2-2金属塑性变形的机理
金属塑性成型原理-知识点
名词解释塑性成型:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法加工硬化:略动态回复:在热塑性变形过程中发生的回复动态再结晶:在热塑性变形过程中发生的结晶超塑性变形:一定的化学成分、特定的显微组织及转变能力、特定的变形温度和变形速率等,则金属会表现出异乎寻常的高塑性状态塑性:金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力。
屈服准则(塑性条件):在一定的变形条件下,只有当各应力分量之间符合一定关系时,指点才开始进入塑性状态,这种关系成为屈服准则。
塑性指标:为衡量金属材料塑性的好坏,需要有一种数量上的指标。
晶粒度:表示金属材料晶粒大小的程度,由单位面积所包含晶粒个数来衡量,或晶粒平均直径大小。
填空1、塑性成形的特点(或大题?)1组织性能好(成形过程中,内部组织发生显著变化)2材料利用率高(金属成形是靠金属在塑性状态下的体积转移来实现的,不切削,废料少,流线合理)3尺寸精度高(可达到无切削或少切屑的要求)4生产效率高适于大批量生产失稳——压缩失稳和拉伸失稳按照成形特点分为1块料成形(一次加工、轧制、挤压、拉拔、二次加工、自由锻、模锻2板料成形多晶体塑性变形——晶内变形(滑移,孪生)和晶界变形超塑性的种类——细晶超塑性、相变超塑性冷塑性变形组织变化——1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变固溶强化、柯氏气团、吕德斯带(当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗超不平、变形不均匀的痕迹,称为吕德斯带)金属的化学成分对钢的影响(C略、P冷脆、S热脆、N兰脆、H白点氢脆、O塑性下降热脆);组织的影响——单相比多相塑性好、细晶比粗晶好、铸造组织由于有粗大的柱状晶粒和偏析、夹杂、气泡、疏松等缺陷、塑性降低。
摩擦分类——干摩擦、边界摩擦、流体摩擦摩擦机理——表面凹凸学说、分子吸附学说、粘着理论库伦摩擦条件T=up 常摩擦力条件t=mK塑性成形润滑——1、特种流体润滑法2、表面磷化-皂化处理3、表面镀软金属常见缺陷——毛细裂纹、结疤、折叠、非金属夹杂、碳化物偏析、异金属杂物、白点、缩口残余影响晶粒大小的主要因素——加热温度、变形程度、机械阻碍物常用润滑剂——液体润滑剂、固体润滑剂(干性固体润滑剂、软化型固体润滑剂)问答题1、提高金属塑性的基本途径1、提高材料成分和组织的均匀性2、合理选择变形温度和应变速率3、选择三向压缩性较强的变形方式4、减小变形的不均匀性2、塑性成形中的摩擦特点1、伴随有变形金属的塑性流动2、接触面上压强高3、实际接触面积大4、不断有新的摩擦面产生5、常在高温下产生摩擦3、塑性成形中对润滑剂的要求1、应有良好的耐压性能2、应有良好的耐热性能3、应有冷却模具的作用4、应无腐蚀作用5、应无毒6、应使用方便、清理方便4、防止产生裂纹的原则措施1、增加静水压力2、选择和控制适合的变形温度和变形速度3、采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等。
提高金属塑性的措施及机理
提高金属塑性的措施及机理引言金属塑性是指金属材料在外力作用下能够发生塑性变形的能力。
提高金属塑性不仅能够改善材料的加工性能,还能够增加其使用范围和寿命。
本文将介绍一些常见的提高金属塑性的措施及其机理。
1. 热处理热处理是通过改变金属的晶体结构和组织来提高其塑性。
常见的热处理方法包括退火、淬火和回火。
这些方法的原理是通过改变金属材料的晶粒结构来改善其塑性。
1.1 退火退火是将金属材料加热至一定温度,然后缓慢冷却到室温的过程。
退火可以有效地消除金属内部的应力,使金属晶粒重新排列,从而提高金属的塑性。
退火可以使金属的晶粒尺寸增大,晶界的移动受到限制,从而提高金属的塑性。
1.2 淬火淬火是将金属材料加热至一定温度,然后迅速冷却至室温的过程。
淬火可以使金属材料的晶体结构变得致密,从而提高金属的硬度和塑性。
淬火通常用于高碳钢等材料,可以显著提高其强度和韧性。
1.3 回火回火是将淬火过的金属材料重新加热至一定温度,然后保温一段时间,最后缓慢冷却到室温的过程。
回火可以降低金属的硬度,增加其塑性,并且使金属具有一定的韧性。
