信息论与编码理论1(A卷答案)

合集下载

信息理论与编码-期末试卷A及答案

信息理论与编码-期末试卷A及答案

题号 一 二 三 四 总分 统分人 题分 35 10 23 32 100得分 一、填空题(每空1分,共35分) 得分| |阅卷人|1、1948年,美国数学家 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

信息论的基础理论是 ,它属于狭义信息论。

2、信号是 的载体,消息是 的载体。

3、某信源有五种符号}{,,,,a b c d e ,先验概率分别为5.0=a P ,25.0=b P ,125.0=c P ,0625.0==e d P P ,则符号“a ”的自信息量为 bit ,此信源的熵为 bit/符号。

4、某离散无记忆信源X ,其概率空间和重量空间分别为1234 0.50.250.1250.125X x x x x P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦和1234 0.5122X x x x x w ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则其信源熵和加权熵分别为 和 。

5、信源的剩余度主要来自两个方面,一是 ,二是 。

6、平均互信息量与信息熵、联合熵的关系是 。

7、信道的输出仅与信道当前输入有关,而与过去输入无关的信道称为 信道。

8、马尔可夫信源需要满足两个条件:一、 ; 二、 。

9、若某信道矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0100010000001100,则该信道的信道容量C=__________。

10、根据是否允许失真,信源编码可分为 和 。

11、信源编码的概率匹配原则是:概率大的信源符号用 ,概率小的信源符号用 。

(填短码或长码)12、在现代通信系统中,信源编码主要用于解决信息传输中的 性,信道编码主要用于解决信息传输中的 性,保密密编码主要用于解决信息传输中的安全性。

13、差错控制的基本方式大致可以分为 、 和混合纠错。

14、某线性分组码的最小汉明距dmin=4,则该码最多能检测出 个随机错,最多能纠正 个随机错。

15、码字101111101、011111101、100111001之间的最小汉明距离为 。

信息理论与编码-期末试卷A及答案

信息理论与编码-期末试卷A及答案

一、填空题(每空1分,共35分) 1、1948年,美国数学家 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

信息论的基础理论是 ,它属于狭义信息论。

2、信号是 的载体,消息是 的载体。

3、某信源有五种符号}{,,,,a b c d e ,先验概率分别为5.0=a P ,25.0=b P ,125.0=c P ,0625.0==e d P P ,则符号“a ”的自信息量为 bit ,此信源的熵为 bit/符号。

4、某离散无记忆信源X ,其概率空间和重量空间分别为1234 0.50.250.1250.125X x x x x P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦和12340.5122X x x x x w ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则其信源熵和加权熵分别为 和 。

5、信源的剩余度主要来自两个方面,一是,二是 。

6、平均互信息量与信息熵、联合熵的关系是 。

7、信道的输出仅与信道当前输入有关,而与过去输入无关的信道称为 信道。

8、马尔可夫信源需要满足两个条件:一、 ; 二、。

9、若某信道矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡010001000001100,则该信道的信道容量C=__________。

10、根据是否允许失真,信源编码可分为 和 。

12、在现代通信系统中,信源编码主要用于解决信息传输中的 性,信道编码主要用于解决信息传输中的 性,保密密编码主要用于解决信息传输中的安全性。

13、差错控制的基本方式大致可以分为 、 和混合纠错。

14、某线性分组码的最小汉明距dmin=4,则该码最多能检测出 个随机错,最多能纠正 个随机错。

15、码字101111101、011111101、100111001之间的最小汉明距离为 。

16、对于密码系统安全性的评价,通常分为 和 两种标准。

17、单密钥体制是指 。

18、现代数据加密体制主要分为 和 两种体制。

19、评价密码体制安全性有不同的途径,包括无条件安全性、 和 。

信息论与编码理论1(A卷答案)

信息论与编码理论1(A卷答案)

2012-2013 (2) 信息论与编码理论1 A 卷答案一、 单项选择题(每题3分,总计15分) 1.当底为e 时,平均互信息的单位为( C )。

A 奈特B 哈特C 奈特/符号D 哈特/符号 2.下列量当Y X ,交换位置时( C )没有对称性。

A );(Y X IB ),(Y X HC )|(Y X HD )|,(Z Y X I3.下列( A )陈述是错误的。

A 算术编码不需要知道信源的分布B LZ 编码不需要知道信源的分布C 游程编码不需要知道信源的分布D KY 编码不需要知道信源的分布 4.下列数组中( A )不满足两个字母上的Kraft 不等式。

