第二章-光的衍射--习题及答案.doc

合集下载

第二章 光的衍射 习题及答案

第二章 光的衍射  习题及答案

第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:2022r r k k +=ρ 而20λkr r k +=20λk r r k =- 20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm 104500cm,100,1-80⨯===λr k 带入上式,得 cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。

解:(1)根据上题结论ρρ0kr k =将cm 105cm,400-50⨯==λr 代入,得cm1414.01054005k k k =⨯⨯=-ρ当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2)P 点最亮时,小孔的直径为cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。

解:根据题意 m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光的衍射习题答案

光的衍射习题答案

思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显着。

对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显着。

2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。

由此可知,这时人眼看到的是夫琅和费衍射图样。

3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。

答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。

离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。

4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。

(B)光强之和。

(C)振动振幅之和的平方。

(D)振动的相干叠加。

答:衍射光强是所有子波相干叠加的结果。

选(D)。

5波长为?的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o,则缝宽的大小( )(A) a =?。

(B) a =?。

(C)a =2?。

(D)a =3?。

答:[ C ]6波长为?的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30?,则缝宽a 等于( )(A) a =? 。

(B) a =2?。

(C) a =23?。

(D) a =3?。

答:[ D ]7在单缝夫琅和费衍射实验中波长为?的单色光垂直入射到单缝上,对应于衍射角为30?的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) ? 。

(B) ?。

(C) 2?。

(D) 3?。

答:[ D ]8在单缝夫琅和费衍射实验中,波长为?的单色光垂直入射到宽度a=4?的单缝上,对应于衍射角为30?的方向,单缝处波面可分成的半波带数目为( ) (A)2个。

光的衍射习题答案

光的衍射习题答案

第六章 光的衍射6-1 求矩形夫琅和费衍射图样中,沿图样对角线方向第一个次极大和第二个次极大相对于图样中心的强度。

解:对角线上第一个次极大对应于πβα43.1==,其相对强度为:0022.043.143.1sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I 对角线上第二个次极大对应于πβα46.2==,其相对强度为:00029.046.246.2sin sin sin 4220=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=ππββααI I6-2 由氩离子激光器发出波长488=λnm 的蓝色平面光,垂直照射在一不透明屏的水平矩形孔上,此矩形孔尺寸为0.75mm ×0.25mm 。

在位于矩形孔附近正透镜(5.2=f m )焦平面处的屏上观察衍射图样,试求中央亮斑的尺寸。

解:中央亮斑边缘的坐标为:63.175.010********±=⨯⨯±=±=-a f x λmm 26.32=x mm 88.425.010********±=⨯⨯±=±=-b f y λmm 76.92=y mm ∴中央亮斑是尺寸为3.26mm ×9.76mm 的竖直矩形6-3 一天文望远镜的物镜直径D =100mm ,人眼瞳孔的直径d =2mm ,求对于发射波长为5.0=λμm 光的物体的角分辨极限。

为充分利用物镜的分辨本领,该望远镜的放大率应选多大?解:当望远镜的角分辨率为: 636101.610100105.022.122.1---⨯=⨯⨯⨯==D λθrad 人眼的最小分辨角为: 4361005.3102105.022.122.1---⨯=⨯⨯⨯==d e λθrad ∴望远镜的放大率应为:50===dDM e θθ 6-4 一个使用汞绿光(546=λnm )的微缩制版照相物镜的相对孔径(f D /)为1:4,问用分辨率为每毫米380条线的底片来记录物镜的像是否合适? 解:照相物镜的最大分辨本领为: 375411054622.1122.116=⨯⨯⨯==-f D N λ/mm∵380>375∴可以选用每毫米380条线的底片。

