华育中学2016-2017八年级期末数学卷(含答案)
学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
上海市华育中学17年八年级第一学期数学期末测试卷
上海市华育中学2017年八年级第一学期数学期末测试卷??????? __?__?__?__线__○__?__?名?姓? ?__?__?__?__?_号?学? ? _?__?__?___○__封级?班? ? __?__?__?__?__?__?__?__?__?__?__?_校?学○密?????????????????华育中学2016学年第一学期期末考试八年级数学试卷(满分100分;考试90分钟.)题号一二三四五总分得分一、填空题: 1. 如果二次根式2?3x在实数范围内有意义,那么x应满足的条件是____________. 2. 如果关于x的方程2x2?(m?4)x?m?6?0有一个根为零,则m=__________. 3. 方程x?2x?1??2x?1的解为_____________.4. 如果方程kx2?6kx?1?0有两个相等的实数根,则k的值是_____________.5. 在实数范围内因式分解:2x2?3x?1?____________________.6. 某地2011年4月份的房价平均每平方米为9600元,该地2009年同期的房价平均每平方米为7600元,假设这两年该地房价的平均增长率均为x,根据题意可列出关于x的方程为__________________________________ _____.7. 已知函数f(x)?6x,那么f(3)?___________.8. 已知点A(-3,2)在双曲线上,那么点B(6,-1)_________双曲线上.(填“在”或“不在”) 9.如果f?x???x???2,那么f?3??.10.正比例函数y?kx(k?0)的图像经过点,那么y随着x 的增大而_____.11.在?ABC 内部且到角两边距离相等的点的轨迹是.12.在直角三角形中,已知一条直角边和斜边上的中线长都为1,那么这个直角三角形最小的内角度数是.13.直角坐标平面内两点P、Q距离是______.14.将一副三角尺如图所示叠放在一起,如果AB?14cm,那么AF?cm.15.如图,点A在双曲线y?1x上,点B在双曲线y?3x上,且AB ∥x轴,过点A、B分别向x轴作垂线,垂足分别为点D、C,那么四边形ABCD 的面积是.1 二、选择题:9. 下列根式中,属于最简二次根式的是?????????????????() (A) 27(B) 1(C) 3a2?a8(D) a2?b2 k(k?0)在同一直x10. 已知函数y?kx(k?0)中y随x的增大而增大,那么它和函数y=角坐标平面内的大致图像可能是???????????????????.(A) (B)(C)(D);11. 下列命题是假命题的是??????????????????????? 有两角及其中一角的角平分线对应相等的两个三角形全等;有两角及其中一角的对边上的高对应相等的两个三角形全等;有两边及其中一边上的高对应相等的两个三角形全等;有两边及其中一边上的中线对应相等的两个三角形全等. 12.以下各组数为三角形的三边。
2016—2017学年八年级上期末数学试题(含答案)
2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。
20162017学年八年级上期末数学试卷两套合集二附答案解析
2016-2017学年八年级(上)期末数学试卷两套合集二附答案解析2016-2017学年八年级(上)期末数学试卷一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b24.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.化简的结果是()A.B.C.a﹣b D.b﹣a二、填空题:每题3分,共24分.7.写出一个运算结果是a6的算式.8.计算:(2016)0+()2﹣(﹣1)2016= .9.分解因式:a3﹣a= .10.假设3x=15,3y=5,那么3x﹣2y= .11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是.13.假设分式的值为0,那么x的值为.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)17.解分式方程:.18.先化简,再求值:(﹣)÷,其中x=﹣3.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式.(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.五、解答题:每题8分,共16分.23. 2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:.(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:.参考答案与试题解析一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式成心义的条件.【分析】依照分式成心义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.应选:A.【点评】此题考查了分式成心义的条件,从以下三个方面透彻明白得分式的概念:(1)分式无心义⇔分母为零;(2)分式成心义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学【考点】轴对称图形.【分析】依照轴对称图形的概念对各选项分析判定即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.应选B.【点评】此题考查了轴对称图形的概念,轴对称图形的关键是寻觅对称轴,图形两部份折叠后可重合.3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b2【考点】同底数幂的乘法;归并同类项;完全平方公式.【分析】依照同底数幂的乘法、归并同类项、完全平方公式的运算法那么结合选项求解.【解答】解:A、3a﹣a=2a,计算错误,故本选项错误;B、a2•a3=a5,计算错误,故本选项错误;C、a2+2a2=3a2,计算正确,故本选项正确;D、(a+b)2=a2+2ab+b2,计算错误,故本选项错误.应选C.【点评】此题考查了同底数幂的乘法、归并同类项、完全平方公式等知识,把握各知识点的运算法那么是解答此题的关键.4.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm【考点】三角形三边关系.【分析】依照三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步进行分析.【解答】解:依照三角形的三边关系,得第三边大于4cm,而小于8cm.又第三边是偶数,那么应是6cm.应选C.【点评】此题考查了三角形的三边关系,同时注意偶数这一条件.5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】依照图象,三角形有两角和它们的夹边是完整的,因此能够依照“角边角”画出.【解答】解:依照题意,三角形的两角和它们的夹边是完整的,因此能够利用“角边角”定理作出完全一样的三角形.应选D.【点评】此题考查了三角形全等的判定的实际运用,熟练把握判定定理并灵活运用是解题的关键.6.化简的结果是()A.B.C.a﹣b D.b﹣a【考点】分式的混合运算.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:原式=()•==﹣,应选B.【点评】分式的四那么运算是整式四那么运算的进一步进展,在计算时,第一要弄清楚运算顺序,先去括号,再进行分式的乘除.二、填空题:每题3分,共24分.7.(2021•滨州)写出一个运算结果是a6的算式a2•a4(答案不唯一).【考点】幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.【专题】开放型.【分析】依照同底数幂的乘法法那么,底数不变,指数相加,可得答案.【解答】解:a2•a4=a6,故答案为:a2•a4(答案不唯一).【点评】此题考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.8.计算:(2016)0+()2﹣(﹣1)2016= .【考点】零指数幂.【分析】依照非零的零次幂等于1,负数的偶数次幂是正数,可得答案.【解答】解:原式=1+﹣1=,故答案为:.【点评】此题考查了零次幂,利用非零的零次幂等于1,负数的偶数次幂是正数是解题关键.9.分解因式:a3﹣a= a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】此题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解完全.10.假设3x=15,3y=5,那么3x﹣2y= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法那么将原式变形进而得出答案.【解答】解:∵3x=15,3y=5,∴3x﹣2y=3x÷(3y)2=15÷25=.故答案为:.【点评】此题要紧考查了同底数幂的除法运算法那么,正确将原式变形是解题关键.11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的外角和是内角和的4倍,那么多边形的内角和是360×4=1440度,再由多边形的内角和列方程解答即可.【解答】解:设那个多边形的边数是n,由题意得,(n﹣2)×180°=360°×4解得n=10.故答案为:10.【点评】此题要紧考查了多边形的内角和定理与外角和定理,熟练把握定理是解题的关键.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是P1(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于x轴对称的点,横坐标相同,纵坐标互为相反数;那么P1的坐标为(﹣2,﹣3).【解答】解:∵P(﹣2,3)与P1关于x轴对称,∴横坐标相同,纵坐标互为相反数,∴P1的坐标为(﹣2,﹣3).故答案为(﹣2,﹣3).【点评】考查了关于x轴、y轴对称的点的坐标,解决此题的关键是把握好对称点的坐标规律,注意结合图象,进行经历和解题.13.假设分式的值为0,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】依照分式成心义的条件可得x2﹣9=0,且(x﹣1)(x﹣3)≠0,再解即可.【解答】解:由题意得:x2﹣9=0,且(x﹣1)(x﹣3)≠0,解得:x=﹣3,故答案为:﹣3.【点评】此题要紧考查了分式值为零的条件,关键是把握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”那个条件不能少.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题要紧考查线段的垂直平分线的性质和直角三角形的性质.三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2,利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练把握因式分解的方式是解此题的关键.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)【考点】整式的混合运算.【专题】计算题.