手机射频指标
3GPP 5G射频指标解释(包含发射和接收指标,图片展示,适用于初级和中级射频工程师)

5G频段分两部分:FR1和FR2下面是FR1也就是sub 6G的频段表:国内运营商移动部署的5G频段是n41和n79,联通和电信部署的频段都是n78,具体频率范围如下:中国移动:n41:2515~2675MHz,n79:4800~4900MHz;中国电信:n78:3400~3500MHz;中国联通:n78:3500~3600MHz;3GPP中关于5G FR1(sub 6G)的射频指标要求都在38.101中,其中38.101-1和38.101-2分别定义的是SA架构下FR1(sub 6G)和FR1(毫米波)下的射频指标要求,38.101-3是ENDC 和5G CA组合下的5G射频指标要求,ENDC就是我们现阶段国内运营商正在推行的NSA架构。
因为NSA架构属于过渡阶段,运营商重点部署的是SA架构,因此本文重点讲述SA架构下5G的射频指标,也就是38.101-1。
3GPP相关文档下载地址:https:///ftp/Specs/archive/38_series/发射指标:6 发射特性6.2 Transmitter power发射功率;6. 2.1 UE maximum output power最大发射功率以上测试取样周期至少为1个子帧,1ms,除非特别说明,对各自支持的所有带宽都有效6. 2.2 UE maximum output power reduction最大发射功率回退5G NR允许终端在特定的调制方式、特定的RB分配机制下,适当回退最大发射功率,以适应高阶调制带来的发射指标超标或者占用带宽超标的问题;6. 2.3 UE additional maximum output power reduction额外最大发射功率回退额外最大功率回退是网络端基于杂散的额外要求而设定的,额外最大功率回退值和最大功率回退值不能重复叠加,取最大值做回退,特定频段特定RB信令连接的最大功率回退6.3 Output power dynamics输出功率动态范围6.3.1 Minimum output power最小输出功率The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value. The minimum output power is defined as the mean power in at least one sub-frame 1 ms. The minimum output power shall not exceed the values specified in Table 6.3.1-1.最小发射功率的概念我们不应该陌生,无论是Wcdma还是LTE都有这项指标要求,在最小1个子帧(1ms)的测试周期内,所有带宽和RB配置下,都应该满足最小发射功率小于某个规定的大小。
射频指标及测试方法

接收灵敏度
接收灵敏度是指收信机在满足一定的误码率 性能条件下收信机输入端需输入的最小信号电 平。衡量收信机误码性能主要有帧删除率 (FER)、残余误比特率(RBER)和误比特率(BER)三 个参数。(BER是收到的错误的比特数与总比特数 之比。RBER是当帧被删除时,只测量剩余帧的 BER。FER是在观察的时间段里被删除的帧占总 传送帧数的百分比.)
(**)DCS1800话机 -30dBc或 -20dBm,选其中较大者
14
最低下限
GSM 900:-59dBc 或–54dBm,选其中最高者, 除了时槽超前執行槽,因此許可之位準可至59dBc或–36dBm,选其中最高者。 DCS 1800:-48dBc或-48dBm,选其中最高者。
15
ห้องสมุดไป่ตู้
频谱
16
30
2.相位误差峰值Peak phase error 若Peak phase error<7deg,则相位误差峰值为 优; 若7deg≤Peak phase error≤l0deg,则相位误 差峰值为良好; 若10deg≤Peak phase error≤20deg则相位误差 峰值为一般; 若Peak phase error>20deg,则这项指标为不 合格。
31
3.相位误差有效值 若RMS phase error<2.5deg,则相位误差有效 值为优; 若2.5deg≤RMS phase error≤4deg,则相位误 差有效值为良好; 若4deg≤RMS phase error≤5deg,则相位误差 有效值为一般; 若RMS phase error>5deg,则这项指标为不合 格。
37
GPRS的服务类型 按所提供的服务种类来说,现在有 Class A、B、 C三种。 ClassA可以在上网的同时接听电话,其技术含义 是同时支持包交换(数据)和电路交换(语 音)。 ClassB可以上网和接电话,但不能同时进行,其 技术含义是虽然也支持包交换和电路交换,但不 可在同一时刻支持包交换和电路交换,状态可以 切换; ClassC则只能上网,什么时候都不能打电话,其 技术含义是它只支持包交换。
5G NR射频测试TX指标发射部分图文释义(3GPP文档)

