将军饮马问题的11个模型及例题
将军饮马问题的11个模型及例题
将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。
本文将介绍将军饮马问题的11个模型及相应的例题。
1. 直线模型将军与目的地之间没有障碍物,可以直线前进。
此时,将军只需将马拉到目的地即可。
例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。
例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。
例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。
例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。
例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。
例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。
例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。
例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。
最值模型之将军饮马11个常考模型(模型精讲)
最值模型之将军饮马(11个常考模型)模型背景【模型来历】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【考点】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平行四边形--平移;【解题思路】学会化归,移花接木,化折为直【核心思想】共线与垂线段最短。
模型精讲一.两动一定型(2种模型):两定点到直线上一动点的距离和最小。
1如图1-1在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.【证明】图1-2。
PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP'中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.反思:解决本题很简单,但却点明了将军饮马的解题思路。
1.1如图1-3,如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小 。
作法:图1-41.作A关于直线CD对称点A'。
2.连A'B。
3.交点P就是要求点。
连线长A'B就是PA+PB最小值。
【证明】:图1-5在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP'中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.二.造桥选址,移花接木。
1已知:如图2-1,直线a∥b,A、B分别为a上方和b下方的定点,(直线AB不与a垂直)要求:在a、b之间求作垂线段PQ,使得AP+PQ+BQ最小。
将军饮马问题例题
将军饮马问题例题
例题:一个将军饮马,有三个酒坛,其中一个酒坛里装着毒酒,另外两个酒坛里装着普通的酒。
这三个酒坛外观相同,将军无法通过外观来判断哪个酒坛是有毒的。
在喝下一杯毒酒后,将军将会立即死亡。
现在将军有一匹马,这匹马可以闻出毒酒,如果马喝下一杯毒酒,它将会在30分钟后死亡。
将军只有30
分钟的时间来确定哪个酒坛里装着毒酒,并且不允许酒坛之间进行任何类型的测量。
解法:将军可以按照以下步骤确定毒酒所在的酒坛:
1. 为了节省时间,将将军的马分成三组,每组10匹马。
标记
这三组马为A、B、C。
2. 让A组的马尝试第一个酒坛,让B组尝试第二个酒坛,C
组尝试第三个酒坛。
3. 让所有的马者都喝下一杯酒。
4. 等待15分钟。
5. 如果A组的马中有马死亡,那么第一个酒坛是有毒的;如
果B组的马中有马死亡,那么第二个酒坛是有毒的;如果C
组的马中有马死亡,那么第三个酒坛是有毒的。
6. 如果在15分钟内没有任何马死亡,那么第一个酒坛是安全的,因此第二个酒坛是有毒的;如果A和B组的马都没有死
亡,那么第三个酒坛是有毒的。
这样,将军可以在30分钟内确定哪个酒坛里装着毒酒。
(完整版)将军饮马问题的11个模型及例题
AP+PQ取得最小值AQ,根据垂线段最短,当
AQ⊥ON时,AQ最小.
2. 已知:如图,A为锐角∠MON内一定点;
要求:在射线OM上找一点P,在射线ON上找一点Q,使
AP+PQ的值最小.
解:作点A关于OM的对称点A′,过点A′作AQ⊥ON
于点Q,A′Q交OM于点P,此时AP+PQ最小;
点到l的距离不相等)
要求:在直线l上找一点P,使︱PA-PB︱的值最大
解:作点B关于直Байду номын сангаасl的对称点B´,连接B´A并延长交
于点P,点P即为所求;
理由:根据对称的性质知l为线段BB´的中垂线,由中垂
线的性质得:PB=PB´,要使︱PA-PB︱最大,则需
︱PA-PB´︱值最大 ,从而转化为模型3.
典型例题1-1
∴PM=OE= ,∵OE=OE′,∴PM=OE′,PM∥OE′,
(a为定值)的线段PQ在l上移动(P在Q左边)
要求:确定PQ的位置,使得AP+PQ+QB最小
分析:PQ为定值,只需AP+QB的值最小,可通过平移,
使P、Q“接头”,转化为基本模型
解:将点A沿着平行于l的方向,向右移至A´,使
AA´=PQ=a,连接A´B交直线l于点Q,在l上截取
PQ=a(P在Q左边),则线段PQ即为所求,此时
AP+PQ+QB的最小值为A´B+PQ,即A´B+a
理由:易知四边形APQA´为平行四边形,则PA=QA´,
当A´、Q、B三点共线时,QA´+QB最小,即PA+QB
最小,又PQ长为定值此时PA+PQ+QB值最小.
(完整word版)将军饮马问题的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1如图,直线y=2x+4与x轴、y轴分别交于点A和点B,点C、D分3别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣32,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最 大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2√3,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB 的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y=12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使|AM ﹣MC|的值最大,求出点M 的坐标.拓展模型1. 已知:如图,A 为锐角∠MON 外一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:过点A 作AQ ⊥ON 于点Q ,AQ 与OM 相交于点P ,此时,AP+PQ 最小;理由:AP+PQ ≧AQ ,当且仅当A 、P 、Q 三点共线时,AP+PQ 取得最小值AQ ,根据垂线段最短,当AQ ⊥ON 时,AQ 最小.2. 已知:如图,A 为锐角∠MON 内一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A 2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .B .C .6D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD. 【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l 1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .B .C .5D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A .B .C .5D .7.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=6,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为 .8.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .9.如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
(完整版)将军饮马问题
将军饮马问题——线段和最短一.六大模型1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。
2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。
3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
4.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。
使四边形PAQB 的周长最小。
5.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小。
6. 如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使PA 与点P 到射线OM 的距离之和最小。
二、常见题目Part1、三角形1.如图,在等边△ABC 中,AB=6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE=2,求EM+EC 的最小值。
2.如图,在锐角△ABC 中,AB=42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____。
3.如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值。
Part2、正方形1.如图,正方形ABCD的边长为8,M在DC上,丐DM=2,N是AC上的一动点,DN+MN的最小值为_________。
即在直线AC上求一点N,使DN+MN最小。
2.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.23 B.26 C.3 D.63.在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值)。
将军饮马问题地11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1如图,直线y=2x+4与x轴、y轴分别交于点A和点B,点C、D分3别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣32,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最 大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2√3,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB 的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y=12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使|AM ﹣MC|的值最大,求出点M 的坐标.拓展模型1. 已知:如图,A 为锐角∠MON 外一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:过点A 作AQ ⊥ON 于点Q ,AQ 与OM 相交于点P ,此时,AP+PQ 最小;理由:AP+PQ ≧AQ ,当且仅当A 、P 、Q 三点共线时,AP+PQ 取得最小值AQ ,根据垂线段最短,当AQ ⊥ON 时,AQ 最小.2. 已知:如图,A 为锐角∠MON 一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A 2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 的定点且OP=,点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .B .C .6D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD. 【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l 1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .B .C .5D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A .B .C .5D .7.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=6,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为 .8.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .9.如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC 相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
专题14 将军饮马问题(解析版)
专题14将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营。
问如何行走才能使总的路程最短。
模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B 点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,作点B关于直线L的对称点B’,连接AB’,与直线L的交点即为所求的渡河点,最短距离为线段AB’的长。
模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得∆PMN周长最小。
方法:如右图,分别作点P关于直线AB、BC的对称点P’、P’’,连接P’P’’,与两直线的交点即为所求点M、N,最短距离为线段P’P’’的长。
模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。
方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P’、Q’,连接P’Q’,与两直线的交点即为所求点M、N,最短距离为线段(PQ+P’Q’)的长。
模型一-模型四的理论依据:两点之间线段最短。
模型五:已知点P在直线AB、BC的外侧,在直线AB和BC上分别取一点M、N,求PM+PN的最小值方法:如右图,过点P作PN⊥BC,垂足为点N,PN与AB相交于点M,与两直线的交点即为所求点M、N,最短距离为线段PN的长。
专题07 最值模型之将军饮马精讲练(11大模型)(解析版)
专题07最值模型之将军饮马精讲练(11大模型)学校:___________姓名:___________班级:___________考号:___________模型背景【模型来历】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【考点】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平行四边形--平移;【解题思路】学会化归,移花接木,化折为直【核心思想】共线与垂线段最短。
模型精讲一、两动一定型(2种模型):两定点到直线上一动点的距离和最小。
例1-1:如图1-1在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.【证明】图1-2。
PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小.图1-2lPABP'lAB图1-1反思:解决本题很简单,但却点明了将军饮马的解题思路。
【变式】例1-2 如图1-3,如图,定点A 和定点B 在定直线l 的同侧 要求:在直线l 上找一点P ,使得PA+PB 值最小 。
作法:图1-41.作A 关于直线CD 对称点A’。
2.连A’B 。
3.交点P 就是要求点。
连线长A’B 就是PA+PB 最小值。
【证明】:图1-5在l 上任取异于点P 的一点P´,连接AP´、BP´, 在△ABP’中,AP´+BP´>AB ,即AP´+BP´>AP+BP ∴P 为直线AB 与直线l 的交点时,PA+PB 最小.二、造桥选址,移花接木。
重难点05轴对称之“将军饮马”模型(解析版)-八年级数学
重难点05轴对称之“将军饮马”模型1.识别几何模型。
