初一数学上册知识点归纳总结(精华版)

合集下载

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

初一上册数学知识点总结归纳

初一上册数学知识点总结归纳

初一上册数学知识点总结归纳
有理数:
有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

整式:整式不一定是单项式,但单项式一定是整式。

实数:
实数分有理数和无理数。

在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

每一个实数都可以在数轴上的一个点来表示。

数轴:
规定了原点、正方向、单位长度的直线叫做数轴。

原点、正方向、单位长度称为数轴三要素,它们缺一不可。

平方根与立方根:
平方根:如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

一个正数有两个平方根,0的平方根为0,负数没有平方根。

求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

正数的立方根是正数、0的立方根是0、负数的立方根是负数。

求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

以上就是初一上册
数学的主要知识点。

希望这个总结归纳能对你有所帮助,如果有任何疑问或需要进一步的解释,建议向数学老师或同学寻求帮助。

初一数学上册知识点总结

初一数学上册知识点总结

初一数学上册知识点总结初一数学上册知识点总结总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,让我们一起认真地写一份总结吧。

总结怎么写才不会千篇一律呢?以下是小编整理的初一数学上册知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

(一)有理数及其运算一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数.2、有理数的分类:(1)按定义分类:正整数整数0负整数有理数正分数分数负分数(2)按性质符号分类:正整数正有理数正分数有理数0负整数负有理数负分数3、数轴数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:(a0)aa0(a0)a(a0)(3)两个负数比较大小,绝对值大的反而小二、有理数的运算1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.(2)有理数加法的运算律:加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。

七年级上册数学知识点总结

七年级上册数学知识点总结

七年级上册数学知识点总结七年级上册数学知识点总结总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,因此十分有必须要写一份总结哦。

总结怎么写才能发挥它的作用呢?下面是小编为大家收集的七年级上册数学知识点总结,希望能够帮助到大家。

七年级上册数学知识点总结1第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。

只要有一个数为零,积就为零。

有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。

七年级数学上册知识点总结8篇

七年级数学上册知识点总结8篇

七年级数学上册知识点总结七年级数学上册知识点总结8篇七年级数学上册知识点总结11、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。

(注:单独一个数字或字母也是代数式)2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。

式中出现带分数时,一般写成假分数形式。

3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。

4、单项式:由数字和字母乘积组成的式子。

单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)单项数的次数:是指单项式中所有字母的指数的和.(注意指数1)5、多项式:几个单项式的和。

判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。

注意单项式和多项式的每一项都包括它前面的符号。

6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。

以上就是为大家整理的七年级上册数学代数式知识点整理:期末考试复习,大家还满意吗?希望对大家有所帮助!七年级数学上册知识点总结2代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。

(分母中含有字母有除法运算的,那么式子叫做分式)1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。

初中七年级数学上册知识点复习总结(精华版)

初中七年级数学上册知识点复习总结(精华版)

精华提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量)若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数,1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数&②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a >0 a 是正数;a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数;a ≤ 0 a 是负数或0 a 是非正数.—三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

初一数学知识点总结归纳重点上册

初一数学知识点总结归纳重点上册

初一数学知识点总结归纳重点上册一、整数运算:1.正整数和负整数的概念及表示方法;2.整数的加法和减法运算,运用数轴进行计算;3.整数的乘法运算,掌握乘法法则;4.整数的除法运算,求商和余数的方法。

二、分数运算:1.分数的概念和表示方法;2.分数的加法和减法运算;3.分数乘法的性质及运算法则;4.分数除法的性质和运算法则;5.约分和通分的方法。

三、小数运算:1.小数的概念和表示方法;2.小数的加法和减法运算;3.小数乘法的性质和运算法则;4.小数除法的性质和运算法则。

四、比例与相似:1.比例的概念和表示方法;2.比例的性质和运算法则;3.相似的概念和判定方法。

五、几何图形与测量:1.平行线与平行四边形的性质;2.三角形的性质及分类;3.识别和绘制平面图形,如正方形、矩形、长方形、菱形、梯形等;4.体积和质量的单位换算。