A (1,2,1)B (2,2)C (1,2,3)D (3,3,3) 5.下列译码法则中( A )一定是错误概率最小的。

A 最大后验概率译码准则B 最大似然译码准则C 最小距离译码准则D 最大先验概率译码准则 二、填空题(每空2分,总计12分)1.若某离散信道转移概率矩阵为⎥⎦⎤⎢⎣⎡125.0125.05.025.0125.0125.025.05.0,则其信道容量为43log 352-比特/符号。

2.若一个信道的输入熵为8.1)(=X H 比特/符号,输出熵为2.2)(=Y H 比特/符号,6.0);(=Y X I 比特/符号,则=),(Y X H __3.4比特/符号__,疑义度为1.2比特/符号_。

3.平均互信息对信源概率分布是上凸函数,对信道的状态转移概率分布是下凸函数。

4.对信源U 任一个D 元唯一可译码的平均码长必大于等于DU H log )(。

三、计算题(73分)1)(15分)设随机变量Y X ,的联合概率分布如下:Y X Z ⊕=,⊕为模2加。

分别求);(),|(),(),(Z X I Y X H Y H X H 。

解: X 的分布率为则1)(=X H 比特/符号..3分Y 的分布率为则3log 432)(2-=Y H =0.811比特/符号. …………………………………………………..……..6分)0()0,0()0|0(======Y P Y X p Y X p =1,)1()1,0()1|0(======Y P Y X p Y X p =31)0()0,1()0|1(======Y P Y X p Y X p =0,)1()1,1()1|1(======Y P Y X p Y X p = 32)1|0(log )1,0()0|0(log )0,0()|(22p p p p Y X H --=)1|1(log )1,1()0|1(log )0,1(22p p p p --=32log 210log 031log 411log 412222----=213log 432-=0.688比特/符号. ……………..10分)0()0,0()0|0(======Z P Z X p Z X p =31,)1()1,0()1|0(======Z P Z X p Z X p =1 )0()0,1()0|1(======Z P Z X p Z X p =32,)1()1,1()1|1(======Z P Z X p Z X p =0则)1()1|1(log )1,1()1()0|1(log )0,1()0()1|0(log )1,0()0()0|0(log )0,0();(2222=+=+=+==X p p p X p p p X p p p X p p p Z X I =210log 02132log 41211log 412131log 412222+++=9log 4112-=0.2075比特/符号. …………………..15分2)(22分)若离散无记忆信源的概率分布为⎪⎪⎭⎫ ⎝⎛=3.01.04.005.005.01.0654321a a a a a a U① 分别构造二元,三元Huffman 编码(要求码长方差最小,但不需求出),Shannon 编码,Fano编码,Shannon-Fano-Elias 编码。

信息论与编码试卷及答案1

信息论与编码试卷及答案1

二、综合题(每题10分,共60分)1.黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0.3,白色出现的概率为0.7。

给出这个只有两个符号的信源X的数学模型。

假设图上黑白消息出现前后没有关联,求熵;2)假设黑白消息出现前后有关联,其依赖关系为:,,,,求其熵;2.二元对称信道如图。

;1)若,,求和;2)求该信道的信道容量和最佳输入分布。

3.信源空间为,试分别构造二元和三元霍夫曼码,计算其平均码长和编码效率。

4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。

5.已知一(8,5)线性分组码的生成矩阵为。

求:1)输入为全00011和10100时该码的码字;2)最小码距。

6.设某一信号的信息传输率为5.6kbit/s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz。

试求:(1)无差错传输需要的最小输入功率是多少?(2)此时输入信号的最大连续熵是多少?写出对应的输入概率密度函数的形式。

二、综合题(每题10分,共60分)1.答:1)信源模型为2)由得则2.答:1)2),最佳输入概率分布为等概率分布。

3.答:1)二元码的码字依序为:10,11,010,011,1010,1011,1000,1001。

平均码长,编码效率2)三元码的码字依序为:1,00,02,20,21,22,010,011。

平均码长,编码效率4.答:1)最小似然译码准则下,有,2)最大错误概率准则下,有,5.答:1)输入为00011时,码字为00011110;输入为10100时,码字为10100101。

2)6.答:1)无错传输时,有即则2)在时,最大熵对应的输入概率密度函数为信息论习题集二、填空(每空1分)(100道)1、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