2.利用“将军饮马”模型解决问题如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?如图,在直线上找一点P使得PA+PB最小?这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)类型一:两定一动之点点在OA、OB上分别取点M、N,使得△PMN周长最小.此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.类型二:两定两动之点点在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
考虑PQ是条定线段,故只需考虑PM+MN+NQ最小值即可,类似,分别作点P、Q关于OA、OB对称,化折线段PM+MN+NQ为P’M+MN+NQ’,当P’、M、N、Q’共线时,四边形PMNQ的周长最小。
类型三:一定两动之点线在OA、OB上分别取M、N使得PM+MN最小。
此处M点为折点,作点P关于OA对称的点P’,将折线段PM+MN转化为P’M+MN,即过点P’作OB垂线分别交OA、OB于点M、N,得PM+MN最小值(点到直线的连线中,垂线段最短)一.选择题(共5小题)1.(2021秋•苏州期末)在平面直角坐标系中,已知点A(﹣1,2),点B(﹣5,6),在x轴上确定点C,使得△ABC的周长最小,则点C的坐标是()A.(﹣4,0)B.(﹣3,0)C.(﹣2,0)D.(﹣2.5,0)【分析】作B点关于x轴的对称点B',连接AB'交x轴于点C,连接BC,此时△ABC的周长最小,求出直线AB'的解析式y=2x+4与x轴的交点即可.【解答】解:作B点关于x轴的对称点B',连接AB'交x轴于点C,连接BC,∴BC=B'C,∴BC+AC=B'C+AC≥AB',此时△ABC的周长最小,∵B(﹣5,6),∴B'(﹣5,﹣6),设直线AB'的解析式为y=kx+b,将点A(﹣1,2),B'(﹣5,﹣6)代入,得,∴,∴y=2x+4,令y=0,则x=﹣2,∴C(﹣2,0),故选:C.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,用待定系数法求函数解析式是解题的关键.2.(2022秋•江都区月考)如图,△ABC中,AB=AC,BC=3,S△ABC=6,AD⊥BC于点D,EF是AB的垂直平分线,交AB于点E,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.3.5B.4C.4.5D.5【分析】由垂直平分线的性质知AP=BP,则PB+PD=AP+PD,从而PB+PD最小值为AD的长,利用面积即可求出AD的长.【解答】解:∵EF是AB的垂直平分线,∴AP=BP,∴PB+PD=AP+PD,即点P在AD上时,PB+PD最小值为AD的长,=6,∵BC=3,S△ABC∴×3×AD=6,∴AD=4,∴PB+PD最小值为4,故选:B.【点评】本题主要考查了轴对称﹣最短路线问题,线段垂直平分线的性质等知识,将PB+PD最小值转化为AD的长是解题的关键.3.(2020秋•如皋市期末)如图,△ABC中,AD⊥BC,垂足为D,AD=BC,P为直线BC上方的一个动点,△PBC的面积等于△ABC的面积的,则当PB+PC最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°【分析】由题意可知作B点关于该垂直平分线的对称点B',连接B'C,交垂直平分线于P点,此时PB+PC 最小,证明△BCB'是等腰直角三角形,即可求∠PBC.【解答】解:∵△PBC的面积等于△ABC的面积的,∴P点在AD的垂直平分线上,作B点关于该垂直平分线的对称点B',连接B'C,交垂直平分线于P点,由对称性可知,B'P=BP,∴BP+PC=B'P+PC=B'C,此时PB+PC最小,∵AD=BB',AD=BC,∴BB'=BC,∴△BCB'是等腰直角三角形,∴∠B'CB=∠B'=45°,∴∠B'BP=45°,∴∠PBC=45°,故选:B.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,等腰直角三角形的性质是解题的关键.4.(2021秋•如皋市期末)如图,在△ABC中,∠C=90°,AC=BC=2,D为AB上一动点,DE∥AC,DE=2,则AE+CE的最小值等于()A.4B.2C.3D.+2【分析】过E作EF∥AB交CA的延长线于点F,作点A关于EF的对称点A',连接A'E和A'F.依据轴对称的性质即可得到∠BAC=∠AFE=∠A'FE,AE=A'E,再根据四边形ADEF是平行四边形,即可得出AF =DE=2,A'F=AF=2.当点C,点E,点A'在同一直线上时,AE+CE的最小值等于A'C的长,利用勾股定理求得A'C的长即可.【解答】解:如图所示,过E作EF∥AB交CA的延长线于点F,作点A关于EF的对称点A',连接A'E和A'F,∴∠BAC=∠AFE=∠A'FE,AE=A'E,∴AE+CE=A'E+CE,由题可得,△ABC是等腰直角三角形,∴∠BAC=45°,∴∠A'FC=45°×2=90°,∵AF∥DE,EF∥AD,∴四边形ADEF是平行四边形,∴AF=DE=2,A'F=AF=2,当点C,点E,点A'在同一直线上时,AE+CE的最小值等于A'C的长,如图所示.此时,Rt△A'FC中,A'C===,∴AE+CE的最小值为,故选:B.【点评】此题主要考查了最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5.(2022秋•如东县期末)如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是()A.B.C.a+b D.a【分析】首先证明点E在射线CE上运动(∠ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E′,此时AE′+FE′的值最小.【解答】解:如图,∵△ABC,△ADE都是等边三角形,∴AB=AC=a,AD=AE,∠BAC=∠DAE=∠ABC=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AF=CF=a,BF=b,∴∠ABD=∠CBD=∠ACE=30°,BF⊥AC,∴点E在射线CE上运动(∠ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E′,此时AE′+FE′的值最小,∵CA=CM,∠ACM=60°,∴△ACM是等边三角形,∴AM=AC,∵BF⊥AC,∴FM=BF=b,∴△AEF周长的最小值=AF+FE′+AE′=AF+FM=a+b,故选:B.【点评】本题考查轴对称最短问题、等边三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明点E在射线CE上运动(∠ACE=30°),本题难度比较大,属于中考填空题中的压轴题.二.填空题(共5小题)6.(2022秋•句容市月考)如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线,若E,F分别是AD和AC上的动点,则EC+EF的最小值是.【分析】作F关于AD的对称点F',由角的对称性知,点F'在AB上,当CF'⊥AB时,EC+EF的最小值为CF',再利用面积法求出CF'的长即可.【解答】解:作F关于AD的对称点F',∵AD是∠BAC的平分线,∴点F'在AB上,∴EF=EF',∴当CF'⊥AB时,EC+EF的最小值为CF',∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,=,∴S△ABC∴12×8=10×CF',∴CF'=,∴EC+EF的最小值为,故答案为:.【点评】本题主要考查了等腰三角形的性质,轴对称﹣最短路线问题,三角形的面积等知识,熟练掌握将军饮马的基本模型是解题的关键.7.(2021秋•如皋市月考)如图,等边△ABC的边长为6,AD是高,F是边AB上一动点,E是AD上一动点,则BE+EF的最小值为.【分析】过C点作CF⊥AB交AB于F,交AD于E,连接BE,BE+EF的最小值为CF,求出CF即可.【解答】解:过C点作CF⊥AB交AB于F,交AD于E,连接BE,∵AD是等边三角形ABC的高,∴BE=CE,∴BE+EF=CE+EF≥CF,∴BE+EF的最小值为CF,∵BC=6,AB=6,∴BF=3,∴CF===3,∴BE+EF的最小值为3,故答案为:3.【点评】本题考查轴对称求最短距离,熟练掌握等边三角形的性质,轴对称的性质,垂线段最短是解题的关键.8.(2022秋•镇江期中)如图,在△BCD中,∠BDC=90°,∠DBC=30°,射线CN平分∠BCD,AB∥CD,AB=10,BD=24,点F为BC的中点,点M为射线CN上一动点,则MF+MA的最小值为26.【分析】连接AD,交NC于点G,连接FD,交NC于点P,连接GF,根据题意可得△DFC为等边三角形,由等边三角形的三线合一可得GF=GD,以此得出MF+MA的最小值为GF+AG=GD+AG=AD,由AB∥CD 可得△ABD为直角三角形,最后根据勾股定理求解即可.【解答】解:如图,连接AD,交NC于点G,连接FD,交NC于点P,连接GF,∵∠BDC=90°,∠DBC=30°,∴∠BCD=60°,CD=CD,∵点F为BC的中点,∴FD=BF=CF=BC=CD,∴△DFC为等边三角形,∵射线CN平分∠BCD,∴CP垂直平分DP,∴GF=GD,点D为点F关于CN的对称点,∴当M在点G时,此时MF+MA为GF+AG=GD+AG=AD取得最小值,∵AB∥CD,∴∠ABD=90°,∵AB=10,BD=24,∴.故答案为:26.【点评】本题主要考查轴对称﹣最短路线问题、含30度角的直角三角形、等边三角形的判定与性质,正确作出辅助线,得出MF+MA的最小值为AD是解题关键.9.(2022秋•江宁区校级月考)如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,D为BC的中点,AD=2,若P为AB上一个动点,则PC+PD的最小值为.【分析】作点D关于AB的对称点E,连接PE,BE,依据轴对称的性质,即可得到DB=EB,DP=EP,∠ABC=∠ABE=45°,根据PC+PD=PC+PE,可得当C,P,E在同一直线上时,PC+PE的最小值等于CE 的长,根据全等三角形的对应边相等,即可得出PC+PD的最小值为2.【解答】解:如图所示,作点D关于AB的对称点E,连接PE,BE,则DB=EB,DP=EP,∠ABC=∠ABE=45°,∠CBE=90°,∵D是BC的中点,∴BD=BC=2,∴BE=2,∵PC+PD=PC+PE,∴当C,P,E在同一直线上时,PC+PE的最小值等于CE的长,此时,PC+PD最小,∵AC=BC=4,D为BC的中点,∴CD=DB=BE,又∵∠ACD=∠CBE=90°,∴△ACD≌△CBE(SAS),∴CE=AD=2,∴PC+PD的最小值为2.故答案为:2.【点评】此题考查了轴对称﹣线路最短的问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.(2022秋•海安市期末)如图,在△ABC中,∠BAC=30°,AB=AC=2,点E为射线AC上的动点,DE∥AB,且DE=2.当AD+BD的值最小时,∠DBC的度数为45°.【分析】过点D作DF⊥AC于点F,可知点D在到AC的距离为1的直线上,作出该直线l,利用将军饮马模型,作点A关于直线l的对称点A′,连接A′B交直线l于点D′,此时AD′+BD′=A′B,即点D 与点D′重合时,AD+BD的值最小.利用等腰三角形的性质和三角形的内角和定理分别求得∠ABA′和∠ABC的度数,则结论可求.【解答】解:过点D作DF⊥AC于点F,如图,∵DE∥AB,∴∠DEF=∠BAC=30°,∵DF⊥AC,∴DF=DE=1,∴点D到直线AC的距离等于定值1.过点D作直线l∥AC,则点D在直线l上运动,作点A关于直线l的对称点A′,连接A′B交直线l于点D′,由将军饮马模型可知:此时AD′+BD′=A′B,即点D与点D′重合时,AD+BD的值最小.由题意:AA′⊥l,AG=GA′,∵l∥AC,DF⊥AC,∴四边形AFDG为矩形,∴AG=DF=1,∴AA′=AG+A′G=2,∵AB=AC=2,∴AB=AA′,∴∠ABA′=∠A′.∵∠BAC=30°,∠FAG=90°,∴∠BAA′=120°,∴∠ABA′=∠A′==30°.∵∠BAC=30°,AB=AC=2,∴∠ABC=∠ACB==75°,∴∠DBC=∠D′BC=∠ABC﹣∠ABD′=45°.故答案为:45°.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,轴对称的性质,平行线的判定与性质,利用将军饮马模型构造辅助线解答是解题的关键.三.解答题(共8小题)11.(2022秋•苏州期中)(1)如图,河道上A,B两点(看作直线上的两点)相距200米,C,D为两个菜园(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A,B,AD=80米,BC=70米,现在菜农要在AB 上确定一个抽水点P,使得抽水点P到两个菜园C,D的距离和最短.请在图中作出点P,保留作图痕迹,并求出PC+PD的最小值.(2)借助上面的思考过程,请直接写出当0<x<15时,代数式+的最小值=17.【分析】(1)作点C关于AB的对称点F,连接DF交AB于点P,连接PC,点P即为所求;根据勾股定理可得DF的长,从而解答即可;(2)先作出点C关于AB的对称点F,连接DF,使AB=15,AD=5,BC=BF=3,DF就是代数式+的最小值,【解答】解:(1)作点C关于AB的对称点F,连接DF交AB于点P,连接PC,点P即为所求;作DE⊥BC交BC的延长线于E.在Rt△DEF中,∵DE=AB=200米,EF=AD+BC=80+70=150米,∴DF===250(米),∴PD+PC的最小值为250米;(2):先作出点C关于AB的对称点F,连接DF,作DE⊥BC交BC的延长线于E.使AB=15,AD=5,BC=BF=3,DF就是代数式+的最小值,∵DF===17,∴代数式+的最小值为17.故答案为:17.【点评】本题考查轴对称﹣最短问题,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.12.(2022秋•秦淮区校级月考)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应);(2)在直线l上找一点P,使得PA+PC的和最小.【分析】(1)根据轴对称的性质作图即可.(2)连接A1C,与直线l交于点P,连接AP,此时PA+PC的和最小.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,点P即为所求.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题,熟练掌握轴对称的性质是解答本题的关键.13.(2022秋•江都区校级月考)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使△PBC的周长最小.(3)在DE上找一点M,使|MC﹣MB|值最大.(4)△ABC的面积是.【分析】(1)根据轴对称的性质作图即可.(2)连接B1C,交直线DE于点P,连接BP,此时PB+PC最小,即可得△PBC的周长最小.(3)延长CB,交直线DE于点M,此时|MC﹣MB|值最大.(4)利用割补法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,点P即为所求.(3)如图,点M即为所求.(4)△ABC的面积为3×3﹣﹣﹣=.故答案为:.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题,熟练掌握轴对称的性质是解答本题的关键.14.(2022秋•宜兴市月考)请在如图所示的正方形网格中完成下列问题:(1)如图,请在图中作出△ABC关于直线MN成轴对称的△A′B′C′;(2)求出△ABC的面积.(3)在直线MN上找一点P,使得PC+PB最小.【分析】(1)根据轴对称的性质作图即可,(2)利用割补法求三角形的面积即可.(3)连接B'C,交直线MN于点P,连接PB,此时PC+PB最小.【解答】解:(1)如图,△A′B′C′即为所求.(2)△ABC的面积为3×6﹣﹣﹣=8.(3)如图,点P即为所求.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题、三角形的面积,熟练掌握轴对称的性质是解答本题的关键.15.(2022秋•江阴市期中)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=6;(3)在AE上找一点P,使得PC+PD的值最小.【分析】(1)利用轴对称的性质作出点B的对应点F,即可解决问题;(2)△AEF与四边形ABCD重叠部分的面积=四边形ADTE的面积,利用分割法求解;(3)作点D关于直线AE的对称点D′,连接CD′交AE于点P,点P即为所求.【解答】解:(1)如图,△AEF即为所求;(2)△AEF与四边形ABCD重叠部分的面积=四边形ADTE的面积=2×4﹣×2×2=6;(3)如图,点P即为所求.【点评】本题考查作图﹣轴对称变换,最短问题,四边形面积等知识,解题的关键是掌握轴对称变换的性质,灵活运用所学知识解决问题.16.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,若AE =2,求EM+BM的最小值.【分析】要求EM+BM的最小值,需考虑通过作辅助线转化EM,BM的值,从而找出其最小值求解.【解答】解:连接CE,与AD交于点M.则CE就是BM+ME的最小值.取BE中点F,连接DF.∵等边△ABC的边长为6,AE=2,∴BE=AB﹣AE=6﹣2=4,∴BF=FE=AE=2,又∵AD是BC边上的中线,∴DF是△BCE的中位线,∴CE=2DF,CE∥DF,又∵E为AF的中点,∴M为AD的中点,∴ME是△ADF的中位线,∴DF=2ME,∴CE=2DF=4ME,∴CM=CE.