六、方程与函数:1.一元一次方程的概念和解法;2.函数的概念和函数图像的绘制;3.解方程和求函数值的运算。

七、统计与概率:1.统计数据的收集和整理;2.统计图的制作和分析;3.概率的概念和计算方法。

这些数学知识点是初一上册数学学习的重点,下面我会对其中几个知识点进行详细介绍。

一、整数运算:整数运算是数学学习的基础,因此非常重要。

正整数是大于零的整数,负整数是小于零的整数。

我们可以用数轴来表示正负整数,数轴上的点表示一个整数。

在数轴上,向右移动表示正数增加,向左移动表示负数增加。

整数的加法和减法运算可以通过数轴进行计算,例如:3 + 5 = 8,-2 + 3 = 1。

整数的乘法运算可以通过乘法法则进行计算,例如:2 × 3 = 6,-2 × -3 = 6。

整数的除法运算可以求商和余数,例如:7 ÷ 3 = 2余1。

二、分数运算:分数是整数的一种表示方法,它由分子和分母两个部分组成。

分数的加法和减法运算可以通过通分进行计算,即将两个分数的分母变为相同的,然后将分子相加或相减。

人教版初一数学上册知识点归纳总结(精华版)

人教版初一数学上册知识点归纳总结(精华版)

第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

初一数学上册知识点全总结【6篇】

初一数学上册知识点全总结【6篇】

初一数学上册知识点全总结【优秀6篇】数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

这次帅气的我为您整理了6篇《初一数学上册知识点全总结》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

初一数学上册知识点篇一实数:—有理数与无理数统称为实数。

有理数:整数和分数统称为有理数。

无理数:无理数是指无限不循环小数。

自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:符号不同的两个数互为相反数。

倒数:乘积是1的两个数互为倒数。

绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。

一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式有理数的运算法则⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

⑴减法法则:减去一个数,等于加上这个数的相反数。

⑴乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

⑴除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。

数学第一章相交线一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。

邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。

两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

初一数学知识点篇二1、有理数:1.正负数概念;2.整数和分数统称为有理数;3.数轴;4.绝对值;5.有理数加减乘除法法则;6.有理数混合运算。

七年级上册数学知识点梳理总结

七年级上册数学知识点梳理总结

七年级上册数学知识点梳理总结第一章:整数整数是由正整数、负整数和0组成的数集。

本章主要涉及整数的加减乘除、整数的比较大小和绝对值等基本概念及运算法则。

1.1 整数的基本概念正整数、负整数和0都属于整数,用符号 Z 表示。

正整数可以用自然语言表示出来,负整数则是用负号(-)和正整数表示出来,例如 -3 表示负三。

1.2 整数的加减乘除整数的加减乘除是基本运算,其中加法和乘法都满足交换律和结合律。

但是减法和除法不满足这两个定律。

整数加减运算的规则:同号相加取其绝对值相加再加上同号,异号相减是两数绝对值的和再加上它们的符号。

整数乘除运算的规则:正正得正,负负得正,正负得负,负正得负。

除法时,被除数可以为负数,但除数不能为0。

1.3 整数的比较大小在比较大小时,要考虑整数的符号和绝对值。

同号比大小,比绝对值;异号比大小,比符号。

1.4 整数的绝对值整数的绝对值是该数与0的距离,即一个整数的绝对值与这个整数的符号无关。

第二章:分数分数是指一个整数(分子)除以另一个非零整数(分母)所得的数值。

本章主要涉及分数的加减乘除、分数的比较大小、约分和通分等基本概念及运算法则。

2.1 分数的基本概念分数的分母和分子都是整数,分母不能为0。

分数可以表示为带分数和假分数两种形式。

分数是有理数的一种。

2.2 分数的加减乘除分数的加减乘除需要将分数化为通分或转化为小数进行计算,其中加法和乘法都满足交换律和结合律。

但是减法和除法不满足这两个定律。

在除法运算中,要注意分母不能为0。

2.3 分数的比较大小在比较大小时,可以先通分再比较大小。

同样分母的分数,分子越大,数值越大。

2.4 分数的约分与通分约分是将分子和分母的公因数约掉,使得分数的值不变;通分是使几个分母不同的分数具有相同的分母。

第三章:代数式与方程式代数式是由数字、字母和各种数学符号组成的表达式,其中字母表示数,称为变量。

方程式是用算式表示的等式,方程左右两边分别为代数式。

七年级数学上册知识点总结(12篇)

七年级数学上册知识点总结(12篇)

七年级数学上册知识点总结七年级数学上册知识点总结(12篇)总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不如静下心来好好写写总结吧。

但是总结有什么要求呢?以下是小编整理的七年级数学上册知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

七年级数学上册知识点总结1代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。

(分母中含有字母有除法运算的,那么式子叫做分式)1.单项式:数或字母的积(如5n),单个的数或字母也是单项式。

(1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的'系数。

(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。

(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。

2.多项式(1)概念:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

(3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

在做多项式的排列的题时注意:(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。

b.确定按这个字母降幂排列,还是升幂排列。

3.整式:单项式和多项式统称为整式。

4.列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .整式的加减运算1.同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。