5G NR射频指标发射部分释义5G频段分两部分:FR1和FR25G频段FR1和FR2下面是FR1也就是 sub 6G的频段表:sub 6G频段国内运营商移动部署的5G频段是n41和n79,联通和电信部署的频段都是n78,具体频率范围如下:中国移动:n41:2515~2675MHz,n79:4800~4900MHz;中国电信:n78:3400~3500MHz;中国联通:n78:3500~3600MHz;3GPP中关于5G FR1(sub 6G)的射频指标要求都在38.101中,其中38.101-1和38.101-2分别定义的是SA架构下FR1(sub 6G)和FR1(毫米波)下的射频指标要求,38.101-3是ENDC 和5G CA组合下的5G射频指标要求,ENDC就是我们现阶段国内运营商正在推行的NSA架构。
因为NSA架构属于过渡阶段,运营商重点部署的是SA架构,因此本文重点讲述SA架构下5G的射频指标,也就是38.101-1。
3GPP相关文档下载地址:https:///ftp/Specs/archive/38_series/发射指标:6 发射特性6.2 Transmitter power发射功率;6. 2.1 UE maximum output power最大发射功率以上测试取样周期至少为1个子帧,1ms,除非特别说明,对各自支持的所有带宽都有效不同class对应的最大发射功率表6. 2.2 UE maximum output power reduction最大发射功率回退5G NR允许终端在特定的调制方式、特定的RB分配机制下,适当回退最大发射功率,以适应高阶调制带来的发射指标超标或者占用带宽超标的问题;6. 2.3 UE additional maximum output power reduction额外最大发射功率回退额外最大功率回退是网络端基于杂散的额外要求而设定的,额外最大功率回退值和最大功率回退值不能重复叠加,取最大值做回退,特定频段特定RB信令连接的最大功率回退6.3 Output power dynamics输出功率动态范围6.3.1 Minimum output power最小输出功率The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.The minimum output power is defined as the mean power in at least one sub-frame 1 ms. The minimum output power shall not exceed the values specified in Table 6.3.1-1.最小发射功率的概念我们不应该陌生,无论是Wcdma还是LTE都有这项指标要求,在最小1个子帧(1ms)的测试周期内,所有带宽和RB配置下,都应该满足最小发射功率小于某个规定的大小。
GSM射频指标详解

1 射频(RF)指标的定义和要求1.1 接收灵敏度(Rx sensitivity)(1)定义接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。
衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。
这里只介绍用残余误比特率(RBER)来测量接收灵敏度。
残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。
(2)技术要求●对于GSM900MHz频段接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。
●对于DCSl800MHz频段接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为一l08一-105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03一-100dBm,则接收灵敏度为一般;若RF 输入电平为>-l00 dB mm,则接收灵敏度为不合格。
1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS(1)定义测量发射信号的频率和相位误差是检验发信机调制信号的质量。
GSM调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。
发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。
理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。
频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。
常见射频指标

常见射频指标常见的射频指标包括以下几个:1. 频率(Frequency):射频信号的周期性重复的次数,单位为赫兹(Hz)。
2. 功率(Power):射频信号的能量大小,常用单位为分贝毫瓦(dBm)。
3. 带宽(Bandwidth):射频信号在频谱上占据的频率范围,常用单位为赫兹(Hz)。
4. 敏感度(Sensitivity):接收器能有效接收到的最低信号功率,通常以 dBm 为单位。
5. 带内纹波(In-Band Ripple):频率响应曲线在带宽范围内的波动情况。
6. 相位噪声(Phase Noise):射频信号中频率或相位的波动。
7. 驻波比(Standing Wave Ratio,SWR):用于描述射频器件辐射和反射能力的指标。
8. 噪声系数(Noise Figure):衡量接收器或放大器对于输入信号中的噪声的影响。
9. 动态范围(Dynamic Range):系统能够处理的最高和最低功率之间的差异范围。
10. 信噪比(Signal-to-Noise Ratio,SNR):信号与噪声的比率,通常用分贝(dB)表示。
11. 直达波(Direct Wave):射频信号的直接传播路径。
12. 多径效应(Multipath Effects):射频信号在传播过程中,由于反射、折射、散射等导致的多个路径的干扰。
13. 带外抑制(Out-of-Band Rejection):系统对于带外干扰信号的抑制能力。
14. 耦合系数(Coupling Coefficient):衡量射频器件之间的能量传递程度。
15. 吞吐量(Throughput):系统传输或处理数据的速率。
16. 稳定性(Stability):射频信号的频率、功率、相位等是否稳定不变。
这些指标在射频系统设计、无线通信、雷达、卫星通信等领域中经常被使用和关注。
3GPP 5G射频指标解释(包含发射和接收指标,图片展示,适用于初级和中级射频工程师)