2、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

信息论与编码第三版答案

信息论与编码第三版答案

信息论与编码第三版答案《信息论与编码》是一本非常经典的书籍,已经成为了信息科学领域中的经典教材。

本书的第三版已经出版,相比于前两版,第三版的变化不小,主要是增加了一些新内容,同时也对一些旧内容做了修改和完善。

作为一本教材,上面的题目和习题都是非常重要的,它们可以帮助读者更好地理解书中的相关概念和知识点,同时也可以帮助读者更好地掌握理论和技术。

因此,本文将介绍《信息论与编码》第三版中部分习题的答案,方便读者快速查阅和学习。

第一章:信息量和熵1.1 习题1.1Q:两个随机变量的独立性和无关性有什么区别?A:独立性和无关性是两个不同的概念。

两个随机变量是独立的,当且仅当它们的联合概率分布等于乘积形式的边缘概率分布。

两个随机变量是无关的,当且仅当它们的协方差等于0。

1.2 习题1.7Q:什么样的随机变量的熵等于0?A:当随机变量的概率分布是确定的(即只有一个概率为1,其余全为0),其熵等于0。

第二章:数据压缩2.5 习题2.9Q:为什么霍夫曼编码比熵编码更加高效?A:霍夫曼编码能够更好地利用信源的统计特征,将出现频率高的符号用较短的二进制编码表示,出现频率低的符号用较长的二进制编码表示。

这样一来,在编码过程中出现频率高的符号会占用较少的比特数,从而能够更加高效地表示信息。

而熵编码则是针对每个符号分别进行编码,没有考虑符号之间的相关性,因此相比于霍夫曼编码更加低效。

第四章:信道编码4.2 习题4.5Q:在线性块码中,什么是生成矩阵?A:在线性块码中,生成矩阵是一个包含所有二元线性组合系数的矩阵。

它可以用来生成码字,即任意输入信息序列可以通过生成矩阵与编码器进行矩阵乘法得到相应的编码输出序列。

4.3 习题4.12Q:简述CRC校验的原理。

A:CRC校验是一种基于循环冗余校验的方法,用于检测在数字通信中的数据传输错误。

其基本思想是将发送数据看作多项式系数,通过对这个多项式进行除法运算,得到余数,将余数添加到数据尾部,发送给接收方。

信息论与编码理论1(A卷答案)

信息论与编码理论1(A卷答案)

广州大学 2016—2017 学年第 一 学期考试卷课程 《信息论与编码理论1》 考试形式(闭卷,考试)一、 单项选择题(每题2分,总计10分) 1.当底为e 时,信道容量的单位为( C )。

A 奈特B 哈特C 奈特/符号D 哈特/符号 2.下列量中( D )一定最大。

A );(Y X IB ),(X Y IC )|(Y X HD ),(Y X H3.下列( A )陈述是错误的。

A 算术编码不需要知道信源的分布B 游程编码不需要知道信源的分布C LZ 编码不需要知道信源的分布D LZW 编码不需要知道信源的分布 4.下列数组中( C )不满足二个字母上的Kraft 不等式。

A (2,2,1)B (2,2)C (1,1,3)D (3,3,3) 5.下列( A )是准对称信道的状态转移概率矩阵。

A ⎪⎪⎪⎪⎭⎫ ⎝⎛613121216131 B ⎪⎪⎪⎭⎫ ⎝⎛5.05.05.05.05.05.05.05.05.0 C ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛323132313231 D ⎪⎪⎭⎫ ⎝⎛2.02.08.02.08.02.0 二、填空题(每空2分,总计20分)1.若二元离散无记忆信源25.0)0(=p ,75.0)1(=p ,则当给出10比特的信源序列,其中有4个1,其自信息为3log 4202-比特,整个序列的熵为)3log 432(102-比特/符号。

2.若某离散信道信道转移概率矩阵为⎥⎦⎤⎢⎣⎡125.0125.05.025.0125.0125.025.05.0,则其信道容量为43log 352-比特/符号;转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡5.05.04.06.06.04.0,则其信道容量为1比特/符号。

3. 两个相同的BSC 做级联信道,其信道转移矩阵分别为⎥⎦⎤⎢⎣⎡--p pp p 11 , 则级联信道的信道转移矩阵为⎥⎦⎤⎢⎣⎡+---+-22222212222221p p p p p p p p ,无穷多个级联后的矩阵为⎥⎦⎤⎢⎣⎡5.05.05.05.0。