(完整版)初中数学知识点全总结(齐全)

(完整版)初中数学知识点全总结(齐全)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。

- 整数具有加法、减法、乘法和除法等基本运算性质。

1.1.2 整数的分类- 自然数:正整数和0。

- 整数:包括自然数、负整数和0。

1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。

- 分数具有加法、减法、乘法和除法等基本运算性质。

1.2.2 分数的分类- 正分数:分子大于分母的分数。

- 负分数:分子小于分母的分数。

- 零分数:分子等于分母的分数。

1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。

- 小数具有加法、减法、乘法和除法等基本运算性质。

1.3.2 小数的分类- 有限小数:小数部分有限的小数。

- 无限小数:小数部分无限的小数。

第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。

2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。

2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。

- 变量可以取不同的数值。

2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。

- 代数式的加减法:同类项之间进行加减运算。

2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。

第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。

3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。

3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。

七年级数学上册知识点总结

七年级数学上册知识点总结

七年级数学上册知识点总结一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数和负数的概念- 绝对值的计算2. 有理数- 有理数的定义- 有理数的加法和减法- 有理数的乘法和除法- 有理数的比较大小- 有理数的混合运算3. 整式与分式- 单项式与多项式的定义- 整式的加法、减法、乘法- 分式的定义和性质- 分式的加减法和乘除法4. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法- 不等式的概念和性质- 一元一次不等式的解法- 简单线性不等式的图形表示5. 函数的初步认识- 函数的定义- 函数的表示方法- 线性函数和常函数的概念 - 函数的简单应用二、几何1. 图形初步- 点、线、面的概念- 直线、射线、线段的性质 - 角的概念和分类- 平行线的性质2. 平面图形- 四边形的定义和性质- 矩形、正方形的性质- 三角形的定义和分类- 三角形面积的计算- 圆的基本性质- 圆的周长和面积的计算3. 空间图形- 简单立体图形的认识- 长方体和立方体的性质 - 棱柱、棱锥的基本概念 - 圆柱、圆锥的基本概念三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制- 平均数、中位数和众数的计算2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件的概率计算四、应用题1. 利用所学知识解决实际问题- 速度、时间和距离问题的解决- 货币、购物问题的解决- 比例和百分比问题的应用- 面积和体积问题的实际应用以上是七年级数学上册的主要知识点总结。

在学习过程中,学生应注重理解和掌握每个知识点的概念、性质和计算方法,通过大量的练习题来巩固和深化理解。

同时,要注意培养解决实际问题的能力,将数学知识应用到日常生活中去。

教师和家长应鼓励学生积极参与课堂讨论,提出问题并尝试独立解决,以培养其数学思维和创新能力。

七年级上册数学知识点总结大全(共7篇)

七年级上册数学知识点总结大全(共7篇)

七年级上册数学知识点总结大全第1篇第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。

只要有一个数为零,积就为零。

有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:减去一个数,等于加上这个数的相反数!有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