5G频段分两部分:FR1和FR2下面是FR1也就是sub 6G的频段表:国内运营商移动部署的5G频段是n41和n79,联通和电信部署的频段都是n78,具体频率范围如下:中国移动:n41:2515~2675MHz,n79:4800~4900MHz;中国电信:n78:3400~3500MHz;中国联通:n78:3500~3600MHz;3GPP中关于5G FR1(sub 6G)的射频指标要求都在38.101中,其中38.101-1和38.101-2分别定义的是SA架构下FR1(sub 6G)和FR1(毫米波)下的射频指标要求,38.101-3是ENDC 和5G CA组合下的5G射频指标要求,ENDC就是我们现阶段国内运营商正在推行的NSA架构。
因为NSA架构属于过渡阶段,运营商重点部署的是SA架构,因此本文重点讲述SA架构下5G的射频指标,也就是38.101-1。
3GPP相关文档下载地址:https:///ftp/Specs/archive/38_series/发射指标:6 发射特性6.2 Transmitter power发射功率;6. 2.1 UE maximum output power最大发射功率以上测试取样周期至少为1个子帧,1ms,除非特别说明,对各自支持的所有带宽都有效6. 2.2 UE maximum output power reduction最大发射功率回退5G NR允许终端在特定的调制方式、特定的RB分配机制下,适当回退最大发射功率,以适应高阶调制带来的发射指标超标或者占用带宽超标的问题;6. 2.3 UE additional maximum output power reduction额外最大发射功率回退额外最大功率回退是网络端基于杂散的额外要求而设定的,额外最大功率回退值和最大功率回退值不能重复叠加,取最大值做回退,特定频段特定RB信令连接的最大功率回退6.3 Output power dynamics输出功率动态范围6.3.1 Minimum output power最小输出功率The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value. The minimum output power is defined as the mean power in at least one sub-frame 1 ms. The minimum output power shall not exceed the values specified in Table 6.3.1-1.最小发射功率的概念我们不应该陌生,无论是Wcdma还是LTE都有这项指标要求,在最小1个子帧(1ms)的测试周期内,所有带宽和RB配置下,都应该满足最小发射功率小于某个规定的大小。
GSM射频性能指标及调试

GSM射频性能指标及调试一、GSM射频性能指标1. 发射功率(Transmit Power):发射功率是指手机发射信号的强度,通常以分贝毫瓦(dBm)表示。
在GSM系统中,发射功率需要在一定范围内调节,以确保信号的覆盖范围和通信质量。
2. 接收灵敏度(Receiver Sensitivity):接收灵敏度是指手机接收信号的能力,通常以信噪比(SNR)或解调门限(BER)表示。
接收灵敏度需要达到一定的要求,以保证在不同的信道条件下,手机能够稳定地接收到信号。
3. 信道质量(Channel Quality):信道质量是指信号传输过程中的信号衰减、干扰和误码率等因素的整体表现。
通常使用信噪比或比特误码率(Bit Error Rate)表示。
信道质量的好坏对通信质量和数据传输速率有直接影响。
4. 邻近干扰抑制比(Adjacent Channel Interference Ratio,ACIR):ACIR是指在信道频率相邻的情况下,接收信号与邻近干扰信号之间的功率比值。
ACIR的高低决定了系统的抗干扰能力和通信容量。
5. 杂散发射功率(Spurious Emission Power):杂散发射功率是指在通信过程中手机发射无线信号以外的额外功率。
杂散发射功率要符合国际标准,以避免对其他通信系统和设备产生干扰。
二、GSM射频性能调试1.基站及天线调试:基站及天线是GSM系统中的核心组成部分,调试时需要确保基站和天线的安装位置和方向正确,以达到最佳的覆盖范围和通信质量。
2.功率调试:通过对手机发射功率和接收灵敏度进行调试,可以保证手机的通信范围和接收质量符合要求。
调试时要注意不同信道和不同频段的功率控制设置。
3.邻频干扰调试:邻频干扰是指信道频率相邻情况下的干扰现象。
在调试中,可以通过调整基站和天线的干扰抑制参数,如邻频干扰抑制比,来减小邻频干扰的影响。
4.信道质量调试:通过对信号质量进行分析和监测,可以确定信道质量问题,并采取相应的措施进行调试,如调整信道编码、功率控制和窗口设置等。
射频中常见指标介绍

