2013年浙江师范大学数学分析与高等代数(904)考试大纲

合集下载

2013年数学考研大纲要求

2013年数学考研大纲要求

全国硕士研究生入学统一考试数学考试大纲(2011版)教育部考试中心Ⅰ.考试性质数学考试是为高等院校和科研院所招收工学、经济学、管理学硕士研究生而设置的具有选拔性质的全国统一入学考试科目.其目的是科学、公平、有效地测试考生是否具备继续攻读硕士学位所需要的数学知识和能力,评价的标准是高等学校优秀本科毕业生能达到的及格或及格以上水平,以利于各高等院校和科研院所择优选拔,确保硕士研究生的招生质量.Ⅱ.考查目标要求考生比较系统地理解数学的基本概念和基本理论,掌握数学的基本方法,具备抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学知识分析问题和解决问题的能力.Ⅲ.试卷分类及使用专业根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学(一)、数学(二),针对经济学和管理学门类的为数学(三).招生专业须使用的试卷种类规定如下:一、须使用数学(一)的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业.2.授工学学位的管理科学与工程一级学科.二、须使用数学(二)的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业.三、须选用数学(一)或数学(二)的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高二级学科、专业选用数学(一),对数学要求较低的选用数学(二).四、须使用数学(三)的招生专业1.经济学门类的各一级学科.2.管理学门类中的工商管理、农林经济管理一级学科.3.授管理学学位的管理科学与工程一级学科.Ⅳ.考试形式和试卷结构一、试卷满分及考试时间各卷种试卷满分均为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.各卷种试卷题型结构均为:单项选择题 8小题 , 每小题 4 分 , 共 32 分 .填空题 6小题 , 每小题 4 分 , 共 24 分 .解答题(包括证明题) 9小题 , 共 94 分。

2013年硕士研究生入学考试初试考试大纲

2013年硕士研究生入学考试初试考试大纲

2013年硕士研究生入学考试初试考试大纲科目代码: 806科目名称:信号与系统适用专业:交通信息工程及控制参考书目:《信号与系统》(第二版)郑君里高等教育出版社考试时间:3小时考试方式:笔试总分:150 分考试范围:一、概论1.信号的定义及其分类;2.信号的运算;3.系统的定义与分类;4.线性时不变系统的定义及特征。

二、连续时间系统的时域分析1.微分方程的建立与求解;2.零输入响应与零状态响应的定义和求解;3.冲激响应与阶跃响应;4.卷积的定义,性质,计算等。

三、傅里叶变换1.周期信号的傅里叶级数和典型周期信号频谱;2.傅里叶变换及典型非周期信号的频谱密度函数;3.傅里叶变换的性质与运算;4.周期信号的傅里叶变换;5.抽样定理;抽样信号的傅里叶变换;四、拉普拉斯变换1.拉普拉斯变换及逆变换;3.线性系统拉普拉斯变换求解;4.系统函数与冲激响应;5.周期信号与抽样信号的拉普拉斯变换;五、S域分析、极点与零点1.系统零、极点分布与其时域特征的关系;2.自由响应与强迫响应,暂态响应与稳态响应和零、极点的关系;3.系统零、极点分布与系统的频率响应;4.系统稳定性的定义与判断。

六、连续时间系统的傅里叶分析1.周期、非周期信号激励下的系统响应;2.无失真传输;3.理想低通滤波器;4.佩利-维纳准则;5.调制与解调。

七、离散时间系统的时域分析1.离散时间信号的分类与运算;2.离散时间系统的数学模型及求解;3.单位样值响应;4.离散卷积和的定义,性质与运算等。

八、离散时间信号与系统的Z变换分析1.Z变换的定义与收敛域;2.典型序列的Z变换;逆Z变换;3.Z变换的性质;5.差分方程的Z 变换求解;6.离散系统的系统函数;7.离散系统的频率响应;样 题:一、单项选择题(每小题2分,共20分)1. 一个因果、稳定的离散时间系统函数)(z H 的极点必定在z 平面的 。