第二章 光的衍射 习题

第二章 光的衍射 习题

光的衍射一、填空题1. 衍射可分为 和 两大类。

2. 光的衍射条件是_障碍物的限度和波长可比拟____。

3. 光波的波长为λ的单色光,通过线度为L 的障碍物时,只有当___λ>>L_________才能观察到明显的衍射现象。

4. 单色平面波照射到一小圆孔上,将其波面分成半波带.若几点到观察点的距离为1m ,单色光的波长为4900Å,则此时第一半波带的半径为_________。

5. 惠更斯-菲涅尔原理是在惠更斯原理基础上,进一步考虑了__次波相干叠加______________,补充和发展了惠更斯原理而建立起来的。

6. 在菲涅尔圆孔衍射中,单色点光源距圆孔为R ,光波波长为λ,半径为ρ的圆孔露出的波面对在轴线上的距圆孔无限远处可作的半波带数为__λρR /2_______________。

7. 在菲涅尔圆孔衍射中,圆孔半径为 6 mm ,波长为6000οA 的平行单色光垂直通过圆孔,在圆孔的轴线上距圆孔6 m 处可作_____10___个半波带。

8. 在菲涅尔圆孔衍射中,入射光的强度为I 0,当轴线上P 点的光程差为2λ时,P 点的光强与入射光强的比为_____4__________。

9. 在菲涅尔圆孔衍射中,入射光的振幅为A 0,当轴线上P 点恰好作出一个半波带,该点的光强为__________20A ______。

10. 在夫琅禾费单缝衍射中,缝宽为b ,在衍射角为方向θ,狭缝边缘与中心光线的光程差为____________。

11. 在夫琅禾费单缝衍射中,缝宽为b ,波长为λ,在衍射角为方向θ,狭缝两边缘光波的位相差为____________。

12. 在夫琅禾费单缝衍射中,缝宽为b ,波长为λ,观察屏上出现暗纹的条件,衍射角θ可表示为_____________。

13. 夫琅禾费双缝衍射是___________与___________的总效果,其光强表达式中______________是单缝衍射因子,______________是双缝干涉因子。

《光学教程》(姚启钧)第二章 光的衍射

《光学教程》(姚启钧)第二章 光的衍射

3. 惠更斯-菲涅耳原理(1818)
菲涅耳对惠更斯原理的改进: 给不同次波赋予相应的相位和振幅,并将次波的干涉 叠加性引入惠更斯原理,得到衍射的定量表达式。
波面S上每个面元dS都是次波源,次波在p点引起振动的振幅与面积dS成正 比,与距离r成反比,且与倾角有关。
A(Q) K ( ) dE( P) dS r
相应的振动相位依次为:
a1 a2 a3 a4 ...... ak ak 1
f1,f1+,f1+2, f1+3,…f1+(k-1),f1+k。
对于轴上光源点 S 和轴上场点 P ,设圆孔恰好分 为 k 个半波带,则有
~ i 1 E1 a1e ~ i 1 E2 a2e ~ i 1 2 E3 a3e
次波中心Q 的光振幅 Q点在p 点引起的 光波振幅 倾斜因子 次波中心附 近的小面元
d · r S Q S(波面)
次波中心 设初相为零
n
dE(p) · p
观 察 点
倾斜因子K()的特点
A(Q) K ( ) dE( p) C dS cos(kr t ) r
0, K K max K ( ) , K 0 2
2
1mm 1000 mm 1000 mm 4 6 1000 mm 1000 mm 500 10 mm
2
半径为0.5mm的圆屏挡住的波带数为:
j
'
0.5mm 1000mm 1000mm 1 1000mm 1000mm 500 106 mm
又:
( h r0 , R)
2 2
R rk (r0 h)

