2020年数学分析高等代数考研试题参考解答

合集下载

2020年数学分析高等代数考研试题参考解答

2020年数学分析高等代数考研试题参考解答

2020年数学分析高等代数考研试题参考解答安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答中山大学2011年数学分析高等代数考研试题参考解答中山大学2011年数学分析考研试题参考解答中山大学2012年高等代数考研试题参考解答中山大学2012年数学分析考研试题参考解答中山大学2013年高等代数考研试题参考解答中山大学2013年数学分析考研试题参考解答中山大学2014年高等代数考研试题参考解答中山大学2014年数学分析考研试题参考解答中山大学2015年高等代数考研试题参考解答中山大学2015年数学分析高等代数考研试题参考解答中山大学2015年数学分析考研试题参考解答中山大学2016年高等代数考研试题参考解答中山大学2016年数学分析考研试题参考解答中山大学2017年高等代数考研试题参考解答中山大学2017年数学分析考研试题参考解答中山大学2018年高等代数考研试题参考解答中山大学2018年数学分析考研试题参考解答中山大学2019年高等代数考研试题参考解答中山大学2019年数学分析考研试题参考解答重庆大学2020年数学分析考研试题参考解答。

2020考研数一真题答案及详细解析

2020考研数一真题答案及详细解析

一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。

3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。

CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。

ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。

2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。

1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。

2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0X—r•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X3, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。

J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。

2020考研数学(一)答案解析

2020考研数学(一)答案解析
E ( X ) 0,
π
1
2
π
E ( XY ) E ( X sin X )2π
x sin x
dx
02x sin xdx
π
π
2
2
π
2
π
π
02xd cos x
x cos x|0202cos xdx
π
π
2
sin x|
π
2
.
02
π
π
9
故 cov( X , Y )2π0π2.
三、解答题
(15)(本题满分10分)
f ( x) 0.
x
x
综上,
f ( x )d x
f ( x ) af ( x)
lim
f
( x ) af ( x )
f (0) af (0)
am n.
0
0
x
2f
12.f(x,y)0xyext2dt,则

x y
(1,1)
(12)【答案】4e.
【解析】因为
2f
2f
,又
f
ex xy2xxex3y2,
x y
y x
x , y0,0x2y2
x , y0,0
x2y2
(4) 设R为幂级数anxn的收敛半径,r是实数,则


n1
(A)anrn发散时,
r
R.
n 1
(B)anrn发散时,
r
R.
n 1
(C)
r
R时,anrn发散.
n 1
(D)
r
R时,anrn发散.
n 1
(4)【答案】(A).
【解析】若anrn发散,则

北京大学2020年数学分析试题及解答

北京大学2020年数学分析试题及解答

注 这里的结论为裴礼文的《数学分析中的典型问题与方法》第二版第 168 页定理 4, 若想更为熟悉这方面的内 容, 可以翻阅该书. 解决这题的方法是想下连续函数的情形怎么证明, 做一个类比即可.
2. 记
∆(f, n, m)
=
f
(( n
+
)) 1
π 2

f
(( n
+
) 1
π 2
+
) 1 m
= =
( n
)

F
( ∑∑ni=ni=1 1x∫i x∫xixi− xii1−1ff(t()t)ddt t )

∑n
i=1
F (xi) F (1)
∫ xi
xi−1
f (t)
dt.
又因为 F (x) 在 [0, 1] 上一致连续, 故 ∀ ε > 0, ∃N > 0, 当 n > N 时, |F (xi) − F (xi−1)| < ε, 此时
,

M
= maxx0⩽x⩽2x0 |f (x)| ,

( ([ ] { })) ( ({ } )) ( ([ ] ))
x
x
f (x) = f x0
+
x0
x0
⩽f
x
x0 ([
x]0
+1 )
+ f x0
x −1
x0
⩽M+
x x0
−1
f
(x0)

M
+
x
− x0 x0
f
(x0),
再结合
limx→+∞
M x

2020考研高数(一)真题及答案解析

2020考研高数(一)真题及答案解析

2020全国硕士研究生入学统一考试数学一试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( )(A )()21xt e dt -⎰(B )(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D )1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。

(A )()()222011x t x e dt e x '-=-~⎰(B )(()(0ln 1ln 1x dt x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 3012xx x-'=⎰经比较,选(D )(2)设函数()f x 在区间()1,1-内有定义,且()0lim 0,x f x →=则( )(A )当0x →=时,()f x 在0x =处可导。