【分析】原式第一项利用单项式乘以多项式法那么计算,第二项利用平方差公式化简,去括号归并即可取得结果.【解答】解:原式=4x2+3xy﹣4x2+y2=3xy+y2.【点评】此题考查了整式的混合运算,熟练把握运算法那么是解此题的关键.17.解分式方程:.【考点】解分式方程.【专题】计算题;压轴题.【分析】观看可得2﹣x=﹣(x﹣2),因此方程的最简公分母为:(x﹣2),去分母将分式方程化为整式方程后再求解,注意查验.【解答】解:方程两边同乘(x﹣2),得:1=﹣(1﹣x)﹣3(x﹣2)整理得:1=x﹣1﹣3x+6,解得:x=2,经查验x=2是增根,∴原分式方程无解.【点评】(1)解分式方程的大体思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程必然注意要验根;(3)分式方程去分母时不要漏乘.18.先化简,再求值:(﹣)÷,其中x=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分取得最简结果,将x的值代入计算即可求出值.【解答】解:原式=[﹣]•=﹣=﹣,当x=﹣3时,原式=.【点评】此题考查了分式的化简求值,熟练把握运算法那么是解此题的关键.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.【考点】利用轴对称设计图案.【分析】依照轴对称图形的性质设计出轴对称图形即可.【解答】解:如下图:.【点评】此题要紧考查了利用轴对称设计图案,正确把握轴对称图形概念是解题关键.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式(a+b)2=(a ﹣b)2+4ab .(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.【考点】完全平方公式的几何背景.【分析】(1)阴影部份的面积能够看做是边长(a﹣b)的正方形的面积,也能够看做边长(a+b)的正方形的面积减去4个小长方形的面积;(2)利用(1)的结论,把(a﹣b)2=(a+b)2﹣4ab,把数值整体代入即可.【解答】解:(1)恒等式为:(a+b)2=(a﹣b)2+4ab.例如:当a=5,b=2时,(a+b)2=(5+2)2=49(a﹣b)2=(5﹣2)2=94ab=4×5×2=40因为49=40+9,因此(a+b)2=(a﹣b)2+4ab.故答案为::(a+b)2=(a﹣b)2+4ab.(2)∵a+b=10,(a+b)2=100,∵(a+b)2=(a﹣b)2+4ab,ab=6,∴(a﹣b)2=(a+b)2﹣4ab=100﹣4×6=76,∴a﹣b=2或a﹣b=﹣2,∵a>b,∴a﹣b=2.【点评】此题考查了列代数式,完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式常常联系在一路.要学会观看.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】利用“边边边”证明△ABD和△ACD全等,依照全等三角形对应角相等可得∠BAD=∠CAD,再依照角平分线上的点到角的两边的距离相等即可得证.【解答】证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥BA,DF⊥AC,∴DE=DF.【点评】此题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,求出∠BAD=∠CAD是解题的关键.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.【考点】分式的化简求值;整式的混合运算—化简求值.【专题】探讨型.【分析】先依照分式及整式混合运算的法那么把原式进行化简,再把x=2,y=﹣1时期入求出P、Q 的值,比较出其大小即可.【解答】解:都不正确.∵P=﹣==x﹣y,∴当x=2,y=﹣1时,P=2+1=3;∵Q=(x+y)(x+y﹣2y)=(x+y)(x﹣y),∴当x=2,y=﹣1时,Q=(2﹣1)(2+1)=3,∴P=Q.【点评】此题考查的是分式的化简求值及整式的化简求值,熟知分式及整式混合运算的法那么是解答此题的关键.五、解答题:每题8分,共16分.23.2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)依照题意能够取得相应的分式方程,从而能够解答此题;(2)依照题意能够取得相应的不等式,从而能够解答此题.【解答】解:(1)设乙种礼盒购买了x个,解得,x=20,经查验x=20是原分式方程的解,那么1.5x=30,即甲、乙两种礼盒的单价别离为30元、20元;(2)设购买甲种礼盒x个,30x+20(40﹣x)≤1050,解得,x≤25即购买的甲种礼盒最多买25个.【点评】此题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是50°.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.【考点】轴对称-最短线路问题;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)依照等腰三角形的性质得出∠ABC=∠ACB=70°,求得∠A=40°,依照线段的垂直平分线的性质得出AN=BN,进而得出∠ABN=∠A=40°,依照三角形内角和定理就可得出∠ANB=100°,依照等腰三角形三线合一就可求得∠MNA=50°;(2)①依照△NBC的周长=BN+CN+BC=AN+NC+BC=AC+BC就可求得.②依照轴对称的性质,即可判定P确实是N点,因此△PBC的周长最小值确实是△NBC的周长.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;故答案为50°.(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.②∵A、B关于直线MN对称,∴连接AC与MN的交点即为所求的P点,现在P和N重合,即△BNC的周长确实是△PBC的周长最小值,∴△PBC的周长最小值为14cm.【点评】此题考查了等腰三角形的性质,线段的垂直平分线的性质,三角形内角和定理和轴对称的性质,熟练把握性质和定理是解题的关键.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,从而得出结论;(2)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CE﹣CD;(3)先依照条件画出图形,依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CD﹣CE.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE﹣CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE ∴CE﹣CD=BD﹣CD=BC=AC,∴AC=CE﹣CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD﹣CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD﹣BD,∴BC=CD﹣CE,∴AC=CD﹣CE.【点评】此题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:m+n=4 .(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:m=n .【考点】等腰三角形的性质;坐标与图形性质.【分析】(1)假设底边BC在x轴上,那么B,C必然关于直线x=2对称.(2)假设底边BC的两头点别离在x轴、y轴上,那么B,C必然关于直线y=x对称.【解答】解:(1)假设底边BC在x轴上,那么点B、点C的坐标能够是:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),那么B、C关于点(2,0)对称,∴m+n=4.(2)假设底边BC的两头点别离在x轴、y轴上,点B、点C的坐标能够是:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),那么点B、C关于直线y=x对称,∴m=n.故别离填:(0,0)(4,0),m+n=4,(2,0)(0,2),m=n(m、n≠4、0).【点评】此题考查了的研究性的性质及坐标与图形的性质;解题要紧应用了等腰三角形的三线合必然理,等腰三角形的顶角极点必然在底边的垂直平分线上,结合图形做题是比较关键的.2016-2017学年八年级(上)期末数学试卷一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= .2.分式无心义的条件是x= .3.化简:÷= .4.假设方程无解,那么m= .5.已知a+b=2,那么a2﹣b2+4b的值为.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是(只需填写一个你以为适合的条件).7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .8.如图,∠1=∠2=30°,∠3=∠4,∠A=80°,那么x= 度,y= 度.二、选择题9.以下长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,1010.以下计算正确的选项是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a211.在如图的网格中,在网格上找到点C,使△ABC为等腰三角形,如此的点有几个()A.8 B.9 C.10 D.1112.计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2 B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+113.如图,在△ABC中,∠ACB=90°,∠A=20°,假设将△ABC沿CD折叠,使点B落在AC边上的点E处,那么∠CED的度数是()A.30° B.40° C.50° D.70°14.如下图,l是四边形ABCD的对称轴,AD∥BC,现给出以下结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个三、计算与作图题(本大题共4小题,每题6分,共24分)15.分解因式:3x2y+12xy2+12y3.16.先化简,再求值:,其中m=9.17.解方程: =﹣1.18.请在以下三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形通过轴对称变换后取得的图形,且所画的三角形极点与方格中的小正方形极点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)四、(本大题共3小题,每题8分,共24分)19.如下图,点B、F、C、E在同一条直线上,AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.20.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE.(1)求证:△ACE≌△BCD;(2)线段AE与BC有什么位置关系?请说明理由.21.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门打算将内坝进行绿化(如图阴影部份),中间部份将修建一仿古小景点(如图中间的正方形),那么绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.