光的衍射--习题

光的衍射--习题

习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小. 13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin nk λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =sin 知,衍射角ϕ变大,条纹变稀; (2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =sin ;斜入射时,λθϕk a '=-)sin (sin ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明?答:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k aba k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级; (3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为)12(sin +=k a ϕ 2λ 当6000=λoA 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ得 4286600075=⨯=x λoA13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆ 半角宽度为naλθ1sin-= (1)空气中,1=n ,所以3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m33101100.51010.0105000sin ----⨯=⨯⨯=θ rad (2)浸入水中,33.1=n ,所以有33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m 331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θ rad 13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λoA4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=oA由λϕk b a =+sin )(知,最多见到的条纹级数max k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成 30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m (1)由光栅衍射明纹公式λϕk b a =+sin )(,因1=k ,又fx ==ϕϕtan sin 所以有λ=+fx b a 1)( 即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ 2100.6-⨯=m 6= cm(2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ 因︒=30θ,∴21tan sin ±==≈f x ϕϕ 故22103010602121--⨯=⨯⨯==f x m 30= cm这就是中央明条纹的位移值.13-16 波长6000=λoA 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数. 解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a 101060003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足λϕk b a =+sin )( λϕk a '=sin解得 k k ba a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m (3)由λϕk b a =+sin )(λϕsin )(b a k +=当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λba k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹? 解:(1)中央明纹宽度为02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm(2)由缺级条件λϕk a '=sin λϕk b a =+sin )(知k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度47105.302.010500022.122.1--⨯=⨯⨯==D λθ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f dmm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式Dλθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长 当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA2=k 时,91.1245sin 75.22=⨯⨯=︒λoA3=k 时,30.1389.3==λoA4=k 时, 97.0489.3==λoA故只有30.13=λo A 和97.04=λoA 的X 射线能产生强反射.。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一. 填空题1. 波长入=500 nm (1 nm = 10 -9m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹•今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3_m .2. 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光( 入〜589 nm )中央明纹宽度为4.0 mm,贝U k ~442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为3.0 mm .3. 平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm (或5 X 410- mm).4. 当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3 a时,衍射光谱中第±±…级谱线缺级.5. 一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30角入射,在屏幕上最多能看到第5级光谱.6. 用波长为入的单色平行红光垂直照射在光栅常数d = 2 pm (1 m = 10-6m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透633nm.7. 一会聚透镜,直径为3 cm,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24 x i0-5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于 4.47 m .8. 钠黄光双线的两个波长分别是589.00 nm和589.59 nm (1 nm = 10 -9m), 若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为21= 440 nm的第3级光谱线将与波长为2=660 nm的第2级光谱线重叠(1 nm = 10 -9m).10. X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长入和2,垂直入射于单缝上.假如入的第一级衍射极小与2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sin a= 1 入 a sin Q = 2 2由题意可知Q= Q, sin Q= sin &代入上式可得2= 2 2(2) a sin Q = k12=2 k12 (k1=1,2,…)sin Q = 2 k12/ aa sin &= k2 A (k2=1,2,…)sin(2= 2 k2 A/ a若k2= 2 k i,贝U e i= 即A的任一k i级极小都有A的2 k i级极小与之重合. 12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长A= 500 nm,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度A x.解:单缝衍射第1个暗纹条件和位置坐标X i为a sin d = AX1 = f tan d ~f sin d ~f A/ a (v d 很小)单缝衍射第2个暗纹条件和位置坐标X2为a sin d= 2 AX2 = f tan d ~f sin d~2 f A/ a (v d很小)单缝衍射中央亮纹旁第一个亮纹的宽度7 4A x1 = X2 - X1 ~f (2 A/ a - A a)= f A/ a= 1.00X5.00X10" /(1.00 X10" ) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,A= 400 nm,A= 760nm (1 nm = 10 "9m).已知单缝宽度a = 1.0 X10-2cm,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0X10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1)由单缝衍射明纹公式可知1 1a sin$= (2 k + 1) A= 2 A (取k = 1)1 3a sin礎=^ (2 k + 1) A= ? Atan $ = x1 / f,tan 心=x1 / fsin 帀 ~tan 召,sin 血 ~tan 心由于3所以治=㊁f入/ a3x2= 2 f 入/ a则两个第一级明纹之间距为3A x1 = x2 - x1 = 2 f AA/ a = 0.27 cm(2)由光栅衍射主极大的公式d sin召=k入=1入d sin &= k A= 1 A且有sin © = tan ©二 x / f所以A x1= x2 - x1 = f A A/ a = 1.8 cm14. 一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为A= 480 nm (1nm = 10 "m)的平行光垂直照射双缝,在双缝后放一焦距 f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距I; (2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sin B= k A第k 级亮条纹位置:X1= f tan 6 ~f sin d ~k f A/ d相邻两亮纹的间距:3A x= X k+1 - X k = (k + 1) f A d - k A/ d = f A/ d = 2.4 X10" m = 2.4 mm ⑵单缝衍射第一暗纹:a sin 6= A单缝衍射中央亮纹半宽度:A = f tan 6 ~f sin 6 ~k f A d = 12 mmA x0/ A x = 5•••双缝干涉第i5级主极大缺级.•••在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±,吃,±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第i5级主极大,同样可得出结论。