信息理论与编码答案 人民邮电出版社

信息理论与编码答案 人民邮电出版社

第一章 自我测试题一、填空题1. 在认识论层次上研究信息的时候,必须同时考虑到形式、__语义___和__语用___三个方面的因素。

2. 如果从随机不确定性的角度来定义信息,信息是用以消除__随机不确定性___的东西。

3. 信源编码的结果是__减小_冗余;而信道编码的手段是__增加___冗余。

4. _1948_年,香农发表了著名的论文__通信的数学理论__,标志着信息论诞生。

5. 信息商品是一种特殊商品,它有__保存性_性、_共享_性、_老化可能_性和 知识创造性 等特征。

二、判断题1. 信息传输系统模型表明,噪声仅仅来源于信道(×)2. 本体论层次信息表明,信息不依赖于人而存在(√)3. 信道编码与译码是一对可逆变换(×)4. 1976年,论文《密码学的新方向》的发表,标志着保密通信研究的开始(×)5. 基因组序列信息的提取和分析是生物信息学的研究内容之一(√)三、选择题1.下列表述中,属于从随机不确定性的角度来定义信息的是__D___ A . 信息是数据B . 信息是集合之间的变异度C . 信息是控制的指令D . 信息是收信者事先不知道的报道 2.___B__是最高层次的信息 A . 认识论 B . 本体论 C . 价值论 D . 唯物论 3.下列不属于狭义信息论的是__D___ A . 信息的测度 B . 信源编码 C . 信道容量 D . 计算机翻译 4.下列不属于信息论的研究内容的是__A___ A . 信息的产生 B . 信道传输能力 C . 文字的统计特性 D . 抗干扰编码 5.下列关于信息论发展历史描述不正确的是__B___A . 偶然性、熵函数引进物理学为信息论的产生提供了理论前提。

B . 1952年,香农发展了信道容量的迭代算法C . 哈特莱用消息可能数目的对数来度量消息中所含有的信息量,为香农创立信息论提供了思路。

D . 1959年,香农首先提出率失真函数和率失真信源编码定理,才发展成为信息率失真编码理论。

信息论和编码理论习题集答案解析

信息论和编码理论习题集答案解析

信息论和编码理论习题集答案解析第二章信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此每个码字的信息量为2?8log =2?3=6 bit 因此,信息速率为 6?1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1} )(a p =366=61 得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6} )(b p =361 得到的信息量=)(1log b p =36log =5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521 信息量=)(1loga p =!52log =225.58 bit (b) 花色任选种点数任意排列13413!13)(b p =1352134!13A ?=1352134C 信息量=1313524log log -C =13.208 bit2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H =2?(361log 36+362log 18+363log 12+364log 9+365log 536)+36 6log 6 =3.2744 bit)|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit 或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit ),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit)|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。

信息理论与编码-期末试卷A及答案

信息理论与编码-期末试卷A及答案

一、填空题(每空1分,共35分)1、1948年,美国数学家 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

信息论的基础理论是 ,它属于狭义信息论。

2、信号是 的载体,消息是 的载体。

3、某信源有五种符号}{,,,,a b c d e ,先验概率分别为5.0=a P ,25.0=b P ,125.0=c P ,0625.0==e d P P ,则符号“a ”的自信息量为 bit ,此信源的熵为 bit/符号。

4、某离散无记忆信源X ,其概率空间和重量空间分别为1234 0.50.250.1250.125X x x x x P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦和12340.5122X x x x x w ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则其信源熵和加权熵分别为 和 。

5、信源的剩余度主要来自两个方面,一是 ,二是 。

6、平均互信息量与信息熵、联合熵的关系是 。

7、信道的输出仅与信道当前输入有关,而与过去输入无关的信道称为 信道。

8、马尔可夫信源需要满足两个条件:一、 ;二、 。

9、若某信道矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡010001000001100,则该信道的信道容量C=__________。

10、根据是否允许失真,信源编码可分为 和 。

11、信源编码的概率匹配原则是:概率大的信源符号用 ,概率小的信源符号用 。

(填短码或长码)12、在现代通信系统中,信源编码主要用于解决信息传输中的 性,信道编码主要用于解决信息传输中的 性,保密密编码主要用于解决信息传输中的安全性。

13、差错控制的基本方式大致可以分为 、 和混合纠错。

14、某线性分组码的最小汉明距dmin=4,则该码最多能检测出 个随机错,最多能纠正 个随机错。

15、码字1、0、1之间的最小汉明距离为 。

16、对于密码系统安全性的评价,通常分为 和 两种标准。

17、单密钥体制是指 。

18、现代数据加密体制主要分为 和 两种体制。

信息论与编码习题1及答案1

信息论与编码习题1及答案1

一、dr)填空题(1)1948年.美国数学家_____________________ 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论.(2)必然事件的自信息是_0 ___________ 。

(3)离散平稳无记忆信源X的N次扩展信源的嫡等于离散信源X的嫡的N倍°(4)对于离散无记忆信源,当信源爛有最大值时,满足条件为.信源符号等槪分術一(5)若一离散无记忆信源的信源爛H (X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为3 _____ ・(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是 __________________ 。