在直角△CDM中,CD=BC=3,DM=AD,CM==,CE=×=2,∵BM+ME=CE,∴BM+ME的最小值为2.【点评】此题主要考查了轴对称﹣最短路线问题和等边三角形的性质和轴对称及勾股定理等知识的综合应用,根据已知得出M点位置是解题关键.17.(2021秋•连云港期末)【问题情境】八上《伴你学》第138页有这样一个问题:如图1,把一块三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角形的三个顶点A、B、C分别在槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中,你发现线段AD与BE有什么关系?试说明你的结论;【变式探究】小明在解决完这个问题后,将其命名为“一线三等角”模型;如图2,在△ABC中,点D、E、F分别在边BC、AC、AB上,若∠B=∠FDE=∠C,则这三个相等的角之间的联系又会使图形中出现其他的一些等角.请你写出其中的一组,并加以说理;【拓展应用】如图3,在△ABC中,BA=BC,∠B=45°,点D、F分别是边BC、AB上的动点,且AF=2BD.以DF为腰向右作等腰△DEF,使得DE=DF,∠EDF=45°,连接CE.①试判断线段DC、BD、BF之间的数量关系,并说明理由;②如图4,已知AC=2,点G是AC的中点,连接EA、EG,直接写出EA+EG的最小值.【分析】【问题情境】证明△ABD≌△BCE(AAS),即可求解;【变式探究】利用等量代换即可求解;【拓展应用】①用等量代换即可求解;②在CD上截取DM=BF,连接EM,作点G关于CE的对称点N,连接CN,AN,先证明△BDF≌△MED (SAS),得到EM=CM,在求出∠ECM=∠MEC=22.5°,即可确定E点在射线CE上运动,当A、E、N 三点共线时,EA+EG的值最小,最小值为AN,在Rt△ANC中求出AN即可.【解答】解:【问题情境】AD=BE,理由如下:∵∠ABC=90°,∴∠ABD+∠CBE=90°,∵∠BAD+∠ABD=90°,∴∠BAD=∠CBE,∵AB=BC,∴△ABD≌△BCE(AAS),∴AD=BE;【变式探究】∠BED=∠FDC,∠EDB=∠DFC;∵∠B=∠FDE=∠C,∴∠EDB+∠BED=∠EDB+∠FDC=∠FDC+∠DFC=180°﹣∠EDF,∴∠BED=∠FDC,∠EDB=∠DFC;【拓展应用】①∵AB=BC,∴AF+BF=BD+CD,∵AF=2BD,∴2BD+BF=BD+CD,∴BD+BF=CD;②在CD上截取DM=BF,连接EM,作点G关于CE的对称点N,连接CN,AN,∵∠B=45°,∠EDF=45°,∴∠BFD=∠EDM,∵DF=DE,∴△BDF≌△MED(SAS),∴BD=EM,EM=BD,∠B=∠DME=45°,∵CD=BD+BF,∴CM=BD,∴EM=CM,∴∠MCE=∠MEC,∵∠EMD=45°,∴∠ECM=∠MEC=22.5°,∴E点在射线CE上运动,∵G点与N的关于CE对称,∴EG=EN,∴EA+EG=EA+EN≥AN,∴当A、E、N三点共线时,EA+EG的值最小,最小值为AN,∵∠B=45°,AB=BC,∴∠ACB=67.5°,∴∠ACE=45°,由对称性可知,∠ACE=∠ECN,∴∠ACN=90°,∵点G是AC的中点,AC=2,∴CG=1,∴CN=1,在Rt△ANC中,AC=,∴AE+EG的最小值为.【点评】本题是三角形的综合题,熟练掌握三角形全等的判定及性质,轴对称求最短距离的方法是解题的关键.18.(2020秋•南京期中)某班级在探究“将军饮马问题”时抽象出数学模型:直线l同旁有两个定点A、B,在直线l上存在点P,使得PA+PB的值最小.解法:如图1,作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点即为P,且PA+PB的最小值为A′B.请利用上述模型解决下列问题:(1)几何应用:如图2,△ABC中,∠C=90°,AC=BC=2,E是AB的中点,P是BC边上的一动点,则PA+PE的最小值为;(2)代数应用:求代数式+(0≤x≤3)的最小值;(3)几何拓展:如图3,△ABC中,AC=2,∠A=30°,若在AB、AC上各取一点M、N使CM+MN的值最小,最小值是.【分析】(1)作点E关于直线BC的对称点E′,连接E′A,根据“将军饮马问题”得到PA+PE的最小值为E′A,根据勾股定理求出E′A,得到答案;(2)根据勾股定理构造图形,根据轴对称﹣﹣最短路线问题得到最小值就是求PC+PD的值,根据勾股定理计算即可;(3)作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,根据等边三角形的性质解答.【解答】解:(1)如图2,作点E关于直线BC的对称点E′,连接E′A,则E′A与直线BC的交点即为P,且PA+PE的最小值为E′A,作E′F⊥AC交AC的延长线于F,由题意得,E′F=1,AF=3,∴PA+PE的最小值E′A==,故答案为:;(2)构造图形如图4所示,BD=3,AC=1,AP=x,CA⊥AB于A,DB⊥AB于B,AB=3,则PC+PD=+,代数式+(0≤x≤3)的最小值就是求PC+PD的值,作点C关于AB的对称点C',过C'作C'E⊥DB交DB的延长线于E.则C'E=AB=3,DE=3+1=4,C'D===5,∴所求代数式的最小值是5;(3)如图3,作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC为等边三角形,∴CM+MN的最小值为C′N=,故答案为:.【点评】本题考查的是轴对称﹣﹣最短路线问题、勾股定理、等边三角形的判定和性质,解这类问题的关键是将实际问题抽象或转化为数学模型,把两条线段的和转化为一条线段.一.选择题(共2小题)1.(2022秋•和平区校级期末)如图,在等边三角形ABC中,BC边上的高AD=8,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5B.6C.7D.8【分析】连接CF交AD于点E,连接BE,此时BE+EF的值最小,求出CF即可.【解答】解:连接CF交AD于点E,连接BE,∵△ABC是等边三角形,AD是高,∴BE=CE,∴BE+EF=CE+EF≥CF,此时BE+EF的值最小,∵F是AB边上的中点,∴CF=AD,∵AD=8,∴CF=8,故选:D.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,等边三角形的性质是解题的关键.2.(2022秋•乌鲁木齐期末)如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N 分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.90°B.100°C.110°D.80°【分析】分别作P关于BC,AC的对称点E,D,连接DE,交AC于M,交BC于N,此时△MNP的周长最小,由条件求出∠DPE的度数,由轴对称的性质,等腰三角形的性质得到∠MPD+∠NPE=∠D+∠E=40°,从而求出∠MPN的度数.【解答】解:分别作P关于BC,AC的对称点E,D,连接DE,交AC于M,交BC于N,此时△MNP 的周长最小,∵∠PHM=∠PGN=90°,∠C=40°,∴∠DPE=360°﹣∠PHM﹣∠PGN﹣∠C=360°﹣90°﹣90°﹣40°=140°,∴∠D+∠E=180°﹣∠DPE=180°﹣140°=40°,∵PM=DM,NP=NE,∴∠MPD=∠D,∠NPE=∠E,∴∠MPD+∠NPE=∠D+∠E=40°,∴∠MPN=∠DPE﹣(∠MPD+∠NPE)=140°﹣40°=100°.故选:B.【点评】本题考查轴对称的性质,关键是分别作P关于BC,AC的对称点E,D,连接DE,交AC于M,交BC于N,找到周长最小的△PMN.二.填空题(共5小题)3.(2022秋•灵宝市期末)如图,在△ABC中,AB=5,AC=7.MN为BC边上的垂直平分线,若点D在直线MN上,连接AD,BD,则△ABD周长的最小值为12.【分析】MN与AC的交点为D,AD+BD的值最小,即△ABD的周长最小值为AB+AC的长.【解答】解:MN与AC的交点为D,∵MN是BC边上的垂直平分线,∴AD=CD,∴AD+BD=AD+CD=AC,此时AD+BD的值最小,∴△ABD的周长=AB+AD+BD=AB+AC最小,∵AB=5,AC=7,∴AB+AC=12,∴△ABD的周长最小值为12,故答案为:12.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的的方法,线段垂直平分线的性质是解题的关键.4.(2022秋•白云区校级期末)如图,等腰△ABC的底边长为8,面积是24,腰AB的垂直平分线MN交AB于点M,交AC于点N.点D为BC的中点,点E为线段MN上一动点,设△BDE的周长的最小值为a,则式子[2a3•a5+(3a4)2]÷a6值是1100.【分析】连接AD交MN于点E,连接BE,当A、E、D三点共线时,△BDE的周长最小,求出a=10,再化简代数式求值运算即可.【解答】解:连接AD交MN于点E,连接BE,∵MN是AB的垂直平分线,∴AE=BE,∵△ABC是等腰三角形,D是BC的中点,∴AD⊥BC,∴△BDE的周长=BD+DE+BE=BD+DE+AE≥BD+AD,当A、E、D三点共线时,△BDE的周长最小,∵腰△ABC的底边长为8,面积是24,∴×8×AD=24,∴AD=6,∴BD+AD=×8+6=10,∴△BDE的周长最小值为10,∴a=10,[2a3•a5+(3a4)2]÷a6=(2a8+9a8)÷a6=11a8÷a6=11a2,当a=10时,原式=1100,故答案为:1100.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,准确的化简代数式并代入求值是解题的关键.5.(2022秋•明水县校级期末)如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为6.【分析】连接BE交AD于点P,连接CP,EP+CP的最小值为BE的长,求BE的长即为所求.【解答】解:连接BE交AD于点P,连接CP,∵△ABC是等边三角形,AD垂直平分BC,∴BP=CP,∴EP+CP=BP+CP≥BE,∴EP+CP的最小值为BE的长,∵E为AC边的中点,∴BE⊥AC,∵AD=6,∴BE=6,故答案为:6.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,等边三角形的性质是解题的关键.6.(2022秋•岳阳县期末)如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是线段AD上的动点,则BF+EF的最小值为6.【分析】连接CE,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=6,即BF+EF 的最小值为6.【解答】解:连接CE,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,AE=BE,∴AD⊥BC,CE⊥AB,∴AD是BC的垂直平分线(三线合一),∴CF=BF,即BF+EF=CF+EF=CE,∵等边△ABC中,AE=BE,∴CE⊥AB,∴BF+EF=CE时最小,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD=6,即BF+EF的最小值为6,故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.7.(2022秋•滨城区校级期末)如图,在四边形ABCD中,∠BAD=115°,∠B=∠D=90°,在BC,CD 上分别找一个点M,N使△AMN的周长最小,则∠AMN+∠ANM=130°.【分析】要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″′=65°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=115°,∴∠AA′M+∠A″=180°﹣∠BAD=180°﹣100°=65°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×65°=130°故答案为:130°.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.三.解答题(共3小题)8.(2022秋•宜春期末)如图,在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线DE交AB于点D,若AE=3,(1)求BC的长;(2)若点P是直线DE上的动点,直接写出PA+PC的最小值为9.【分析】(1)根据垂直平分线的性质可证△ABE为等腰三角形,由角度可证△ACE为30°直角三角形,再由线段之间的关系即可求出BC的长;(2)根据将军饮马原理即可得出PA+PC的最小值为BC的长度.【解答】解:(1)∵AB=AC,∠BAC=120°,∴,∵AB边的垂直平分线交AB于点D,∴BE=AE=3,∴∠BAE=∠B=30°,∴∠CAE=∠BAC﹣∠BAE=120°﹣30°=90°,在Rt△CAE中,∠C=30°,∴CE=2AE=6,∴BC=BE+CE=3+6=9;(2)如图,取点A关于直线DE的对称点,即点B,∵PA=PB,∴PA+PC=PB+PC,根据两点之间线段最短,则BC即为PA+PC的最小值,最小值为9.【点评】本题考查了图形的轴对称,相关知识点有:垂直平分线的性质、将军饮马等,轴对称性质的充分利用是解题关键.9.(2022秋•新华区校级期末)如图所示.(1)作出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上确定一点P,使得PA+PC最小;(3)求出△ABC的面积.【分析】(1)根据轴对称的性质作图即可.(2)过x轴作点A的对称点A',连接A'C,与x轴交于点P,此时点P即为所求.(3)利用割补法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,点P即为所求.=3×3﹣﹣﹣=.(3)S△ABC∴△ABC的面积为.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题,熟练掌握轴对称的性质是解答本题的关键.10.(2022秋•金牛区校级期末)已知A(1,4),B(2,0),C(5,2).(1)在如图所示的平面直角坐标系中描出点A,B,C,并画出△ABC;(2)画出△ABC关于y轴对称的△A'B'C';(3)点P在x轴上,并且使得AP+PC的值最小,请标出点P位置并写出最小值.【分析】(1)根据点的坐标确定点的位置,作图即可.(2)根据轴对称的性质作图即可.(3)作点A关于x轴的对称点A'',连接A''C,交x轴于点P,连接AP,此时AP+PC的值最小,利用勾股定理求出A''C的值即可得出答案.【解答】解:(1)如图,△ABC即为所求.(2)如图,△A'B'C'即为所求.(3)如图,点P即为所求.由勾股定理得A''C==.∴AP+PC的最小值为.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题、勾股定理,熟练掌握轴对称的性质是解答本题的关键.。
将军饮马18道典型习题
将军饮马18道典型习题将军饮马"是一个古希腊数学问题,源于2000多年前。
当时,一位将军向城里的著名数学家海伦请教:他每天早上都要骑马到河边让马喝水,然后到河岸同一侧的一块草地上让马吃草。
将军想知道,在河岸的哪个具体位置让马喝水,可以让他和马儿走的路程最短。
经过思考,海伦给出了答案,这就是"将军饮马"问题。
以下是"将军饮马"问题的五种常见模型:1.一动两定(和最小)模型:假设点A是将军和马儿居住的营帐,点B是指定的草地,小河L在两点之间流过。
问题是,将军和马儿在哪个具体位置喝水,可以让他们走的路程最短?解决方法是,做A点关于L的对称点A',连接A'B,与L的交点即为P点。
这时,PA+PB最小。
为什么呢?因为在L 上任意取一点M(不与P重合),根据几何原理,PA+PB=A'P+PB=A'B,AM+MB>A'B,所以动点P在A'B与L 交点处时,PA+PB最小。
2.一定两动模型:假设点A和小河L1与第一种模型一样,但是这次,草地不是指定的点,而是由L2代表的一片草地。
问题是,在哪个具体位置喝水和吃草,可以让将军和马儿走的路程最短?解决方法是,做A点关于L1的对称点A',做A点关于L2的对称点A'',连接A'A'',与L1和L2的交点即为P、Q。
这时,AP+PQ+QA的和最小。
为什么呢?因为在L1上取点M(不与P重合),在L2上取点N(不与Q重合),根据几何原理,AP+PQ+AQ=A'P+PQ+A''Q=A'A'',AM+MN+AN>A'A'',所以动点P和Q在A'A''与L1、L2的交点处时,AP+PQ+QA的和最小。
3.两动一定模型:假设点A和小河L1与第一种模型一样,但是这次,将军要骑马到L2代表的一片草地吃草,然后再回到营帐。
关于将军饮马难题的练习10题
关于将军饮马难题的练习10题
1. 将军饮马难题是著名的逻辑难题之一,以下是10个练题帮助理解和解决这个难题。
2. 题目一:题目一:
- 将军饮马难题描述了将军通过一条连续的河流骑马前行的情景。
- 请阐述将军饮马难题的具体要求和条件。
3. 题目二:题目二:
- 给定一个车辆的行驶速度、将军饮马的速度以及将军饮马的间隔时间,请计算将军饮马时车辆与将军的距离。
4. 题目三:题目三:
- 假设将军饮马的路径有所改变,如何调整速度和时间间隔,才能保持将军和车辆的固定距离?