2光的衍射参考答案.doc

2光的衍射参考答案.doc

\L (B)变宽,不移动(D)变窄,不移动=3.64 ,所以 = 3。

《大学物理(下)》作业 No ・2 光的衍射(机械)一选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄, 同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央 衍射条纹将 (A) 变宽,同时向上移动 (C)变窄,同时向上移动 [参考解]2 一级暗纹衍射条件:a sin % = Z ,所以中央明纹宽度心中=2/ tan © « 2/ sin= 2/ —。

a衍射角0 = 0的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。

2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹(A)间距变大 (C)不发生变化 (B)间距变小(D)间距不变,但明纹的位置交替变化[C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的 衍射角,不会引起衍射条纹的变化。

3.波长1=55()0入的单色光垂直入射于光栅常数d=2X10-4cm 的平面衍射光栅上,可能观察到的光 谱线的最大级次为(A) 2(B) 3 (C) 4(D) 5 [B ][参考解] 7T由光栅方程dsin (p = +kA 及衍射角—可知,观察屏可能察到的光谱线的最大级次 2d 2x10" < —= --------------- 2 5500x10"°4.在双缝衍射实验中,若保持双缝Si 和S2的中心之间距离不变,把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少;(B) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变;(C) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多;(D) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。

[参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到 观察点的距离 r 0 为 1m ,单色光波长为450nm ,求此时第一半波带的半径。

22 2r kr 0 k2解: r kkr 0 而r kr 0k22k2kr 0r 02将上式两边平方,得2 22k 22kr 0r 0kr 04略去 k2 2kkr 0项,则将k1, r 0 100cm,450010-8cm 带入上式,得0.067cm2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:( 1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的 P 点的光强分别得到极大值和极小值; (2)P 点最亮时,小孔直径应为多大设此时的波长为 500nm 。

解:( 1)根据上题结论kkr 0将r400cm,510 -5 cm 代入,得 k400 5 10 5 k0.1414 k cm当 k 为奇数时, P 点为极大值; k 为偶数时, P 点为极小值。

( 2)P 点最亮时,小孔的直径为2 1 2 r 0 0.2828cm3.波长为 500nm 的单色点光源离光阑 1m ,光阑上有一个内外半径分别为和1mm 的透光圆环,接收点P 离光阑 1m ,求 P 点的光强 I 与没有光阑时的光强度I 0 之比。

解:根据题意 R1m r 01m R hk 1 0.5mm R hk 21mm500nmkR h 2 (R r 0 ) R h 21 1r 0 Rr 0R有光阑时,由公式R hk 2 1 1 1 0.52111k 1r 0 R500 1061000 1000得k 2R hk 221112 1 1r 0 R500 10 61000 41000按圆孔里面套一个小圆屏幕a p1a 1 a 31a 11a 21a 21a 3 a 12 2 2 2 2没有光阑时a 1 a 02所以4.波长为的平行光射向直径为的圆孔,与孔相距 1m 处放一屏。

试问:( 1)屏上正对圆孔中心的 P 点是亮点还是暗点( 2)要使 P 点变成与( 1)相反的情况,至少要把屏幕分别向前或向后移动多少解:( 1) P 点的亮暗取决于圆孔中包含的波代数是奇数还是偶数.当平行光如射时 ,波带数为d2221.3823kr 0632.8 10 6 103 r 0故P 点为亮点 .(2) 当 P 点向前移向圆孔时 ,相应的波带数增加 ;波带数增大到 4 时 , P 点变成暗点 ,此时 , P 点至圆孔的距离为r 021.382 6 mm750mmk4 632.8 10则 P 点移动的距离为r r 0 r 100cm - 75cm 25cm当 P 点向后移离圆孔时 ,波带数减少 ,减少为 2 时 , P 点也变成暗点。