(B )当0x →=时,()f x 在0x =处可导。

(C )当()f x 在0x =处可导时,0x →=。

(D )当()f x 在0x =处可导时,0x →=【答案】(C )【解析】当()f x 在0x =处可导,且()0lim 0x f x →=,则有()00f =,0()lim 0x f x x→=(()f x为x 的高阶无穷小量),所以00x →=,选(C )。

(3)设函数(),f x y 在点()0,0处可微,()0,00,00,,,1f f f n x y ()⎛⎫∂∂==- ⎪∂∂⎝⎭,非零向量n与α垂直,则( ) (A )()(,0,0lim0x y →存在(B )()(,0,0lim0x y →=存在(C )()(,0,0lim0x y →存在(D )()(,0,0lim0x y →存在【答案】(A ) 【解析】由题意可知,(,)(,)limlimx y x y →→(,)limx y →=由于函数(),f x y 在点()0,0处可微,所以(,)lim0x y →,选(A )。

考研高等代数真题答案

考研高等代数真题答案

考研高等代数真题答案一、选择题1. 根据线性空间的定义,下列哪个选项不是线性空间的子空间?- A. 所有零向量组成的集合- B. 线性空间中的非零向量集合- C. 线性空间中的任意向量集合- D. 线性空间中满足特定线性组合的向量集合答案:B2. 矩阵A的特征值是λ1, λ2, ..., λn,矩阵B的特征值是μ1,μ2, ..., μn。

若AB=BA,那么矩阵A+B的特征值是什么?- A. λ1+μ1, λ2+μ2, ..., λn+μn- B. λ1*μ1, λ2*μ2, ..., λn*μn- C. λ1+μ1, λ1+μ2, ..., λn+μn(无规律)- D. 不能确定答案:A二、填空题1. 若线性变换T: V → W,其中V和W是有限维向量空间,且dim(V) = n,dim(T(V)) = r,则T的核的维数是_________。

答案:n-r2. 设A是一个3×3的矩阵,且|A| = 2,矩阵A的特征多项式为f(λ)= (λ-1)^2(λ-3),则矩阵A的迹是_________。

答案:4三、解答题1. 证明:若矩阵A可逆,则A的伴随矩阵A*的行列式等于|A|^(n-1),其中n是A的阶数。

证明:设矩阵A是一个n×n的可逆矩阵,其伴随矩阵记为A*。

根据伴随矩阵的定义,我们有:A * A* = |A| * I,其中I是单位矩阵。

两边同时乘以A的逆矩阵A^(-1),得到:A^(-1) * A * A* = |A| * A^(-1) * I,即 A* = |A|^(n-1) * A^(-1)。

由此可知,A*的行列式是|A|^(n-1)。

2. 解线性方程组:x + 2y + 3z = 14x + 5y + 6z = 27x + 8y + 9z = 3解:首先写出增广矩阵:[1 2 3 | 1][4 5 6 | 2][7 8 9 | 3]通过初等行变换,将增广矩阵化为行最简形式:[1 0 -1 | -1][0 1 3 | 4][0 0 0 | 0]根据行最简形式,我们可以得到y = 4 - 3z,x = 1 + z。

2020考研数一真题答案及详细解析

2020考研数一真题答案及详细解析

一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。

3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。

CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。

ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。

2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。

1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。

2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0X—r•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X3, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。

J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。

2020年考研(数学二)真题试卷(题后含答案及解析)

2020年考研(数学二)真题试卷(题后含答案及解析)