五、(本大题共2小题,每题9分,共18分)22.在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有无等腰三角形?假设有,请一一写出来(不要求证明);假设没有,请说明理由.23.为庆贺2021年元旦的到来,学校决定举行“庆元旦迎新年”文艺演出,依照演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少朵?六、(本大题共1小题,共12分)24.小敏与同桌小颖在课下学习中碰到如此一道数学题:“如图(1),在等边三角形ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确信线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情形,探讨讨论:当点E为AB的中点时,如图(2),确信线段AE与DB的大小关系,请你写出结论:AE DB(填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答进程完成)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,假设△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果).参考答案与试题解析一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= 10 .【考点】全等三角形的性质.【分析】结合图形和已知条件求出AB的长度,再依照全等三角形对应边相等得DE=AB.【解答】解:∵EB=8,AE=2,∴AB=EB+AE=8+2=10,∵△ABC≌△DEF,∴DE=AB=10.【点评】此题要紧考查全等三角形对应边相等的性质,熟练把握性质并灵活运用是解题的关键.2.分式无心义的条件是x= ﹣3 .【考点】分式成心义的条件.【分析】依照分式无心义的条件进行填空即可.【解答】解:∵分式无心义,∴x+3=0,∴x=﹣3,故答案为﹣3.【点评】此题考查了分式无心义的条件,分母为0分式无心义.3.化简:÷= .【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法那么变形,约分即可取得结果.【解答】解:原式=•=,故答案为:【点评】此题考查了分式的乘除法,熟练把握运算法那么是解此题的关键.4.假设方程无解,那么m= 1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解那个整式方程取得的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】此题考查了分式方程无解的条件,是需要识记的内容.5.已知a+b=2,那么a2﹣b2+4b的值为 4 .【考点】因式分解的应用.【分析】把所给式子整理为含(a+b)的式子的形式,再代入求值即可.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.【点评】此题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解此题的关键,同时还隐含了整体代入的数学思想.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A=∠D或∠ABC=∠DCB或BD=AC (只需填写一个你以为适合的条件).【考点】全等三角形的判定.【专题】开放型.【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【解答】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可别离依照AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.【点评】此题考查三角形全等的判定方式;判定两个三角形全等的一样方式有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,依照已知结合图形及判定方式选择条件是正确解答此题的关键.7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB。
2016-2017学年度第一学期期末八年级数学答案
12016—2017学年度第一学期阶段性质量监测参考答案及评分意见八年级数学说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、 选择题:(本题共8个小题,每小题3分,共24分)1. D2. A3. C4.B5. B6. D7. D8. A 二、 填空题(本题共有8个小题,每小题3分,满分24分)9. 23— ; 10. 如果两个角是等腰三角形的两底角,那么这两个角相等; 11. -1;12. 乙 ; 13. 40°; 14. ⎩⎨⎧=+++=-5050)100()100(10x y y x y x ; 15. 13; 16. 26731344+三、 作图题:(4分)17.(图形略) 作图正确,作图痕迹必须清楚得3分,结论1分. 四、解答题(共68分)18.计算:(本题满分14分,(1)、(2)每小题3分,(3)、(4)每小题4分)适当考虑分步得分解:(1)原式=3413- (2) 原式=56-(3)原方程组的解为: ⎩⎨⎧==180120y x (4)点P 的坐标为:(4 , 2)19.(本小题满分8分)(1)通过以上统计图提取有关信息完成下面两个表格:甲队员的信息表-1 乙队员的信息表-2分 (2)根据以上信息,整理分析数据如下表-3,请填写完整.………………………………………………………………………………6分(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,2BAEF CD G214 第21题3综合以上各因素,若选派一名学生参加比赛的话,可选择 乙 参赛,因为乙获得高分的可能更大.………………………………………………………………………………8分20. 列方程(组)解应用题.(本题8分)(方法不唯一,正确即得分) 设定价为x 元,进价为y 元,由题意可知:……………………………1分⎩⎨⎧--=-=-)35(12)%85(845y x y x y x ………………………………………5分 解得: ⎩⎨⎧==155200y x ……………………………………………..7分答:该商品定价为200元,进价为155元. ……………………….8分 21.(本题8分)证明:∵AD ⊥BC ,EF ⊥BC∴∠ADC =∠EFC =90°∴A C ‖ GD ………………………………3分 ∴∠3=∠2又∵∠1=∠2 ∴∠1=∠3………………………………5分∴A C ‖GD∴∠4 =∠C ………………………………8分 22. (本小题满分8分) (1)解:根据题意得:60015200400151+=++=x x y ………………1分100252+=x y ………………………2分(2) 由y 1=y 2得:15x+600=25x+100解得:x=50∴A 地到B 地的路程为50千米时两种运输方式的总运费一样. ………5分(3) 当x=120时,2400600120151=+⨯=y ………………………6分3100100120252=+⨯=y ………………………..7分 ∵21y y <∴若A 地到B 地的路程为120km ,采用铁路运输节省总运费 …………………8分 23. (本小题满分10分)(1)∠P=120°+13∠A ………………………………..2分……………..6分∴∠PBC+∠PCB=13(∠ABC+∠ACB )=13(180°-∠A ) ∴∠P =180°-∠(PBC+∠PCB ) =180°-13(180°-∠A )13证明:∵点P 是∠ABC 、∠ACB 的三等分线的交点.∴∠PBC=13∠ABC ;∠PCB=13∠ACB ∴∠PBC+∠PCB=13(∠ABC+∠ACB )又∵∠A+(∠ABC +∠ACB )=180° ∴∠ABC+∠ACB=180°-∠AA BCP图23(2)∠P=135°+14∠A ……8分 (3)∠P=1n n -180°+1n∠A ……10分24:(本小题满分12分)(1)M (2l +1,0)………………………………………..2分 (2)设AC 的解析式为y=kx +b ,依题可知:⎩⎨⎧+==b k b 402 解得:⎪⎩⎪⎨⎧=-=221b k 所以221+-=x y ; ……………………………………….5分(3) ①当0<l <1.5时:x=l ,y=122l -+即QP=122l -+, 4(21)32MC l l =-+=-2111111(32)2322224QMC S MC QP l l l l ∆⎛⎫∴=⋅=-⋅-+=-+ ⎪⎝⎭……………………8分 ②当l =1.5时, M 与C 重合,S △QMC=0.(注:可并于①或③中)……………………9分③当1.54t<<时, (21)423MC l l =+-=-2111111(23)2322224QMC S MC QP l l l l ∆⎛⎫∴=⋅=-⋅-+=-+- ⎪⎝⎭……………12分。
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016-2017学年八年级下期末数学试题含答案
2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。
2016-2017育华初二上学期第4次月考(期末考试)(含答案)
数学试卷一、选择题:(共12小题,1-6每道题2分,7-12每道题3分,满分30分) 1、 下列图形中,不是轴对称图形的是( )A.B.C.D.2、 下列运算中正确的是( )A. 3332b b b =⋅B. 632x x x =⋅C. 725)(a a =D. 352-=÷a a a3、 如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( ) A. AC ,BC 两边高线的交点处 B. AC ,BC 两边中线的交点处 C. AC ,BC 两边垂直平分线的交点处 D. ∠A ,∠B 两内角平分线的交点处 4、 下列根式中,最简二次根式为( )A.x 4B.42-xC.4x D.2)4(+x5、 点P (2,﹣3)关于x 轴的对称点是( )A. (﹣2,3)B. (2,3)C. (﹣2,﹣3)D. (2,﹣3)6、 已知32552+-+-=x x y ,则2xy 的值为( )A. ﹣15B. 15C. 215-D.215 7、 若012=--x x ,则221x x +的值是( ) A. 3B. 2C. 1D. 48、 若分式11-+=x x y 有意义,则x 的取值范围是( )A. x >﹣1B. x >﹣1且x ≠1C. x ≥﹣1D. x ≥﹣1且x ≠19、 如图,AE ∥DF ,AE =DF ,要使△EAC ≌△FDB 。
需要添加下列选项中的( )A. AB =CDB. EC =BFC. ∠A =∠DD. AB =BC10、 货车行驶25千米与小车行驶35千米所用时间相同,已依题意列方程正确的是( ) A.203525-=x x B.xx 352025=- C.203525+=x x D.xx 352025=+ 11、 已知关于x 的方程12-=-+x ax 的解为正数,则a 的取值范围是( ) A. a >0 B. a <0 C. a >2 D. a <2且a ≠﹣212、 如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( )A.3B. 32C. 62D.6二、填空题:(共6道题,每道3分,共18分)13、 已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为____________________米。