回火可以使金属材料的组织逐渐回复到均匀和稳定的状态。
2. 应变硬化应变硬化是指金属材料在变形过程中,由于晶格的位错运动而引起的硬化现象。
通过增加材料的位错密度和增加位错的移动阻力,可以显著提高金属材料的塑性。
应变硬化的机理主要有以下几个方面:2.1 自脱附当金属材料受到外力作用时,晶体内会产生位错。
位错会阻碍晶体结构的移动,从而增加金属材料的硬度和强度。
自脱附是指晶体中的位错相互抵消或消失的现象,使晶体恢复到无位错状态,从而使金属材料的塑性增加。
2.2 滑移与变形滑移是指晶体中原子或离子相对于晶体的转移运动。
当金属材料受到外力作用时,晶体中的原子会沿着滑移面产生滑移运动,从而引起金属材料的变形。
滑移可以增加材料的位错密度,从而提高金属材料的塑性。
2.3 固溶体间析固溶体间析是指金属材料中不同元素的固溶体相互分离的现象。
金属塑性成形PPT课件
(Mg、Zn、Cd、α-Ti)
3.2塑性成 形机理
滑移
3 金属塑性 成形
滑移带 500倍
26
3.2塑性成 形机理 滑移
3 金属塑性 成形
27
3.2塑性成 形机理 滑
移
3 金属塑性 成形
28
3.2塑性成 形机理 滑移
3 金属塑性 成形
辊锻,楔横轧, 辗环,辊弯
7
3.1塑性成 形概述
塑性成形类型
3 金属塑性 成形
8
3.1塑性成 形概述
3 金属塑性 成形
体积成形
体积成形主要是指那些利用锻压设备和工、模具 ,对金属坯料(块料)进行体积重新分配的塑性 变形,得到所需形状、尺寸及性能的制件。
主要包括锻造(Forging)和挤压(Extrusion )两大类。
日 常 用 品
3
汽 车 覆 盖 件
飞
冲压成形产品示例—— 高科技产品
机 蒙 皮
4
5
6
3.1塑性成 形概述
3 金属塑性 成形
锻压3塑(性Met成al 形for分gin类g and stamping)
1.体积成形 (Bulk Metal Forming):
1.1 锻造 (Forging)
1.1.1自由锻造 1.1.2模锻
用伸长率δ、断面收缩率ψ表示:
δ= (L1-L0)/ L0 ×100% ψ=( S0-S1)/S0×100%
22
3.2塑性成
3 金属塑性
形机理
成形
2.金属塑性变形的实质
金 体—属——原—子显微组织——晶 典型晶格结构:
金属塑性成形原理
表1-1 塑性成形方法分类表1-2 五大基本加工方法的分类第 一 章 绪 论一、金属塑性成形的特点与地位金属塑性成形是金属加工的重要方法之一。
它是指金属工件在工具外力(主要是压力)的作用下,产生塑性变形,从而达到要求的形状、尺寸和性能的加工过程。
因此,也把塑性成形称为塑性加工或压力加工。
金属塑性成形与其它加工方法相比,主要具有如下优点:1. 能改善组织性能。
如减轻偏析、致密结构、细化晶粒等,从而提高材料的综合力学性能。
2. 金属废屑少。
因塑性成形主要靠金属塑性状态下的体积转移,故不需切除大量的多余金属,所以金属收得率较高。
3. 生产率高。
这体现在塑性成形可采用高的加工速度,以及可采用连续式(非周期式)的生产方式。
因此特别适用于大批量生产。
由于上述优点,占产钢总量90%以上的钢制品都要经过塑性成形加工过程,其产品广泛应用于各种行业、部门,并随着塑性成形技术的发展,能生产的产品品种及规格也越来越多,因此金属塑性成形在国民经济中占有重要地位。
二、 金属塑性成形方法分类按金属塑性成形的加工方式,即综合考虑工具的特征及工件的变形方式,可将塑性成形方法分为五大类(见表1-1)。
类 别 工具特征 工件变形方式 锻 造直线运动的锻锤或锻模在锻模间体积变形挤 压 直线运动的挤压板及带挤压模的挤压缸 在挤压模孔中挤出拉 拔 直线运动的夹头及拉拔模架 在拉拔模孔中拉出冲 压 直线运动的冲模 在冲模间板料成形轧 制旋转运动的轧辊在轧辊间压缩成形上述五大基本加工方法又可分别进一步细分为若干种如表1-2所例举的加工方法。
基本方法 类 别 锻 造 自 由 锻 模 锻 挤 压 正 挤 反 挤 拉 拔 实心材拉拔 空心材拉拔 冲 压冲 裁 弯 曲表1-3 塑性理论发展概览拉 深轧 制纵 轧横 轧斜 轧三、金属塑性成形理论的发展概况金属塑性成形理论是一门基于金属塑性变形的物理学、物理-化学、金属学与力学基础上的应用技术理论。
发现金属材料的塑性并利用其加工金属制品可追溯至2000 多年前的青铜器时代,但是对金属材料的塑性变形的微观机理的认识,则是与本世纪30年代位错概念的提出分不开的。