2020年考研(数学二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.当x→0+时,下列无穷小量中最高阶是A.(et2-1)dt.B.ln(1+)dt.C.sin t2dt.D.正确答案:D解析:x→0+时,A ∴(et2-1)dt是x的3阶无穷小.B∴是x的5/2导阶无穷小,C=sin(sin2x)·cos x~x2∴sint2dt是x的3阶无穷小.D∴是x的5阶无穷小.故应选D.2.函数f(x)=的第二类间断点的个数为A.1.B.2.C.3.D.4.正确答案:C解析:间断点为:x=-1,x=0,x=1,x=2因此x=0是f(x)的第一类可去间断点;所以x=1是f(x)的第二类间断点;同理由知x=2也是f(x)的第二类间断点.故应选C.3.dx=A.π2/4.B.π2/8.C.π/4.D.π/8.正确答案:A解析:所以x=0是可去间断点;x=1是无穷间断点.故是广义积分今:t=,则x=t2,dx=2t·dt故选A.4.已知函数f(x)=x2ln(1-x).当n≥3时,f(n)(0)=A.-n!/(n-2).B.n!/(n-2).C.-(n-2)!/n.D.(n-2)!/n.正确答案:A解析:5.关于函数f(x,y)=给出以下结论正确的个数是A.4.B.3.C.2.D.1.正确答案:B解析:6.设函数f(x)在区间[-2,2]上可导,且f’(x)&gt;f(x)&gt;0,则A.f(-2)/f(-1)&gt;1.B.f(0)/f(-1)&gt;e.C.f(1)/f(-1)<e2.D.f(2)/f(-1)=0可知,A11a1+A12a2+A13a3+A14a4=0,因为A12≠0,因此a2可由a1,a3,a4线性表示,故a1,a3,a4线性无关.因为r(A)一r(a1,a2,a3,a4)=3,因此a1,a3,a4为基础解系,故应选C.又因为A*A=|A|E=O,A的每一列a1,a2,a3,a4是A*x=0的解向量.只要找到是A*x=0的3个无关解就构成基础解系.8.设A为3阶矩阵,a1,a2为A的属于特征值为1的线性无关的特征向量,a3为A的属于特征值-1的特征向量,则满足P-1AP=的可逆矩阵P为A.(a1+a3,a2,-a3).B.(a1+a2,a2,-a3).C.(a1+a3,-a3,a2).D.(a1+a2,-a3,a2).正确答案:D解析:因为a1,a2为属于特征值1的线性无关的特征向量,所以a1+a2,a2仍为属于特征值1的线性无关的特征向量,a3为A的属于特征值-1的特征向量,故-a3为A的属于特征值-1的特征向量矩阵,因为特征向量与特征值的排序一一对应,故只需P=(a1+a2,-a3,a2)就有P-1AP=,故应选D.填空题9.=_______正确答案:一√2解析:10.=________正确答案:2/9(2√2-1)解析:11.设z=arctan[xy+sin(x+y)],则dz|(0,π)=_________正确答案:(π-1)dx-dy解析:12.斜边长为2a等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水压力为_________正确答案:(ρga3)/3解析:13.设y=y(x)满足y”+2y’+y=0,且y(0)=0,y’(0)=l,则y(x)dx=_________正确答案:1解析:由条件知,特征方程为:r2+2r+1=0,特征值r1=r2=-1齐次方程通解为:y=(C1+C2x)e-x,由y(0)=0,y’(0)=1得C1=0,C2=1即y(x)=xe-x,从而知:14.行列式=________正确答案:a2(a2-4)解析:解答题解答应写出文字说明、证明过程或演算步骤。

2020年考研武汉大学数学分析真题

2020年考研武汉大学数学分析真题

nn ann!
的敛散性.
6.(15)若级数
∞ n=1
anco
sn
x
在[0,
2π]
ቤተ መጻሕፍቲ ባይዱ
上收敛,
试问其是否一致收敛?并
说明理由.
7.(15)设 f (x) = sinx, x ∈ [0, π], 试将 f (x) 展开成余弦函数, 并讨论其
收敛性.
8.(15)证明: 当x ∈ (0, 1) 时, 存在 θn 使得
x2+1
(x2−2x+2)2
d
x.
4.(15)计算三重积分
(x + y − z)(y + z − x)(z + x − y)dxdydz

其中 Ω = {(x, y, z) | 0 ≤ x+y−z ≤ 1, 0 ≤ y+z− x ≤ 1, 0 ≤ z+ x−y ≤ 1}.
5.(15)讨论级数
∞ n=1
张张
风雨过后便是彩虹
加油!
武汉大学2020年考研数学分析真题
1.(15)若
nl→im∞an
=
0(a
>
0),
nl→im∞bn
=
0,
计算
lim abnn − n→∞ bn
1 .
2.(15)设 f (x, y, z) = xyyzzx, 求 f (x, y, z) 的全微分以及二阶偏导数.
3.(15)计算不定积分
x∈[a,b]
10.(15)设B2 = {(x, y) | x2 + y2 ≤ 1}, ∂B2 = {(x, y) | x2 + y2 = 1},证
明:不存在连续可微的映射g : B2 → R2满足:g(B2) ⊆ ∂B2且g(x, y) =