初一数学上册知识点归纳总结

初一数学上册知识点归纳总结

初一数学上册知识点归纳总结一. 数学基础知识1.1 数的分类自然数、整数、有理数、无理数等数的概念,包含有限数和无限数的概念。

1.2 数轴及相关符号数轴的概念,以及在数轴上数字的正负、大小关系,并着重说明了负数绝对值的概念。

1.3 算式和式子算式和式子的概念,关系及相互转化,同时着重说明方程的概念,以及如何解方程。

1.4 数的四则运算加、减、乘、除四种基本运算符号的概念和运算方法。

1.5 分数分数的概念,分母分子、真分数假分数的分类,以及分数的加减乘除等基本运算方法。

1.6 十进位制十进位制的概念,包括整数和小数的读法,以及如何进行进位和退位。

二. 图形的初步认识2.1 点、线、面三种基本几何要素的概念,以及“面积”和“周长”这两个概念。

2.2 角角的概念,角的度量单位及表示方法,以及常见角(如:直角、钝角、锐角)概念。

2.3 直线与平面图形如点、线段、射线、角、三角形、四边形、圆形等。

三. 各种力的初步认识了解都有哪些基本力,分别对应物体运动或静止时的效果。

四. 数据和图表4.1 统计数据关于平均数、中位数、众数、极差和标准差的概念和计算方法。

4.2 图表包括折线图、柱状图、饼状图、雷达图等。

五. 比例和相似5.1 比例及应用比例的概念及基本性质,比例的应用等。

5.2 相似相似的概念及基本性质,相似比的计算及其应用,类比的概念及其推广。

六. 线性方程组初步6.1 二元一次方程结题法主要是应用消元法和代入法进行问题求解。

6.2 解三元一次方程涉及三元一次方程组,需要先利用二元一次方程组的知识对其进行分解,再应用消元法或代入法的解法。

七. 坐标系初步了解笛卡尔坐标系及其基本性质,学会利用坐标系解决某些几何问题。

八. 实数初步了解实数的深刻意义和含义,学会利用实数解决各种数学问题。

九. 视频学习通过较为生动的视频讲解,帮助学生更好的掌握一些基本数学概念。

结语:初一数学上册知识点虽然不是很难,但是需要同学们认真掌握,理解其中的数学原理,这样才能打下数学学习的基础,为以后的数学学习打下更加坚实的基础。

七年级上册数学知识总结

七年级上册数学知识总结

七年级上册数学知识总结七年级上册数学主要涵盖了数与式、分式、代数、图形与运动相结合的内容。

以下是对这些知识点的详细总结:一、数与式1. 数的概念:包括自然数、整数、有理数等,以及它们的性质和运算法则。

2. 平方与平方根:包括平方数的概念、平方根的概念与运算法则。

3. 指数与指数运算:介绍指数的概念与性质,并应用指数规律求解问题。

4. 科学计数法:介绍科学计数法的表示方法,以及进行数的加、减、乘、除运算的方法。

5. 代数式与项的概念:引入代数式的概念,认识代数式的基本组成单位——项,以及多项式的概念与运算法则。

二、分式1. 分式的概念与基本性质:介绍分式的概念、分式的基本性质与化简分式的方法。

2. 分式的乘除法:讲解分式的乘法与除法的运算规则与方法。

3. 混合运算:介绍分式与整数的混合运算,并通过练习巩固运用。

三、代数1. 一元一次方程:引入一元一次方程的概念,并通过算法讲解解方程的方法。

2. 一元一次方程的解:介绍解方程的基本规律与方法,并通过实例进行解答。

3. 一元一次方程的应用:介绍解应用问题的步骤与方法,并通过例题进行实践。

4. 数字方程:讲解数字方程的概念与解方程的方法,并通过练习巩固运用。

四、图形与运动1. 多边形:介绍多边形的概念、性质与命名,并通过实例进行演示。

2. 圆:引入圆的概念与圆的性质,并通过实例进行探究。

3. 圆的面积:讲解圆的面积的计算公式与性质,并通过实例进行计算。

4. 数据的收集与整理:讲解数据的收集方法与整理方式,并介绍简单的统计图形。

5. 一维坐标系与平面直角坐标系:引入一维坐标系与平面直角坐标系的概念与表示方法,并通过实例进行演示。

6. 运动与速度:介绍运动的概念与速度的计算方法,并通过实例进行探究。

以上是七年级上册数学的主要知识总结,通过对这些知识点的学习,学生可以对数学的基本概念与运算法则有较全面的了解,并能运用所学知识解决简单的实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 有理数:⑴ 凡能写成q (p,q 为整数且p 0)形式的数,都是有理数,整数和分数统称有理数 .P注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(3) 注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的 数分成四个区域,这四个区域的数也有自己的特性; ⑷自然数 0和正整数;a >0 a 是正数;a v 0 a 是负数; a >0 a 是正数或0 a 是非负数; a < 0 a 是负数或0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素) 的一条直线•3 •相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵注意:a-b+c 的相反数是-(a-b+c)= -a+b-c ; a-b 的相反数是b-a ; a+b 的相反数是-a-b ; ⑶相反数的和为0 a+b=0 a 、b 互为相反数.⑷相反数的商为-1. ⑸相反数的绝对值相等 4. 绝对值: (1) 正数的绝对值等于它本身,0的绝对值是0,负数的绝对值 等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a⑵绝对值可表示为:a 0 (aa (a(3) — 1 a 0 ;—1 aaa⑷|a|是重要的非负数,即|a| >0,非负性;5. 有理数比大小:(1) 正数永远比0大,负数永远比0小; (2) 正数大于一切负数;(3) 两个负数比较,绝对值大的反而小;(4) 数轴上的两个数,右边的数总比左边的数大;(5) -1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准第一章有理数(2)有理数的分类:正有理数①有理数零负有理数正整数 正分数正整数整数零②有理数负整数 负整数 负分数正分数 负分数0)0) 0)a (a 0) a (a 0);6. 倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1, -1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)—个数与0相加,仍得这个数•8•有理数加法的运算律:(1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b) +c=a+ (b+c).9. 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b).10. 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数与零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