(A )单位圆以内 (B )实轴上 (C )左半平面 (D )单位圆以外 2. H (s )只有一对在虚轴上的共轭极点,则它的h (t )应是 。

浙江师范大学硕士研究生入学考试初试科目大纲

浙江师范大学硕士研究生入学考试初试科目大纲

浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 681数学分析适用专业: 070101基础数学、070102计算数学、070104应用数学、070105运筹学与控制论、071101系统理论一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。

(二)答题方式答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。

(三)试卷题型结构计算题:6~8小题,每小题6~10分,共40~70分简答题:3小题,每小题5分,共15分证明题等:6~8题,每题10~15分,约70分二、考查目标(复习要求)要求考生掌握数学分析课程的基本概念、基本定理和基本方法,能够运用数学分析的理论求解和证明相关命题。

三、考查范围或考试内容概要本课程考核内容包括实数理论和连续函数、一元微积分学、级数、多元微积分学:1、实数理论和连续函数(1)了解实数域及性质。

(2)掌握几种不等式及应用。

(3)熟练掌握邻域,上确界,下确界的概念和确界原理。

(4)熟练掌握函数复合、基本初等函数、初等函数及常用特性(单调性、周期性、奇偶性、有界性等)。

(5)熟练掌握数列极限的“ε-N”定义。

(6)掌握收敛数列的常用性质。

(7)熟练掌握数列收敛的判别条件(单调有界原理、迫敛性定理、柯西准则等)。

(8)熟练掌握“ε-δ”等语言,且能用它叙述各类型的函数极限。

(9)掌握函数极限的常用性质。

(10)熟练掌握函数极限存在的条件,(归结原则,柯西准则,左、右极限、单调有界等)。

(11)熟练应用两个重要极限。

(12)掌握无穷小量、无穷大量的定义和性质,熟悉等价无穷小、同阶无穷小、高阶无穷小及其性质。

(13)熟练掌握函数在某点连续的定义和等价定义。

(14)掌握间断点及类型。

(15)熟练掌握区间上连续函数和一致连续函数的性质。

(16)知道初等函数的连续性。

2、一元微积分学(1)熟练掌握导数的定义、几何意义,知道导数的物理意义。

浙江师范大学全日制教育硕士考研参考书目一览

浙江师范大学全日制教育硕士考研参考书目一览

浙江师范大学全日制教育硕士考研参考书目一览本文系统介绍浙江师大全日制教育硕士考研难度,浙江师大全日制教育硕士就业方向,浙江师大全日制教育硕士学费介绍,浙江师大全日制教育硕士考研参考书,浙江师大全日制教育硕士考研初试经验五大方面的问题,凯程浙江师大全日制教育硕士老师给大家详细讲解。

特别申明,以下信息绝对准确,凯程就是王牌的教育硕士考研机构!五、浙江师大全日制教育硕士考研参考书是什么?浙江师大教育硕士考研参考书很多人都不清楚,这里凯程老师给大家整理出来了:333教育综合参考书:①教育学原理:《教育学基础》教育科学出版社,2002年版全国十二所重点师范大学联合编写《教育概论》叶澜人民教育出版社,1991年版《教育原理》陈桂生华东师范大学出版社,2000年版《当代教育学》袁振国教育科学出版社,2004年版②中国教育史:《中国教育史》孙培青华东师范大学出版社,2005年版《简明中国教育史》王炳照等著浙江大学出版社③外国教育史:《外国教育史教程》贺国庆高等教育出版社,2009年版④教育心理学:《教育心理学》张大均编人民教育出版社各专业课参考书:902思想政治教育学原理参考书:《思想政治教育学原理》(第二版),陈万柏、张耀灿主编,高等教育出版社904数学分析与高等代数参考书:《数学分析》(上、下册),华东师范大学编,第三版,高等教育出版社《高等代数》,北京大学编905普通物理(力学与电磁学)参考书:《普通物理学》(第五版),程守洙主编,高等教育出版社907普通生物学参考书:《普通生物学》,陈阅增主编,高等教育出版社905普通物理(力学与电磁学)或906无机化学或907普通生物学参考书:《普通物理学》(第五版),程守洙主编,高等教育出版社《普通生物学》,陈阅增主编,高等教育出版社918学前教育史参考书:《学前教育史》,唐淑、何晓夏,辽宁师大出版社851英语写作参考书:《英语写作手册》,丁望道等编著,外语教学与研究出版社843自然地理学参考书:《自然地理学》,伍光和主编,高等教育出版社,第4版以上参考书比较多,实际复习的时候,请按照凯程老师指导的重点进行复习,有些内容是不考的,帮助你减轻复习压力,提高复习效率。