与此对应的 P 到圆孔的距离为21.38 26 mm 1500mmr 02 632.8 10 k则 P 点移动的距离为r r 0 r 0 150cm -100cm 50cm5 .一波带片由五个半波带组成 .第一波带片为半径 r 1的不透明圆盘 ,第二半波带是半径 r 1至 r 2 的透明圆环 ,第三半波带是 r 2 至 r 3 的不透明圆环 ,第四半波带是 r 3 至 r 4 的透明圆环 ,第五半波带是 r :2 3 44 至无穷大的不透明区域 ,已知 r 1:r::,用波长 500nm 的平行单色2 r 3:r 4=1:光照明 ,最亮的像点在距波带片 1m 的轴上 .试求 :(1) r 1; (2) 像点的光强 ; (3) 光强极大值出现在轴上哪些位置上 .解:因为 5个半波带组成的半波带片上,K11, r1 不 透 光 ;K22, r 1至r 2透光;K 33, r 2 至 r 3 不透光 ; K 44, r 3 至 r4 透光 ;K55, r 4至无穷大不透光 .r 1 : r 2 : r 3 : r r 1 : 2 : 3 : 4单色平行光500nm R 0第一条最亮的像点在 r 0 1m1000mm的轴上,即 f1r 0 103 mmfr 0R h 2 r 1 2k1(1)r 1 r 0 k103 1 500 10 60.5 0.707(2) 像点的光强 : IPA P 2 (a 2 a 4 )24a 2 所以 I p4a 2 16I 0f , f , f(3) 光强极大值出现在轴的位置是 (即3 5 7)f 1 r 1m 103 mmf 2 f1 1m f 3 f11m f 5 f1 1 m3 3 5 5 7 76. 波长为λ的点光源经波带片成一个像点,该波带片有100 个透明奇数半波带(1,3,5,)。

另外100 个不透明偶数半波带.比较用波带片和换上同样焦距和口径的透镜时该像点的强度比I:I0.A100 100a 100a I解: 100 个奇数半波带通光总振幅 1 (100a) 2 同样焦距和口径的透镜可划分为200 个半波带通光199 200 a1 200a I 0 200a 4(100a)A200a1 22 2总振幅为 1I (100a)2 1I 0 4 (100a) 2 47.平面光的波长为 480nm, 垂直照射到宽度为的狭缝上 ,会聚透镜的焦距为 60cm.分别计算当缝的两边到P 点的相位为π/2 和π /6 时 ,P 点离焦点的距离 .解:设 P 点离焦点的距离为y,透镜的焦距为f。