射频中常见指标介绍射频(Radio Frequency)是指在无线通信中用于传输和接收信号的电磁波信号。
在射频领域,有许多常见的指标用于描述和评估射频系统的性能和特性。
下面将介绍一些常见的射频指标。
1. 频率(Frequency):射频信号的频率是指信号中电磁波的周期性振荡的次数,单位为赫兹(Hz)。
常见的射频频率范围包括无线电、微波和毫米波频段,分别对应了不同的应用场景和技术需求。
2. 带宽(Bandwidth):带宽是指在一个特定频率范围内的信号频谱宽度,单位为赫兹(Hz)。
在射频通信中,带宽决定了信号能够传输的信息量,并且和传输速率有密切关系。
3. 增益(Gain):增益是指射频设备或天线的输出功率与输入功率之比,通常以分贝(dB)为单位。
增益描述了设备或天线将输入信号放大的能力,可以用于改善信号传输的距离和覆盖范围。
4. 线性度(Linearity):线性度是指射频系统在输入和输出之间的电压或功率关系是否呈线性关系。
线性度好的系统能够保持信号的准确传输和解调,而线性度差的系统可能会引起失真和干扰。
5. 功率(Power):射频信号的功率表示信号的强度或能量大小,单位通常为瓦特(W)或分贝毫瓦(dBm)。
在射频通信中,发送器需要足够的功率来保证信号能够在一定距离内传输和接收。
6. 敏感度(Sensitivity):敏感度是指射频接收系统能够检测和解调的最低信号功率。
敏感度越高,接收系统就能够在低信噪比环境下可靠地接收和解码信号。
7. 噪声(Noise):噪声是射频系统中非期望的电磁波信号,它可以干扰并降低信号的质量和可靠性。
在射频系统设计过程中,需要考虑和优化噪声指标以提高系统的性能。
8. 相位噪声(Phase Noise):相位噪声是指射频信号频率的随机涨落,它会引起频谱扩展和时域失真,并最终影响信号解调和调制的精度。
相位噪声可以通过测量相位噪声功率谱密度来评估。
9. 相干度(Coherence):相干度是指射频信号中的电磁波振荡是否具有相同的频率和相位。
GSM射频性能指标及调试

GSM射频性能指标及调试一、GSM射频性能指标1. 接收灵敏度(RX Sensitivity):接收灵敏度是指手机接收信号的最低能力。
该指标表示手机能正常接收信号的最低功率水平。
较高的接收灵敏度意味着手机可以在更远的距离内接收到信号。
2. 发射功率(Transmit Power):发射功率是指手机发送信号的功率水平。
该指标表示手机发送信号的强度。
较高的发射功率可以提高信号覆盖范围和质量。
3. 信号质量(Signal Quality):信号质量是指手机接收到的信号的质量。
主要包括误码率、信噪比、相位误差等指标。
较好的信号质量意味着较低的误码率,更好的语音和数据传输质量。
4. 信道质量(Channel Quality):信道质量是指网络中不同信道的质量。
主要包括信号强度、信噪比、多径衰落等指标。
较好的信道质量意味着更稳定的通信连接和更高的数据传输速率。
5. 射频覆盖(RF Coverage):射频覆盖是指网络信号在特定区域内的分布情况。
主要包括覆盖范围、覆盖强度等指标。
较好的射频覆盖意味着在特定区域内用户可以较为稳定地使用移动通信服务。
二、GSM射频性能调试1.优化基站布局:通过合理的基站布局,包括位置、天线高度和天线方向等因素,可以提高射频覆盖范围和质量。
2.调整天线参数:通过调整天线的传输功率、方向和倾角等参数,可以优化信号传输,提高覆盖范围和质量。
3.设置网络参数:通过调整网络中的相关参数,如功控参数、邻区参数等,可以提高网络的性能和覆盖。
4.测试设备:使用专业的测试设备,如功率分析仪、信号发生器等,进行精确的信号测试和分析。
5.故障排除:及时对出现的信号问题和故障进行排除和修复,提高网络的稳定性和可靠性。
针对以上调试方法,需要具备一定的专业知识和技能。
同时,也需要不断学习和了解最新的射频调试技术和设备,以适应移动通信技术的发展。
总结起来,GSM射频性能指标的调试和优化是确保通信质量的关键。
通过合理的基站布局、调整天线参数、设置网络参数、使用专业测试设备和故障排除等方法,可以提高GSM网络的覆盖范围、信号质量和通信性能,满足人们对移动通信的需求。
GSM手机射频指标