哈尔滨工业大学2020数学分析和高等代数考研真题

哈尔滨工业大学2020数学分析和高等代数考研真题

2020哈工大数分1. 判断以下命题成立与否,并给出证明(1) f (x )在x =0的任意领域上无界,则当x →0时,f (x )为无穷大。

(2) 数列{a n }的无穷多个子列都收敛于a ,是否可以断定lim n→∞a n =a 。

(3) 设f (x )在有限闭区间[a,b ]上处处都可导,则f ′(x )有界。

(4) 非负数列{u n }满足u n =o (1n ),则∑u n ∞n=1收敛。

(5) 设f (x,y )在(0,0)上的偏导数都存在,则f (x,y )在(0,0)上连续。

2. 设lim n→∞a n =a ,证明lim n→∞12a 1+23a 2+⋯+n n +1n =a 3. 叙述闭区间连续函数的Cantor 定理,并证明。

4. 函数f (x )在(0,a ]上可导,则(1) √xf ′(x )在(0,a ]上有界,求证f (x )在(0,a ]上一致连续; (2) lim x→0+√xf ′(x )在(0,a ]上存在,求证f (x )在(0,a ]上一致连续。

5. 函数f (x )在[a,b ]上具有连续的二阶导数,则存在c ∈[a,b ],使得∫f (x )dx ba=(b −a )f (a +b 2)+124(b −a )3f ′′(c ) 6. 讨论∑ln (1+(−1)n n p )∞n=1的收敛性和绝对收敛性(p >0)7. (1) 数列的和∑u n ∞n=1在区间I 上一致收敛,求证其一般项u n 在I 上一致收敛于0;(2) 讨论级数∑2n sin 13n x∞n=1在x >0上的一致收敛性。

8. (1) 方程:x 2+2y +cos (xy )=0在(0,0)的充分小领域上确定唯一的连续函数y =y (x ),使y =y (0) (2) 讨论y =y (x )在x =0处的可微性 (3) 求极限lim x→0y (x )x9. 求极限lim t→0+1t4∭sin√(x2+y2+z2)dxdydz x2+y2+z2≤t210.求I=∬(x2+az2)dydz+(y2+ax2)dzdx+(z2+ay2)dxdy sS为上半球z=√a2−x2−y2的上侧。

2020年考研数学(三)真题(后附解析答案)

2020年考研数学(三)真题(后附解析答案)

2020年全国硕士研究生招生考试数学(三)(科目代码:303)一、选择题(1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)(1)设1口心—°= b,则lim sinfQ)—sina=().x-^a x——a x-*a3C——a(A)6sin a(B)6cos a(C)6sin/(a)iIn I14-rr I(2)函数心)=二的第二类间断点的个数为((e—1)(j?—2)(A)l(B)2(03(3)设奇函数心)在(-00,-1-00)上具有连续导数,则().(A)f[cos/"(/)+/^(Olldr是奇函数J0(E)「[cos/(i)+/(O]d^是偶函数J0(C)[[cos/"'(/)+y(t)]d/是奇函数J0(D)「[cos是偶函数J0(D)bcos/(a) ).(D)4(4)设幕级数—2)"的收敛区间为(一2,6),则工a”Q+l)2n的收敛区间为().n=\n=1(A)(-2,6)(B)(-3,l)(0(-5,3)(D)(-17,15)(5)设4阶矩阵A=(a“)不可逆,a*的代数余子式A12丰O,aj,a2,a3,a,为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*X=0的通解为().(A)X=^1a1+^2a2+^3a3,其中k x,k2,k.为任意常数(B)X=^1a1+k2a2+k3a4,其中k,,k2,k3为任意常数(C)X=bS+展as+匕。