5. 题目四:题目四:
- 假设将军饮马时遇到突发情况,需要停下来处理,重新上路后可以追上车辆吗?
6. 题目五:题目五:
- 若车辆的速度变化,将军饮马的速度还能保持不变吗?请解释为什么?
7. 题目六:题目六:
- 假设将军饮马的速度变化,车辆的速度保持不变,将军和车辆之间的相对距离如何变化?
8. 题目七:题目七:
- 将军饮马难题中是否有其他影响将军和车辆距离的因素?请列举并解释。
9. 题目八:题目八:
- 假设将军饮马的速度快于车辆的速度,将军和车辆之间的相对距离会怎样变化?
10. 题目九:题目九:
- 将军饮马难题中的数学模型是什么?使用该模型可以解决哪些相关问题?
11. 题目十:题目十:
- 将军饮马难题中是否存在法律或道德层面的问题?请阐述你的观点和理由。
以上是关于将军饮马难题的练习10题,希望能帮助你更好地理解和解决这个难题。
专题09 最值模型-将军饮马(解析版)
专题09 最值模型---将军饮马最值问题在中考数学常以压轴题的形式考查,将军饮马问题是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的将军饮马问题进行梳理及对应试题分析,方便掌握。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m 上,求一点P ,使PA +PB 最小;(1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:【最值原理】两点之间线段最短。
上图中A’是A 关于直线m 的对称点。
例1.(2022·湖南娄底·中考真题)菱形ABCD 的边长为2,45ABC Ð=°,点P 、Q 分别是BC 、BD 上的动点,CQ PQ +的最小值为______.【分析】过点C 作CE ⊥AB 于E ,交BD 于G ,根据轴对称确定最短路线问题以及垂线段最短可知CE 为FG +CG 的最小值,当P 与点F 重合,Q 与G 重合时,PQ +QC 最小,在直角三角形BEC 中,勾股定理即可求解.【详解】解:如图,过点C 作CE ⊥AB 于E ,交BD 于G ,根据轴对称确定最短路线问题以及垂线段最短可知CE 为FG +CG 的最小值,当P 与点F 重合,Q 与G 重合时,PQ +QC 最小,mAB m m A B mQ 菱形ABCD 的边长为2,45ABC Ð=°,Rt BEC \V 中,EC =\PQ +QC 【点睛】本题考查了菱形的性质,勾股定理,轴对称的性质,掌握轴对称的性质求线段和的最小值是解题的关键.例2.(2022·四川眉山·中考真题)如图,点P 为矩形ABCD 的对角线AC 上一动点,点E 为BC 的中点,连接PE ,PB ,若4AB =,B C =,则PE PB +的最小值为________.【答案】6【分析】作点B 关于AC 的对称点B ¢,交AC 于点F ,连接B E ¢交AC 于点P ,则PE PB +的最小值为B E ¢的长度;然后求出B B ¢和BE 的长度,再利用勾股定理即可求出答案.【详解】解:如图,作点B 关于AC 的对称点B ¢,交AC 于点F ,连接B E ¢交AC 于点P ,则PE PB +的最小值为B E ¢的长度;∵AC 是矩形的对角线,∴AB =CD =4,∠ABC =90°,在直角△ABC 中,4AB =,B C =∴tan AB ACB BC Ð===∴30ACB Ð=°,由对称的性质,得2B B BF ¢=,B B AC ¢^,∴12BF BC ==∴2B B BF ¢==∵BE EF ==60CBF Ð=°,∴△BEF 是等边三角形,∴BE BF B F ¢==,∴BEB ¢D 是直角三角形,∴6B E ¢===,∴PE PB +的最小值为6;故答案为:6.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,直角三角形的性质,特殊角的三角函数值,解题的关键是熟练掌握所学的知识,正确的找到点P 使得PE PB +有最小值.例3.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】85【分析】过点M 作MF ⊥CD 于F ,推出MN +NP 的最小值为MF 的长,证明四边形DEMG 为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P 关于CE 的对称点P ′,由折叠的性质知CE 是∠DCM 的平分线,∴点P ′在CD 上,过点M 作MF ⊥CD 于F ,交CE 于点G ,∵MN +NP =MN +NP ′≤MF ,∴MN +NP 的最小值为MF 的长,连接DG ,DM ,由折叠的性质知CE 为线段 DM 的垂直平分线,∵AD =CD =2,DE =1,∴CE∵12CE ×DO =12CD ×DE , ∴DO ∴EO ∵MF ⊥CD ,∠EDC =90°,∴DE ∥MF ,∴∠EDO =∠GMO ,∵CE 为线段DM 的垂直平分线,∴DO =OM ,∠DOE =∠MOG =90°,∴△DOE ≌△MOG ,∴DE =GM ,∴四边形DEMG 为平行四边形,∵∠MOG =90°,∴四边形DEMG 为菱形,∴EG =2OE GM = DE =1,∴CG ∵DE ∥MF ,即DE ∥GF ∽△CDE ,∴FG CG DE CE =,即1FG , ∴FG =35,∴MF =1+35=85,∴MN +NP 的最小值为85.故答案为:85.【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.例4.(2022·江苏南京·模拟预测)【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营,A B .他总是先去A 营,再到河边饮马,之后,再巡查B 营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ¢,连结AB ¢与直线l 交于点P ,连接PB ,则AP BP +的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线l 上另取任一点P ¢,连结¢AP ,BP ¢,B P ¢¢,∵直线l 是点B ,B ¢的对称轴,点P ,P ¢在l 上,(1)∴PB =__________,P B ¢=_________,∴AP PB AP PB ¢+=+=____________.在AP B ¢¢D 中,∵AB AP P B ¢¢¢¢<+,∴AP PB AP P B ¢¢¢+<+,即AP BP +最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点,A B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点P 为AB ¢与l 的交点,即A ,P ,B ¢三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(2)如图④,正方形ABCD 的边长为4,E 为AB 的中点,F 是AC 上一动点.求EF FB +的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B 与D 关于直线AC 对称,连结DE 交AC 于点F ,则EF FB +的最小值就是线段ED 的长度,则EF FB +的最小值是__________.(3)如图⑤,圆柱形玻璃杯,高为14cm ,底面周长为16cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂的最短路程为_____cm .(4)如图⑥,在边长为2的菱形ABCD 中,60ABC Ð=°,将ABD D 沿射线BD 的方向平移,得到A B D ¢¢¢D ,分别连接A C ¢,A D ¢,B C ¢,则A C B C ¢¢+的最小值为____________.(4)∵在边长为2的菱形ABCD 中,Ð模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置(图2 ).问题化为求A ’N +NB 最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1图2 图3【最值原理】两点之间线段最短。
专题07 将军饮马模型(解析版)
专题07.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
希望通过本专题的讲解让大家对这类问题有比较清晰的认识。
··模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。
(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.【答案】10【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP=A'P,∴AP+BP∵A(0,3),∴A'(0∴P点到A、B的距离最小值为【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离例2.(2022·江苏·八年级专题练习)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()C.D.A B.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题关键.例3.(2022·江苏·八年级专题练习)如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_________.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A、M、D三点共线时,AM+DM最小,即为AD.例4.(2023·湖北洪山·八年级期中)如图,将△ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,D 在BC上,点P在线段AD上移动,若AC=6,CD=3,BD=7,则△PMB周长的最小值为___.【答案】18【分析】首先明确要使得△PMB周长最小,即使得PM+PB最小,再根据翻折的性质可知PM=PC,从而可得满足PC+PB最小即可,根据两点之间线段最短确定BC即为最小值,从而求解即可.【详解】解:由翻折的性质可知,AM=AC,PM=PC,∴M点为AB上一个固定点,则BM长度固定,∵△PMB周长=PM+PB+BM,∴要使得△PMB周长最小,即使得PM+PB最小,∵PM=PC,∴满足PC+PB最小即可,显然,当P、B、C三点共线时,满足PC+PB最小,如图所示,此时,P点与D点重合,PC+PB=BC,∴△PMB周长最小值即为BC+BM,此时,作DS⊥AB于S点,DT⊥AC延长线于T点,AQ⊥BC延长线于Q点,由题意,AD为∠BAC的角平分线,∴DS=DT,∵1122ACDS AC DT CD AQ==,1122ABDS AB DS BD AQ==,∴11221122ABDACDAB DS BD AQSS AC DT CD AQ==,即:AB BDAC CD=,∴763AB=,解得:AB=14,∵AM=AC=6,∴BM=14-6=8,∴△PMB周长最小值为BC+BM=3+7+8=18,故答案为:18.【点睛】本题考查翻折的性质,以及最短路径问题等,掌握翻折的基本性质,利用角平分线的性质进行推理求解,理解并熟练运用两点之间线段最短是解题关键.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【答案】(110;(23【分析】(1)作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′,先根据勾股定理求出BA′的长,再判断出∠A′BA=90°,根据勾股定理即可得出结论;(2)作点C 关于直线AB 的对称点C′,作C′N ⊥AC 于N 交AB 于M ,连接AC′,根据等边三角形的性质解答.【详解】解:(1)如图2所示,作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′.由勾股定理得,22BC AC +2222+2,∵E 是AB 的中点,∴BE=122,∵90C ∠=︒,2AC BC ==,∴∠A′BC=∠ABC=45°,∴∠A′BA=90°,∴PA+PE 的最小值=A′E=22'A B BE +()()22222+1010;(2)如图3,作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC为等边三角形,∴∠AC′N=30°,∴AN=12C′A=1,∴CM+MN的最小值为2221 3.【点睛】本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A位于定直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.辅助线:过点A作关于定直线m、n的对称点A’、A’’,连接A’A’’交直线m、n于点P、Q,则PA+PQ+QA 的最小值为A’A’’.例1.(2022·江苏·无锡市八年级期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP =4,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于4,则α=()A.30°B.45°C.60°D.90°【答案】A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=4可得出△COD是等边三角形,进而可求出α的度数.【详解】解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=4,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=4,∴OC=OD=CD=4,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选:A.【点睛】本题主要考查了最短路径问题,本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.例2.(2022·江苏九年级一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D,E,F分别是AB,BC,AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.6【答案】C【分析】如图作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.由∠MCA=∠DCA,∠BCN=∠BCD,∠ACD+∠BCD=90°,推出∠MCD+∠NCD=180°,可得M、B、N 共线,由DF+DE+EF=FM+EN+EF,FM+EN+EF≥MN,可知当M、F、E、N共线时,且CD⊥AB时,DE+EF+FD的值最小,最小值=2CD,求出CD的值即可解决问题.【详解】解:如图,作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.∴DF =FM ,DE =EN ,CD =CM ,CD =CN ,∴CD =CM =CN ,∵∠MCA =∠DCA ,∠BCN =∠BCD ,∠ACD +∠BCD =90°,∴∠MCD +∠NCD =180°,∴M 、C 、N 共线,∵DF +DE +EF =FM +EN +EF ,∵FM +EN +EF ≥MN ,∴当M 、F 、E 、N 共线时,且CD ⊥AB 时,DE +EF +FD 的值最小,最小值为MN =2CD ,∵CD ⊥AB ,∴12•AB •CD =12•AB•AC ,∴CD =•AB AC AB =125=2.4,∴DE +EF +FD 的最小值为4.8.故选:C .【点睛】本题考查了轴对称-最短问题、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考选择题中的压轴题.例3.(2023春·贵州毕节·七年级统考期末)如图所示,30AOB ∠= ,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.【答案】PMN ∆周长的最小值为8【分析】作P 关于OA 、OB 的对称点12P P 、,连结1OP、2OP ,即可快速找到解题思路.【详解】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN ∆周长最小,根据轴对称性质可知1PM PM =,2P N PN =,1212PM N PM M N PN PP ∴∆=++=,且1AO P AO P ∠=∠,2BO P BO P ∠=∠,12260POP AOB ∠=∠=︒,128O P O P O P ===,12PPO ∆为等边三角形,1218PP OP ==即PMN ∆周长的最小值为8.【点睛】本题应用知识比较隐晦,分别考查了轴对称图形和等边三角形,需要认真分析,充分联系所学知识,方可正确解答.例4.(2023.山东八年级期末)如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3【答案】C【解析】作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,连接MB、NB;再DC和AD上分别取一动点M’和N’(不同于点M和N),连接M'B,M'B',N’B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B",B'M'=BM',B"N'=BN',∴BM'+M'N'+BN'>B'B",又∵B'B"=B'M+MN+NB",MB=MB',NB=NB'',∴NB+NM+BM<BM'+M’N'+BN'NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B’’D的延长线于点H,如图示2所示:在Rt△ABD中,AD=3,AB=,,∴∠2=30º,∴∠5=30º,DB=DB'',又∵∠ADC=∠1+∠2=60º,∴∠1=30º,∴∠7=30º,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120º,DB'=DB''=DB,又∵∠B'DB"+∠6=180º,∴∠6=60º,∴HD=,HB'=3,在Rt △B'HB''中,由勾股定理得:B'B"=,NB +NM +BM =6,故选C.模型3、将军饮马--两动两定求线段和的最小值【模型探究】A ,B 为定点,在定直线m 、n 上分别找两点P 、Q ,使PA +PQ +QB 最小。