2013考研数学考试大纲

2013考研数学考试大纲

2013考研数学考试大纲2013硕士研究生入学考试考试大纲考试科目:数学分析考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构一元微积分学约50%多元微积分学约20%无穷级数约30%四、试卷题型结构试卷题型结构为:叙述和证明题5个题,每题15分计算题4个题,每题15分讨论题1个题,每题15分一、函数、极限、连续考试内容实数域及性质几种主要不等式及应用邻域上确界下确界确界原理函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)数列极限的定义收敛数列的若干性质(惟一性、保序性等)数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)“ε-δ”语言叙述各类型函数极限函数极限的若干性质函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)应用两个特殊极限求函数的极限无穷小(大)的定义、性质、阶的比较在一点连续的定义及其等价定义间断点定以及分类区间上连续的定义,用左右极限的方法求极限在一点连续性质及在区间上连续性质初等函数的连续性。

考试要求1.了解实数域及性质。

2.掌握几种主要不等式及应用。

3.熟练掌握领域,上确界,下确界,确界原理。

4.牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

5.熟练掌握数列极限的定义。

6.掌握收敛数列的若干性质(惟一性、保序性等)。

7.掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。

8.熟练掌握使用“ε-δ”语言,叙述各类型函数极限。

9.掌握函数极限的若干性质。

10.掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。

11.熟练应用两个特殊极限求函数的极限。

12.牢固掌握无穷小(大)的定义、性质、阶的比较。

13.熟练掌握在一点连续的定义及其等价定义。

14.掌握间断点定以及分类。

15.了解在区间上连续的定义,能使用左右极限的方法求极限。

2013年浙江师范大学数学分析(601)考试大纲

2013年浙江师范大学数学分析(601)考试大纲

第1页,共5页浙江师范大学浙江师范大学硕士研究生入学硕士研究生入学硕士研究生入学考试考试考试初试初试初试科目科目科目考 试 大 纲科目代码科目代码、、名称名称:: 601数学分析适用专业适用专业:: 070100数学数学((一级学科一级学科))、071101系统理论系统理论、、071400统计学统计学((一级学科一级学科))一、考试形式与试卷结构(一)试卷试卷满分满分 及 考试时间本试卷满分为150分,考试时间为180分钟。

(二)答题方式答题方式答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。

(三)试卷题型结构试卷题型结构全卷一般由九个大题组成,具体分布为是非判断题:3小题,每小题6分,共18分简答题:2~3小题,每小题6分,共12~18分计算题:5~6小题,每题8分,约40~48分分析论述题(包括证明、讨论、综合计算):6大题,每题10~15分,约70~80分二、考查目标考查目标((复习要求复习要求))要求考生掌握数学分析课程的基本概念、基本定理和基本方法,能够运用数学分析的理论分析、解决相关问题。