测试目的
测量接收机的接收灵敏度是为了检验接收机射频电路,中频电路及解调、解码电路的性能。
测试方法
在综合测试仪CMU200屏幕设置BCCH AND TCH信道,选择RECEIVER QUALITY 菜单并激活它,即可观测到误码率。测试时选择高、中、低三个频点,只对Ⅱ类比特进行测试。且只在全速率话音信道(TCH/FS)进行。
测试目的
用于检查手机的TDMA突发脉冲的上升、下降及平坦部分与模板的吻合程度。手机发射突发信号的上升与下降部分应在+4dM——-30dB模板范围之内,顶部起伏部分应在±1dB模板范围之内。若突发信号超出模板范围,将会对临近时隙的用户产生干扰。
测量方法
测试条件
GSM频段选1、62、124三个频道,功率级别选最大LEVEL5;DCS频段选512、698、885三个频道,功率级别选最大LEVEL0进行测试。GSM和DCS的相位峰值误差均小于20度,平均误差均小于5度。实际测试中相位峰值误差小于7度时为最好,大于7度小于10度时为良好,大于10度小于20度时为一般,大于20度时为不合格;相位平均误差小于2.5度时为最好,大于2.5度小于4度时为良好,大于4度小于5度时为一般,大于5度时为不合格。
4) 发射功率/时间特性
定义
发射功率时间特性是指发射功率与发射时间之间的关系。由于GSM系统是一个TDMA的系统,八个用户共用一个频点,手机只在分配给它的时间内打开,然后必须及时关闭,以免影响相邻时隙的用户。由于这一原因,GSM规范对一个时隙中的RF突发的幅度包络作了规定,对于时隙中间有用信号的平坦度也作了相应的规定,这个幅度包络在577us的一个时隙内,其动态范围大于70dB,而时隙有用部分平坦度应小于±1dB。
nr ntn 射频指标

nr ntn 射频指标
射频指标通常是指在无线通信系统中用来描述和评估无线电频率信号传输性能的一些重要参数。
这些指标可以涵盖多个方面,包括信号覆盖范围、传输速率、信噪比、频谱效率、抗干扰能力等。
以下是一些常见的射频指标:
1. 信号覆盖范围,指信号能够覆盖的地理范围,通常以信号强度或覆盖半径来衡量。
2. 传输速率,指无线通信系统能够实现的数据传输速率,常用单位为Mbps或Gbps。
3. 信噪比(SNR),指信号与噪声的功率比,是衡量信号质量的重要参数,通常以分贝(dB)为单位。
4. 频谱效率,指在有限的频谱资源下,系统能够实现的数据传输速率,是衡量频谱利用率的重要指标。
5. 抗干扰能力,指系统在面对外部干扰时的表现,包括抗多径干扰、抗多用户干扰等能力。
这些射频指标在设计和评估无线通信系统时起着至关重要的作用。
不同的应用场景和技术要求会对这些指标有不同的侧重点,因此在实际应用中需要综合考虑这些指标并进行权衡。
希望这些信息能够帮助你更好地了解射频指标。
CDMA GSM&WCDMA功率灵敏度射频测试指标

CDMA-MC8332
频段 信道 283 384 800MHz 777 1013 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 项目及标准 23-30dbm -106dbm(FER<0.5%) 23-30dbm -106dbm(FER<0.5%) 23-30dbm -106dbm(FER<0.5%) 23-30dbm -106dbm(FER<0.5%)
WCDMA-MG3732
频段 信道 4132 4357 4183 4408 4233 4458 9262 9662 9400 9800 9538 9938 9612 10562 9750 10700 9888 10838 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 功率(TRP) 灵敏度(TIS) 项目及标准 23dbm -106.5dbm(FER<1.2%) 23dbm -106.5dbm(FER<1.2%) 23dbm -106.5dbm(FER<1.2%) 23dbm -106.5dbm(FER<1.2%) 23dbm -106.5dbm(FER<1.2%) 23dbm -106.5dbm(FER<1.2%) 23dbm -106.5dbm(FER<1.2%) 23dbm -106.5dbm(FER<1.2%) 23dbm -106.5dbm(FER<1.2%)
srrc认证lte射频测试指标要求