(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出2 个码元错误.最多能纠正—1_个码元错误.(8)设有一离散无记忆平稳信道,其信道容董为C,只要待传送的信息传输率R_小于_C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。

(9)平均错误概率不仅与信道本身的统计特性有关,还与— ___________ 和_编码方巷—有关二、(9 )判斷题(1)信息就是一种消息。

( )(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。

( )(3)概率大的事件自信息量大。

( )(4)互信息量可正、可负亦可为零。

( )(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。

( )(6)对于固定的信源分布,平均互信息董是信道传递概率的下凸函数。

( )(7)非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。

( )(8)信源变长编码的核心问题是寻找紧致码(或最佳码),霍夫曼编码方法构造的是最佳码。

( )(9)信息率失真函数R(D)是关于平均失真度D的上凸函数. ( )三、(5 )居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1o 6米以上的,而女孩中身爲1・6米以上的占总数的一半。

【西安电子科技大学】信息论与编码理论试题-l答案(供参考勿外传)

【西安电子科技大学】信息论与编码理论试题-l答案(供参考勿外传)

西安电子科技大学考试时间120分钟试题1.考试形式:闭卷;2.本试卷共七大题,满分100分。

班级 学号 姓名 任课教师一(30分)基本概念题(1)请判断正误:平均互信息I (X ;Y )不大于条件平均互信息I (X ;Y|Z )。

(2)请给出Kraft 不等式,并说明它是否为判断唯一可译码的充要条件。

(3)请说明最大似然译码准则是否为最佳译码准则。

(4)请给出信息率失真函数R(D)的定义并解释其物理含义。

(5)请说明为什么对于平均功率受限的时间离散恒参可加噪声信道,高斯干扰是最坏的干扰及该结论在实际通信中的作用。

(6)设有一硬币,其正面出现的概率为1/3,令0表示正面,试说明在ε→0情况下一个典型序列应具备的特点,并给出这一序列出现的概率。

(7)若失真矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡130102,输入集合X 的概率为(1/3、1/3、1/3),请分别给出D min和D max 。

解:(1)该结论错误。

(2)craft 不等式:长度为n 1,n 2,…,n K 的D 元异字头码存在的充分必要条件是∑=-≤Kk knD11。

该不等式可以用来判断是否存在对应长度的唯一可译码,但是不能作为判断唯一可译码的充要条件。

(3)当先验等概时,最大似然准则等价于最佳译码准则;当先验不等概时,不符合最佳译码准则。

(4)信息率失真函数R (D )定义为在满足D 保真度准则下所有许可试验信道所对应的平均互信息的最小值。

其物理含义为:当给定失真度D 时,R(D)是满足保真度第2页共6页准则情况下传输信源信息速率的最低值,即信源压缩的下限。

(5)对平均功率受限的时间离散的恒参可加噪声信道容量C 满足:⎥⎦⎤⎢⎣⎡+≤≤⎪⎪⎭⎫ ⎝⎛+222log 211log 21σσσS C S 其中-2σ是噪声集Z 的熵功率。

由于在平均功率受限条件下,同样噪声功率时,高斯分布可以达到最大的熵功率,从而在高斯噪声时,上述C 取得最小值。

信息论与编码理论1(B卷答案)

信息论与编码理论1(B卷答案)

信息论与编码理论1(B 卷答案) 一、单项选择题(每题3分,总计15分)1.当底为e 时,熵的单位为( C )。

A 奈特B 哈特C 奈特/符号D 哈特/符号 2.下列关系式中( B )正确。

A )();(X I Y X I ≥B );(),(Y X I Y X H ≥C )|()|(X Y H Y X H ≥D );();(Y X H Y X I ≤3.下列( D )陈述是正确的。

A Shannon 编码是最优码B LZ 编码是异字头码C Huffman 编码可以不需要知道信源的分布D 典型序列的数目不一定比非典型的多 4.下列数组中( A )不满足二个字母上的Kraft 不等式。

A (1,1,1)B (2,2,2,2)C (3,3,3)D (4,4,4) 5.下列( D )是只对输出对称的。

A ⎪⎪⎪⎪⎭⎫ ⎝⎛316121216131 B ⎪⎪⎪⎭⎫ ⎝⎛2.04.04.04.02.04.04.04.02.0 C ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛323131323231 D ⎪⎪⎭⎫ ⎝⎛2.04.04.04.02.02.0 二、填空题(每空2分,总计20分)1.若二元离散无记忆中25.0)0(=p ,75.0)1(=p ,则当给出100比特的信源序列,其中有5个1,则其自信息为3log 52002-比特,整个序列的熵为)3log 432(1002-比特/符号. 2.若某离散信道信道转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡5.025.025.025.05.025.025.025.05.0,则其信道容量为5.13log 2-比特/符号;转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡25.05.025.05.025.025.025.025.05.0,则其信道容量为5.13log 2-比特/符号。