上海华育中学八年级上册期末数学模拟试卷含详细答案
上海华育中学八年级上册期末数学模拟试卷含详细答案一、选择题1.如果用边长相同的正三角形和正六边形两种图形铺满平面,那么一个顶点处需要( ) A .三个正三角形、两个正六边形B .四个正三角形、两个正六边形C .两个正三角形、两个正六边形D .三个正三角形、一个正六边形2.下列叙述中错误的是( )A .能够完全重合的图形称为全等图形B .全等图形的形状和大小都相同C .所有正方形都是全等图形D .形状和大小都相同的两个图形是全等图形3.若229x mxy y -+是一个完全平方式,则m 的值是( )A .8B .6C .±8D .±6 4.在△ABC 中,∠BAC=115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为( )A .50°B .40°C .30°D .25°5.已知:如图,下列三角形中,AB AC =,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的有( )A .1个B .2个C .3个D .4个 6.下列式子从左到右变形是因式分解的是( ) A .12xy 2=3xy •4y B .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1) 7.如图,直线a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处8.如图:△ABC 是等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于Q ,PQ =4,PE =1,则AD 的长是( )A .9B .8C .7D .69.如图所示,O D O C =,BD AC =,70O ∠=︒,30C ∠=︒,则OAD ∠等于( )A .80︒B .70︒C .30D .100︒10.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个 二、填空题 11.若|21(3)0x x y ++-=,则22x y +=_______.12.观察下列各式:(x -1)(x +1)=x 2-1;(x -1)(x 2+x +1)=x 3-1;(x -1)(x 3+x 2+x +1)=x 4-1,根据前面各式的规律可得(x -1)(x n +x n -1+…+x +1)=______(其中n 为正整数).13.若关于x 的分式方程211k x x x =---的解为正数,则满足条件的非负整数k 的值为____.14.如下所示,n (a b)+与相应的杨辉三角中的一行数相对应.由以上规律可知:222()2a b a ab b +=+++=+++33223()33a b a a b ab b4322344()464a b a a b a b ab b +=++++554322345()510105a b a a b a b a b ab b +=+++++请你写出下列式子的结果:6()a b +=__________________.15.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16.a 与2b 互为相反数,则2244a ab b ++=____.17.从A 沿北偏东60︒的方向行驶到B ,再从B 沿南偏西20︒方向行驶到C ,则ABC ∠=______.18.若(x-2)(x+3)=x 2+px+q,则p+q=____________.19.如图,在Rt ABC ∆中,90BAC ︒∠=,ABC ∠的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足,已知8,4DC AD ==,则图中长为43的线段有______条.20.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.三、解答题21.如图所示,△ABC 中,AB=BC ,DE ⊥AB 于点E ,DF ⊥BC 于点D ,交AC 于F . ⑴若∠AFD=155°,求∠EDF 的度数;⑵若点F 是AC 的中点,求证:∠CFD=12∠B .22.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=. 其中正确的是 (只填序号) (2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.23.已知:如图,在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,(1)作B 的平分线BD ,交AC 于点D ;作AB 的中点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)连接DE ,求证:ADE BDE ∆≅∆.24.如图,等边△ABC 的边AC ,BC 上各有一点E ,D ,AE=CD ,AD ,BE 相交于点O .(1)求证:△ABE ≌△CAD ;(2)若∠OBD =45°,求∠ADC 的度数.25.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F .(1)求证:△DAE ≌△CFE ;(2)若AB =BC +AD ,求证:BE ⊥AF .26.先化简,再求值:2()()(2)()x y x y y x y x y +-++--,其中3x =,13y =-.27.如图,AB =AD =BC =DC ,∠C =∠D =∠ABE =∠BAD =90°,点E 、F 分别在边BC 、CD 上,∠EAF =45°,过点A 作∠GAB =∠FAD ,且点G 在CB 的延长线上.(1)△GAB 与△FAD 全等吗?为什么?(2)若DF =2,BE =3,求EF 的长.28.如图,在平面直角坐标系中,点 A ,B 的坐标分别为(0,3),(1,0),△ABC 是等腰直角三角形,∠ABC =90°.(1)图1中,点C 的坐标为 ;(2)如图2,点D 的坐标为(0,1),点E 在射线CD 上,过点B 作BF ⊥BE 交y 轴于点F . ①当点E 为线段CD 的中点时,求点F 的坐标;②当点E 在第二象限时,请直接写出F 点纵坐标y 的取值范围.29.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.30.如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“巧数”,如:22420=-,221242=-,222064=-,因此4,12,20这三个数都是“巧数”.(1)400和2020这两个数是“巧数”吗?为什么?(2)设两个连续偶数为2n 和22n -(其中n 取正整数),由这两个连续偶数构造的“巧数”是4的倍数吗?为什么?(3)求介于50到101之间所有“巧数”之和.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据平面镶嵌的概念逐一判断即可得.【详解】正三角形的每个内角为60°,正六边形的每个内角为120°,A .由3×60°+2×120°=420°≠360°知三个正三角形、两个正六边形不符合题意;B .由4×60°+2×120°=480°≠360°知四个正三角形、两个正六边形不符合题意;C .由2×60°+2×120°=360°知两个正三角形、两个正六边形符合题意;D .由3×60°+120°=300°≠360°知三个正三角形、一个正六边形不符合题意;故选:C .【点睛】本题主要考查了平面镶嵌(密铺),判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.2.C解析:C【解析】解:A .能够重合的图形称为全等图形,说法正确,故本选项错误;B .全等图形的形状和大小都相同,说法正确,故本选项错误;C .所有正方形不一定都是全等图形,说法错误,故本选项正确;D .形状和大小都相同的两个图形是全等图形,说法正确,故本选项错误;故选C .3.D解析:D【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】22229(3)x mxy y x mxy y -+=-+,∵229x mxy y -+是一个完全平方式,∴23mxy x y -=±⋅,解得6m =±.故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.A解析:A【解析】【分析】根据三角形内角和定理求出∠B+∠C ,根据线段的垂直平分线的性质得到EA=EB ,GA=GC ,根据等腰三角形的性质计算即可.【详解】∵∠BAC=115°,∴∠B+∠C=65°,∵DE 、FG 分别为AB 、AC 的垂直平分线,∴EA=EB ,GA=GC ,∴∠EAB=∠B ,∠GAC=∠C ,∴∠EAG=∠BAC-(∠EAB+∠GAC )=∠BAC-(∠B+∠C )=50°,故选A .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.C解析:C【解析】【分析】顶角为:36°,90°,108°的等腰三角形都可以用一条直线把等腰三角形分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【详解】由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能; ②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能; ④中的为36°,72,72°和36°,36°,108°,能.故选:C .【点睛】本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.6.D解析:D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7.D解析:D【解析】【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.8.A解析:A【解析】【分析】在Rt △BPQ ,易求∠PBQ =30°,于是可求BP ,进而可求BE ,而△BAE ≌△ACD ,那么有AD =BE =9.【详解】解:∵BQ ⊥AD ,∴∠BQP =90°,又∵∠BPQ =60°,∴∠PBQ =30°,∴BP =2PQ =2×4=8,∴BE =BP +PE =8+1=9,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠ACD =60°,又∵AE =CD ,∴△BAE ≌△ACD ,∴AD =BE =9,故选A .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE ≌△ACD .9.A解析:A【解析】【分析】先根据线段的和差可得OA OB =,再根据三角形全等的判定定理与性质可得30D C ∠=∠=︒,然后根据三角形的内角和定理即可得.【详解】,O BD AC D OC ==,BD D C O A OC ∴-=-,即OB OA =,在OAD △和OBC 中,OA OB O O OD OC =⎧⎪∠=∠⎨⎪=⎩, ()OAD OBC SAS ∴≅,30D C ∴∠=∠=︒,180180703080OAD O D ∠=︒-∠-∠=︒-︒-︒=∴︒,故选:A .