初中数学将军饮马五大模型七类题型及答案
将军饮马五大模型七类题型(模型梳理与题型分类讲解)第一部分【知识点归纳】【理论依据】路径最短、线段和最小、线段差最大、周长最小等一系列最值问题。
【方法原理】1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.【基本模型】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使P A+PB最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使P A+PB最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△P AB 的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形P AQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使P A 与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小。
图6【题型目录】【题型1】两定一动型.......................................................3;【题型2】一定两动(两点之间线段最短)型...................................6;【题型3】一定两动(垂线段最短)型.........................................9;【题型4】两定两动型.......................................................12;【题型5】一定两动(等线段)转化型.........................................14;【题型6】直通中考.........................................................18;【题型7】拓展延伸.........................................................21;第二部分【题型展示与方法点拨】【题型1】两定一动型;1.(23-24八年级上·河北廊坊·期中)如图,在△ABC中,∠BAC=90°,AB=12,AC=16,BC=20,将△ABC沿射线BM折叠,使点A与BC边上的点D重合.(1)线段CD的长是;(2)若点E是射线BM上一动点,则△CDE周长的最小值是.2.(22-23八年级上·广西南宁·期末)如图,点E在等边△ABC的边BC上,BE=4,射线CD⊥BC,垂足为点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+FP的值最小时,BF=5,则AB 的长为.3.(23-24八年级下·河南郑州·阶段练习)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP、PQ的长为半径作弧,两弧在∠BAC内交于点AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12R,作射线AR,交BC于点D.已知BC=5,AD=6.若点M、N分别是线段AD和线段AB上的动点,则BM+MN的最小值为.【题型2】一定两动(两点之间线段最短)型;4.(23-24七年级下·陕西西安·期末)如图,在锐角△ABC中,∠ABC=30°,AC=4,△ABC的面积为5,P为△ABC内部一点,分别作点P关于AB,BC,AC的对称点P1,P2,P3,连接P1P2,PP3,则2P1P2+ PP3的最小值为.5.(23-24八年级上·北京海淀·期中)如图,已知∠MON=30°,在∠MON的内部有一点P,A为OM上一动点,B为ON上一动点,OP=a,当△P AB的周长最小时,∠APB=度,△P AB的周长的最小值是.6.(22-23八年级上·新疆乌鲁木齐·期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=5,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于5,则α=()A.30°B.45°C.60°D.90°【题型3】一定两动型(垂线段最短);7.(2024八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.3C.4D.58.(23-24七年级下·广东深圳·期末)如图,在等腰三角形ABC中,AB=AC,AD⊥BC,点D为垂足,E、F分别是AD、AB上的动点.若AB=6,△ABC的面积为12,则BE+EF的最小值是()A.2B.4C.6D.89.(23-24八年级·江苏·假期作业)如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.【题型4】两定两动型;10.(22-23八年级上·湖北武汉·期末)如图,∠AOB=20°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β-α=30°B.β+α=210°C.β-2α=30°D.β+α=200°【题型5】一定两动(等线段)转化型;11.(23-24九年级下·广西南宁·开学考试)如图,△ABC是等边三角形,AB=4.过点A作AD⊥BC于点D,点P是直线AD上一点,以CP为边,在CP的下方作等边△CPQ,连接DQ,则DQ的最小值为.12.(23-24八年级下·湖北武汉·阶段练习)如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,D、E分别是AB、BC上的动点,且CE=BD,连接AE、CD,则AE+CD的最小值为.13.(2024·安徽合肥·二模)如图,△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,AB=8,O是AC的中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,OE的最小值为()A.42B.433 C.32D.2第三部分【中考链接与拓展延伸】【题型6】直通中考14.(2023·辽宁锦州·中考真题)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,按下列步骤作图:①在AC和AB上分别截取AD、AE,使AD=AE.②分别以点D和点E为圆心,以大于12DE的长为半径作弧,两弧在∠BAC内交于点M.③作射线AM交BC于点F.若点P是线段AF上的一个动点,连接CP,则CP+12AP的最小值是.15.(2020·新疆·中考真题)如图,在△ABC中,∠A=90°,∠B=60°,AB=4,若D是BC边上的动点,则2AD+DC的最小值为.【题型7】拓展延伸16.(2024·辽宁葫芦岛·二模)在△ABC中,∠ABC=60°,BC=4,AC=5,点D,E在AB,AC边上,且AD=CE,则CD+BE的最小值是.17.(23-24八年级上·湖北武汉·阶段练习)如图,等腰△ABC中,∠BAC=100°,BD平分∠ABC,点N为BD上一点,点M为BC上一点,且BN=MC,若当AM+AN的最小值为4时,AB的长度是.将军饮马五大模型七类题型(模型梳理与题型分类讲解)第一部分【知识点归纳】【理论依据】路径最短、线段和最小、线段差最大、周长最小等一系列最值问题。
将军饮马问题的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2. 三角形两边之和大于第三边,两边之差小于第三边;3. 中垂线上的点到线段两端点的距离相等;4. 垂线段最短 .基本模型1.已知:如图,定点A、 B 分布在定直线l 两侧;要求:在直线l 上找一点 P,使 PA+PB的值最小解:连接AB 交直线 l 于点 P,点 P 即为所求 ,PA+PB的最小值即为线段AB的长度理由:在l 上任取异于点P 的一点 P′,连接 AP′、 BP′,在△ ABP’中, AP′+BP′>AB,即 AP′+BP′>AP+BP∴ P 为直线 AB与直线 l 的交点时, PA+PB最小 .2.已知:如图,定点 A 和定点 B 在定直线l 的同侧要求:在直线l 上找一点 P,使得 PA+PB值最小(或△ ABP的周长最小)解:作点 A关于直线l 的对称点A′,连接 A′B 交 l 于 P,点 P 即为所求;理由:根据轴对称的性质知直线l 为线段 AA′的中垂线,由中垂线的性质得:PA=PA′,要使 PA+PB最小,则需 PA′+PB值最小,从而转化为模型 1.3.已知:如图,定点A、 B 分布在定直线l 的同侧( A、B 两点到 l 的距离不相等)要求:在直线l 上找一点P,使︱ PA-PB︱的值最大解:连接 BA并延长,交直线 l 于点 P,点 P 即为所求;理由:此时︱ PA-PB︱ =AB,在 l 上任取异于点 P 的一点 P′,连接 AP′、BP′,由三角形的三边关系知︱ P′A-P′B︱<AB,即︱ P′A-P′B︱ <︱PA-PB︱4.已知:如图,定点 A、 B分布在定直线 l 的两侧( A、B 两点到 l 的距离不相等)要求:在直线 l 上找一点 P,使︱ PA-PB︱的值最大解:作点 B 关于直线 l的对称点 B′,连接 B′A 并延长交于点 P,点 P 即为所求;理由:根据对称的性质知l 为线段 BB′的中垂线,由中垂线的性质得: PB=PB′,要使︱ PA-PB︱最大,则需︱ PA-PB′︱值最大,从而转化为模型 3.典型例题 1-1如图,直线y= x+4 与 x 轴、 y 轴分别交于点A和点 B,点 C、 D 分别为线段AB、OB的中点,点 P 为 OA上一动点,当 PC+PD最小时,点P 的坐标为 _________,此时 PC+PD的最小值为 _________.【分析】符合基本模型 2 的特征,作点 D 关于 x 轴的对称点D' ,连接CD'交x 轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线, OP为△ CDD'的中位线,易求 OP长,从而求出 P 点坐标; PC+PD的最小值即 CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接 CD,作点 D 关于 x 轴的对称点D′,连接CD′交 x 轴于点 P,此时 PC+PD值最小.令y= x+4 中 x=0,则 y=4,∴点 B 坐标( 0, 4);令 y= x+4 中 y=0,则 x+4=0,解得: x=﹣6,∴点 A 的坐标为(﹣ 6, 0).∵点 C、 D 分别为线段AB、 OB 的中点,∴ CD为△ BAO的中位线,∴CD∥ x 轴,且 CD=12 AO=3,∵点 D′和点 D 关于 x 轴对称,∴ O为 DD′的中点,D′( 0, -1 ),∴ OP为△ CDD′的中位线,∴OP=12 CD=32,∴点 P 的坐标为(﹣,0).在Rt△ CDD′中,CD′ =CD 2 D D 2=3242=5,即PC+PD的最小值为5.【小结】还可用中点坐标公式先后求出点C、点 P 坐标;若题型变化, C、 D不是 AB 和 OB中点时,则先求直线 CD′的解析式,再求其与 x 轴的交点 P 的坐标 .典型例题 1-2如图,在平面直角坐标系中,已知点 A 的坐标为( 0, 1),点 B的坐标为(,﹣ 2),点 P 在直线 y=﹣ x 上运动,当 |PA﹣ PB| 最大时点 P 的坐标为 _________, |PA ﹣ PB|的最大值是 _________.【分析】符合基本模型 4 的特征,作 A 关于直线y=﹣ x 对称点 C,连接 BC,可得直线 BC的方程;求得 BC与直线 y=﹣ x 的交点 P 的坐标;此时 |PA ﹣ PB|=|PC ﹣ PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作 A 关于直线y=﹣ x 对称点 C,易得 C 的坐标为(﹣ 1, 0);连接 BC,可得直线BC 的方程为 y=﹣54 x﹣54,与直线 y= ﹣ x联立解得交点坐标P 为( 4,﹣ 4);此时 |PA﹣PB|=|PC ﹣PB|=BC取得最大值,最大值BC= (231)2( 2)2= 241;【小结】“两点一线”大多考查基本模型 2 和 4,需作一次对称点,连线得交点 .变式训练 1-1已知菱形OABC在平面直角坐标系的位置如图所示,顶点A( 5, 0),OB=4 ,点 P是对角线OB上的一个动点,D( 0,1),当 CP+DP最短时,点 P 的坐标为()A.(0,0)B.(1,)C.(,) D .(,)变式训练 1-2如图,菱形ABCD中,对角线AC和 BD交于点 O, AC=2,BD=2 ,E 为 AB的中点, P 为对角线 AC上一动点,则 PE+PB的最小值为 __________.变式训练 1-3如图,已知直线y= x+1 与 y 轴交于点 A,与 x 轴交于点 D,抛物线 y= x2+bx+c 与直线交于A、E 两点,与 x 轴交于 B、 C两点,且 B 点坐标为( 1, 0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使 |AM﹣ MC|的值最大,求出点 M的坐标 .拓展模型1.已知:如图, A 为锐角∠ MON外一定点;要求:在射线OM上找一点 P,在射线 ON上找一点 Q,使AP+PQ的值最小 .解:过点 A 作 AQ⊥ ON于点 Q, AQ与 OM相交于点 P,此时, AP+PQ最小;理由: AP+PQ≧ AQ,当且仅当A、 P、 Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ ON时, AQ最小 .2.已知:如图, A 为锐角∠ MON内一定点;要求:在射线OM上找一点 P,在射线 ON上找一点 Q,使AP+PQ的值最小 .解:作点 A 关于 OM的对称点A′,过点A′作 AQ⊥ ON于点 Q, A′ Q交 OM于点 P,此时 AP+PQ最小;理由:由轴对称的性质知AP=A′ P,要使 AP+PQ最小,只需 A′ P+PQ最小,从而转化为拓展模型13.已知:如图, A 为锐角∠ MON内一定点;要求:在射线OM上找一点 P,在射线 ON上找一点 Q,使△ APQ的周长最小解:分别作 A 点关于直线 OM的对称点 A1, 关于 ON的对称点 A2,连接 A 1A2交 OM于点 P,交 ON于点 Q,点P 和点 Q即为所求,此时△APQ周长最小,最小值即为线段 A1A2的长度;理由:由轴对称的性质知AP=AP, AQ=AQ,△ APQ的周12长AP+PQ+AQ=A1P+PQ+A2Q,当 A1、 P、 Q、 A2四点共线时,其值最小 .4.已知:如图, A、 B 为锐角∠ MON内两个定点;要求:在OM上找一点 P,在 ON上找一点Q,使四边形APQB的周长最小解:作点 A 关于直线OM的对称点A′,作点 B 关于直线ON的对称点B′,连接 A′B′交 OM于 P,交 ON于 Q,则点 P、点 Q即为所求,此时四边形APQB周长的最小值即为线段AB和 A′B′的长度之和;理由: AB 长为定值,由基本模型将PA转化为 PA′,将QB转化为 QB′,当 A′、 P、Q、 B′四点共线时,PA′+PQ+ QB′的值最小,即PA+PQ+ QB 的值最小 .5. 搭桥模型已知:如图,直线m∥ n,A、B分别为m上方和n下方的定点,(直线 AB 不与 m垂直)要求:在 m、n 之间求作垂线段PQ,使得 AP+PQ+BQ最小 .分析: PQ为定值,只需AP+BQ最小,可通过平移,使P、 Q“接头”,转化为基本模型解:如图,将点 A 沿着平行于PQ的方向,向下平移至点 A′,使得AA′ =PQ,连接 A′ B 交直线 n 于点Q,过点 Q作 PQ⊥n,交直线m于点 P,线段 PQ即为所求,此时AP+PQ+BQ最小 .理由:易知四边形QPAA′为平行四边形,则QA′ =PA,当 B、 Q、 A′三点共线时,QA′ +BQ最小,即AP+BQ最小, PQ长为定值,此时AP+PQ+BQ最小 .6.已知:如图,定点A、 B 分布于直线l 两侧,长度为a(a为定值 ) 的线段 PQ在 l 上移动( P 在 Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析: PQ为定值,只需AP+QB的值最小,可通过平移,使 P、Q“接头”,转化为基本模型解:将点 A 沿着平行于l 的方向,向右移至A′,使AA′=PQ=a,连接 A′B 交直线 l 于点 Q,在 l 上截取PQ=a( P 在 Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A′B+PQ,即 A′B+a理由:易知四边形APQA′为平行四边形,则PA=QA′,当 A′、 Q、 B 三点共线时, QA′+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小 .7.