金属塑性成形原理``俞汉清 陈金德主编``
金属塑性成形原理复习指南第一章绪论1、基本概念塑性:在外力作用下材料发生永久性变形,并保持其完整性的能力。
塑性变形:作用在物体上的外力取消后,物体的变形不能完全恢复而产生的永久变形成为塑性变形。
塑性成型:材料在一定的外力作用下,利用其塑性而使其成形并获得一定的力学性能的加工方法。
2、塑性成形的特点1)其组织、性能都能得到改善和提高。
2)材料利用率高。
3)用塑性成形方法得到的工件可以达到较高的精度。
4)塑性成形方法具有很高的生产率。
3、塑性成形的典型工艺一次成形(轧制、拉拔、挤压)体积成形塑性成型分离成形(落料、冲孔)板料成形变形成形(拉深、翻边、张形)第二章金属塑性成形的物理基础1、冷塑性成形晶内:滑移和孪晶(滑移为主)滑移性能(面心>体心>密排六方)晶间:转动和滑动滑移的方向:原子密度最大的方向。
塑性变形的特点:① 各晶粒变形的不同时性;② 各晶粒变形的相互协调性;③ 晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。
合金使塑性下降。
2、热塑性成形软化方式可分为以下几种:动态回复,动态再结晶,静态回复,静态再结晶等。
金属热塑性变形机理主要有:晶内滑移,晶内孪生,晶界滑移和扩散蠕变等。
3、金属的塑性金属塑性表示方法:延伸率、断面收缩率、最大压缩率、扭转角(或扭转数)塑性指标实验:拉伸试验、镦粗试验、扭转试验、杯突试验。
非金属的影响:P冷脆性 S、O 热脆性 N 蓝脆性 H 氢脆应力状态的影响:三相应力状态塑性好。
超塑性工艺方法:细晶超塑性、相变超塑性第三章金属塑性成形的力学基础第一节应力分析1、塑性力学基本假设:连续性假设、匀质性假设、各向同性假设、初应力为零、体积力为零、体积不变假设。
2、张量的性质1、存在不变量,张量的分量一定可以组成某些函数f(Tij),这些函数的值不随坐标而变。
2、2阶对称张量存在三个主轴和三个主值;张量角标不同的分量都为零时的坐标轴方向为主轴,三个角标相同的分量为值。
金属的超塑性变形PPT课件
目 录
• 引言 • 金属的超塑性变形概述 • 金属的超塑性变形机理 • 超塑性变形工艺 • 超塑性变形的影响因素 • 超塑性变形的应用实例 • 未来展望与研究方向
引言
01
主题简介
金属的超塑性变形是一种特殊的 材料行为,指金属在特定条件下
展现出极高的塑性变形能力。
这种能力使得金属在变形过程中 不会引发断裂或过多的能量耗散。
超塑性变形在金属加工、制造和 材料科学等领域具有广泛的应用
前景。
目的和意义
了解超塑性变形的原理和机制,有助于更好地应用这种材料行为,优化金属制品的 性能。
研究超塑性变形有助于推动材料科学的发展,为新材料的研发和应用提供理论支持。
通过深入探讨超塑性变形的机理,可以揭示金属材料的内在特性,为金属加工和制 造提供新的思路和方法。
织结构和性能。
应用
广泛应用于钛合金、铝合金、镁 合金等轻质合金的加工和性能优
化。
超塑性变形的影响因
05
素
材料成分与组织
材料成分
超塑性变形的性能与金属材料的成分密切相关。例如,某些合金元素可以提高超 塑性变形的稳定性和延伸率。
组织结构
材料的微观组织结构对超塑性变形行为具有显著影响。细晶、孪晶、相变等结构 特征可以增强超塑性变形能力。
应力状态的影响
超塑性变形通常在较低的应力状态下进行,这有助于材料在变形过程中保持较 好的延展性。
温度的影响
超塑性变形的温度范围通常较高,这有助于原子扩散和晶界滑移等过程,从而 促进材料的塑性变形。
超塑性变形工艺
04
热超塑性变形
定义
热超塑性变形是一种在高温下进行的塑性变形过程,金属 在特定的温度范围内表现出良好的延展性和低流变应力, 从而能够实现大塑性变形而不破裂。
(金属塑性成形原理课件)第2讲塑性变形物理本质
存在着一系列缺陷: 点缺陷、线缺陷、 面缺陷
2020/10/4
10
Lesson Two
一些金属材料的实验屈服强度和理论屈服强度
材料
理论强度(G/30)/GPa 实验强度/MPa 理论强度/实验强度
银 铝 铜 镍 铁 钼 铌 镉 镁(柱面滑移) 钛(柱面滑移) 铍(基面滑移) 铍(柱面滑移)
2020/10/4
13
Lesson Two
肖脱基空位——只形成空位而不形成等量的间隙原子 弗兰克尔缺陷——同时形成等量的空位和间隙原子
2020/10/4
14
Lesson Two