【点睛】本题考查了线段的和差、三角形全等的判定定理与性质、三角形的内角和定理,熟练掌握三角形全等的判定定理与性质是解题关键.10.B解析:B【解析】【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键. 二、填空题11.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.xn +1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n 个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.解析:x n +1-1【解析】观察其右边的结果:第一个是x 2-1;第二个是x 3-1;…依此类推,则第n 个的结果即可求得.(x-1)(x n +x n-1+…x+1)=x n+1-1.13.【解析】【分析】首先解分式方程,然后根据方程的解为正数,可得x >0,据此求出满足条件的非负整数K 的值为多少即可.【详解】∵,∴.∵x >0,∴,∴,∴满足条件的非负整数的值为0、1解析:【解析】【分析】 首先解分式方程211k x x x =---,然后根据方程的解为正数,可得x >0,据此求出满足条件的非负整数K 的值为多少即可.【详解】 ∵211k x x x =---, ∴2x k =-.∵x >0,∴20k ->,∴2k <,∴满足条件的非负整数k 的值为0、1,0k =时,解得:x =2,符合题意;1k =时,解得:x =1,不符合题意;∴满足条件的非负整数k的值为0.故答案为:0.【点睛】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.14.【解析】【分析】利用杨辉三角写出两式子的结果.【详解】解:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4++6ab5+b6.故答案为:a6+6a5b+15a4b2解析:6542332456++++++a ab a b a b a b ab b61520156【解析】【分析】利用杨辉三角写出两式子的结果.【详解】解:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4++6ab5+b6.故答案为:a6+6a5b+15a4b2+20a3b3+15a2b4++6ab5+b6.【点睛】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式:(a±b)2=a2±2ab+b2.15.15【解析】【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB、CD、EF的解析:15【解析】【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为15.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.0【解析】【分析】根据互为相反数的定义得出a+2b=0,再把a2+4ab+4b2变形为(a+2b)2代入求值即可.【详解】解:∵a与2b互为相反数,∴a+2b=0,∴a2+4ab+4b解析:0【解析】【分析】根据互为相反数的定义得出a+2b=0,再把a2+4ab+4b2变形为(a+2b)2代入求值即可.【详解】解:∵a与2b互为相反数,∴a+2b=0,∴a2+4ab+4b2=(a+2b)2=0故答案为:0【点睛】此题主要考查了互为相反数以及完全平方公式,正确把握互为相反数的定义是解题关键.17.40【解析】【分析】根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.【详解】如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°-解析:40【解析】【分析】根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.【详解】如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°-60°=30°,B沿南偏西20°的方向行驶到C,则∠BCO=90°-20°=70°,又∵∠ABC=∠BCO-∠BAC,∴∠ABC=70°-30°=40°.故答案为40°【点睛】解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.18.-5【解析】【分析】利用多项式乘以多项式法则直接去括号,再得出p和q的值,进而得出答案.【详解】解:∵(x-2)(x+3)=x2+x-6=x2+px+q,∴p=1,q=-6,∴p+q的解析:-5【解析】【分析】利用多项式乘以多项式法则直接去括号,再得出p 和q 的值,进而得出答案.【详解】解:∵(x-2)(x+3)=x 2+x-6=x 2+px+q ,∴p=1,q=-6,∴p+q 的值为-5.故答案为-5.【点睛】此题主要考查了多项式乘以多项式,熟练掌握运算法则是解题关键.19.3【解析】【分析】利用线段垂直平分线的性质得出BE=EC ,再利用全等三角形的判定与性质得出AB=BE ,进而得出答案.【详解】解:∵∠BAC=90°,∠ABC 的平分线BD 交AC 于点D ,DE 是解析:3【解析】【分析】利用线段垂直平分线的性质得出BE=EC ,再利用全等三角形的判定与性质得出AB=BE ,进而得出答案.【详解】解:∵∠BAC=90°,∠ABC 的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足,∴AD=DE=4,BE=EC ,∵DC=8,AD=4,∴BE=EC=在△ABD 和△EBD 中A BED ABD DBE BD DB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBD (AAS ),∴AB=BE=∴图中长为3条.【点睛】此题主要考查了勾股定理以及角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.20.58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2= (180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=(18解析:58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2=12(180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=12(180°-62°)=58°,故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.(1)50°;(2)见解析【解析】试题分析:⑴根据等腰三角形的性质、三角形的内角和定理与四边形的内角和为360°,可求得所求角的度数.⑵连接BF,根据三角形内角和定理与等腰三角形三线合一,可知12CFD ABC ∠=∠.试题解析:⑴ ∵∠AFD =155°,∴∠DFC =25°,∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°,在Rt △EDC 中,∴∠C =90°﹣25°=65°,∵AB =BC ,∴∠C =∠A =65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.⑵ 连接BF ,∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC ,12ABF CBF ABC ∠=∠=∠, ∴∠CFD +∠BFD =90°,∠CBF +∠BFD =90°,∴∠CFD =∠CBF , ∴12CFD ABC ∠=∠. 22.解:(1)①②④⑤;(2)18DAE ∠=︒【解析】【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线,∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24°∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.23.(1)见解析;(2)见解析【解析】【分析】(1)①以B 为圆心,任意长为半径画弧,交AB 、BC 于F 、N ,再以F 、N 为圆心,大于12FN长为半径画弧,两弧交于点M ,过B 、M 画射线,交AC 于D ,线段BD 就是∠B 的平分线;②分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧交于X 、Y ,过X 、Y 画直线与AB 交于点E ,点E 就是AB 的中点;(2)首先根据角平分线的性质可得∠ABD 的度数,进而得到∠ABD =∠A ,根据等角对等边可得AD =BD ,再加上条件AE =BE ,ED =ED ,即可利用SSS 证明△ADE ≌△BDE .【详解】解:(1)作出B 的平分线BD ; 作出AB 的中点E .(2)证明:160302ABD ∠=⨯︒=︒,30A ∠=︒, ABD A ∴∠=∠,AD BD ∴=,在ADE ∆和BDE ∆中, AE BE ED ED AD BD =⎧⎪=⎨⎪=⎩()ADE BDE SSS ∴∆≅∆.【点睛】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.24.(1)见解析;(2)∠ADC =105°【解析】【分析】(1)根据等边三角形的性质可得AB=AC ,∠BAE =∠C=60 °,再根据SAS 即可证得结论;(2)根据全等三角形的性质可得∠ABE =∠CAD ,然后根据三角形的外角性质和角的和差即可求出∠BOD 的度数,再根据三角形的外角性质即可求出答案.【详解】(1)证明:∵△ABC 为等边三角形,∴AB=AC ,∠BAE =∠C=60 °,在△ABE 与△CAD 中,∵AB=AC ,∠BAE =∠C ,AE=CD ,∴△ABE ≌△CAD (SAS );(2)解:∵△ABE ≌△CAD ,∴∠ABE =∠CAD ,∴∠BOD =∠ABO+∠BAO =∠CAD +∠BAO =∠BAC=60°,∴∠ADC =∠OBD+∠BOD =45°+60°=105°.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题目,熟练掌握上述知识是解答的关键.25.(1)见解析;(2)见解析【解析】【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ; (2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论.【详解】证明:(1)∵AD ∥BC (已知),∴∠ADC =∠ECF (两直线平行,内错角相等),∵E 是CD 的中点(已知),∴DE =EC (中点的定义).∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC +AD ,∴AB =BC +CF ,即AB =BF ,在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AF .【点睛】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质.26.3xy ,3-.【解析】【分析】先计算平方差公式、完全平方公式、整式的乘法,再计算整式的加减法,然后将x 、y 的值代入即可得.