三、考查范围考查范围或或考试内容概要本课程考核内容包括实数理论和连续函数、一元微积分学、级数、多元微积分学等等。

第一章第一章 实数集与函数1.了解邻域,上确界、下确界的概念和确界原理。

2.掌握函数复合、基本初等函数、初等函数及常用特性。

(单调性、周期性、奇偶性、有界性等)3.掌握基本初等不等式及应用。

第二章第二章 数列极限1.熟练掌握数列极限的ε-N 定义。

2.掌握收敛数列的常用性质。

3.熟练掌握数列收敛的判别条件(单调有界原理、迫敛性定理、Cauchy 准则、压缩映射原理、Stolz 变换等)。

第2页,共5页4.能够熟练求解各类数列的极限。

第三第三章章 函数极限1.深刻领会函数极限的“ε-δ”定义及其它变式。

2.熟练掌握函数极限存在的条件及判别。

(归结原则,柯西准则,左、右极限、单调有界等)。

初试科目考试大纲-904数学分析与高等代数

初试科目考试大纲-904数学分析与高等代数

浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 904数学分析与高等代数适用专业: 045104学科教学(数学)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。

(二)答题方式答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。

(三)试卷内容结构各部分内容所占分值为:数学分析约80分高等代数约50分综合分析题约20分(四)试卷题型结构计算题:6大题,约80分。

证明分析题:3大题,约50分。

论述分析题:1大题,约20分。

二、考查目标(复习要求)全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程及用高等数学观点理解初等数学问题及教学的内容,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题,以及能利用数学分析、高等代数中的知识、数学思想理解、讨论初等数学问题及相关教学问题。

三、考查范围或考试内容概要第一部分:数学分析考查内容1、数列极限数列极限概念、收敛数列的定理、数列极限存在的条件2、函数极限函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量3、函数的连续性连续性概念、连续函数的性质4、导数与微分导数的概念、求导法则、微分、高阶导数与高阶微分5、中值定理与导数应用微分学基本定理、函数的单调性与极值6、不定积分不定积分概念与基本积分公式、换元法积分法与分部积分法7、定积分定积分概念、可积条件、定积分的性质、定积分的计算8、定积分的应用平面图形的面积、旋转体的侧面积9、级数正项级数、函数项级数、幂级数、傅里叶级数10、多元函数微分学偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题第二部分:高等代数考查内容多项式、行列式、线性方向组、矩阵、线性空间、线性变换第三部分:高观点下的初等数学考查内容利用数学分析、高等数学的知识及数学思想审视初等数学问题及相关教学问题。

初试科目考试大纲909世界文明史

初试科目考试大纲909世界文明史

浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称:909世界文明史适用专业:045109学科教学(历史)一、考试形式与试卷结构(一)试卷满分及考试时光本试卷满分为150分,考试时光为180分钟。

(二)答题方式答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。

(三)试卷题型结构挑选题:20小题,每小题3分,共60分简答题(简述题):4小题,每小题10分,共40分分析论述题(综合题):2小题,每小题25分,共50分二、考查目标(复习要求)全日制攻读硕士学位研究生入学考试《世界文明史》科目考试内容包括世界近代史、世界现代史等2门历史学科基础课程,要求考生系统控制相关学科的基本知识、基础理论和基本主意,并能运用相关理论和主意分析、解决历史教学中的实际问题。

三、考查范围或考试内容概要第一部分:世界近代史第1 页/共3 页第一章工业文明的曙光1.西欧的原初现代化:资本主义经济发展、文艺复兴、宗教改革、科学革命、启蒙运动、英国革命、美国自立战争、法国大革命、现代民族国家的出生2.全球化的开始:新航路的开辟、早期殖民扩张第二章工业文明的来临1.工业文明在欧美大陆确实立:工业革命、现代民主政治的拓展、社会主义运动的兴起2.整体世界的总算形成:瓜分殖民地的狂潮、向工业文明艰巨迈进的诸文明、第一次世界大战参考教材或主要参考书:1.马克垚主编:《世界文明史》,北京大学出版社2004年版。