缝宽为b,则位相差和光程差的关2 2 bsin 2b tan 2 b y系式为 f fy故 2 b当缝的两边到P 点的位相差为 2 时,P点离焦点的距离为f 4.8 10 4 600 y2 0.18mm2 b 0.42当缝的两边到P 点的位相差为 6 时,P点离焦点的距离为f 4.8 10 4 600 y2 0.06mm2 b 0.468. 白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为 600nm 的光波的第二个次最大值重合.求该光波的波长 .解:由单缝衍射次最大值的位置公式可知bsin1 k 02bsin1 1 32得225428.6nm所以7 所以该光为紫色光 .9. 波长为的平行光垂直地射在 1mm 宽的缝上 ,若将焦距为 100cm 的透镜紧贴于缝的后面 ,并使光焦距到屏上 ,问衍射图样的中央到 (1)第一最小值 ;(2)第一最大值 ;(3)第三最小值的距离分别为多少解 : 根据单缝衍射图样的最小值位置的公式可知:y b sinb tan bkf得第一、第三最小值的位置分别为y 1f 1000 5.461 10 4 0.5461mmb 1y 33f1.638mmb由单缝衍射的其它最大值(即次最大)位置的近似式b sin k0b y k 01f 2y103 f 3 1000 5.461 104 0.819mm得2b2110. 钠光通过宽的狭缝后 ,投射到与缝相距 300cm 的照相底片上 .所得的第一最小值与第二最小值间的距离为,问钠光的波长为多少若改用X 射线 (λ=做此实验,问底片上这两个最小值之间的距离是多少sin2k 0 1 kb解:如果近似按夫琅和费单缝衍射处理,则根据公式2得第二最小值与第一最小值之间的距离近似地为y y 2y 12 ff bfbby b0.02 0.885 590nm 那么 f300如果改用40 10 8 cm 时f 30040 10810 3cmy0.026b12. 一束平行白光垂直入射在每毫米50 条刻痕的光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少 (设可见光中最短的紫光波长为400nm ,最长的红光波长为 760nm)解:由光栅方程d sinj得sin红7.6 10 43.8 10 210.02d所以12.18sin2紫4.0 10 44.0 10 2220.02d所以22.29d10.02mm式中50所以212.29 2.18 6 362 103 rad13.用可见光 (760~ 400nm)照射光栅是,一级光谱和二级光谱是否重叠二级和三级怎样若重叠,则重叠范围是多少解:根据光栅方程d sin j1, sin1 红760nm得j d dj 2sin 2 2 紫800nm , d d因为 2 > 1 所以一级和二级不重叠 .红 1520nm 而j 2, sin 2 2 d djsin 3 3 紫1200nm 3, d d因为3 <2所以二级和三级光谱部分交迭.设第 3 级紫光和第 2 级波长的光重合2 13 紫则 d d3 3600nm1 紫400所以 2 2设第 2 级红光和第 3 级波长为 2 的光重合3 2 2 红则 d d2 22 红760 506.7nm所以 3 3综上 , 一级光谱与二级光谱不重叠 ; 二级光谱的600 ~ 700nm与三级光谱的400 ~ 506.7nm 重叠.14.用波长为 589nm 的单色光照射一衍射光栅,其光谱的中央最大值和第二十级主最大值之间的衍射角为 15°10' ,求该光栅 1cm 内的缝数是多少解 :d sin j ( j 0,1,2, 12)1 sin 15 10 1 222(条 /cm)d j j 180 2 589 10 715. 用每毫米内有400 条刻痕的平面透射光栅观察波长为589nm 的钠光谱。

试问: (1)光垂直入射时,最多能观察到几级光谱(2)光以30角入射时 ,最多能观察到几级光谱解 : (1)根据光栅方程jdsind sin j 得可见j的最大值与sin 1 的情况相对应( sin 真正等于 1 时 ,光就不能到达屏上 ).d1mm 1 cm,并取sin1, 则得根据已知条件400 40001j 4000 4.210 85890 (此处j只能取整数 ,分数无实际意义 )即能得到最大为第四级的光谱线.(2)根据平行光倾斜入射时的光栅方程d (sin sin)j( j0, 1, 2,),可jd(sinsin 0 ) 得同样 ,取sin1, 得11)(sin 30j 40008 6.45890 10即能得到最大为第六级的光谱线.16. 白光垂直照射到一个每毫米250 条刻痕的透射光栅上,试问在衍射角为30°处会出现哪些波长的光其颜色如何解 : 由题意可知1250 条毫米d 760nm30 390nm当760nm 时, 由公式 d sin jj dsin 30 1 2.6得250 760 10 6 2j dsin 30 1 5.1当390nm 时, 250 390 10 6 2所以 2.6 j 5.1 这里j可取 3, 4, 5d sin 1 当j 3 时j 3 250 10当j4 时d sin 1j 4 250 1066667nm2(为红色 )500nm2(为绿色 )d sin 1当j5时j400nm5 250 106 2 (为紫色 )17. 用波长为 624nm 的单色光照射一光栅,已知该光栅的缝宽 b 为,不透明部分的宽度 a 为,缝数 N 为 10 3条。

相关文档
最新文档