【详解】原式222222(2)x y xy y x xy y =-++--+,2222222x y xy y x xy y =-++-+-,3xy =,将3x =,13y =-代入得:原式133333xy ⎛⎫==⨯⨯-=- ⎪⎝⎭.【点睛】本题考查了平方差公式、完全平方公式、整式的加减法与乘法,熟记公式和整式的运算法则是解题关键.27.(1)全等,理由详见解析;(2)5【解析】【分析】(1)由题意易得∠ABG =90°=∠D ,然后问题可求证;(2)由(1)及题意易得△GAE ≌△FAE ,GB =DF ,进而问题可求解.【详解】解:(1)全等.理由如下∵∠D =∠ABE =90°,∴∠ABG =90°=∠D ,在△ABG 和△ADF 中, GAB FAD AB AD ABG D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△GAB ≌△FAD (ASA );(2)∵∠BAD =90°,∠EAF =45°,∴∠DAF +∠BAE =45°,∵△GAB ≌△FAD ,∴∠GAB =∠FAD ,AG =AF ,∴∠GAB +∠BAE =45°,∴∠GAE =45°,∴∠GAE =∠EAF ,在△GAE 和△FAE 中,AG AF GAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴△GAE ≌△FAE (SAS )∴EF =GE∵△GAB ≌△FAD ,∴GB =DF ,∴EF =GE =GB +BE =FD +BE =2+3=5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(1 ) C(4,1);(2)①F( 0 , 1 ),②1y <-【解析】试题分析:()1过点C 向x 轴作垂线,通过三角形全等,即可求出点C 坐标.()2过点E 作EM ⊥x 轴于点M ,根据,C D 的坐标求出点E 的坐标,OM =2,得到1OB BM EM ===, BE BF ⊥,得到△OBF 为等腰直角三角形,即可求出点F 的坐标.()3直接写出F 点纵坐标y 的取值范围.试题解析:(1 ) C (4,1),(2)法一:过点E 作EM ⊥x 轴于点M ,∵C (4,1),D (0,1),E 为CD 中点,∴CD ∥x 轴,EM =OD =1,()21E ∴,,∴OM =2,()10.B ,1OB BM EM ∴===,45EBM ∴∠=︒,BE BF ⊥,∴∠OBF =45°,∴ △OBF 为等腰直角三角形,∴OF =OB =1.()0,1.F∴法二:在OB的延长线上取一点M.∵∠ABC=∠AOB=90°.∴∠ABO+∠CBM=90° .∠ABO+∠BAO =90°.∴∠BAO=∠CBM .∵C(4,1).D(0,1).又∵CD∥OM ,CD=4.∴∠DCB=∠CBM.∴∠BAO=∠ECB.∵∠ABC=∠FBE=90°.∴∠ABF=∠CBE.∵AB=BC.∴△ABF≌△CBE(ASA).∴AF=CE=12CD=2,∵A(0,3),OA=3,∴OF=1.∴F(0,1) ,(3) 1y<-.29.(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】【分析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE 平分∠BAC ,∴∠BAE=40°;②∵AD ⊥BC ,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE 为角平分线,∴∠BAE=12(180°-∠B-∠C ), ∵∠BAD=90°-∠B , ∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C )-(90°-∠B )=12(∠B-∠C ), 又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键.30.(1)400不是“巧数”,2020是“巧数”,理由见解析;(2)是,理由见解析;(3)532.【解析】【分析】(1)根据“巧数”的定义进行判断即可;(2)列出这两数的平方差,运用平方差公式进行计算,对结果进行分析即可; (3)介于50到100之间的所有“巧数”中,最小的为:142-122=52,最大的为:262-242=100,将它们全部列出不难求出他们的和.【详解】解:(1)400不是“巧数”,2020是“巧数”.原因如下:因为2240010199=-,故400不是“巧数”,因为2020=5062-5042,故2020是“巧数”;(2)22(2)(22)(222)(222)2(42)4(21)n n n n n n n n --=+--+=-=-∵n 为正整数,∴2n -1一定为正整数,∴4(2n -1)一定能被4整除,即由这两个连续偶数构造的“巧数”是4的倍数;(3)介于50到100之间的所有“巧数”之和,S=(142-122)+(162-142)+(182-162)+…+(262-242)=262-122=532.故答案是:532.【点睛】本题考查了因式分解的应用.能根据“巧数”的定义进行计算是解决此题的关键.(2)中能利用因式分解把所求的代数式进行变形是解题关键;(3)中不要先计算50到100之间的每一个巧数,根据题意先把它们的和列出来,会发现可以抵消部分,然后计算简单.。
20162017学第一学期期末测试卷
2016—2017学年度第一学期期末测试卷八年级(初二)数学参考答案及评分意见一、选择题(本大题共8小题,每题3分,共24分)1.D ; 2.C ; 3.B ; 4.B ; 5.D ; 6.A ; 7.D ; 8.B .二、填空题(本大题共6小题,每题3分,共18分)9.x ≠2; 10.1; 11.10; 12.130°; 13.(﹣1,0);14.(0,2)或(0,﹣2)或(4,﹣2).三、解答题(本大题共4小题,每题6分,共24分)15.解:(1)原式=﹣4b ·a 4b 2÷(﹣2a )……………1分 =2a 4-1b 1+2……………2分 =2a 3b 3.……………3分 (2)原式=x [x (x -2y )+y 2]……………1分 =x (x 2-2xy +y 2)……………2分 =x (x -y )2.……………3分 16.解:(1)原式=2(1)(1)1a a a a -+-+……………1分 =221111a a a a -+=++.……………2分 当a =99时,原式=11991100=+.……………3分 (2)方程两边同乘(x +1)(x -1),得x (x +1)=3(x -1)+(x +1)(x -1).……………1分 解得x =2.……………2分 查验:当x =2时,(x +1)(x -1)≠0,∴x =2是原方程的解.……………3分 17.解:由题意,得60,80.x y xy --=⎧⎨+=⎩ ∴6,8.x y xy -=⎧⎨=-⎩……………2分 (1)原式=(x -y )2+2xy=62+2×(﹣8)=20.……………4分 (2)原式=x 2+y 2+2xy -2(x -y )=20+2×(﹣8)-2×6=﹣8.……………6分 18.(1)证:∵3×4=12,∴x a ·x b =x c .……………1分 即x a +b =x c . ∴a +b =c .……………3分 (2)解:由(1)知a +b =c ,∴a -c =﹣b .……………4分 ∴x a +3b -c =x 3b -b =x 2b =(x b )2=42=16.……………6分四、解答题(本大题共3小题,每题8分,共24分)19.解:(1)①a2+2ab+b2;②(a+b)2 ……………2分等式是a2+2ab+b2=(a+b)2 ……………4分(2)a2+3ab+2b2=(a+2b)(a+b) ……………6分对应的拼图是:……………8分20.解:(1)设每件乙种服装的进价为x元,每件甲种服装的进价为(x+20)元,那么依照题意,得2000800220x x=⨯+,解得x=80.……………2分经查验知,x=80是方程的解,且适合题意,∴x+20=100.……………3分∴每件甲种服装的进价为100元,每件乙种服装的进价为80元.……………4分(2)甲种服装的件数为2000÷100=20,乙种服装的件数为800÷80=10,……………5分设每件乙种服装的售价为y元,则依照题意,得20(130-100)+10(y-80)≥780,………6分解得y≥98.……………7分∴每件乙种服装的售价至少是98元.……………8分21.证:(1)在AB上截取AG=AF,连接DG.∵AD平分∠BAC,∴∠DAF=∠DAG.∵AD=AD,∴△ADF≌△ADG.……………1分∴∠AFD=∠AGD,FD=GD.……………2分∵FD=BD,∴GD=BD,∴∠DGB=∠B.…………3分∵∠DGB+∠AGD=180°.∴∠B+∠AFD=180°.……………4分(2)AE=AF+FD,其证明进程是:……………5分由(1)知∠B+∠AFD=180°.∵∠B+2∠DEA=180°.∴∠AFD=2∠DEA.……………6分在△DGE中,∠AGD=∠DEA+∠EDG,且∠AGD =∠AFD.∴∠DEA=∠EDG.……………7分∴DG=EG=FD.∴AE=AG+EG=AF+FD.……………8分五、探讨题(本大题共1小题,共10分)22.解:(1)①CF=BD,CF⊥BD.……………2分②当点D在线段BC的延长线上时,所画如图2所示.…………3分①中的结论仍然成立,其理由是:……………4分在△ABC中,AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.在△ADF中,AD=AF,∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF.∴△ACF≌△ABD.∴CF=BD.……………5分∴∠ACF=∠B=45°.∴∠FCB=∠ACF+∠ACB=45°+45°=90°.∴CF⊥BD.……………6分(2)CF⊥BC,其证明进程是:……………7分过A作AE⊥AC交BC于E,那么∠CAE=90°.∵∠ACB=45°,∴∠AEC=45°.∴△ACE是等腰直角三角形,∴AC=AE.……………8分在△ADF中,AD=AF,∠DAF=90°,∴∠F AD-∠CAD=∠CAE-∠CAD.即∠CAF=∠EAD.∴△ACF≌△AED.∴∠ACF=∠AED=45°.……………9分∴∠FCB=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BC.……………10分。
华育中学2016-2017八年级期末数学卷(含答案)
27 解 B 4 2 --------------------------------------------------------------------------1 分
BC=4 CM=1 M 1 2 ----------------------------------------------------2 分
华育中学 2016 学 第一学期期 考试
八 数学试卷
(满分 100 分 考试 90 分钟 )
题号
一
二
四
2017.1
五
总分
得分
一 填空题
大题共 15 题 空 2 分 满分 30 分
1. 如果二次根式 2 + 3x 在实数范围内 意 那 末 应满足的条 是____________. 2. 如果关于 末 的方程 2x 2 − (m + 4)x + m − 6 = 0 一个根为零 则 m =__________.
M
简答题 ( 大题共 7 题 题 6 分 满分 42 分)
C
B
第 20 题
21. 计算
1 2
⋅
1 3+
+ 2
12
22. 解方程
x
−
x2 −1 2
=
−
1 2
列结论中错误的
23. 已知关于 x 的方程 x 2 + m − 2 x − 2m = 0 其中 m 是实数 求证 这个方程一定 实数根
4.