文章标题:深入理解SRRC认证LTE射频测试指标要求在现代移动通信领域,LTE技术的发展日新月异,为了保证产品的质量和性能,对于LTE射频测试指标的要求也越来越高。
其中,SRRC 认证LTE射频测试指标要求更是成为了关注的焦点。
今天,我们将深入探讨SRRC认证LTE射频测试指标要求,希望通过全面评估,为您带来有价值的知识和启发。
1. 什么是SRRC认证?在谈论SRRC认证LTE射频测试指标要求之前,首先要了解SRRC认证的概念。
SRRC,即国家无线电监测中心,是我国的无线电管理和监测机构,负责对无线产品进行认证和监管。
SRRC认证旨在保障无线产品的通信质量和兼容性,从而促进市场的有序发展和消费者的权益保障。
2. LTE射频测试的重要性LTE技术作为目前移动通信领域的主流技术之一,其射频性能的稳定性和可靠性至关重要。
LTE射频测试则成为了评估LTE产品性能的关键环节,包括功率、频谱、调制解调、发射接收等多个指标。
而SRRC 认证LTE射频测试指标要求则进一步提升了测试的标准和要求,对通信设备的性能和质量提出了更高的要求。
3. SRRC认证LTE射频测试指标要求针对LTE射频测试,SRRC认证明确了一系列的测试指标和要求,包括但不限于功率发射、频谱发射、调制解调、发射接收等。
其中,功率发射要求设备在不同条件下的输出功率稳定性和准确性;频谱发射要求设备在发射过程中的频谱纯净度和占用带宽满足标准;调制解调要求设备在不同模式和条件下的调制解调性能优异;发射接收要求设备的发射和接收效率高并能有效抑制杂散发射等。
这些指标不仅要求设备在正常工作条件下达到标准,更要求其在不同干扰和复杂环境下仍能保持稳定和可靠的性能。
4. 个人观点和理解从SRRC认证LTE射频测试指标要求可以看出,我国对于LTE技术的发展和应用高度重视,希望通过规范的认证标准,推动LTE通信设备的质量和性能提升。
作为一名从事通信领域工作多年的作者,我深知好的产品离不开严格的测试和认证,SRRC认证LTE射频测试指标要求为LTE设备的研发和生产提供了有力保障。
射频各项测试指标

射频各项测试指标射频(Radio Frequency,简称RF)是指在无线通信、遥感、雷达等领域内,将电能转换为电磁波进行无线传输和接收的一种技术。
射频技术在现代通信领域中应用广泛,所以对射频性能的测试和评估至关重要。
下面将介绍一些射频测试中的重要指标:1. 带宽(Bandwidth):带宽是指信号通过系统或设备时所能传送的最高频率范围。
频率越高,传输的信息量就越大。
带宽的单位通常为赫兹(Hz),常见的射频带宽有10 MHz、20 MHz、40 MHz等。
2. 中心频率(Center Frequency):中心频率是指系统或设备工作的主导频率。
在射频通信中,根据具体的通信需求,可以选择不同的中心频率来传送信号。
3. 信号功率(Signal Power):信号功率是指射频信号的强度,单位为分贝毫瓦(dBm)。
信号功率的大小可以影响射频传输的距离以及信号的质量。
4. 敏感度(Sensitivity):敏感度是指接收器能够识别和接收的最小射频信号强度。
敏感度越高,接收器就能够接收到较弱的信号,从而提高通信质量和距离。
5. 动态范围(Dynamic Range):动态范围是指接收器能够同时识别和接收的最大和最小射频信号强度之间的范围。
动态范围越大,接收器在接收强信号时仍能保持高灵敏度。
6. 带内泄漏(In-Band Leakage):带内泄漏是指在接收机输出频谱范围内的其他信号干扰。
带内泄漏较大会导致接收到的信号质量下降。
7. 反射损耗(Return Loss):反射损耗是指由于不完美的匹配而产生的信号反射所引起的能量损耗。
较高的反射损耗表示较好的匹配,能够减少信号的干扰和损耗。
8. 杂散(Spurious):杂散是指在希望频带之外的其他频率范围内的无用信号或噪声。
杂散越小,接收到的信号质量越好。
9. 相位噪声(Phase Noise):相位噪声是指射频信号相位的随机波动,通常以分贝/赫兹(dBc/Hz)为单位。
手机射频知识

我们知道GMS使用的是GMSK调制,相位误差的大小反映了I、Q类比转换器和高斯滤波器性能的好坏,只有低的相位误差,才能保证在无线链路上的低的误码率。
4:TX功率模板:
由于GSM系统是一个TDMA系统,8个用户共用一个频点,手机只在分配给他的时隙内工作,然后在其他时隙内关闭,如果TX功率边沿出了模板,会影响其他用户,如果TX功率的有用信号的平坦度不够,会影响自己的发射信号质量。
2:TX频率误差:
在手机和基站通信中,一个发射一个接收,这就要求两者能很好的同步,频率误差小,表明频率合成器能很快的切换频率,并且产生的信号频率足够稳定,只有信号稳定,基站和手机才能很好的同步。如果频率误差严重超标,就会引起掉网。一般在频率误差超过700Hz时,就会产生掉网。
3:TX相位误差:
当手机在使用时,由于有多经干扰、多谱勒效应等衰减,手机接收下行链路的信号电平会发生改变,基站将利用手机的RX LEVEL,了解手机接收信号的强弱,如果有临近的RX LEVEL比正在使用的高,基站就会要求手机做越区切换,所以如果RX LEVEL报告有误,就会使该切换时未切换,不该切换时切换,而发生掉网;在 RX QUAL低而RX LEVEL不底时,表明本信道可能存在一个外来干扰信号,基站需要给手机分配新的频点或启用跳频模式。一般来说RX QUAL超过7,RX LEVEL是0时,肯定会掉网。
GSM手机射频指标及测试