已知:如图,定点A、 B 分布于直线l 的同侧,长度a(a 为定值 ) 的线段 PQ在 l 上移动( P 在 Q左边)要求:确定PQ的位置,使得四边形 APQB周长最小分析: AB长度确定,只需AP+PQ+QB最小,通过作A 点关于 l 的对称点,转化为上述模型3解:作 A 点关于 l 的对称点A′,将点 A′沿着平行于l的方向,向右移至A′′,使 A′A′′=PQ=a,连接 A′B交 l 于 Q,在 l 上截取 QP=a( P 在 Q左边),线段PQ即为所求,此时四边形APQB周长的最小值为A′B+AB+PQ,即 A′′B+AB+a典型例题 2-1如图,在矩形 ABCD中,AB=10,BC=5,若点 M、N 分别是线段AC、AB上的两个动点,则BM+MN的最小值为.【分析】符合拓展模型 2 的特征,作点 B 关于 AC的对称点E,再过点 E 作 AB的垂线段,该垂线段的长即BM+MN的最小值,借助等面积法和相似可求其长度.【解答】作点 B 关于 AC的对称点E,再过点 E 作 EN⊥ AB 于 N,则 BM+MN=EM+MN,其最小值即EN长;∵ AB=10, BC=5,∴ AC=AB2BC2=55,等面积法求得AC边上的高为10 5=25,∴BE=45,5 5易知△ ABC∽△ ENB,∴,代入数据解得EN=8.即BM+MN的最小值为 8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解 .典型例题 2-2如图,∠ AOB=60°,点 P 是∠ AOB内的定点且 OP=,点M、N分别是射线 OA、OB上异于点O的动点,则△ PMN周长的最小值是()A.B.C.6D.3【分析】符合拓展模型 3 的特征;作P 点分别关于OA、OB的对称点C、 D,连接 CD分别交OA、 OB 于M、 N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD.【解答】作 P 点分别关于OA、 OB的对称点C、 D,连接 CD分别交 OA、 OB于 M、 N,如图,则MP=MC,NP=ND, OP=OD=OC= ,∠ BOP=∠ BOD,∠ AOP=∠ AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠ BOP+∠ BOD+∠AOP+∠ AOC=2∠AOB=120°,∴此时△ PMN周长最小,作 OH⊥CD于 H,则 CH=DH,∵∠ OCH=30°,∴ OH= OC=,CH= OH= ,∴ CD=2CH=3.即△ PMN周长的最小值是3;故选: D.【小结】根据对称的性质,发现△OCD是顶角为 120°的等腰三角形,是解题的关键,也是难点.典型例题 2-3如图,已知平行四边形ABCO,以点 O为原点, OC所在的直线为x 轴,建立直角坐标系, AB 交 y 轴于点 D, AD=2, OC=6,∠ A=60°,线段 EF 所在的直线为 OD的垂直平分线,点 P 为线段 EF 上的动点, PM⊥ x 轴于点 M点,点 E 与 E′关于 x 轴对称,连接 BP、 E′ M.(1)请直接写出点 A 坐标为,点B坐标为;(2)当 BP+PM+ME′的长度最小时,请求出点P 的坐标 .【分析】( 1)解直角三角形求出OD, BD的长即可解决;(2)符合“搭桥模型” 的特征;首先证明四边形 OPME′是平行四边形,可得 OP=EM,PM是定值, PB+ME′=OP+PB的值最小时, BP+PM+ME′的长度最小,此时 P 点为直线OB与EF 的交点,结合OB的解析式可得P 点坐标;【解答】( 1)在 Rt △ ADO中,∵∠ A=60°, AD=2,∴ OD=2?tan60 ° =2,∴ A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,DB=6 2=4 B 42(2)如图,连接 OP.∵ EF 垂直平分线段 OD,PM⊥ OC,∴∠ PEO=∠ EOM=∠ PMO=90°,∴四边形 OMPE是矩形,∴ PM=OE= ,∵ OE=OE′,∴ PM=OE′, PM∥OE′,∴四边形 OPME′是平行四边形 ,∴OP=EM,∵ PM是定值,∴ PB+ME′ =OP+PB的值最小时, BP+PM+ME′的长度最小,∴当 O、 P、 B 共线时, BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴ P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题 2-4如图所示,在平面直角坐标系中, Rt △ AOB的顶点坐标分别为A(﹣ 2, 0),O( 0, 0), B( 0,4),把△ AOB绕点 O按顺时针方向旋转 90°,得到△ COD.(1)求 C、 D 两点的坐标;(2)求经过 A、 B、D 三点的抛物线的解析式;(3)在( 2)中抛物线的对称轴上取两点E、 F(点 E 在点 F的上方),且 EF=1,使四边形ACEF的周长最小,求出 E、F 两点的坐标.【分析】符合拓展模型7 的特征,通过作对称、平移、连线,可找出E、 F 点,结合直线的解析式和抛物线的对称轴可解出E、F 坐标 .【解答】( 1)由旋转的性质可知:OC=OA=2, OD=OB=4,∴ C点的坐标是( 0, 2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax 2+bx+c,4a-2b+c=0由题意,得16a+4b+c=0c=4解得 a=-,b=1,c=4,∴所求抛物线的解析式为y=-2;(3)只需 AF+CE最短,抛物线y=-2的对称轴为x=1,将点 A 向上平移至A1(﹣ 2, 1),则 AF=A1E,作 A1关于对称轴x=1 的对称点A2( 4, 1),连接 A2C,A2C与对称轴交于点E,E 为所求,可求得A2C 的解析式为 y=-,当x=1时,y=,∴点E的坐标为(1,) ,点 F 的坐标为 (1,) .【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练 2-1几何模型:条件:如图1, A, B 是直线 l 同旁的两个定点.问题:在直线l 上确定一点P,使 PA+PB的值最小.方法:作点 A 关于直线l 的对称点A’,连接 A’ B 交 l 于点 P,即为所求 . (不必证明)模型应用:( 1)如图 2,已知平面直角坐标系中两定点A( 0,﹣ 1)和 B( 2,﹣ 1), P 为 x 轴上一动点,则当PA+PB的值最小是点P 的横坐标是,此时PA+PB=.(2)如图 3,正方形 ABCD的边长为 4, E 为 AB的中点, P 是 AC上一动点,连接 BD,由正方形对称性可知, B 与 D 关于直线 AC对称.连接 ED交 AC于 P,则 PB+PE的最小值是.( 3)如图 4,在菱形ABCD中, AB=10,∠ DAB=60°, P 是对角线AC上一动点, E, F 分别是线段AB和BC上的动点,则PE+PF的最小值是.( 4)如图 5,在菱形ABCD中, AB=6,∠ B=60°,点AG, AD上的两个动点,则EF+ED的最小值是G是边.CD边的中点,点E. F 分别是变式训练 2-2如图,矩形 ABCD中, AD=15, AB=10, E 为 AB边上一点,且DE=2AE,连接 CE与对角线 BD交于 F;若 P、 Q分别为 AB 边和BC边上的动点,连接 EP、 PQ和 QF;则四边形 EPQF周长的最小值是 ___________.变式训练 2-3如图,已知直线 l∥ l, l 、l2之间的距离为8,点 P 到直线 l的1211距离为 6,点 Q到直线 l 2的距离为 4, PQ=4 ,在直线 l 1上有一动点 A,直线l 2上有一动点B,满足AB⊥l 2,且PA+AB+BQ最小,此时PA+BQ= .变式训练 2-4如图,已知在平面直角坐标系xOy 中,直角梯形OABC的边 OA在 y 轴的正半轴上,OC在x 轴的正半轴上,OA=AB=2, OC=3,过点 B 作 BD⊥ BC,交 OA于点 D.将∠ DBC绕点 B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E和 F.(1)求经过A、 B、C 三点的抛物线的解析式;(2)当 BE经过( 1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点 Q 在点 P 的上方),且 PQ=1,要使四边形 BCPQ 的周长最小,求出 P、 Q两点的坐标.中考真题1. 要在街道旁建奶站,向居民区A、B 提供牛奶,奶站应建在什么地方,才能使A、B 到它的距离之和最短?小聪以街道为x 轴,建立了如图所示的平面直角坐标系, A 点坐标为(0,3), B 点坐标为( 6, 5),则 A、 B 两点到奶站距离之和的最小值是.2.如图,矩形 ABOC的顶点 A 的坐标为(﹣ 4, 5), D是 OB的中点, E 是 OC上的一点,当△ADE的周长最小时,点 E 的坐标是()A.( 0,)B.( 0,)C.( 0, 2)D.( 0,)3. 如图,在矩形ABCD中, AB=5, AD=3,动点P 满足S△PAB=1 S 矩形ABCD,则点P 到A、 B 两点距3离之和PA+PB的最小值为()A.B.C. 5D.4. 已知抛物线y=x2+1 具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(, 3), P 是抛物线y=x2+1 上一个动点,则△ PMF周长的最小值是()A.3B.4C. 5D.65.如图,点 A( a,3),B(b,1)都在双曲线 y= 上,点 C,D,分别是 x 轴,y 轴上的动点,则四边形ABCD周长的最小值为()A.B.C. D .6.如图,在 Rt△ ABC中,∠ C=90°, AC=3, BC=4,D、E 分别是 AB、BC边上的动点,则 AE+DE的最小值为()A.B.C.5D.7. 如图, Rt△ ABC中,∠BAC=90°, AB=3, AC=6,点D, E 分别是边BC, AC 上的动点,则 DA+DE的最小值为.8.如图,等腰△ ABC的底边 BC=20,面积为 120,点 F 在边 BC上,且 BF=3FC,EG是腰 AC的垂直平分线,若点 D 在EG上运动,则△CDF周长的最小值为.9. 如图,菱形ABCD的边长为6,∠ ABC=120°, M 是上的动点,当PB+PM的值最小时,PM的长是(BC边的一个三等分点,)P 是对角线ACA.B.C.D.10.如图,在 Rt△ ABC中,∠ ACB=90°, AC=6, BC=8, AD平分∠ CAB交 BC于 D 点, E, F 分别是 AD, AC上的动点,则 CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数 y=( x>0)的图象与边长是 6 的正方形 OABC的两边 AB,BC分别相交于 M,N 两点.△ OMN的面积为10.若动点 P 在 x 轴上,则 PM+PN的最小值是()A. 6B. 10C.2D.212. 如图,△ ABC中, AC=BC=2,AB=1,将它沿 AB翻折得到△ ABD,则四边形 ADBC的形状是形,P、E、F分别为线段AB、AD、 DB 上的任意点,则PE+PF的最小值是.13. 如图,已知抛物线y= x2+bx+c 与直线 y= x+3 交于 A,B 两点,交x 轴于 C、 D 两点,连接 AC、 BC,已知 A( 0,3), C(﹣ 3, 0).(1)求此抛物线的解析式;(2)在抛物线对称轴 l 上找一点 M,使 |MB﹣ MD|的值最大,并求出这个最大值;(3)点 P 为 y 轴右侧抛物线上一动点,连接PA,过点 P 作 PQ⊥ PA 交 y 轴于点 Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14. 如图,在四边形ABCD中,∠ B=∠ C=90°, AB> CD, AD=AB+CD.(1)用尺规作∠ ADC的平分线 DE,交 BC于点 E,连接 AE(保留作图痕迹,不写作法);(2)在( 1)的条件下,①证明: AE⊥ DE;②若 CD=2, AB=4,点 M,N 分别是 AE, AB 上的动点,求B M+MN的最小值.15. 如图,抛物线y=ax2+bx+c ( a≠ 0)经过点A(﹣ 1, 0),B( 3, 0), C( 0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接 AC、 BC,N 为抛物线上的点且在第四象限,当(3)在( 2)问的条件下,过点 C 作直线 l ∥ x 轴,动点S△NBC=S△ABC时,求 N点的坐标;P( m,3)在直线 l 上,动点 Q( m,0)在 x 轴上,连接 PM、PQ、NQ,当 m为何值时, PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16. 如图,直线 y=5x+5 交 x 轴于点 A,交 y 轴于点C,过 A, C 两点的二次函数2y=ax +4x+c的图象交 x 轴于另一点 B.(1)求二次函数的表达式;(2)连接 BC,点 N是线段 BC上的动点,作 ND⊥ x 轴交二次函数的图象于点D,求线段 ND 长度的最大值;(3)若点 H为二次函数 y=ax2+4x+c 图象的顶点,点M( 4,m)是该二次函数图象上一点,在 x 轴、 y 轴上分别找点F, E,使四边形 HEFM的周长最小,求出点 F,E 的坐标.17. 如图 1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A, B 两点,与 y轴交于点C.(1)若抛物线过点 T( 1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以 A、B、D 三点为顶点的三角形与△ ABC相似?若存在,求 a 的值;若不存在,请说明理由.(3)如图 2,在( 1)的条件下,点 P 的坐标为(﹣ 1,1),点 Q(6, t )是抛物线上的点,在 x 轴上,从左至右有M、N 两点,且 MN=2,问 MN在 x 轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.18. 如图,对称轴为直线x=2 的抛物线经过A(﹣ 1, 0), C( 0, 5)两点,与x 轴另一交点为 B.已知 M( 0, 1), E(a, 0), F(a+1, 0), P 是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当 a=1 时,求四边形MEFP的面积的最大值,并求此时点P 的坐标;(3)若△ PCM是以点 P 为顶点的等腰三角形,求 a 为何值时,四边形PMEF周长最小?请说明理由.19. 探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1( x1, y1), P2( x2, y2),可通过构造直角三角形利用图1 得到结论:P1P2= 他还利用图 2 证明了线段 P1P2的中点 P( x,y)P 的坐标公式:x=, y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:( 2)①已知点M( 2,﹣ 1), N(﹣ 3, 5),则线段MN长度为;②直接写出以点A( 2,2),B(﹣ 2,0),C( 3,﹣ 1), D为顶点的平行四边形顶点D 的坐标:;拓展:(3)如图3,点P( 2, n)在函数y=x( x≥ 0)的图象OLx 轴正半轴夹角的平与E、 F,使△PEF 的周长最小,简要叙述作图分线上,请在OL、 x 轴上分别找出点方法,并求出周长的最小值.20.如图,直线 y=kx+b ( k、 b 为常数)分别与 x 轴、 y 轴交于点 A(﹣ 4,0)、B( 0,3),抛物线 y=﹣ x2+2x+1 与 y 轴交于点 C.(1)求直线y=kx+b 的函数解析式;(2)若点 P( x, y)是抛物线y=﹣ x2+2x+1 上的任意一点,设点P 到直线 AB 的距离为d,求 d 关于 x 的函数解析式,并求 d 取最小值时点P 的坐标;(3)若点 E 在抛物线 y= ﹣ x2 +2x+1 的对称轴上移动,点 F 在直线 AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中, OA=6,以 OA为边长作等边三角形 ABC,使得 BC∥ OA,且点B、C 落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点 P 从点 B 出发,沿折线 BAC的方向以每秒 2 个单位的速度运动,同时另一动点 Q从 O点出发,沿 x 轴的负半轴方向以每秒 1 个单位的速度运动,当点 P 运动到 A 点时, P、 Q都同时停止运动,在 P、Q的运动过程中,是否存在时间 t ,使得 PQ⊥ AB,若存在,求出 t 的值,若不存在,请说明理由;(3)在 BC边上取两点 E、 F,使 BE=EF=1个单位,试在 AB 边上找一点 G,在抛物线的对称轴上找一点 H,使得四边形 EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色: 1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
(完整版)将军饮马问题的11个模型及例题
如图,菱形ABCD中,对角线AC和BD交于点O,AC=2,
BD=2 ,E为AB的中点,P为对角线AC上一动点,则PE+PB的
最小值为__________.