−
1 9
6. 7600(1+ x)2 = 9600
7. 3 2
8.在
9. 两个内角互余的 角形是直角 角形
10.线段 AB 的垂直 分线
2016-2017学年第一学期期末考试八年级数学试题(含答案)
2016—2017学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分. 1.下面有4个汽车标志图案,其中不是轴对称图形的是A. B. C. D.2.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为A.35° B.40° C.45°D.50°3.下列各图中,正确画出AC边上的高的是A. B. C. D.4.已知等腰三角形两边长为3和7,则周长为A.13 B.17 C.13或17 D.115.如图,△ABC 的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,如果边BC 长为8cm ,则△ADE 的周长为 A .16cm B .8cm C .4cm D .不能确定6.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则下列结论:①AC =AF ,②EF =BC ,③∠F AB =∠EAB ,④∠EAB =∠F AC ,其中正确结论的个数是 A .1个B .2个C .3个D .4个7.无论a 取何值时,下列分式一定有意义的是A .221aa +B .21aa +C .112+-a aD .112+-a a 8.下列变形正确的是A .11+=--y x y x B .y x y x 11+-=-- C .y x y x -=--11 D .xyy x --=--11 9.已知03=-+y x ,则x2·y2的值是A .6B .﹣6C .D .8 10.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的 动点,△PMN 周长的最小值是5cm ,则 ∠AOB 的度数是 A .30° B .35°C .40°D .45°第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分.11.已知点A (x ,﹣4)与点B (3,y )关于x 轴对称,那么x +y 的值为 .(第5题图)(第6题图)(第10题图)ABMPON12.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是 度. 13.如图,AB =AC =AD ,∠BAD =80°,则∠BCD = .14.如图,用圆规以直角顶点O 为圆心,以适当半径画一条弧交两直角边于A 、B 两点,再以A 为圆心,以OA 为半径画弧,与弧AB 交于点C ,则∠AOC 的度数是 .15.如图,在Rt △ABC 中,∠C =90°,直线BD 交AC 于D ,把直角三角形沿着直线BD翻折,使点C 落在斜边AB 上,如果△ABD 是等腰三角形,那么∠A = . 16.多项式62++mx x 因式分解得))(2(n x x +-,则m = . 17.已知6=+y x ,2-=xy ,则=+2211y x . 18.观察下列等式:1)1)(1(2-=+-x x x , 1)1)(1(32-=++-x x x x , 1)1)(1(423-=+++-x x x x x ,…据此规律,当0)1)(1(2345=+++++-x x x x x x 时,代数式12017-x的值为 .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程. 19.计算:()()22017311932-⎪⎭⎫⎝⎛------. 20.计算:()()()()22352123b a b a b a a a b b a -÷+-+-+.(第13题图)(第14题图)(第15题图)ABCO21.分解因式:()()ab b a b a +--4.22.先化简,再求值: 12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx ,其中2-=x . 23.解方程:42121-=+--x xx x . 24.已知△ABC 是等边三角形,点D 、E 分别在边BC 、CA 的延长线上,且DC =AE ,BE交DA 的延长线于点F ,求∠BFD 的度数.25. 过∠AOB 平分线上一点C 作CD ∥OB ,交OA 于点D ,E 是线段OC 的中点.(1)如图1,连接DE ,并延长DE 交OB 于点M ,若△OEM 的面积是6,则△ODC 的面积是 ;(2)如图2,过点E 的直线分别交射线OB 、线段CD 于点M 、N ,则线段OD 、DN 、OM 之间的数量关系是 ;(3)如图3,过点E 的直线分别交射线OB 、线段CD 的延长线于点M 、N ,探究线段OD 、DN 、OM 之间有怎样的数量关系?并证明你的结论.(第24题图)O (第25题图1)M(第25题图2)(第25题图3)2016—2017学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.7; 12.1800; 13.140°; 14.60°; 15.30°; 16.-5; 17.10; 18.0或-2. 三、解答题:(共46分) 19.解:()()22017311932-⎪⎭⎫⎝⎛------ =9131-+- ………………………………………… 4分= -10. ………………………………………… 5分 20.解:()()()()22352123b a b a b a a a b b a -÷+-+-+=24352224123b a b a ab a a b ÷+-+- ………………………………… 3分 =ab ab a a b 33222+-+- ………………………………… 4分 =.2b ………………………………… 5分 21.解:()()ab b a b a +--4=ab b ab ab a ++--2244 ………………………………… 2分 =2244b ab a +- ………………………………… 3分=.)22b a -( ………………………………… 5分 22.解:12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx=)12()1()1()2()1)(1(2-+•+--+-x x x x x x x x x ………………………………… 3分=)12()1()1(122-+•+-x x x x x x ………………………………… 4分=.12xx + ………………………………… 5分 当2-=x 时,原式=.41212122-=-+-=+)(x x ……………………………… 6分 23.解:原方程可化为 )2(2121-=+---x xx x , ……………………………… 1分 方程两边同乘以2(x -2),得x x x =-+--)2(2)12(,……………………………… 3分 去括号,得x x x =-+-4222,移项,得2422-=-+-x x x , 合并同类项,得 2=-x ,系数化为1,得2-=x . ………………………………… 5分 检验:当x =-2时,2(x -2)≠0,所以原方程的解是x =-2. ………………………………… 7分 24.解:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ACB =60°, ………………………………… 2分 ∴∠EAB =∠ACD =120°, ………………………………… 3分 在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=DC AE ACD EAB AC AB ∴△ABE ≌△ACD , ………………………………… 5分 ∴∠E =∠D , ………………………………… 6分 ∵∠EAF =∠CAD ,∠CAD+∠D =∠ACB =60°, ……………………… 7分 ∴∠EAF +∠E =60°,∴∠BFD=60°.………………………………… 8分25.解:(1)12;………………………………… 2分(2)OD=DN+OM;………………………………… 4分(3)线段OD、DN、OM之间的数量关系是OD= OM-DN. ……… 5分证明:∵E是OC的中点,∴OE=CE,………………………………… 6分∵CD∥OB,∴∠COM=∠DCO,………………………………… 7分又∠OEM=∠CEN,∴△OEM≌△CEN,∴OM=CN. ………………………………… 8分∵OC平分∠AOB,∴∠COM=∠COD,又∠COM=∠DCO,∴∠COD=∠DCO,………………………………… 9分∴OD=CD,∵CD=CN-DN,∴OD= OM-DN. ……………………………… 10分。
2016~2017学年度第一学期期末考试八年级数学试卷参考答案及评分细则
2016~2017学年度第一学期期末考试八年级数学参考答案1.B2.B3.A4.D5.C6.C7.D8.B9.D 10.D11.2 12. 33x 13. 6± 14. ab 8 15. 9 16. 2317.解:两边同时乘以)1(2-x 得:3)1(2=+x ......4分解得: 21=x , ......6分检验:当21=x 时,0)1(2≠-x ......7分∴原分式方程的解为21=x .......8分18.解:原式x x x x x x 2)3)(3(333+-⨯+-++= ......4分32)3)(3(32-=+-⨯+=x x xx x x ......8分19. 证明:∵BE=CF , ∴BE+E C=CF+EC , 即BC=EF, …………2分∵AB ∥DE, ∴∠DEF=∠B , …………4分在△AB C 和△DE F 中,∵⎪⎩⎪⎨⎧=∠=∠=EFBC DEF B DEAB ∴△AB C ≌△DE F (SAS) …… 7分∴AC=DF. ………… 8分20.(1)解:原式)21)(21(22a a a a -+++= ......2分22)1()1(-+=a a ......4分(2) 原式)16(22-=x a ......6分)4)(4(2-+=x x a ......8分21. 解:(1)图略略 ......2分 2(1C ,)1 ......3分(2) 痕迹图略 ......5分 2(P ,)0 ......6分(3)3-=a ,21=b ......8分22.解(1)设单独完成此项工程,甲需x 天,则乙需x 2天, 由题意得:212155=+x x ,解得25=x ......3分检验:当25=x 时,02≠x ,∴原分式方程的解为25=x ,502=x ......5分答:甲需25天,乙需50天.(2)设乙每天的施工费用为y 万元,则甲每天的施工费用为)8.0(+y 万元,由题意得:2815)8.0(5=++y y , 2.1=y ,28.0=+y答:乙每天的施工费为2.1万元,甲每天的施工费用为2万元. ......7分(3) 20天或21天. ......10分23.(1) 证明:∵CA=CB ,∠CAB=900,点O 是AB 的中点,∴∠BCO=21∠CAB=450 , ∠A=∠B=450, ……2分∴∠BCO=∠B , ∴CO=OB. ……3分(2)连接CO,,在CB 上截取CQ=AM,连OQ, 可证△CQO ≌△AMO(SAS) ……4分 ∴OM=OQ,∠MOA =∠COD ,∵CO ⊥OA,∴MO ⊥OQ又∵△MON ≌△QON(SSS) ……5分∴∠MON=∠NOQ =21∠MOQ=450. ……6分(3)CQ=DQ, CQ ⊥DQ.证明:延长CQ 至H,,使QH=CQ,,连OH 、DH 、CD ,延长HQ 交AC 于I ,可证△OQH ≌△BQC(SAS) ∴OH =BC=AC, ∠QHO =∠BCQ, ……7分∴BC ∥HI, ∴∠AIO =∠ACB=900,∴在四边形ADOI 中,∠CAD+∠IOD=1800,又∠DOH+∠IDO=1800, ∴∠CAD =∠DOH, ……8分∴△CAD ≌△HOD(SAS) ∴DH =CD, ∠ADC =∠HDO,∵∠ADC+∠CDO=900, ∴∠HDO+∠CDO=900, ……9分∴CD ⊥DH,又点Q 是CH 的中点,∴DQ ⊥CQ ∴CQ=DQ. .....10分(另解:延长DO 交BC 于G ,连QD ,证△OGC ≌△QOD 亦可,参照给分.)24.解:(1)∵01)3(2=-++b a ,0)3(2≥+a ,01≥-b , 0)3(2=+∴a ,01=-b 3-=∴a ,1=b ,3(-∴A ,)0,1(B ,)0 ......2分 4==∴BC AB ,∵∠CBA=600 , ∴∠ODB=300 ∴BD=2OB=2, ∴CD=BC-BD=4-2=2. ......4分(2)延长EB 交y 轴于F ,连CE,△CEP 为等边三角形,可证△CDE ≌△CAP(SAS) ......6分∴∠CEB=∠CPA, ∴∠EBP=∠ECP=600, ∴∠FBO=∠DBO=600, ∴∠BFO=∠BDO=300,∴BD=BF, ∵BO ⊥DF,∴DO=OF ......7分 ∴点D 、F 关于x 轴对称,∴直线EB 必过点D 关于x 轴对称的对称点. ......8分(3)过D 作DI ∥AB 交AC 于I ,则△CDI 为等边三角形, ∴DI=CD =DB, ......9分 ∴∠MID =1200=∠DBN,∴△MDI ≌△NDB(AAS) ......10分 ∴NB =MI ,∴AN-AM=(AB+NB)-AM=AB+MI-AM=AB+AI=AB+BD=4+2=6. ......12分(另解:连AD ,在∠BDN 内作∠BDJ=300,DJ 交x 轴于J 亦可,参照给分.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 -------------------------------2 分 x
N 4
1 2
------------------------------------------------------------------------1 分
四 解答题 28 解 1
AB=AC
AD⊥BC 垂足为 D
价 为 B件 中点
3 6 -------------------------------------------------------------------------------2 分 −1 2
(
)
22 解
原方程整理为 解得 即
x 2 − 2 x − 2 = 0 -------------------------------------------2 分
则 k 的值是_____________.