GSM手机射频指标及测试GSM(全球系统移动通信)手机是一种移动通信技术标准,它使用数字的、无线的通信方式,能够在全球范围内进行通信。
在实际应用中,GSM手机需要满足一定的射频指标,同时需要进行相应的测试来保证其正常运行。
本文将详细介绍GSM手机的射频指标以及相关测试。
GSM手机的射频指标包括发送功率、接收灵敏度、频谱纯净度、误码率等。
首先是发送功率,它指的是GSM手机在通话时发射的电功率。
根据GSM标准,GSM手机的最大发送功率应不超过2瓦,并且根据不同的环境需求可以进行相应的调整。
发送功率的测量主要通过功率传感器和功率计等设备进行。
接收灵敏度是指GSM手机在接收信号时所能接收到的最小电磁信号强度。
较高的接收灵敏度表明GSM手机可以在弱信号环境下保持通话质量,这对于用户在较远距离或信号不佳的地方使用手机非常重要。
接收灵敏度的测试主要依靠网路分析仪等专业仪器进行。
频谱纯净度是指GSM手机在发射信号时所产生的杂散频率、谐波等对其他无线设备造成的干扰程度。
频谱纯净度的测试是通过频谱分析仪等设备进行的,主要目的是确保GSM手机的发射信号不会对其他设备造成干扰,同时保证通信的稳定性。
误码率是指GSM手机在通信过程中所产生的误码比率。
误码率反映了GSM手机通话质量的稳定性,通常用10的负次方来表示。
误码率的测试主要使用误码率仪等设备进行,它们通过对接收到的信号进行分析,可以精确测量误码率。
为了确保GSM手机符合射频指标,需要进行一系列的测试。
这些测试主要包括发射功率、接收灵敏度、频谱纯净度、误码率等方面。
测试过程中需要使用到多种专业仪器,如功率传感器、功率计、网路分析仪、频谱分析仪、误码率仪等。
同时,测试应该覆盖不同的频率、功率、通话质量等条件。
根据测试结果,可以对GSM手机的射频性能进行评估,并根据需要进行相应的调整和改进。
总而言之,GSM手机的射频指标及测试是保证手机正常工作的重要环节。
通过对发送功率、接收灵敏度、频谱纯净度、误码率等指标进行测试,可以评估手机的性能,并依据测试结果进行相应的调整和改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1射频(RF)指标的定义和要求
1.1 接收灵敏度(Rx sensitivity)
(1)定义
接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。
衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。
这里只介绍用残余误比特率(RBER)来测量接收灵敏度。
残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。
(2)技术要求
●对于GSM900MHz频段
接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。
●对于DCSl800MHz频段
接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为一l08一-105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03一-100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。
1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS
(1)定义
测量发射信号的频率和相位误差是检验发信机调制信号的质量。
GSM调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。
发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。
理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。
频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。
它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回归线最远的值。
相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。
(2)技术要求
●对于GSM900MHz频段
①频率误差Fe
若Fe<40Hz,则频率误差为优;
若40Hz≤Fe6≤60Hz,则频率误差为良好;
若60Hz≤Fe≤90Hz,则频率误差为一般;
若Fe>90Hz,则频率误差为不合格。
②相位误差峰值Pepeak
若Pepeak<7de8,则相位误差峰值为优;
若7deg≤Pepeak≤l0deg,则相位误差峰值为良好;
若10deg≤Pepeak≤20deg则相位误差峰值为一般;