3. 两个相同的BSC 做级联信道,其信道转移矩阵分别为⎥⎦⎤⎢⎣⎡--p pp p 11 , 则级联信道的信道转移矩阵为⎥⎦⎤⎢⎣⎡+---+-22222212222221p p pp p p p p ,无穷多个级联后的矩阵为⎥⎦⎤⎢⎣⎡5.05.05.05.0。

信息论与编码考试题(附答案版)

信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。

3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln (2πⅇσ2))。

4.数据处理过程中信息具有(不增性)。

5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。

6.单符号连续信道的信道容量取决于(信噪比)。

7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。

8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。

9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。

10.立即码指的是(接收端收到一个完整的码字后可立即译码)。

11.算术编码是(非)分组码。

12.游程编码是(无)失真信源编码。

13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。

14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。

15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。

16.卷积码的自由距离决定了其(检错和纠错能力)。

(对)1、信息是指各个事物运动的状态及状态变化的方式。

(对)2、信息就是信息,既不是物质也不是能量。

(错)3、马尔可夫信源是离散无记忆信源。

(错)4、不可约的马尔可夫链一定是遍历的。

(对)5、单符号连续信源的绝对熵为无穷大。

(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。

(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

信息论期末试卷

信息论期末试卷

信息理论与编码试卷A答案专业年级:通信07级总分100分,占总评成绩70%注:此页不作答题纸,请将答案写在答题纸上一填空题(本题20分,每小题2分)1 无失真信源编码的中心任务是编码后的信息率压缩接近到 1 限失真压缩中心任务是在给定的失真度条件下,信息率压缩接近到2 。

2信息论是应用近代数理统计方法研究信息的传输、存储与处理的科学,故称为 3 ;1948年香农在贝尔杂志上发表了两篇有关的“通信的数学理论”文章,该文用熵对信源的 4 的度量,同时也是衡量 5 大小的一个尺度;表现在通信领域里,发送端发送什么有一个不确定量,通过信道传输,接收端收到信息后,对发送端发送什么仍然存在一个不确定量,把这两个不确定量差值用 6 来表示,它表现了通信信道流通的7 ,若把它取最大值,就是通信线路的8 ,若把它取最小值,就是9 。

3 若分组码H阵列列线性无关数为n,则纠错码的最小距离d min为10 。

二简答题(本题20分,每小题4分)1. 根据信息理论当前无失真压宿在压宿空间和速度两个方向还有研究价值吗?2. 我们知道,“猫”(调制解调器的俗称)是在模拟链路上传输数字数据的设备,它可以在一个音频电话线上传输二进制数据,并且没有太高的错误率。

现在,我们上网用的“猫”的速度已可达到56Kbps了,但是,如果你用网络蚂蚁或其它软件从网上下载东西时,你会发现很多时候网络传输的速度都很低,远低于56Kbps(通常音频电话连接支持的频率范围为300Hz到3300Hz,而一般链路典型的信噪比是30dB)(摘自中新网)3.结合信息论课程针对”信息”研究对象,说明怎样研究一个对象.4. 用纠错编码基本原理分析由下列两种生成矩阵形成线性分组码的优劣(1)(2)5. 新华社电,2008年 5月16日下午6时半,离汶川地震发生整整100个小时。

虚弱得已近昏迷的刘德云被救援官兵抬出来时,看到了自己的女儿。

随即,他的目光指向自己的左手腕。

信息论与编码习题答案

信息论与编码习题答案

信息论与编码习题答案信息论与编码是通信和数据传输领域的基础学科,它涉及到信息的量化、传输和编码。

以下是一些典型的信息论与编码习题及其答案。

# 习题1:信息熵的计算问题:给定一个随机变量X,其可能的取值为{A, B, C, D},概率分别为P(A) = 0.3, P(B) = 0.25, P(C) = 0.25, P(D) = 0.2。

计算X的熵H(X)。

答案:H(X) = -∑(P(x) * log2(P(x)))= -(0.3 * log2(0.3) + 0.25 * log2(0.25) + 0.25 *log2(0.25) + 0.2 * log2(0.2))≈ 1.846# 习题2:信道容量的计算问题:考虑一个二进制信道,其中传输错误的概率为0.01。

