吉林大学组合数学习题解答

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 证明:在一个至少有2人的小组中,总存在两个人,他们在组所认识的人数相同。 证明:

假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n 个人认识的人数有n-1种,那么至少有2个人认识的人数相同。

假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。

2.3 证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点

的坐标也是整数。 证明: 方法一:

有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

第三章

3.4 教室有两排,每排8个座位。现有学生14人,其中的5个人总坐在前排,4个人总坐在后排,求有多少种方法将学生安排在座位上?

解:前排8个座位,5人固定,共58*5!C 种方法;后排8个座位,4人固定,共4

8*4!C 种方法;前排和后排还剩7个座位,由剩下的5人挑选5个座位,共5

7*5!C 种方法;则一共有545545

887887***5!*5!*4!**28449792000C C C P P P ==种安排方法。 另一种解法:168277386545

5885885888871408!

7!C P P C P P C P P P P P ++=⨯⨯=⨯⨯。 3.5 将英文字母表中的26个字母排序,要求任意两个元音字母不能相邻,则有多少种排序

方法?

解:先排21个辅音字母,共有21! 再将5个元音插入到22个空隙中,5

22P

故所求为52155

222122521!P P C P ⨯=

3.6 有6名先生和6名女士围坐一个圆桌就餐,要求男女交替就坐,则有多少种不同的排坐方式?

解:6男全排列6!;6女全排列6!;6女插入6男的前6个空或者后6个空,即女打头或男打头6!*6!*2;再除以围圈重复得(6!*6!*2)/12=6!*5!= 86400

3.7 15个人围坐一个圆桌开会,如果先生A 拒绝和先生B 和C 相邻,那么有多少种排坐方式?

方法1:除B 和C 以外,A 可以在剩余的12人中挑选2人坐在自己的两边,有2

2

122C P 。将A 与其两边的人看作一个元素,与其他12个人形成共13个元素的圆排列,有(13-1)!,所以

共有222

12212(131)!12!C P P -== 种排列。

方法2:除去A 、B 和C 的12人共有11

11P 种坐法,A 在12人中插入位置的坐法有12种。B 和C 不与A 相邻的坐法共有11*12种,由于15人围成圆桌坐,故排列方式共有

111112*********!P ⨯⨯=⨯= 种坐法。

3.9 求方程123420x x x x +++=,满足12342,0,5,1x x x x ≥≥≥≥-的整数解的个数。

14416803+-⎛⎫= ⎪⎝⎭

3.10 书架上有20卷百科全书,从中选出4卷使得任意两本的卷号都不相邻的选法有多

少种? 解: n=20,r=4,1204117238044n r r -+-+⎛⎫⎛⎫⎛⎫

===

⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭

相当于有16卷已经排好,把4卷插入到17个“空隙”中,有174⎛⎫

⎪⎝⎭

种,对应序号都不会相邻。 3.20

证明:

(1)()11,3(31)22

n

n S n -=

+- (2)()⎪⎪⎭

⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=-4332,n n n n S ; (3)().61551043,⎪⎪⎭

⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=-n n n n n S

证明: (1)

组合分析方法:

n 个元素分成3组,允许为空的方案为3n

n 个元素分成3组,有一组必为空的方案为3*2n

; n 个元素分成3组,有两组必为空的方案为3;

n 个元素分成3组,根据容斥原理,不允许为空的方案为3n -3*2n

+3;

不考虑组间顺序,方案为

1

133231(31)23!2

n n n n ---⨯+=+- (2)

()⎪⎪⎭

⎝⎛+⎪⎪⎭⎫ ⎝⎛=-4332,n n n n S

3个元素一组、其余元素一个各一组或者选4个元素分两组(每组2个)、其余元素一个各一组。

3个元素一组、其余元素一个各一组:3n ⎛⎫ ⎪⎝⎭

选4个元素分两组(每组2个)、其余元素一个各一组:选4个元素的方案为4n ⎛⎫

⎪⎝⎭

分成2组的方案为42!32⎛⎫= ⎪⎝⎭种,所以有34n ⎛⎫ ⎪⎝⎭

(3)

().61551043,⎪⎪⎭

⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=-n n n n n S 4个元素一组、其余元素一个各一组,或者选5个元素分两组(一组2个一组3个)、

其余元素一个各一组,或者6个元素分三组(每组2个)、其余元素一个各一组。

4个元素一组、其余元素一个各一组:4n ⎛⎫

⎪⎝⎭

选5个元素分两组(一组2个一组3个)、其余元素一个各一组:选5个元素为5n ⎛⎫ ⎪⎝⎭

分两组(一组2个一组3个)方案为5102⎛⎫= ⎪⎝⎭,所以有105n ⎛⎫ ⎪⎝⎭

选6个元素分三组(每组2个)、其余元素一个各一组:选6个元素为6n ⎛⎫ ⎪⎝⎭

,分三组

(每组2个)的方案为63!15222⎛⎫=

⎪⎝⎭,所以有156n ⎛⎫

⎪⎝⎭

3.21 (1)会议室中有2n +1个座位,现摆成3排,要求任意两排的座位都占大多数,求

有多少种摆法? 解:

(1)

相关文档
最新文档