2.斯塔夫里阿诺斯:《全球通史》(下),北京大学出版社2023年年年版。

第二部分:世界现代史第一章转型期的震荡与探索1.转型期的震荡:1929-1933年的经济危机、第二次世界大战2.转型期的探索:苏联与中国社会主义现代化模式的创立、欧美资本主义现代化模式的改革、殖民地半殖民地国家(土耳其、墨西哥)赶超型的资本主义现代化模式的创立第二章工业文明在世界范围内的全面展开1.推进现代化稳定发展的主要因素:联合国的建立、第三次科技革命的推进、殖民体系的瓦解2.现代化的扩大与发展:社会主义现代化模式的扩大、资本主义现代化模式的进一步调节、发展中国家现代化模式的成就3.整体世界的发展和两极格局的形成:经济全球化、冷战的兴起第三章走向21世纪的人类文明1.新科技革命和“新经济”的兴起:新技术革命、“新经济”的兴起2.世界政治格局的多极化:苏东剧变和冷战的结束、冷战后的世界政治格局3.经济全球化和区域化的加速:经济全球化的加速、经济区域化的迅猛发展参考教材或主要参考书:1.马克垚主编:《世界文明史》,北京大学出版社2004年版。

2013年数学三考研大纲71425

2013年数学三考研大纲71425

2013年研究生入学统一考试数学(三)大纲考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微 积 分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin lim 1x x x →= 1l i m 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle )定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz )公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解x e .sin x .cos x .ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()00xe f x x λλ-⎧=⎨≤⎩若x>0若5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u uσσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy -Lindberg )定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2χ分布t 分布F 分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑ 2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

浙江师范大学数学分析考研真题试题2008—2012年

浙江师范大学数学分析考研真题试题2008—2012年

< 1;
2 {xn } 67!TvcA,
22
浙江师范大学 2010 年硕士研究生入学考试初试试题
科目代码: 681 科目名称: 数学分析
适用专业: 基础数学、计算数学、应用数学、运筹学与控制论、系统理论。
提示: 1、请将所有答案写于答题纸上,写在试题上的不给分; 2、请填写准考证号后 6 位:____________。
−1
3
−1≤ x≤1
w 12 "xyzW y = 1 − x2下 y = x2 − 1 `a=1d D,{T|}~ D K
? DD,
12 "N a ≥ 1下







x1
=
a,
x2
=
a
a +
, a
x3
=
a
a +a
a+a
,K ,{g
1 ∀n ≥ 2, 下
1 2

xn
1 3 (2n 1)
6、求极限 lim

n 2 4 2n
7、求级数 (2n 1)x2n2 的收敛域。
n1
2n
8、计算曲线积分 (ex sin y 2 y)dx (ex cos y 2)dy ,其中 L 为上半圆周: L
(x a)2 y2 a2 , y 0 ,沿逆时针方向。
ln(1 t3)
1、求
lim
t0
t2 sin t
.
2、求
lim
x
x( x 1
x).
1
3、求 t ln tdt .
0
4、求 lim (x2 y2 )xy . (x, y)(0,0)

2013年数学三考研大纲参考 (2)

2013年数学三考研大纲参考 (2)

考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。

初试科目考试大纲-904数学分析与高等代数

初试科目考试大纲-904数学分析与高等代数

初试科目考试大纲-904数学分析与高等代数浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 904数学分析与高等代数适用专业: 420104学科教学(数学)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。

(二)答题方式答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。

(三)试卷内容结构各部分内容所占分值为:数学分析约100分高等代数约50分(四)试卷题型结构计算题:7大题,约100分。

分析论述题:3大题,约50分。

二、考查目标(复习要求)全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题。

三、考查范围或考试内容概要第一部分:数学分析考查内容1、数列极限数列极限概念、收敛数列的定理、数列极限存在的条件2、函数极限函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量3、函数的连续性连续性概念、连续函数的性质4、导数与微分导数的概念、求导法则、微分、高阶导数与高阶微分5、中值定理与导数应用微分学基本定理、函数的单调性与极值6、不定积分不定积分概念与基本积分公式、换元法积分法与分部积分法7、定积分定积分概念、可积条件、定积分的性质、定积分的计算8、定积分的应用平面图形的面积、旋转体的侧面积9、级数正项级数、函数项级数、幂级数、傅里叶级数10、多元函数微分学偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题第二部分:高等代数考查内容多项式、行列式、线性方向组、矩阵、线性空间、线性变换参考教材或主要参考书:华东师范大学编:《数学分析》(上、下),高等教育出版社,2001年,第三版。