在实际晶体中,点缺陷的形式可能更复杂。例 如,即使在金属晶体中,也可能存在两个、三个甚 至多个相邻的空位,分别称为双空位、三空位或空 位团。但由多个空位组成的空位团从能量上讲是不 稳定的,很容易沿某一方问“塌陷”成空位片(即 在某一原子面内有一个无原子的小区域)。同样,间 隙原子也未必都是单个原子,而是有可能m个原子均 匀分布在n个原子位置的范围内(m>n),形成所谓 “挤塞子”(crowdion)。
(1)表面:指所研究的金属材料系统与周围气相或液相介质的接触面。 (2)晶界、亚晶界:指多晶体材料内部,结构及成分相同,而位向不 同的两部分晶体之间的界面。 (3)相界:指晶体材料内部不仅位向不同,而且结构不同,甚至成分 也不同的两部分晶体之间的界面。在纯金属的同素异晶转变过程中出现 的相界面,其两侧仅结构不同;而合金相的相界两侧,除结构不同外, 往往成分也不相同。 此外,还有孪晶界、反相畴界,层错界、胞壁等等。
(1)对称倾侧晶界
对称倾侧晶界相当于两部分晶体,沿着平行于界面
的某一轴线,各自转过方向相反的θ/2而形成的。两晶 粒位向差为θ,如下图1所示。此晶界相当于两个晶粒的 对称面,它只有一个自由度θ。
第三章 金属塑性变形的物理基础
(1)塑性的基本概念
什么是塑性? 塑性是金属在外力作用下产生永久变形 而不破坏其完整性的能力。
塑性与柔软性的区别是什么? 塑性反映材料产生永久变形的能力。 柔软性反映材料抵抗变形的能力。
塑性与柔软性的对立统一
铅---------------塑性好,变形抗力小
不锈钢--------塑性好,但变形抗力高 白口铸铁----塑性差,变形抗力高
塑性指标的测量方法
拉伸试验法 压缩试验法 扭转试验法 轧制模拟试验法
拉伸试验法
Lh L0 100%
L0 F0 Fh 100%
F0
式中:L0——拉伸试样原始标距长度; Lh——拉伸试样破断后标距间的长度; F0——拉伸试样原始断面积; Fh——拉伸试样破断处的断面积
%
晶粒5 晶粒4 晶粒3
晶粒2
晶粒1
位置,mm
图5-6 多晶铝的几个晶粒各处的应变量。 垂直虚线是晶界,线上的数字为总变形量
四、合金的塑性变形
单相固溶体合金的变形 多相合金的变形
§3. 2 金属塑性加工中组织和性能变化 的基本规律
一、冷塑性变形时金属组织和性能的变化 二、热塑性变形时金属组织和性能的变化
2200
N/mm2
图4-6 正压力对摩擦系数的影响
0.5
μ
0.4
0.3
0.4
0.2 0.2
0.1
0
℃
200
400
600
800
图4-7 温度对钢的摩擦系数的影响
0
400
600
800 ℃
图4-8 温度对铜的摩擦系数的影响
测定摩擦系数的方法
夹钳轧制法 楔形件压缩法 塑性加工常用摩擦系数 圆环镦粗法
实验五--金属的塑性变形与再结晶--实验报告
一,实验目的1、观察显微镜下滑移绒、变形孪晶与退火孪晶的特征;2、了解金属经冷加工变形后显微组织及机械性能的变化;3、讨论冷加工变形度对再结晶后晶粒大小的影响。
二、概述1 显微镜下的滑移线与变形挛晶金属受力超过弹性极限后,在金属中特产生塑性变形。
金属单晶体变形机理指出,塑性变形的基本方式为滑移和孪晶两种。
所谓滑移时晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。
滑移后在滑移面两侧的晶体位相保持不变。
把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。
变形后的显微姐织是由许多滑移带(平行的黑线)所组成。
在显微镜下能清楚地看到多晶体变形的特点:各晶粒内滑移带的方向不同(因晶粒方位各不相同),各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。
另一种变形的方式为孪晶。
不易产生滑移的金属,如六方晶系镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的—部分以一定的晶面(孪晶面或双晶面)为对称面;与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。
孪晶的结果是孪晶面两侧晶体的位向发生变化,呈镜面对称。
所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。
在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。
