小学五年级奥数讲义(学生版)30讲全

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数

第1讲数字迷(一)第16讲巧算24

第2讲数字谜(二) 第17讲位置原则

第3讲定义新运算(一) 第18讲最大最小

第4讲定义新运算(二) 第19讲图形的分割与拼接第5讲数的整除性(一) 第20讲多边形的面积

第6讲数的整除性(二) 第21讲用等量代换求面积第7讲奇偶性(一)第22 用割补法求面积

第8讲奇偶性(二)第23讲列方程解应用题第9讲奇偶性(三)第24讲行程问题(一)第10讲质数与合数第25讲行程问题(二)第11讲分解质因数第26讲行程问题(三)第12讲最大公约数与最小公倍数(一)第27讲逻辑问题(一)第13讲最大公约数与最小公倍数(二)第28讲逻辑问题(二)第14讲余数问题第29讲抽屉原理(一) 第15讲孙子问题与逐步约束法第30讲抽屉原理(二)

第1讲数字谜(一)

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

例3 在443后面添上一个三位数,使得到的六位数能被573整除。

例4 已知六位数33□□44是89的倍数,求这个六位数。

例5 在左下方的加法竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字,请你用适当的数字代替字母,使加法竖式成立。

FORTY

TEN

+ TEN

SIXTY

例6 在左下方的减法算式中,每个字母代表一个数字,不同的字母代表不同的数字。请你填上适当的数字,使竖式成立。

练习1

1.在一个四位数的末尾添零后,把所得的数减去原有的四位数,差是621819,求原来的四位数。

2.在下列竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字。请你用适当的数字代

替字母,使竖式成立:

(1) A B (2) A B A B

+ B C A - A C A

A B C B A A C

3.在下面的算式中填上括号,使得计算结果最大:1÷2÷3÷4÷5÷6÷7÷8÷9。

4.在下面的算式中填上若干个(),使得等式成立:1÷2÷3÷4÷5÷6÷7÷8÷9=2.8。

5.将1~9分别填入下式的□中,使等式成立:□□×□□=□□×□□□=3634。

6.六位数391□□□是789的倍数,求这个六位数。

7.已知六位数7□□888是83的倍数,求这个六位数。

第2讲数字谜(二)

这一讲主要讲数字谜的代数解法及小数的除法竖式问题。

例1 在下面的算式中,不同的字母代表不同的数字,相同的字母代表相

例2 在□内填入适当的数字,使左下方的乘法竖式成立。

□□□

× 8 1

□□□

□□□

□□□□□

例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立。

□8 □

□□□)□□□□□□

□□□□

□□□

□□□

□□□□

□□□□

例4 在□内填入适当数字,使小数除法竖式成立。

例4图例5图

例5 一个五位数被一个一位数除得到右上图竖式(1),这个五位数被另一个一位数除得到右上图的竖式(2),求这个五位数。

练习2

1.下面各算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,求出abcd及abcxyz (1)1abcd×3=abcd5 (2)7×abcxyz=6×xyzabc

2.用代数方法求解下列竖式:

3.在□内填入适当的数字,使下列小数除法竖式成立:

□ 8 □ 7 □.□□□□□

□□)□□□□□□□.□) □□□.□□) □.□□□□□□□□□□

□□□ 8 □□□□□

□□□□□□□□□□□ 0 0

例1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。求12*4的值。

例2 已知a△b表示a的3倍减去b的

1,例如根据以上的规定,求10

2

△6的值

3,x>=2,求x的值。

例6 对于任意自然数,定义:n!=1×2×…×n。

例如 4!=1×2×3×4。那么1!+2!+3!+…+100!的个位数字是几?

例7 如果m,n表示两个数,那么规定:m¤n=4n-(m+n)÷2。求3¤(4¤6)¤12的值。

练习3

1.对于任意的两个数a和b,规定a*b=3×a-b÷3。求8*9的值。

2.已知a b表示a除以3的余数再乘以b,求134的值。

3.已知a b表示(a-b)÷(a+b),试计算:(53)(106)。

4.规定a◎b表示a与b的积与a除以b所得的商的和,求8◎2的值。

5.假定m◇n表示m的3倍减去n的2倍,即m◇n=3m-2n。

(2)已知x◇(4◇1)=7,求x的值。

7.对于任意的两个数P, Q,规定 P☆Q=(P×Q)÷4。例如:2☆8=(2×8)÷4。

例1 已知a※b=(a+b)-(a-b),求9※2的值。

例2 定义运算:a⊙b=3a+5ab+kb,

其中a,b为任意两个数,k为常数。比如:2⊙7=3×2+5×2×7+7k。

(1)已知5⊙2=73。问:8⊙5与5⊙8的值相等吗?

(2)当k取什么值时,对于任何不同的数a,b,都有a⊙b=b⊙a,即新运算“⊙”符合交换律?

例3 对两个自然数a和b,它们的最小公倍数与最大公约数的差,定义为a☆b,即a☆b=[a,b]-(a,b)。比如,10和14的最小公倍数是70,最大公约数是2,那么10☆14=70-2=68。

(1)求12☆21的值;(2)已知6☆x=27,求x的值。

例4 a表示顺时针旋转90°,b表示顺时针旋转180°,c表示逆时针旋转90°,d表示不转。定义运算“◎”表示“接着做”。求:a◎b;b◎c;c◎a。

例5 对任意的数a,b,定义:f(a)=2a+1, g(b)=b×b。

(1)求f(5)-g(3)的值;

(2)求f(g(2))+g(f(2))的值;

(3)已知f(x+1)=21,求x的值。

练习4

2.定义两种运算“※”和“△”如下:a※b表示a,b两数中较小的数的3倍,a△b表示a,b

两数中较大的数的2.5倍。比如:4※5=4×3=12,4△5=5×2.5=12.5。

计算:[(0.6※0.5)+(0.3△0.8)]÷[(1.2※0.7)-(0.64△0.2)]。

4.设m,n是任意的自然数,A是常数,定义运算m⊙n=(A×m-n)÷4,

并且2⊙3=0.75。试确定常数A,并计算:(5⊙7)×(2⊙2)÷(3⊙2)。

5.用a,b,c表示一个等边三角形围绕它的中心在同一平面内所作的旋转运动:a表示顺时针旋转240°,b表示顺时针旋转120°,c表示不旋转。运算“∨”表示“接着做”。试以a,b,c

为运算对象做运算表。

6.对任意两个不同的自然数a和b,较大的数除以较小的数,余数记为a b。比如73=1,529=4,420=0。(1)计算:19982000,(519)19,5(195);

相关文档
最新文档