11. 有理数乘法的运算律:(1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab) c=a (bc);(3)乘法的分配律:a (b+c) =ab+ac .(简便运算)12. 有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即?无意义.13. 有理数乘方的法则:(1)正数的任何次幕都是正数;(2)负数的奇次幕是负数;负数的偶次幕是正数;14. 乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幕;(3)a2是重要的非负数,即a2>0;若a2+|b|=0a=0,b=0 ;(4)正数的任何次幕都是正数,0的任何次幕都是0;负数的奇次幕是负数,负数的偶次幕是正数。

20.12 0.01(5)据规律1底数的小数点移动一位,平方数的小数点移动二位.102 10015. 科学记数法:把一个大于10的数记成a x 10n的形式,其中a是整数数位只有一位的数即K a<10,这种记数法叫科学记数法.10的指数二整数位数-1,整数位数=10的指数+116. 近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位17. 混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。

18. 特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明•常用于填空,选择第二章整式的加减1单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2•单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。

3. 多项式:几个单项式的和叫多项式。

X k b 1 . co m4•多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;单项式5. 整式单项式(整式是代数式,但是代数式不一定是整式)。

多项式6. 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。

7. 合并同类项法则:系数相加,字母与字母的指数不变•8. 去(添)括号法则:去(添)括号时,若括号前边是“ +”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号•9. 整式的加减:一找:(标记);二“ +”(务必用+号开始合并)三合:(合并)10. 多项式的升幕和降幕排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幕排列(或降幕排列)。

第三章一元一次方程1. 等式:用“=”号连接而成的式子叫等式•2. 等式的性质:等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.3. 方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程)•4. 方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。

5. 移项:把等式一边的某项变号后移到另一边叫移项•移项的依据是等式性质1 (移项变号)•6. —元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程•7. —元一次方程的标准形式:ax+b=0 (x是未知数,a、b是已知数,且a^ 0).8. 一元一次方程解法的一般步骤:化简方程------ 分数基本性质去分母-------- 同乘(不漏乘)最简公分母去括号-------- 注意符号变化移项----- 变号(留下靠前)合并同类项---- 合并后符号w w w .x k b 1.c o m系数化为1 --------- 除前面10•列一元一次方程解应用题:(1) ..................................... 读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程•(2) ..................................... 画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量) ,填入有关的代数式是获得方程的基础.11 •列方程解应用题的常用公式:(1)行程问题:路程=速度•时间速度路程时间时间路程速度(2)工程问题:工作量=工作效率•工作时间工效工作量工时工时工作量工效工程问题常用等量关系:先做的+后做的=完成量w w w .x k b 1.c o m(3)船在顺水、逆水中航行或者飞机在顺风、逆风中飞行的问题:船在顺水中航行的速度=船在静水中航行的速度+ 水流速度船在顺水中航行的速度=船在静水中航行的速度-水流速度飞机在顺风中飞行的速度二飞机在无风时飞行的速度+风的速度飞机在顺风中飞行的速度二飞机在无风时飞行的速度-风的速度顺水逆水问题常用等量关系: 顺水路程=逆水路程(4)商品利润问题:售价=定价几折,利润率售价缶^成本100% ;10 成本利润问题常用等量关系:售价-进价=利润(5)配套问题:(6)分配问题:【例】某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是笫二车间人数的一半。

问需从第一车间调多少人到第二车间?第四章图形初步认识(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等1、几何图形平面图形:三角形、四边形、圆、多边形等.主视图------ 从正面看2、几何体的三视图左视图------- 从左边看俯视图------ 从上面看(1) 会判断简单物体(棱柱、圆柱、圆锥、球)的三视图(2) 能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形•线:面和面相交的地方是线,分为直线和曲线•面:包围着体的是面,分为平面和曲面•体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的长短比较方法(1)度量法(2)叠合法(3)圆规截取法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B1 符号:若点M是线段AB的中点,贝UAM=BM=AB AB=2AM=2BM.26线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身)8、点与直线的位置关系(1)点在直线上(或者直线经过点)(2)点在直线外(或者直线不经过点)(三)角1、角:有公共端点的两条射线所组成的图形叫做角2、角的表示法(四种)表示方法图例记法适用范围用三个大写字母表示AOBAOB或BOA任何情况下都适应。

表示端点的字母必须写在中间。

用一个大写字母表示A A以这个点为顶点的角只有一个。

相关文档
最新文档