浙江师范大学数学分析考研试题答案

浙江师范大学数学分析考研试题答案

浙江师范大学数学分析考研试题答案一.计算题1.0x 2dt sin2xx e -x lim2x0t→⎰=0x dt x2te -x lim3x 02→⎰=0x 2x 6e -1limx 2→=0x x122xe -lim 2x→=-612.2n )(!≥nn ,当n ≥10时,有∆=≤≤n n3n 30n )(!np →0,其中p=103n 3≤<1,所以0n 3nlim =+∞→!x3.y y x x 1x y y xx y x x y x x x z ln ln x x xx x x x x x x ++=∂∂∂∂=∂∂=∂∂+∙)()()()( =)(y x 1x y ln ln x x ++ )(x x y x yy z ∂∂=∂∂1-x 1x 1-x x y x xy x +== dt t t t x d x x x dx x x osx I tx ⎰=⎰⎰+-+-=+==∙1cos cos 1)1(cos cos cos 1sin c .423cos 2223dt ⎰⎰++=1t t-dt 1t t 22321I I -=∆ 1221))1ln((21)111(211112112122c u u du u du u u dt t t I u t ++-=+-=+-++=⎰⎰=⎰=122))cos 1ln(cos 21c x x ++-=( ()222222)cos 1ln(211ln 21112111212c x c v dv v dt t I vt ++=++=++=⎰=⎰=所以为任意常数其中c c )cos 1ln(cos 212221++-=-=x x I I I 5.π()⎰++=Lydy x dx y y I cos sin()()()()[]d xx x x x x x x x ⎰--+-+-=πππππ02222cos sin ()()()321020222cos )sin(I I I dxx x x x dx x x dx x x ++=--+-+-=⎰⎰⎰πππππππ()()()()333022322021613121)(2cos sin sin 0ππππππππππππ=-=-==∴-=----=-=⎰⎰⎰dx x x I I I dx x x x x x x x dx x x I二.简答题1.(1)M x f X x X M >>>∃>∀)(,0,0 时,有当 (2)()00*)(,,*,0,0εδδε≥-+∈∃>∀>∃A x f a a x 但2.(1)偏导数存在,则函数不一定可微(2)f(x,y)在定义域的一点()00,y x 处可微,则f (x,y )的偏导数在该点关于x,y 的偏导数存在。

湖北文理学院 904《高等代数》考试大纲

湖北文理学院 904《高等代数》考试大纲

湖北文理学院数学专业学术硕士初试考试科目《高等代数》考试大纲考试科目:高等代数科目代码:904一、考试目的和要求《高等代数》是为湖北文理学院数学专业硕士研究生初试设置的考试课程之一。

要求考生比较系统地理解高等代数的基本概念及基本理论,掌握高等代数的基本思想和方法,要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。