对体心立方结构的a一F,在常温时变形以滑移方式进行,而e在0℃以下受冲击载荷时,则以孪晶方式变形,而面心立方结构大多是以滑移方式变形的。
吉林大学工程材料第2章 金属的塑性变形和再结晶
1、晶粒正常长大: 再结晶后的晶粒均匀、稳速地长大的现象。发生在
再结晶晶粒细小且均匀时。(希望的长大方式)
2、晶粒异常长大:
再结晶后的晶粒不均匀,急剧长大的现象。在再结晶 粒大小不均时,大晶粒吞并小晶粒,将得到异常粗大的 晶粒,也称“二次再结晶”。
d晶↑ 晶界面积↓ 能量↓∴晶粒长大是自发的 过程。因为粗晶是弱化,所以要避免晶粒长大,特别要
方向 σb(MPa) σ0.2(MPa) δ(%) ψ(%) αk(KJ/M2)
平行 701 垂直 659
460
17.5 62.8
608
431
10.0 31.0
294
34
四 、热加工的不足
在实际生产中,热加工与冷加工相比也有不足处
(1)热加工需要加热,不如冷加工简单易行。 (2)热加工制品的组织与性能不如冷加工均匀和易 于控制。
目的:1. 消除加工硬化 使、σ、HB↓ δ%、 %、ak↑ 2. 消除内应力,但保留加工硬化,使理化性能↑
对于冷加工后的金属,由于10%的变形能储存在 金属中,在加热时,随着温度的升高,原子活动能力 提高,在变形能的作用下,就要发生组织和性能的变 化,其主要包括三个阶段:回复、再结晶及晶粒长大。
18
底面对角线
1 面×3 方向=3
7
4、滑移机理
临界切应力(c): 能够发生滑移的最小切应
力叫做为)。当切应力()满足 c时滑移才 能发生。
铜的滑移临界切应力:理论计算 1500 Mpa 实际测试 1 MPa
滑移是由于滑移面上的位错运动造成的。
8
位错运动造成滑移示意图
9
10
二、 多晶体金属的塑性变形
700℃
金属塑性成形原理---第二章_金属塑性变形的物理基础
位错的攀移
❖ 螺型位错无攀移
❖ 正攀移——正刃型位错位错线上移
负刃型位错位错线下移
编辑课件
位错的交割
❖ 两根刃型位错线都在各自的滑移面上移动,
则在相遇后交截分别形成各界,形成割阶后
仍分别在各自的平面内运动。
❖ 刃型位错和螺型位错交割时,在各自的位错
线上形成刃型割阶,位错线也能继续滑移。
❖ 螺型位错和螺型位错交割时,相交后形成的
❖ 假设:理想晶体两排原子相距为a,同排原子间距
为b。原子在平衡位置时,能量处于最低的位置。
在外力τ作用下,原子偏离平衡位置时,能量上升,
原子能量随位置的变化为一余弦函数。
❖ 通过计算晶体的临界剪切应力,并与实际的临界
剪切应力进行比较,人们发现,理论计算的剪切
强度比实验所得到的剪切强度要高一千倍以上。
编辑课件
典型的晶胞结构
编辑课件
典型的晶胞结构
编辑课件
三种晶胞的晶格结构
编辑课件
一、塑性变形机理
实际金属的晶体结构
❖ 单晶体:各方向上的原子密度不同——各向
异性
❖ 多晶体:晶粒方向性互相抵消——各向同性
❖ 塑性成形所用的金属材料绝大多数为多晶
体,其变形过程比单晶体复杂的多。
编辑课件
多晶体塑性变形的分类
加工中,会使变形力显著增
加,对成形工件和模具都有
III.抛物线硬化阶段:
一定的损害作用;但利用金
与位错的交滑移过程有关,
θ3
随应变增加而降低,应力应变
属加工硬化的性质,对材料
曲线变为抛物线。
进行预处理,会使其力学性
能提高
编辑课件
2.2 金属热态下的塑性变形
金属塑性成形原理及工艺
2
4.锻造
锻造的示意图如图 4 所示。 锻造可以分为自由锻造和模锻。自由锻造一般是在锤锻或者水压机上,利用简单的工具 将金属锭或者块料锤成所需要形状和尺寸的加工方法。 自由锻造不需要专用模具, 因而锻件 的尺寸精度低、生产效率不高。模锻是在模锻锤或者热模锻压力机上利用模具来成形的。金 属的成形受到模具的控制,因而其锻件的外形和尺寸精度高,生产效率高,适用于大批量生 产,模锻又可以分为开式模锻和闭式模锻。
4
变形问题和轴对程问题; (5)屈服准则:屈雷斯加屈服准则、密席斯屈服准则、屈服准则的几何表达、平面问 题和轴对程问题中屈服准则的简化; (6)本构方程:弹性应力应变关系、塑性变形时应力应变关系的特点、塑性变形的增 量理论、塑性变形的全量理论;
六、课程要求
