意的选项只.有.一个.1.如图所示,点P到直线 的距离是 A.线段PA的长度 B. A线段PB的长度 C.线段PC的长度 D.线段PD的长度2.若代数式 有意义,则实数 的取值范围是A. =0 B. =4C.D.3.右图是某几何体的展开图,该几何体是A.三棱柱 B.圆锥 C.四棱柱 D.圆柱4.实数a,b,c,d在数轴上的点的位置如图所示,则正确的结论是A.B.C.D.5.下列图形中,是轴对称图形不是中.心.对称图形的是数学试卷 第1页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………6.若正多边形的一个内角是150°,则该正方形的边数是 A.6 B. 12 C. 16 D.187.如果,那么代数式的值是A.-3 B. -1 C. 1 D.3 8.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况.根据统计图提供的信息,下列推断不.合.理.的是 A.与2015年相比,2016年我国与东欧地区的贸易额有所增长 B.2016—2016年,我国与东南亚地区的贸易额逐年增长 C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元 D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 9.小苏和小林在右图的跑道上进行4×50米折返跑.在整个 过程中, 跑步者距起跑线的距离y(单位:m)与跑步时间t(单位数学试卷 第2页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………:s)的 对应关系如下图所示。
下列叙述正确的是A. 两个人起跑线同时出发,同时到达终点 B.小苏跑全程的平均速度大于小林跑全程的平均速度 C.小苏前15s跑过的路程大于小林15s跑过的路程 D.小林在跑最后100m的过程中,与小苏相遇2次 10.下图显示了用计算器模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断: ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0618; ③若再次用计算机模拟此实验,则当投掷次数为1数学试卷 第3页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………000时,“钉尖向上”的频率一定是0.620. 其中合理的是 A. ① B.② C. ①② D.①③二、填空题(本题共 18 分,每小题 3 分)11.写出一个比3大且比4小的无理数.12.某活动小组购买了4个篮球和5个足球,一共花费435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 13.如图,在△ ABC中,M,N分别是AC,BC的中点,若.,则.14.如图,AB为 的直径,C,D为 上的点,。
若∠CAB=40°,则∠CAD=°.第 15 题图15.如图,在平面直角坐标系xOy中,△ AOB可以看成是△ OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ OCD得到△ AOB的过程:.16.下面是“作已知直角三角形的外接圆”的尺规作图的过程.数学试卷 第4页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………请回答:该尺规作图的依据是. 三、解答题(本题共72 分,第17~19 题,每小题5 分,第20 题3 分,第21-24 题,每小题5 分,第25,26 题,每小题6 分,第27、28 题,每小题7 分,第29 题8 分) 解答应写出文字说明,演算步骤或证明过程. 17计算: 18.解不等式组: 19.如图,在△ ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC点D。
求证:AD=BC.20.数学家吴文俊院士非常重视古代数学家贾宪提出大“从长方形对角线上任 一点作两条分别平行于两领边的直线,则所容两长方形面积相等(如图所 示)”这一结论,他从这一结论出发,利用“出入相补”原理复原了《海岛算数学试卷 第5页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………经》九题古证.(以上材料来源于《古证复原的原则》、《吴文俊与中国》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程。
证明:( +) .易知,= ,=.可得:.21.关于x的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.22.如图在四边形ABCD中,BD为一条射线,AD∥BC,AD =2BC,∠ABD=90°,E为AD的中点,连接BE。
(1)求证:四边形BCDE为菱形; (2)连接AC,若AC平分∠BAD,BC=1,求AC的长.23.如图,在平面直角坐标系xOy中,函数(x>0)图像与直线y=x-2交于数学试卷 第6页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………点A(3,m)。
(1)求k,m的值(2)已知点P(m,n)(n>0),经过P作平行于x轴的直线,交直线y=x-2于点M,过P点做平行于y轴的直线, 交函数 (x>0)的图像于点N.①当n=1时,判断线段PM与PN的数量关系,并述明理由;②若,结合函数的图像的函数,直接写出n的取值范围.24.如图,AB是 的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B 作 的切线交CE的延长线与点D. (1)求证:DB=DE。
(2)若AB=12,BD=5,求 的半径。
25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整。
收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90数学试卷 第7页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………75 79 81 70 74 80 86 69 83 77 乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40 整理、描述数据 按如下分数段整理、描述这两组样本数据:(说明:成绩 80 分及以上为生产技能优秀,70-79 分为生产技能良好,60-69分为生产技能合格,60 分以下为生产技能不合格)分析数据 两组样本数据的平均数、中位数、众数如下表所示:部门平均数 中位数众数甲78.377.575乙7880.581得出结论 a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为.(至少从两个不同的角度说明推断的合理性).26.如图,P是 所对弦AB上一动点,过点P作PM⊥AB交 于点M,连接MB, 过点P作PN⊥MB于点N。
已知AB=6cm,设A,P两点间的距离为x cm,P,N两点间的距离为y cm.(当点P与点A或点B重合时,y的值为0)数学试卷 第8页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0123456y/cm 02.0 2.3 2.10.9 0(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图像;(3)结合画出的函数图像,解决问题: 当△ PAN为等腰三角形时,AP的长度约为cm.27.在平面直角坐标系xOy中,抛物线的左边),与y轴相交于C.(1)求直线BC的表达式。
(2)垂直于y轴的直线l与抛物线相交于点。
若,结合函数图像,求与x轴相交于A,B(点A在点B,与直线BC交于点 的取值范围.数学试卷 第9页(共 8 页)……………………………………………………………最新资料推荐…………………………………………………28.在等腰直角△ ABC中,∠ACB=90°,P是线段BC上一动点(与点B,C不重 合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H, 交AB于点M. (1)若∠PAC=α,求∠AMQ的大小(用含有α的式子表示); (2)用等式表示线段MB与PQ之间的数量关系, 并证明.数学试卷 第10页(共 8 页)29.对于平面直角坐标系xOy中的点P和图形M,给出如下定义:若在图形M上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当的半径为2时,①在点,,中,的关联点是;②点P在直线上,若P为的关联点,求点P的横坐标的取值范围;(2)的圆心在x轴上,半径为2,直线与x轴、y轴分别交与点A,B.若线段AB上的所有点都是的关联点,直接写出圆心C的横坐标的取值范围.。