变式训练1-3
如图,已知直线y= x+1与y轴交于点A,与x轴交于点D,抛物线y= x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
点到l的距离不相等)
要求:在直线l上找一点P,使︱PA-PB︱的值最大
解:作点B关于直线l的对称点B´,连接B´A并延长交
于点P,点P即为所求;
理由:根据对称的性质知l为线段BB´的中垂线,由中垂
线的性质得:PB=PB´,要使︱PA-PB︱最大,则需
︱PA-PB´︱值最大 ,从而转化为模型3.
典型例题1-1
【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC= ,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,作OH⊥CD于H,
如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.
【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为 △CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.
完整word版将军饮马问题的11个模型及例题
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理2.三角形两边之和大于第三边,两边之差小于第三边;1.两点之间,线段最短;.垂线段最短3.中垂线上的点到线段两端点的距离相等;4.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小, 即为所求,点PP解:连接AB交直线l于点PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P′,连接AP′、BP′,在△ABP'中,AP′+BP′>AB,即AP′+BP′>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A′,连接A′B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA′的中垂线,由中垂线的性质得:PA=PA′,要使PA+PB最小,则需PA′+PB值最小,从而转化为模型1.3.两的同侧(A、B已知:如图,定点A、B分布在定直线l 的距离不相等)点到l︱的值最大P,使PA-PB︱要求:在直线l上找一点 P,点P即为所求;解:连接BA并延长,交直线l于点的一点P′,︱=AB,在l上任取异于点P此时︱理由:PA-PB ︱<AB,,由三角形的三边关系知︱P′A-P′B′连接AP、BP′︱PA-PB︱′A-P′B︱<即︱P两B分布在定直线l的两侧(A、已知:如图,定点A、B 4.的距离不相等)点到l︱的值最大上找一点P,使︱PA-PB要求:在直线l 并延长交连接B′A解:作点B关于直线l的对称点B′,P于点,点P即为所求;为线段BB′的中垂线,由中垂理由:根据对称的性质知l ′,要使︱PA-PB︱最大,则需线的性质得:PB=PB3.′︱值最大,从而转化为模型︱PA-PB1-1典型例题2分DA和点B,点Cx+4如图,直线y=与x轴、y轴分别交于点3最小时,为OA上一动点,当PC+PD、别为线段ABOB的中点,点P_________. _________,此时的最小值为PC+PD点P的坐标为,连轴的对称点D'的特征,作点【分析】符合基本模型2D关于x为CDx轴于点P,此时PC+PD 值最小,由条件知CD'接交长,从OPCDD'的中位线,易求△的中位线,△BAOOP为长,可用勾股定理CD'PC+PD而求出P点坐标;的最小值即.(或两点之间的距离公式,实质相同)计算轴x′交CD′,连接D轴的对称点x关于D,作点CD】连接解答【.2x=0,则y=4,于点P,此时PC+PD值最小.令y=x+4中322的坐标,∴点Ay=0∴点B坐标(0,4);令y=x+4中,则x+4=0,解得:x=﹣633的中位线,BAO的中点,∴CD为△为(﹣6,0).∵点C、D分别为线段AB、OB1AO=3CD=,∴CD∥x轴,且2′的中点,O为DDD∵点′和点D关于x轴对称,∴31OP=CD=-1D′(0,),∴OP为△CDD′的中位线,∴,223△CDD′中,∴点P的坐标为(﹣,0).在Rt22222?4DDCD3??5.CD′=的最小值为=5,即=PC+PD 坐标;若题型变、点P【小结】还可用中点坐标公式先后求出点C CD′的解析不是化,C、DAB和OB中点时,则先求直线.P的坐标式,再求其与x轴的交点1-2典型例题B ,点1)如图,在平面直角坐标系中,已知点A的坐标为(0,3最,点的坐标为(,﹣2)P在直线y=﹣x上运动,当|PA﹣PB|2_________. PB|的最大值是P大时点的坐标为_________,|PA﹣,y=【分析】符合基本模型4的特征,作A关于直线﹣x 对称点C x连接BC,可得直线BC的方程;求得BC与直线y=﹣的交点P的坐标;此时|PA﹣PB|=|PC﹣PB|=BC取得最大值,.再用两点之间的距离公式求此最大值BCBC,可得直线;连接的坐标为(﹣1,0)C解答【】作A 关于直线y=﹣x对称点,易得C44|PA);此时4P为(4,﹣的方程为y=﹣xy=﹣,与直线﹣x联立解得交点坐标552241)(?2(?1)?3 PB|=|PC﹣PB|=BCBC==取得最大值,最大值;﹣22.,需作一次对称点,连线得交点2和4】【小结“两点一线”大多考查基本模型1-1变式训练),,已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(50最短0D(,1),当CP+DPOBOB=45,点P是对角线上的一个动点,√时,点P的坐标为()510361,.)1. 00.A(,) B(,C((.) D,)77552.1-2变式训练AC=2,和如图,菱形ABCD中,对角线ACBD交于点O,的上一动点,则PE+PB3,E为AB的中点,P为对角线BD=2AC√__________. 最小值为1-3变式训练112与直线交于x+bx+cD,抛物线y=x+1如图,已知直线y=与y轴交于点A,与x轴交于点22.01,)A、E两点,与x轴交于B、C两点,且B点坐标为()求该抛物线的解析式;(1. 的值最大,求出点MC|M的坐标(2)在抛物线的对称轴上找一点M,使|AM﹣拓展模型1.已知:如图,A为锐角∠MON外一定点;,使上找一点Q上找一点P,在射线ON要求:在射线OM. AP+PQ的值最小解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;,使上找一点ONQ,在射线上找一点要求:在射线OMP.的值最小 AP+PQ.ONAQ⊥的对称点A′,过点A′作解:作点A关于OM AP+PQ最小;交OM于点P,此时于点Q,A′QAP+PQ最小,AP=A′P,要使理由:由轴对称的性质知1 P+PQ最小,从而转化为拓展模型只需A′为锐角∠MON内一定点;已知:如图,A 3.,使,在射线ON上找一点Q要求:在射线OM上找一点P 的周长最小△APQ的对,关于ON 解:分别作A点关于直线OM的对称点A1于点ONQ,点A交OM于点P,交称点A,连接 A221即为所求,此时△APQ周长最小,最小值P和点Q AA的长度;即为线段21,△APQ的周AP=AP,AQ=AQ理由:由轴对称的性质知21 A四点共线、P、Q、P+PQ+A长AP+PQ+AQ=AQ,当A2112. 时,其值最小内两个定点;B为锐角∠MON、已知:如图,A 4.四边形上找一点Q,使要求:在OM上找一点P,在ON APQB的周长最小,作点B关于直线A 关于直线OM的对称点A′解:作点 Q,P,交ON于交的对称点ONB′,连接A′B′OM于周长的、点Q即为所求,此时四边形APQB则点P′′B的长度之和;最小值即为线段AB和A ,将PA理由:AB长为定值,由基本模型将PA转化为′ B′四点共线时,、、′QB转化为QB,当A′P、Q . QBPQPA′+′+PAPQ QB的值最小,即++的值最小下方的定分别为m上方和n已知:如图,直线m∥n,A、B5.搭桥模型垂直)(直线AB不与m点,. 最小PQ,使得AP+PQ+BQ之间求作垂线段要求:在m、n 最小,可通过平移,使PQ为定值,只需AP+BQ分析:,转化为基本模型、Q“接头”P 的方向,向下平移至A沿着平行于PQ解:如图,将点交直线n于点′AA′=PQ,连接AB点A′,使得,线段PQ即⊥n,交直线m于点PQ,过点Q作PQ.为所求,此时AP+PQ+BQ最小′=PA,理由:易知四边形QPAA′为平行四边形,则QA +BQ最小,即、A′三点共线时,QA′当B、Q.AP+PQ+BQ最小AP+BQ最小,PQ长为定值,此时al两侧,长度为A、B分布于直线6.已知:如图,定点左边)上移动(P在Q (a为定值)的线段PQ在l最小要求:确定PQ的位置,使得AP+PQ+QB的值最小,可通过平移,PQ为定值,只需AP+QB 分析:,转化为基本模型、Q“接头”使P A′,使解:将点A沿着平行于l的方向,向右移至l上截取交直线Bl于点Q,在AA′=PQ=a,连接A′ PQ即为所求,此时在Q左边),则线段PQ=a (PB+a ′′B+PQ,即AAP+PQ+QB的最小值为A ′为平行四边形,则PA=QA,理由:易知四边形APQA′PA+QB +QB最小,即、QB三点共线时,QA′A当′、.值最小最小,又PQ长为定值此时PA+PQ+QBal的同侧,长度、7. 已知:如图,定点AB分布于直线左边)Q在P上移动(l在PQ的线段)为定值(a周长最小要求:确定PQ的位置,使得四边形APQB点分析:AB长度确定,只需AP+PQ+QB最小,通过作A3的对称点,转化为上述模型关于llAl的对称点A′,将点′沿着平行于解:作A点关于B ′A′′=PQ=a,连接A′′的方向,向右移至A′′,使A (P在Q左边),线段交l于Q,在l上截取QP=a APQB周长的最小值为PQ即为所求,此时四边形B+AB+aA′′′′B+AB+PQ,即A2-1典型例题、AC、N分别是线段如图,在矩形ABCD中,AB=10,BC=5,若点M .上的两个动点,则ABBM+MN 的最小值为,再过EAC的对称点关于【分析】符合拓展模型2的特征,作点B的最小值,借BM+MNAB的垂线段,该垂线段的长即点E作.助等面积法和相似可求其长度,BM+MN=EM+MN作EN⊥AB于N,则E解答【】作点B关于AC的对称点E,再过点,其最小值即EN长;∵AB=10,BC=522BCAB?5,∴=5AC=510?55, =2等面积法求得ACBE=4边上的高为,∴55,∴∽△ABCENBEN=8.易知△,代入数据解得 8.即BM+MN的最小值为】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作【小结有些题则作动点的定点或动点关于定直线的对称点,有些题作定点的对称点易解,.对称点易解2-2典型例题分别、NAOB内的定点且OP=,点MP如图,∠AOB=60°,点是∠)(的动点,OB上异于点O则△PMN周长的最小值是、是射线OAC..AB..6 D3分别交D,连接CDOA、OB的对称点C、【分析】符合拓展模型3的特征;作P点分别关于,OC、OD,此时△PMN周长最小,其值为CD长;根据对称性连接OA、OB于M、NCD.是顶角为120°的等腰三角形,作底边上高,易求底边分析条件知△OCD N,如图,、OB于M、的对称点OA、OBC、D,连接CD分别交OA【解答】作P点分别关于,BOD,∠AOP=∠AOC则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠°,∠AOC=2∠AOB=120PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∴,⊥CD于H∴此时△PMN周长最小,作OHOC=OH=,则CH=DH,∵∠OCH=30°,∴CD=2CH=3.CH=OH=,∴即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.2-3典型例题所在的直线为原点,OCABCO,以点O如图,已知平行四边形,,OC=6D,AD=2轴于点为x轴,建立直角坐标系,AB交y为点P所在的直线为OD的垂直平分线,∠A=60°,线段EF轴x与E′关于线段EF上的动点,PM⊥x轴于点M点,点E ′M.对称,连接BP、E ;(1)请直接写出点A坐标为,点B坐标为. 的坐标BP+PM+ME′的长度最小时,请求出点P(2)当的长即可解决;,BD【分析】(1)解直角三角形求出OD,可得OP=EM符合(2)“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,点为P′的长度最小,此时PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME 点坐标;OB与EF的交点,结合OB的解析式可得P直线 ADO中,∵∠A=60°,AD=2,(【解答】1)在Rt △,)°OD=2?tan60=2,∴A(﹣2,2∴,∵四边形ABCO是平行四边形,∴AB=OC=6)4B(,22=4∴DB=6﹣,∴,,∵如图,(2)连接OP.EF垂直平分线段ODPM⊥OC PEO=是矩形,°,∴四边形∠∠EOM=PMO=90OMPE∴∠′,∴,∵∴PM=OE=OE=OEPM=OE′,OE∥′,PM,′是平行四边形OPME∴四边形.′的长度最小,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+MEB共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=,x∴当O、P、.2,)(∴P(构造平行四边求没有公共端点的两条线段之和的最小值,一般通过作对称和平移【小结】.形)的方法,转化为基本模型2-4典型例题的顶点坐标分△AOB如图所示,在平面直角坐标系中,RtOAOB4),把△绕点)(﹣2,0,O(0,0),B(0,别为A 90°,得到△COD.按顺时针方向旋转C、D两点的坐标;(1)求三点的抛物线的解析式;、D(2)求经过A、BFE在点E(3)在(2)中抛物线的对称轴上取两点、F(点、求出E的上方),且EF=1,使四边形ACEF的周长最小,两点的坐标.F点,结合直线的F【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、、解析式和抛物线的对称轴可解出EF坐标. 