金属塑性加工原理的任务是研究塑性成形中共同的规律性问题, 就是在阐述应力、 应变 理论以及屈服准则等塑性理论的基础上, 研究塑性加工中有关力学问题的各种解法, 分析变 形体内的应力和应变分布,确定变形力和变形功,为选择设备和模具设计提供依据。所以, 要求大家: (1) 掌握金属塑性变形的金属学基础, 具体的说就是金属的结构和金属塑性变形机理。 (2)了解影响金属塑性和塑性成形的主要因素。 (3)掌握塑性变形的力学基础:包括应力分析、应变分析、屈服准则和应力应变关系。 (4)掌握塑性成形力学问题的各种解法以及其在具体工艺中的应用。
图4
5.冲压
冲压又可以分为拉深、弯曲、剪切等等。其示意图见图 5。 拉深等成形工序是在曲柄压力机上或者油压机上用凸模把板料拉进凹模中成形, 用以生 产各种薄壁空心零件。 弯曲是坯料在弯矩的作用下成形,如板料在模具中的弯曲成形、板带材的折弯成形、钢 材的矫直等等。 剪切是指坯料在剪切力作用下进行剪切变形,如板料在模具中的冲孔、落料、切边、板 材和钢材的剪切等等。
材料加工成型理论第一章-金属塑性变形的物理本质
5. 割阶运动所引起的阻力
• 割阶运动所引起的阻力也就是形成点缺陷 引起的阻力。当带有割阶的位错滑移时, 如果割阶做的是非保守运动,则运动过程 中其后形成一连串的点缺陷。形成这些点 缺陷需要能量,这就相当于有反向的力阻 碍位错前进。形成这些点缺陷引起的阻力 为:
• 位错要运动,虽然很容易,但也必须至少克服点 阵阻力(派-纳力)对它的阻碍才能运动。
1.点阵阻力
• 位错向前运动,必须越过一个能量最大值的位置, 才能从一个低能的稳定位置过渡到另一个低能的 稳定位置。为此,就需要对位错施加足够的力以 供克服这一能垒所需要的能量,这个能垒就称为 派尔斯垒,克服这个能垒所需要的力就是派-纳力。
4. 位错切割穿过其滑移面的位错林所引起的阻力
• 位错林是指那些穿过运动位错所在滑移面的
位错。切割林位错所引起的阻力用
' s
表示,
是一种短程力。
• 热激活对于克服这个阻力是有很大作用的。
• 由于位错林的存在,必然存在应力场,林位
错的应力场对运动位错的阻力用
" s
表示,
该力是一种长程力,它对温度不敏感。
• 根据该理论可以估计出纯金属的理论屈服强度
m G / 2
• 一般金属晶体的理论屈服强度为103~104MPa 数量级。而实测纯金属单晶体大致为1MPa, 理论值是实际值的1000倍以上,说明把滑移 过程看成是整体刚性的移动与实际相差较远。
二、实际晶体屈服强度的构成
• 金属的理论屈服强度来源于金属的原子间的结合 力,它是金属原子间结合力大小的反映。而实际 晶体中存在各种晶体缺陷,如位错的存在,位错 易运动,因而不能充分发挥出原子间结合力的作 用,所以金属实际屈服强度远低于理论值。
金属塑性成形
§2.1金属冷态下的塑性变形一、塑性变形机理多晶体的塑性变形包括晶粒内部变形(晶内变形)、晶外变形(晶间变形)。
(一)晶内变形变形方式:滑移(主要)、孪生(次要)1、滑移晶体在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。
滑移矢量与柏氏矢量平行。
滑移发生的地方:原子密度最大的晶面和晶向,例如面心立方的{110}和<111>,体心立方的{111}和<110>等。
原因:原子密度最大的晶面,原子间距小,原子间的结合力强;而其晶面间的距离则较大,晶面与晶面之间的结合力较小,滑移阻力便小。
结论:滑移系多的金属要比滑移系少的金属变形协调性好、塑性高;而其发生滑移的条件需沿滑移面施加一定大小的切应力。
设拉力P引起的拉伸应力σ,切应力分量为τ=σcosφcosλ ;令u=cosφcosλ,称为取向因子;当u=0.5或接近0.5,称为软取向;当u=0或接近0,称为硬取向金属多晶体中,各晶粒的位向不同,使得塑性变形必然不可能在所有晶粒内同时进行,构成多晶体塑性变形不同于单晶体。
2、孪生(形变孪晶)晶体在切应力作用下,晶体的一部分沿着一定的晶面(称为孪生面)和一定的晶向(称为孪生方向)发生均匀切变。
金属在塑性变形时以何种方式变形,取决于哪种变形所需的切应力为低。
常温下,滑移优先;低温下,孪生优先。
(二)晶间变形主要方式是晶粒之间相互滑动和转动。
在冷态变形条件下,多晶体的塑性变形主要是晶内变形,晶间变形只是次要作用。
二、塑性变形的特点1)各晶粒变形的不同性(方式不同)2)各晶粒变形的相互协调性(目的一致)3)晶粒之间、晶体内部和晶界附近区域之间变形的不均匀性。
(尺寸不一致)由于晶粒变形的特点,使得晶粒大小对金属的塑性和变形抗力有一定的影响。