若Pepesk>20deg,则这项指标为不合格。
②相位误差有效值PeRMS
若PeRMs<2.5deg,则相位误差有效值为优;
若2.5deg≤PeRMS≤4deg,则相位误差有效值为良好;
若4deg≤PeRMS≤5deg,则相位误差有效值为一般;
若PeRMS>5deg,则这项指标为不合格。
●对于沉S1800MHz频段
①频率误差Fe
若Fe<80Hz,则频率误差为优;
若80Hz≤Fe≤100Hz,则频率误差为良好;
若100HZ≤Fe≤180Hz,则频率误差为一般:
若F e>l 80H z,则这项指标为不合格。
②相位误差峰值Pepeak
同GSM900MHz的指标。
②相位误差有效值PeRMS
同GSM900MHz的指标。
1.3 射频输出功率Po
(1)定义
鉴于移动通信组网时的远近效应,在与基站通信过程中必须对移动台的发射功率进行控制(动态调整),以便能保证移动台与基站之间一定的通信质量而又不至于对其它移动台产生明显的干扰。
同样,也可以对基站的发射功率进行射频功率控制。
测试移动台的射频输出功率在功率控制的每一级电平上是否满足ETSI规定的功率要求。
(2)技术要求
●对于GSM900Mz频段
每一功率控制电平对应的标称功率和允许的误差如表l(对于class IV移动台)。
●对于DCSl800MHz频段
每一功率控制电平对应的标称功率和允许的误差如表2(对于class I移动台)。
1.4调制频谱和开关频谱
(1)定义
由于GSM调制信号的突发特性,因此输出射频频谱应考虑由于调制和射频功率电平切换而引起的对相邻信干扰。
在时间上,连续调制频谱和功率切换频谱不是发生的,因而输出射频频谱可分为连续调制频谱和切态频谱来分别地加以规定和测量。
连续调制是测量由GSM调制处理而产生的在其标称载频同频偏处(主要是在相邻频道)的射频功率。
开关频谱即切换瞬态频谱,是测量由于调制突发的上下降沿而产生的在其标称载频的不同频偏处(主要是在相邻频道)的射频功率。
(2)技术要求
●对于GSM900MHz频段
①调制频谱(MOD pectsrum)
测试指标要求:调制频谱的每一条谱线均应在ETSI规定的Time-Plate的下方(具体的技术要求可参见ETSIll.10中的规定);
测试条件:功率电平设置?(33dB m):
测试时,可选择中间信道进行测试。
在衡量调制频谱时,可使用谱线的指标余量(margin)。
指标余量即最接近
Time-Plate的一条谱线与Time-Pkate之间的距离。
指标余量越大,则调制频谱越好,即对邻道的干扰越小。
对指标余量可作如下分析:
若margin>l0dBm,则调制频谱为优;
若0<margin<l0dBm,则调制频谱为较好;
若margin=0或谱线高度超出Time-Plate,则调制频谱为不合格。
②开关频谱(switch spectum)
测试指标要求:调制频谱的每一条谱线均应在ETSI规定的Time-Plate的下方;
测试条件:功率电平设备在5(33dBm);
测试时,可选择低、中、高三个信道进行测试如CH1、CH62、CHl24)。
对指标余量可作如下分析:
若margin>10dBm,则开关频谱为优;
若0<margin<l0dBm,则开关频谱为较好;
若margin=0或谱线高度超出Time-Plate,则开关频谱指标为不合格。
●对于DCSl800MHz频段
①调制频谱(MOD spectrum)
功率电平设置为0(30dBm) 。
指标要求同GSM900MHz。
1.5 杂散辐射
(1)定义
杂散辐射是指用标推测试信号调制时在除载频和由于正常调制和切换瞬态引起的边带以及邻道以外离散频率上的辐射(即远端辐射)。
杂散辐射按其来源的不同可分为传导型和辐射型两种。
传导型杂散辐射是指天线连接器处或进入电源引线(仅指基站)引起的任何杂散辐射;辐射型杂散辐射是指由于机箱(或机柜)以及设备的结构而引起的任何杂散辐射。
这里只介绍Tx发射时传导型杂散的测量。
(2) 技术要求
测试条件:分辨带宽RB=l0KHz或分辨带宽RB=3MHz
视频带宽VB=l0KHz 视频带宽VB23MHz
(频谱仪带宽设置与有用信号和杂散信号的相对位置有关。
)
功率电平设置为对应频段的最大功率等级指标要求:
①对于在发射状态的移动台,传导型杂散辐射在段频9KHz-1GHz内的杂散辐射功率电平应小于250nw(即-36dBm);在1GHz一1275GHz频段内的传导型杂散辐射功率电平应小于1uw(即号-30dBm)。
②对于空闲状态的移动台来说,9kHz-1GHz频段内的传导型杂散功率电平应小于2nW(-57dBm);
1GHz-12.75GHz频段内的传导型杂散功率电平应小于20nW(即-47dBm)。
③对于所有条件下的移动台,在M S接收频段GSM935MHz一960MHz/DCSl805一1880MHz内的杂散功率电平应不超过:
-25PW(即-76dBm)对于l类功率等级移动台
-45PW(即-84dMm)对于2、3、3、5类功率等级移动台。