解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐【,0)D),点的坐标是(4,标是(0,22,(2)设所求抛物线的解析式为y=ax+bx+c 4a-2b+c=016a+4b+c=0由题意,得 c=41,,b=1,c=4解得a=-21+4;x2+x y=-∴所求抛物线的解析式为21,+x+4的对称轴为x=1x2y=-最短,抛物线3)只需AF+CE(2A关于对称轴x=1的对称点,作2将点A向上平移至A(﹣,1),则AF=AE111的解析式,与对称轴交于点EE为所求,可求得ACCC1(A4,),连接A,A22223771y=+x2,当x=1时, )的坐标为,点)为y=-(1,E,∴点的坐标为F(1,.4444. 】解决此类题的套路是“对称、平移、连线”【小结;其中,作对称和平移的顺序可互换2-1变式训练几何模型: l同旁的两个定点.条件:如图1,A,B是直线的值最小.P问题:在直线l上确定一点,使PA+PB (不必证明)B交l于点P,即为所求.方法:作点A关于直线l的对称点A',连接A' 模型应用:轴上一动1),P为xA)如图2,已知平面直角坐标系中两定点(0,﹣1)和B(2,﹣(1 ,此时PA+PB= .点,则当PA+PB的值最小是点P的横坐标是,由BD的中点,P是AC上一动点,连接)如图3,正方形ABCD的边长为4,E为AB2(的最小PB+PEAC于P,则正方形对称性可知,B与D关于直线AC对称.连接ED交值是.分别F上一动点,E,DAB=60中,AB=10,∠°,P是对角线AC3()如图4,在菱形ABCD .的最小值是是线段AB和BC上的动点,则PE+PF分别是FE.°,点B=60G是边CD边的中点,点)如图(45,在菱形ABCD中,AB=6,∠.AD上的两个动点,则EF+ED的最小值是AG,变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长___________.的最小值是2-3变式训练的P到直线l,l、l之间的距离为8,点如图,已知直线l∥l11212距上有一动PQ=4l的距离为4,,在直线l离为6,点Q到直线12最小,此时,满足AB⊥l,且PA+AB+BQ点A,直线l上有一动点B22.PA+BQ=2-4变式训练在OC的边OA在y轴的正半轴上,中,直角梯形如图,已知在平面直角坐标系xOyOABC 按顺BD.将∠DBC绕点作OC=3,过点BBD⊥BC,交OA于点x轴的正半轴上,OA=AB=2, E和F.x 时针方向旋转,角的两边分别交y轴的正半轴、轴的正半轴于点 B、C三点的抛物线的解析式;(1)求经过A、)中抛物线的顶点时,求CF的长;(2)当BE经过(1BCPQPQ=1,要使四边形(点Q在点P的上方),且Q(3)在抛物线的对称轴上取两点P、 Q两点的坐标.的周长最小,求出P、中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△)的坐标是(E的周长最小时,点ADE.,)(0,2) D.(0(A.(0,) B.0,) C.1两点距、满足S=BS,则点P到A3.如图,在矩形ABCD中,AB=5,AD=3,动点P ABCDPAB△矩形3)离之和PA+PB的最小值为(.5C. DA. B.,2)的距离与到4.已知抛物线y=x+1具有如下性质:该抛物线上任意一点到定点F2x0(M的坐标为(y=,3),P是抛物线x+1 PMF周长2上一个动点,轴的距离始终相等,如图,点的最小值是()则△6DC..A.3 B45 .轴上的动点,轴,分别是xyD1B),(b,)都在双曲线y=上,点C,,,点5.如图,A(a3 )ABCD则四边形周长的最小值为(.CB.. D A.AE+DE边上的动点,则ABDAC=3中,在6.如图,Rt△ABC∠C=90°,,BC=4,、E分别是、BC 的最小值为().5DCA.B..上的动点,,中,∠如图,7.Rt△ABCBAC=90°,AB=3AC=6,点D,分别是边EBCAC,的最小值为则DA+DE .8.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC )的长是(PM的值最小时,PB+PM上的动点,当..D. B. C. A分F交BC于D点,E,,10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8AD平分∠CAB AC,上的动点,则CE+EF的最小值为()别是AD6. D.A. B. COABC6的正方形11.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是PM+PNP 两点.△OMN的面积为10.若动点在x轴上,则N 的两边AB,BC分别相交于M,的最小值是()2.2 D..A.6 B10 CADBC则四边形翻折得到△ABD,AC=BC=212.如图,△ABC中,,AB=1,将它沿ABPE+PF上的任意点,则、形,的形状是 P、E、F分别为线段ABAD、DB .的最小值是D轴于,AB两点,交xC、y=y=13.如图,已知抛物线x+bx+c与直线x+3交于).,,0BC 2两点,连接AC、,已知A(,3)C(﹣30)求此抛物线的解析式;(1的值最大,并求出这个最(2)在抛物线对称轴MD||MB上找一点M,使﹣l 大值;轴y交⊥作,过点轴右侧抛物线上一动点,连接为)点(3PyPAPPQPAABC于点QP,AP,问:是否存在点Q,使得以,为顶点的三角形与△请说的坐标;若不存在,P相似?若存在,请求出所有符合条件的点.明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.,3),C(03A(﹣1,0),B(,0y=ax15.如图,抛物线+bx+c(a≠0)经过点的坐标;)2)三点.求抛物线的解析式及顶点M(1 N点的坐标;时,求N为抛物线上的点且在第四象限,当S=S(2)连接AC、BC,ABCNBC△△,(ml上,动点QPx轴,动点(m,3)在直线2(3)在()问的条件下,过点C作直线l∥ PM+PQ+QN的和最小,并求出m为何值时,PM+PQ+QNPM轴上,连接、PQ、NQ,当0)在x 和的最小值.,过A,两点的二次函数A16.如图,直线y=5x+5交x轴于点,交y轴于点C .的图2+4x+cy=axC象交x轴于另一点B )求二次函数的表达式;(1NDD,求线段⊥BC上的动点,作NDx轴交二次函数的图象于点是线段)连接(2BC,点N 长度的最大值;2)是该二次函数图象上一点,4,m图象的顶点,点H(3)若点为二次函数y=ax+4x+cM(的坐标.E,F的周长最小,求出点HEFM,使四边形E,F轴上分别找点y轴、x在.yB两点,与A0)与x轴从左至右交于,(x﹣2)(x+a)(a>y=17.如图1,已知抛物线 C.轴交于点,求抛物线的解析式;T(1,﹣)(1)若抛物线过点△ B、D三点为顶点的三角形与(2)在第二象限内的抛物线上是否存在点D,使得以A、 ABC相似?若存在,求a的值;若不存在,请说明理由.)是抛物线上的点,6,t1的坐标为(﹣1,),点Q(2(3)如图,在(1)的条件下,点PPQNM轴上移动到何处时,四边形MN=2,问MN在x两点,在x轴上,从左至右有M、N且 M 的坐标.的周长最小?请直接写出符合条件的点轴另一交点x5)两点,与((﹣1,0),C0,A18.如图,对称轴为直线x=2的抛物线经过),P是第一象限内抛物线上的动点.0F,,0(,1)E(a0),(a+1,MB为.已知)求此抛物线的解析式;(1 的面积的最大值,并求此时点)当2a=1时,求四边形MEFPP的坐标;(周长最小?请说为顶点的等腰三角形,求是以点)若△(3PCMPaPMEF为何值时,四边形明理由.P探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点19.1=P:P1得到结论三过构造直角角形利用图,(x(,y),Px,y)可通2112221的坐标公式:)P(x,y他还利用图2证明了线段PP的中点P21.,y=x=1)请你帮小明写出中点坐标公式的证明过程;( MN长度为;(﹣M2)①已知点(2,﹣1),N3,5),则线段运用:(为顶点的平行四边形顶点D),3(﹣B2,0),C(,﹣12A②直接写出以点(2,),;的坐标:D轴正半轴夹角的平≥x(x0)的图象OL与xy=n2P33拓展:()如图,点(,)在函数的周长最小,简要叙述作图FExOL分线上,请在、轴上分别找出点、,使△PEF 方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛2物线y=﹣x+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;2)若点P(x,y)是抛物线y=﹣x+2x+1上的任意一点,设点P到直线AB的距离为d,求d 2(关于x的函数解析式,并求d取最小值时点P的坐标;3)若点E在抛物线y=﹣x+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小2(值.,且OA∥ABC,使得BC21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形落在过原点且开口向下的抛物线上.B、C点)求这条抛物线的解析式;(1个单位的速度运动,2BAC 的方向以每秒P从点B出发,沿折线在图①中,(2)假设一动点P个单位的速度运动,当点沿点出发,x轴的负半轴方向以每秒1同时另一动点Q从O,使得tQP、的运动过程中,是否存在时间A运动到点时,P、Q都同时停止运动,在的值,若不存在,请说明理由;AB,若存在,求出tPQ⊥,在抛物线的对称边上找一点G,使BE=EF=1个单位,试在ABE3()在BC边上取两点、F 的周长最小,并求出周长的最小值.H,使得四边形EGHF轴上找一点本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买1.特色:由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
将军饮马18道典型习题
“将军饮马”常见模型及18道典型习题何为将军饮马?2000多年以前。
古希腊的亚历山大城里住着一位睿智的数学家海伦。
一天,城里来了一位将军,听闻海伦盛名,特来向他请教一个问题。
将军说,每天早上,他都骑着马儿从营帐出发,到河边让马儿饮水,然后,再去河岸同一侧的一块草地上带着马儿去吃草,问题时,在河岸的哪个具体位置喝水,行程最短?海伦略做沉思,给出了将军最佳方案。
此之谓“将军饮马”。
最佳方案为何?且阅下文:一、将军饮马常见的5种模型:1、一动两定(和最小):如图,点A是将军和马居住的营帐,点B是一块指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路PA+PB的值最小?解析:做A点关于L的对称点A’,连接A’B,与L的交点即为P点。
为什么这时PA+PB最小?假设L上有一点M(与P点不重合)。
∵A点与A’关于L对称∴AP=A’P;AM=A’M;∴AP + BP =A’P +BP =A’B而AM + BM = A’M +MB在△A’MB中,两边之和大于第三边∴A’B < A’M +MB;而M为L上任一点(与P点不重合)。
∴动点P在A’B与L交点处时AP+BP最小。
2、一定两动:如图,点A是将军和马居住的营帐,小河L1依然像上题中一样潺潺流过,P是将军带着马儿喝水的地方,不同的是,这次吃草的地方不在是一个指定的点,而是L2所代表的一片草地,Q则是将军骑马吃草的地方,水足草饱以后,将军和马儿会再回到营帐。
那么,P点、Q点在何处时,将军走过的路AP+PQ+QA的值最小?解析:做A点关于L1的对称点A’;做A点关于L2的对称点A‘’;连接A’A‘’,与L1和L2的交点即为P、Q。
为什么此时,AP+PQ+AQ的和最小?假设L1上有点M(不与P重合)、L2上有点N(不与Q重合)。
∵A点与A’关于L1对称;A点与A‘’关于L2对称。
∴AP=A’P;AQ=A”Q;AM=A’M;AN=A”N;∴AP+PQ+AQ = A’P+PQ+A”Q =A’A”;AM+MN+AN = A’M+MN+A”N在四边形A’MNA”中:A’M+MN+A”N >A’A”∴P、Q位于A’A”与L1和L2的交点处时,AP+PQ+AQ的和最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD ,作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC+PD 值最小.令y=x+4中x=0,则y=4,∴点B 坐标(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0) B.(1,)C.(,) D.(,)变式训练1-2如图,菱形ABCD中,对角线AC和BD交于点O,AC=2,BD=2,E为AB的中点,P为对角线AC上一动点,则PE+PB的最小值为__________.变式训练1-3如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.拓展模型1.已知:如图,A为锐角∠MON外一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON 于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB 的最小值为A ´B+PQ ,即A ´B+a理由:易知四边形APQA ´为平行四边形,则PA=QA ´,当A ´、Q 、B 三点共线时,QA ´+QB 最小,即PA+QB最小,又PQ 长为定值此时PA+PQ+QB 值最小.7. 已知:如图,定点A 、B 分布于直线l 的同侧,长度a(a 为定值)的线段PQ 在l 上移动(P 在Q 左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P是∠AOB内的定点且OP=,点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD.【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,。