设晶粒平均直径d,材料屈服强度σs,根据实验结果获得两者之间的关系表达式为σs=σ0+Kd-1/2σ0:常数,变形抗力,约为单晶体临界切应力2~3倍Ky:常数,变形影响因此,晶粒细化,单位体积的晶界越多,削弱了晶粒内部的应力场,无法达到变形发生的程度,故需外加更大的力;而且晶粒细化,金属的塑性越好。
第四章金属材料的塑性变形与再结晶
滑移方向上原子间距的 小于孪生方向上的原
整数倍,较大。
子间距,较小。
很大,总变形量大。
有限,总变形量小。
有一定的临界分切 压力 一般先发生滑移
所需临界分切应力远高于 滑移
滑移困难时发生
变形机制
全位错运动的结果 分位错运动的结果 34
(二) 多晶体金属的塑性变形
单个晶粒变形与单晶体相似,多晶体变形比单晶体复杂
① 晶界的特点:原子排列不规则;分布有大量缺陷
② 晶界对变形的影响:滑移、孪生多终止于晶界,极少穿 过。
35
当位错运动到晶界附近时,受到晶界的阻碍而堆积 起来,称位错的塞积。要使变形继续进行, 则必须增加 外力, 从而使金属的变形抗力提高。
36
晶界对塑性变形的影响
Cu-4.5Al合金晶 界的位错塞积
55
(4) 几何硬化:由晶粒转动引 起 由于加工硬化, 使已变形部 分发生硬化而停止变形, 而 未变形部分开始变形。没有 加工硬化, 金属就不会发生 均匀塑性变形。
未变形纯铁
加工硬化是强化金属的重要
手段之一,对于不能热处理
强化的金属和合金尤为重要
变形20%纯铁中的位错
56
2 对力学性能的影响
利弊
d. 孪生本身对金属塑性变形的贡献不大,但形成 的孪晶改变了晶体的位向,使新的滑移系开动, 间接对塑性变形有贡献。
33
总结
滑移
孪生
相同点
晶体位向
位移量 不 同 对塑变的贡献 点
变形应力
变形条件
1 切变;2 沿一定的晶面、晶向进行;3 不 改变结构。 不改变(对抛光面 改变,形成镜面对称关系 观察无重现性)。 (对抛光面观察有重现性)
1、晶粒取向和晶界对塑性变形的影响
第2章 金属塑性变形的材料学原理
8
2.2 单晶体的塑性变形
主要形式滑移(变形) 次要形式孪生(协调)
Principle of Metal Forming
2.2.1 滑移
概念:晶体在切应力的作用下, 晶体的一部分沿一定的晶面(滑移
面)上的一定方向(滑移方向)相对于另一部分发生的相对移动或切变。
9
特点:
①滑移只能在切应力作用下才会发生。 ②滑移是晶体内部位错运动的结果。 ③晶体总变形量是这个方向上的原子间距的整数倍。 ④滑移总是沿着晶体中原子密度最大晶面和晶向进行。
c.合金比纯金属的加工硬化率要高。
2.6
回复和再结晶
2.6.1 冷变形金属的静态回复 和静态再结晶 1. 静态回复 金属经变形以后,形成不 稳定结构,使内能增高,处于 热力学不稳定状态。在变形停 止以后,若变形程度不超过临 界变形程度时,将发生回归稳 定的现象。
26
2. 静态再结晶
在热变形后,若金属仍处于再结晶温度以上,则 将发生静态再结晶。重新形成无畸变的等轴晶。 影响因素: 1)温度 2)保温时间 3)变形程度 4)原始晶粒尺寸 5)金属的化学成分
①体心立方:滑移优先、低温孪生
②面心立方:多滑移、少孪生(极低温或高冲击)
③密排六方:少滑移、多孪生
17
1.3 位错理论的基本概念(自学)
1.4 多晶体的塑性变形
2.4.1 多晶体的变形方式
1.晶内(单晶体内)变形 转动+滑移 2.晶间(晶界)变形 晶粒取向趋于一致而被拉长
Principle of Metal Forming
30
Principle of Metal Forming
Principle of Metal Forming
金属塑性变形的物理基础
第二节金属热态下的塑性变形
01
02
03
04
第二节金属热态下的塑性变形 1.热塑性变形时软化过程
23% Option 1
30% Option 2
热塑性变形时软化过程
静态回复 在较低的温度下、或在较早阶段发生转变的过程称为静态回复。它是变形后的金属自发地向自由能降低的方向转变的过程。
静态再结晶 在再结晶温度以上,金属原子有更大的活动能力,会在原变形金属中重新形成新的无畸变等轴晶,并最终取代冷变形组织,此过程称为金属的静态再结晶。
01
02
03
04
05
06
3.合金的塑性变形
(一) 单相固溶体的塑性变形 2 固溶强化 (3)屈服和应变时效 现象:上下屈服点、屈服延伸(吕德斯带扩展)。 预变形和时效的影响:去载后立即加载不出现屈服现象;去载后放置一段时间或200℃加热后再加载出现屈服。这种现象叫做应变时效。 原因:柯氏气团的存在、破坏和重新形成。