应考人员应根据本大纲的内容和要求,自行组织学习内容和掌握有关知识。

二、考试基本内容考试基本内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ- 矩阵、欧氏空间。

三、考试方式闭卷考试,试卷总分 150 分,考试时间 180 分钟。

四、考试题型选择题、填空题、计算题、证明题、综合题等。

五、考试知识点(一)多项式1、数域与一元多项式的概念2、多项式整除、带余除法、最大公因式、辗转相除法3、不可约多项式及其性质、因式分解定理4、重因式、重根5、多项式函数、多项式的根7、代数基本定理、复系数与实系数多项式的因式分解8、本原多项式、有理系数多项式的因式分解、爱森斯坦因(Eisenstein)判别法、有理数域上多项式的有理根(二)行列式1、行列式的定义2、行列式的性质、行列式的计算3、行列式按一行(列)展开4、克拉默(Cramer)法则(三)线性方程组1、线性方程组的初等变换、线性方程组的一般解2、n 维向量空间的定义与基本性质3、向量的线性组合、线性相关性、向量组的等价4、向量组的极大无关组、向量组的秩5、矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系6、线性方程组的有解判别定理、线性方程组解的结构(四)矩阵1、矩阵的概念、运算2、矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系3、矩阵的逆、伴随矩阵、矩阵可逆的条件4、分块矩阵及其运算与性质5、初等变换、初等矩阵、矩阵的标准形(五)二次型1、二次型与对称矩阵,矩阵的合同关系2、实数域、复数域上的二次型3、正定二次型与正定矩阵,实对称矩阵正定的判定条件(六)线性空间1、线性空间的定义与简单性质2、线性组合、线性相关、线性无关、线性表示、极大线性无关组3、维数、基与坐标4、基变换与坐标变换、过渡矩阵5、线性子空间的定义与判别、子空间分解6、子空间的交与和、维数公式7、子空间的直和(七)线性变换1、线性映射和线性变换的定义及例子2、线性变换的运算、线性变换的矩阵、矩阵的相似3、线性变换的值域与核、不变子空间及其性质4、方阵的特征值和特征向量、矩阵的对角化5、Cayley-Hamilton 定理(八)λ –矩阵1、λ −矩阵及其在初等变换下的标准形2、矩阵的行列式因子、不变因子、初等因子3、相似不变量、矩阵相似的条件4、初等因子与矩阵的若尔当标准形(九)欧氏空间1、向量的内积和欧氏空间的定义、柯西-布涅柯夫斯基不等式2、正交基、标准正交基、Schmidt 正交化方法3、正交变换与正交矩阵4、实对称矩阵及其相关性质六、主要参考书目[1]王萼芳,石生明修订,北京大学数学系前代数小组编. 高等代数. 第五版.北京:高等教育出版社,2019.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页,共2页 浙江师范大学浙江师范大学硕士研究生入学硕士研究生入学硕士研究生入学考试考试考试初试初试初试科目科目科目
考 试 大 纲
科目代码科目代码、、名称名称::
904数学分析与高等代数
适用专业适用专业:: 420104学科教学学科教学((数学数学))
一、考试形式与试卷结构
(一)试卷试卷满分满分 及 考试时间
本试卷满分为150分,考试时间为180分钟。

(二)答题方式答题方式
答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。

(三)试卷内容结构
各部分内容所占分值为:
数学分析 约100分
高等代数 约50分
(四)试卷题型结构试卷题型结构
计算题: 7大题,约100分。

分析论述题:3大题,约50分。

二、考查目标考查目标((复习要求复习要求))
全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题。

三、考查范围考查范围或或考试内容概要
第一部分第一部分::数学分析
考查内容
1、数列极限
数列极限概念、收敛数列的定理、数列极限存在的条件
2、函数极限
函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量
第2页,共2页 3、函数的连续性
连续性概念、连续函数的性质
4、导数与微分
导数的概念、求导法则、微分、高阶导数与高阶微分
5、中值定理与导数应用
微分学基本定理、函数的单调性与极值
6、不定积分
不定积分概念与基本积分公式、换元法积分法与分部积分法
7、定积分
定积分概念、可积条件、定积分的性质、定积分的计算
8、定积分的应用
平面图形的面积、旋转体的侧面积
9、级数
正项级数、函数项级数、幂级数、傅里叶级数
10、多元函数微分学
偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题
第二部分第二部分::高等代数
考查内容
多项式、行列式、线性方向组、矩阵、线性空间、线性变换
参考教材或主要参考书参考教材或主要参考书:
华东师范大学编:《数学分析》(上、下),高等教育出版社,2001年,第三版。

北京大学编:《高等代数》,高等教育出版社,2003年,第三版。

四、样卷
见往年试卷。

相关文档
最新文档