2 x 2 − 3 x − 1 = ____________________.
均 方米为 9600 元 该地 2009 同期的 均 方米为 7600 元 假设这
该 地
均 增 长 率 均 为 x
根 据 题 意 可 列 出 关 于 x 的 方 程 为
_______________________________________ 7. 8. 9 10 11 12 13 14 已知函数 f ( x ) = 已知点 A(-3,2)在 如果 f ( x ) =
-----------------------1 分
BE⊥AC
DE =
1 BC = DC ,-------------------------------------------------1 分 2
之间的函数关系 分钟 3600 米 1950 米
他途中休息了
y 米
x 的函数关系式是 分钟
小华休息之后行走的速度是 当小晶到达缆车终点时
小华离缆车终点的路程是
0
30
50
80
x 分钟
27. 已知
如图
长方形 OABC 的顶点 B 过 BC 边
m
2
在
比例函数 y =
1 x 的图 2
BA⊥x 轴于点 A
BC⊥y 轴于
联结 DE
DM
B
D
C
29. 如图 在△ ABC 中 ∠ ACB =90° ⊥ AB 1 2 3 化 求证 垂足为点 E
BC =2 3 ∠ A =30° D 是边 AC
点 A C 重合的任意一点
DE
M 是 BD 的中点.
CM = EM CM = y
求y
如果设 AD = x
x 的函数解析式 并写出函数的定 域
作交点 P 写结论-------------------------------------------------------------------------2 分 26 答 2 3 4 27 解 1 55 3600 20 ------------------------------------------------------------------2 分
6x
那
f ( 3 ) = __________ _ .
那 点 B(6,-1)_________ 曲线 .(填 在 或 在 )
曲线 那
( x − π )2
f (3) =
过点 1 3 那
比例函数 y = kx ( k ≠ 0 )的图
y 随着 x 的增大而
_____
填 增大 或
小
在 ∠ABC 内部 包括顶点 且到角两边距离相等的点的轨迹是 在直角 角形中 已知一条直角边和斜边 的中线长都为 1 那 这个直角 直角坐标 面内两点 P 4 3 Q 2 1 距离是 ______ 将一副 角尺如图 示叠放在一起 如果 AB = 14 cm 那 AF = 曲线 y = 那
点C 比例函数的图 的坐标.
点M
AB 边交于点 N y
且 BM=3CM. 求
比例函数的解析式及点 N
C
M
B N
O
A
x
四 解答题 大题共 2 题 第 28 题 8 分 第 29 题 10 分 满分 18 分 28. 已知 在△ABC 中 AB=AC AD⊥BC 垂足为 D BE⊥AC 垂足为 E M 为 AB 的中点 1 当∠C=70°时 如图 求∠EDM 的度数 A (2)当△ABC 是钝角 角形时 请画出相应的图形 (3)设∠C=α 用α表示∠EDM 可直接写出 M E
又 ∠ECD +∠ACE +∠ACB △ACE 是直角 25 作∠AOB 的 以 E 为圆心
角形--------------------------------------------------------------------1 分 分线------------------------------------------------------------------------2 分 EO 为半 作圆-----------------------------------------------------------2 分
y=65x ---------------------------------------------------------------------------1 分 --------------------------------------------------------------------------------1 分 1100--------------------------------------------------------------------------------2 分 B 4 2 --------------------------------------------------------------------------1 分 BC=4 CM=1 M 1 2 ----------------------------------------------------2 分 用 定系数法求得 比例函数的解析 y =
以原方程一定 实数根 ---------------------------------------------------1 分 ∠B =∠D = 90°
24 证明
AB⊥BD
ED⊥BD
在 Rt△ABC 和 Rt△CDE 中
AB = CD AC = CE
Rt△AB件 ≌ Rt△CDE-----------------------------------------------------------------2 分 ∠ACB =∠件∵价----------------------------------------------------------------------------1 分 ∵价⊥B价 ∠ECD +∠件∵价 = 90°, = 90° ∠ECD +∠ACB = 90°-------------1 分 ∠ACE = 90°-----------------------1 分
角形是直角
6. 7600(1 + x ) 2 = 9600
7. 3 2
9. 两个内角互余的
角形
10.线段 AB 的垂直
分线
11. 9 3
5 12. 2 或 4
二 选择题 16. D 简答题 21 解
=
13. 2
14. ( 2 +
2 0)
2- 2 0
15. 25.
17. D
18. C
19. D
20. D
2 ± 12 ------------------------------------------------------2 分 2
x=
x1 = 1 + 3, x2 = 1 − 3 ---------------------------------------2 分
2
23 证明
△= m − 2
+ 8m = m 2 + 4m + 4 = ( m + 2) 2 --------------------------3 分 2 对于任意实数 m 都 ( m + 2) ≥ 0 即△ 0-------------------------2 分
OB 距离相等
E
A
O
B
26. 小华和小晶
山游玩 小华 米
行 小晶乘坐缆车 相 时间 x 分钟 米
在山顶缆车的终点会合 已知小华 缆车的 均速度为 分钟 180 米
行的路程是缆车 图中的折线 映
线路长的 2 倍 1 2 3 4
小晶在小华出发后 50 分钟才坐
缆车
了小华行走的路程 y 小华行走的总路程是 当0 x 30 时 y
的高对应相等的两个 边 其中 能构成直角 C
0
角形全等 角形全等. 角形的是………………… D
的中线对应相等的两个
3, 4, 5
32 , 42 ,52
∠ ACB=90
1 1 1 , , 3 4 5
3k , 4k ,5k (k
0 那 列结论中错误的 斜 边
的高和中线
变 求出∠ MCE 的大小 如果发生变
当点 D 在线段 AC 说明如何变化.
移动时
∠ MCE 的大小是否发生变化?如果
B M C D
第 29 题图
E A
答案及评分标准 一 填空题
1. x ≥ −
2 3
2.
6
3. x1 = 0
x2 =
1 2
4. −
1 9
8.在
5. 2( x −
3 + 17 3 − 17 ) )( x − 4 4