在孪生变形时,所有平行于孪生面的原子平面都朝着一个方向移动。每一晶面移动距离的大小与它距孪生面的距离成正比。每一晶面与相邻晶面的相对移动恒等于点阵常数的若干分之一。
01
晶体以何种方式变形,取决于那张变形需要的切应力低。
02
常温下滑移切应力低于孪生,很低温度下,孪生低于滑移。
03
变形速度的增加可促使晶体的孪生化,如高速冲击。
热轧和热挤时,动、静态回复和再结晶的示意图。
图4-10 动、静回复和再结晶示意
热塑性变形机理
第二节金属热态下的塑性变形 2.热塑性变形的机理 变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变。 一般来说,晶内滑移是最主要和常见的;孪生多在高温变形时发生,但对刘芳晶系金属,这种机理起重要作用。晶界滑移和扩散蠕变只在高温变形时才发挥作用。 (1)晶内滑移 热变形的主要机理仍然是晶内滑移。高温时原子间距加大,热振动和扩散速度增加,位错滑移、攀移、交滑移及节点脱锚比低温容易;滑移系增多,滑移灵便性提高,各晶粒之间变形更加协调;晶界对位错运动阻碍作用减弱。
金属材料的塑性变形与断裂机理
金属材料的塑性变形与断裂机理金属材料是广泛应用于工业和制造领域的重要材料之一。
塑性变形和断裂机理是金属材料力学行为的基本特征,对于理解金属材料的性能和改善其工程应用具有重要意义。
本文将从塑性变形和断裂机理两个方面进行论述,以帮助读者更好地理解金属材料的性质和行为。
一、塑性变形机理1.1 密排层错结构金属材料中晶体的构造对其塑性变形性能具有重要影响。
密排层错结构是金属材料中晶体排列的一种常见结构。
该结构可以使晶体在受力时发生滑移,从而引发材料的塑性变形。
滑移过程中,晶体内的原子相互滑动,使材料发生变形,从而增加其塑性。
1.2 双曲面交错结构双曲面交错结构是另一种常见的金属材料晶体排列方式。
在受力作用下,晶体发生双曲面滑移,从而引起材料的塑性变形。
该结构可以增加晶体滑移的方向,提高材料的塑性。
1.3 变形机制金属材料的塑性变形机制主要包括滑移、孪晶形成和机械孪生等。
滑移是晶体中原子相互滑动引起的变形机制,主要通过滑移面和滑移方向来确定滑移产生的位置。
孪晶形成是在某些条件下晶体内部形成镜像结构,从而产生变形。
机械孪生是晶体中发生变形所产生的一种特殊形态。
二、断裂机理2.1 断裂类型金属材料的断裂类型包括韧性断裂、脆性断裂和疲劳断裂。
韧性断裂是材料发生延性断裂,即在承受一定载荷后,材料仍能继续变形;脆性断裂是材料在承受载荷后突然断裂,变形能力较差;疲劳断裂是材料在长时间重复加载的作用下产生的断裂现象。
2.2 断裂因素金属材料的断裂受到多种因素的影响,主要包括应力、环境和缺陷等。
应力是导致材料发生断裂的最主要因素,当应力超过材料的承受能力时,断裂就会发生。
环境因素如温度、湿度等也会对金属材料的断裂行为产生影响。
此外,材料内部的缺陷如裂纹、夹杂等也会加速材料的断裂。
2.3 断裂表征方法断裂行为的表征对于评估材料的性能具有重要意义。
常见的断裂表征方法包括断口形貌观察、断口分析和断裂韧性测试等。
通过观察断口形貌可以了解材料的断裂模式,进一步深入分析可以推测断裂的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属塑性变形的机理
(3)塑性和变形抗力
1.单晶体塑性变形的主要方式是_______和_______。
2.查阅单晶体滑移变形相关资料,正确连接下图。
弹性变形
未变形
弹塑性变形
塑性变形
3.什么是纤维组织?
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ 4.任取一个微元六面单元体,该单元体上的应力状态沿着六面体的三个空间坐标系可分解为_____个应力分量,其中包括_____个剪应力与3个_____。
5.简述什么是真实应力?
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________ 6.塑性变形的基本定律包括________、________、________。
洛氏硬度
7.把下列表格填写完整
金属板料力学性能
性能名称符号表示
σs
屈强比
延伸率
厚向异性系数
Δr。