4,其中紅,k2,k3为任意常数(D)X=k i a2k2a3+怂。

4,其中ki,k2^k3为任意常数(6)设A为3阶矩阵,a】,a?为A的属于特征值1的线性无关的特征向量,as为A的属于特征I1°°\值一1的特征向量,则满足P_1AP=0-10的可逆矩阵卩为().'o01'(A)(a j a3,a2,—a3)(B)(a〕+ct2,a2,—a3)(C)(a1+a3,—a3,a2)(D)(a T+a2»—a3,a2)(7)设A,B,C为三个随机事件,且PC A)=P(£)=P(C)=±,P(AB)=O,P(AC)=P(BC)=2,412则A,B,C中恰有一个事件发生的概率为().3215(A)Z(B)T(C)7(D)12(8)设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-,则下列随机变量中服从标准正态分布且与X相互独立的是().(A)啤(X+Y)(B)尝(X—丫)55(C)y(X+Y)(D)y(X-Y)二、填空题(9〜14小题,每小题4分,共24分.请将答案写在题中的横线上.)(9)设z=arctanRy+sin(z+了)],贝0dz|(0,…)=______.(10)曲线jc y+e2iy=0在点(0,—1)处的切线方程为________.(H)设某厂家生产某产品的产量为<2,成本C(Q)=100+13Q,该产品的单价为/,需求量—2,则该厂家获得最大利润时的产量为(12)设平面区域。

2020年考研数一真题参考答案

2020年考研数一真题参考答案

,则
m =C1 + C2 , n =λ1C1 + λ2C2 ,所以
+∞
∫ ∫ ( ) +∞ f (x)dx =
0
+∞ 0
C1eλ1x + C2eλ2x
dx
= Cλ11
eλ1x
+
C2 λ2
eλ2 x

0
= − Cλ11
+
C2 λ2

=
− C1λ2 + C2λ1 λ1λ2
ci
(A)α1 可由α2 ,α3 线性表示; (B)α2 可由α1,α2 线性表示;
(C)α3 可由α1,α2 线性表示; (D)α1,α2 ,α3 线性无关。
解析:令 x= − a2 a1
y= − b2 b1
z= − c2 c1
x t1 ,则有 = y
z
a2 a1
ρ →0
x2 + y2
其中=ρ x2 + y2 ,也即有
lim f (x, y) − fx′(0, 0) x− f y′(0, 0) y = 0
ρ →0
x2 + y2
又 n ⋅( x, y, f (x, y)) = fx′(0, 0)x + f y′(0, 0) y − f (x, y) ,因此有

b2

+
t1

b1=
c2 c1
α2 + t1α1
同理令 x= − a3 a2
y= − b3 b2
z= − c3 c2
x a3 a1
t2
,可得

2020考研数学三真题及答案解析

2020考研数学三真题及答案解析

2020年全国硕士研究生入学统一考试数学(三)试题及解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的. (1)设()limx af x a b x a →−=− ,则sin ()sin lim ()x a f x ax a→−= −(A). sin b a (B). cos b a (C). sin ()b f a (D). cos ()b f a 【答案】B 【解析】x x sin ()sin sin ()sin ()limlim cos ()cos ()()x a a a f x af x a f x a f x b b f a x a f x a x a=→→−−−=⋅=⋅=−−− 设()f x u =,则()()sin ()sin sin sin lim=lim cos cos ()()u f a x a u f a f x au a u f a f x a u a=→→−−==−− 则x sin ()sin sin ()sin ()sin ()sin ()limlim lim lim()()=cos x aa x a x a f x af x a f x a f x a f x a x a f x a x a f x a x a b a→→→→−−−−−=⋅=⋅−−−−−(2)函数11ln 1()(1)(2)x x e xf x e x −+=−−,则第二类间断点个数为( )(A).1 (B).2 (C).3(D).4 【答案】C【解析】本题考查的是第一类间断点与第二类间断点的定义,判断间断点及类型的一般步骤为:1.找出无定义的点(无意义的点);2.求该点的左右极限;3.按照间断点的定义判定。

第二类间断点的定义为00(),()f x f x −+至少有一个不存在,很显然()f x 不存在的点为1,0,1,2x x x x =−===。

2020年全国研究生考试数学(二)真题+答案详解

2020年全国研究生考试数学(二)真题+答案详解

(1- x)n
(1- x)n -1
2
(1- x)n -2
\ f (n) (0) = - n! . n-2
ìxy
5.关于函数
f
(x,
y)
=
ï í
x
ï î
y
xy ¹ 0 y = 0 给出以下结论 x=0
¶f