求该信道的信道容量C。

答案:C = log2(2) * (1 - H(error))= 1 * (1 - (-0.01 * log2(0.01) - 0.99 * log2(0.99))) ≈ 0.98 nats# 习题3:编码效率的分析问题:一个编码器将4位二进制数字编码为8位二进制码字。

如果编码器使用了一种特定的编码方案,使得每个码字都具有相同的汉明距离,求这个编码方案的效率。

答案:编码效率 = 信息位数 / 总位数= 4 / 8= 0.5# 习题4:错误检测与纠正问题:给定一个(7,4)汉明码,它能够检测最多2个错误并纠正1个错误。

如果接收到的码字是1101100,请确定原始的4位信息位是什么。

答案:通过汉明码的生成矩阵和校验矩阵,我们可以计算出接收到的码字的校验位,并与接收到的码字的校验位进行比较,从而确定错误的位置并纠正。

通过计算,我们发现原始的4位信息位是0101。

# 习题5:数据压缩问题:如果一个文本文件包含10000个字符,每个字符使用8位编码,如何通过霍夫曼编码实现数据压缩?答案:首先,我们需要统计文本中每个字符的出现频率。

信息论与编码理论(最全试题集+带答案+各种题型)

信息论与编码理论(最全试题集+带答案+各种题型)
6.相比于模拟通信系统,简述数字通信系统的优点。
答:抗干扰能力强,中继时可再生,可消除噪声累计;差错可控制,可改善通信质量;便于加密和使用DSP处理技术;可综合传输各种信息,传送模拟系统时,只要在发送端增加莫属转换器,在接收端增加数模转换器即可。
7.简述信息的性质。
答:存在普遍性;有序性;相对性;可度量性;可扩充性;可存储、传输与携带性;可压缩性;可替代性;可扩散性;可共享性;时效性;
A.形式、含义和安全性
B.形式、载体和安全性
C.形式、含义和效用
D.内容、载体和可靠性
20.(D)是香农信息论最基本最重要的概念
A.信源B.信息C.消息D.熵
三.简答(
1.通信系统模型如下:
2.信息和消息的概念有何区别?
答:消息有两个特点:一是能被通信双方所理解,二是能够互相传递。相对于消息而言,信息是指包含在消息中的对通信者有意义的那部分内容,所以消息是信息的载体,消息中可能包含信息。
31.简单通信系统的模型包含的四部分分别为信源、有扰信道、信宿、干扰源。
32. 的后验概率与先念概率的比值的对数为 对 的互信息量。
33.在信息论中,互信息量等于自信息量减去条件自信息量。
34.当X和Y相互独立时,互信息为0。
35.信源各个离散消息的自信息量的数学期望为信源的平均信息量,也称信息熵。
第一章
一、填空(
1.1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
2.按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
3.按照信息的地位,可以把信息分成客观信息和主观信息。
4.人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

《信息论与编码》试卷(A1)

《信息论与编码》试卷(A1)
五、计算题(40分,共3题)
1.(10分)居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。 假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?
2.(10分)求右图所示的信道的容量及达到信道容量时的输入分布。
A1-3
………………………………装………………………………订…………………………………线………………………………
课程《信息论与编码》班级__________________姓名______________________学号_____________________
………………………………密………………………………封…………………………………线………………………………
3.(20分)设离散信源 (其中 )和接收变量V={v1,v2,v3,v4},失真矩阵为 ,求Dmin,Dmax、R(Dmin)、R(Dmax)、达到Dmin和Dmax时的编码器转移概率矩阵P。
A1-4
4.设X是一个离散无记忆信源, 、 、 分别是其2、3、4次扩展信源。由变长无失真信源编码定理知,对上述4个信源进行二
元香农变长编码,则对()进行编码时,编码效率最高。
A、 ;B、 ;C、 ;D、 。
5.关于信息率失真函数 ,下列说法正确的是()。
A、 函数表示信源X和允许的失真度D给定的情况下,需要由信源传送给信宿的最小信息率;
A、 ; B、 ;
C、 ; D、以上结论都不对。
2.设有一个离散无记忆信道,其信道矩阵为 ,则信道容量是()。
A、 ; B、 ;
C、 ;D、 。
3.若一离散无记忆信源的符号熵为 ,对信源符号进行m元变长编码,一定存在一种无失真编码方法,其码字平均长度 满足()。