=1
¶x (0,0)
¶2 f

=1
¶x¶y
(0,0)
③ lim f ( x, y) = 0
( x, y )®(0,0)
ò = 1
1
1 (x3 + 1) 2 d (x3 + 1)
30
=
1
×
2
(x3
+ 1)
3 2
1
33 0
=
2
æ ç
3
22
ö - 1÷
9è ø
11.
|(0,p)= .
设 z = arctan[xy + sin(x + y)] ,则 dz
解析:
dz = ¶z dx + ¶z dy
¶x ¶x
¶z =
1
[ y + cos(x + y)], ¶z = π- 1
a 0 -1 1
14.行列式 0
a
1 -1 =
-1 1 a 0
1 -1 0 a
解析:
a 0 -1 1 a 0 -1 1
0 a 1 -1 0 a 1 -1 =
-1 1 a 0 -1 1 a 0
1 -1 0 a 0 0 a a
0 a -1 + a 2 1
a -1+ a 2 1

华南理工大学2020年数学分析考研试题参考解答

华南理工大学2020年数学分析考研试题参考解答

所以所求点为 (4, 2, 4) 或者 (−4, −2, −4)。 ** 十、(13 分)** 设 f (x) 在 [0, 2] 上二阶可微, 且 |f (x)| ≤ 1, |f ’’(x)| ≤ 1 . 证明:|f ’(x)| ≤ 2 . ** 证明:** 用在 x 点的泰勒公式
f (y)
=
f (x)
+∞
cos(yx)de−2x
0
20
=
− 1 e−2x 2
cos(yx)|+0 ∞

y 2
∫ +∞
0
e−2x
sin(yx)dx
=
1
+
y

+∞
sin(yx)de−2x
2 40
=
1 2
+
y e−2x 4
sin(yx)|+0 ∞

y2 4
∫ +∞
0
e−2x
cos(yx)dx
因此
∫ +∞
0
e−2x
cos(yx)dx
0
ex(1

cos(2x)dx
=
40
eπ − 1

+
1

π
ex cos(2x)dx
4
40
∫π
∫π
ex cos(2x)dx = cos(2x)dex
0

0 π
= ex cos(2x)|π0 + 2 ex sin(2x)dx

0 π
= eπ − 1 + 2 sin(2x)dex
0
∫π
= eπ − 1 + 2(ex sin(2x)|π0 − 2 ex cos(2x)dx)

2020考研数学三数学分析题解及答案

2020考研数学三数学分析题解及答案

2020考研数学三数学分析题解及答案在2020年的考研数学三中,数学分析部分是考生们需要掌握的重要内容。

本文将对2020年考研数学三数学分析题目进行详细解析,帮助考生们更好地理解题目,并给出相应的答案。

第一题:对于第一题,考生需要证明函数f(x)=x^3-3x和g(x)=x^2-3的最小正解为√3。

解析:首先我们需要找到f(x)和g(x)的交点,即解方程f(x)=g(x)。

将两个函数相减得到x^3-3x-x^2+3=0,整理后得到x^3-x^2-3x=0。

通过观察可以发现x=√3可能为一个解。

将x=√3带入方程,得到(√3)^3-(√3)^2-3x=0,化简后得到0=0,此时x=√3满足方程,因此x=√3为f(x)和g(x)的交点。

其次,我们需要证明x=√3为最小正解。

首先,我们可以使用导数来分析函数的单调性。

求导得f'(x)=3x^2-3和g'(x)=2x,分别对应函数f(x)和g(x)的导数。

我们可以看到,当x<√3时,f'(x)为负值,而g'(x)为正值。

当x>√3时,f'(x)为正值,而g'(x)为正值。

因此x=√3为f(x)和g(x)的交点,且在该点处f(x)从负数变为正数,g(x)从正数变为正数。

所以我们可以得出结论,x=√3为f(x)和g(x)的最小正解。

第二题:第二题要求考生求定积分∫[1,2] (1-x^2)^(1/2) dx。

解析:要求定积分,我们可以利用变量代换来解决。

令x=sinθ,即dx=cosθ dθ。

将x=sinθ代入原式中,得到∫[1,2] (1-sin^2θ)^(1/2) cosθ dθ。

利用三角恒等式1-sin^2θ=cos^2θ,将其代入上式,得到∫[1,2] cos^2θ dθ。

接下来,我们可以利用换元积分法来计算上式。

令u=cosθ,即du=-sinθ dθ。

将u=cosθ代入上式,得到∫[1,2] (u^2) du,将其化简得到∫[1,2]u^2 du。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答。

相关文档
最新文档