信息论与编码理论-习题答案-姜楠-王健-编著-清华大学

信息论与编码理论-习题答案-姜楠-王健-编著-清华大学
一阶马尔可夫过程共有3种状态,每个状态转移到其他状态的概率均为 ,设状态的平稳分布为 ,根据
可得 ,3种状态等概率分布。
一阶马尔可夫信源熵为
信源剩余度为
(2)二阶马尔可夫信源有9种状态(状态转移图略),同样列方程组求得状态的平稳分布为
二阶马尔可夫信源熵为
信源剩余度为
由于在上述两种情况下,3个符号均为等概率分布,所以信源剩余度都等于0。
总的概率
所需要的信息量
2.6设 表示“大学生”这一事件, 表示“身高1.60m以上”这一事件,则

2.7四进制波形所含的信息量为 ,八进制波形所含信息量为 ,故四进制波形所含信息量为二进制的2倍,八进制波形所含信息量为二进制的3倍。
2.8
故以3为底的信息单位是比特的1.585倍。
2.9(1)J、Z(2)E(3)X
(2)三元对称强噪声信道模型如图所示。
4.7由图可知信道1、2的信道矩阵分别为
它们串联后构成一个马尔科夫链,根据马氏链的性质,串联后总的信道矩阵为
4.8传递矩阵为
输入信源符号的概率分布可以写成行向量形式,即
由信道传递矩阵和输入信源符号概率向量,求得输出符号概率分布为
输入符号和输出符号的联合概率分布为
由冗余度计算公式得
3.18(1)由一步转移概率矩阵与二步转移概率矩阵的公式 得
(2)设平稳状态 ,马尔可夫信源性质知 ,即
求解得稳态后的概率分布
3.19设状态空间S= ,符号空间

一步转移概率矩阵
状态转移图
设平稳状态 ,由马尔可夫信源性质有

可得
马尔可夫链只与前一个符号有关,则有
3.20消息元的联合概率是
平均信息传输速率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州大学 2016—2017 学年第 一 学期考试卷
课程 《信息论与编码理论1》 考试形式(闭卷,考试)
学院 系 专业 班级 学号 姓名_
一、 单项选择题(每题2分,总计10分) 1.当底为e 时,信道容量的单位为( C )。

A 奈特
B 哈特
C 奈特/符号
D 哈特/符号 2.下列量中( D )一定最大。

A );(Y X I
B ),(X Y I
C )|(Y X H
D ),(Y X H
3.下列( A )陈述是错误的。

A 算术编码不需要知道信源的分布
B 游程编码不需要知道信源的分布
C LZ 编码不需要知道信源的分布
D LZW 编码不需要知道信源的分布 4.下列数组中( C )不满足二个字母上的Kraft 不等式。

A (2,2,1)
B (2,2)
C (1,1,3)
D (3,3,3) 5.下列( A )是准对称信道的状态转移概率矩阵。

A ⎪⎪⎪⎪⎭⎫ ⎝⎛613
12121613
1 B ⎪⎪⎪⎭⎫ ⎝⎛5.05.05.05.05.05.05.05.05.0 C ⎪⎪⎪⎪⎪⎪⎭

⎝⎛32313231
3231 D ⎪⎪⎭
⎫ ⎝⎛2.02.08.02.08.02.0 二、填空题(每空2分,总计20分)
1.若二元离散无记忆信源25.0)0(=p ,75.0)1(=p ,则当给出10比特的信源序列,其中有4个1,其自信息为3log 4202-比特,整个序列的熵为)3log 4
3
2(102-
比特/符号。

2.若某离散信道信道转移概率矩阵为⎥



⎣⎡125.0125.05.025.0125.0125.025.05.0,则其信道容量为4
3log 352-比特/符号;转移概率矩阵为⎥⎥⎥⎦

⎢⎢⎢⎣⎡5.05.04.06.06.04.0,则其信道容量为1比特/符号。

3. 两个相同的BSC 做级联信道,其信道转移矩阵分别为⎥⎦⎤

⎣⎡--p p
p p 11 , 则级联信道的信道转移矩阵为⎥⎦⎤⎢⎣⎡+---+-22222212222221p p p
p p p p p ,无穷多个级联后的矩阵为⎥⎦⎤
⎢⎣⎡5.05.05.05.0。

4.若一个信道的输入熵为5.1)(=X H ,输出熵为3.1)(=Y H ,7.0);(=Y X I ,则
=),(Y X H _2.1比特/符号_,疑义度为0.8比特/符号_,散布度为0.6比特/符号_。

5.由
三、判断题(每题2分,总计10分) 1. 概率大的事件自信息大 (⨯)
2. 若一个码字集合中的码字长度满足Kraft 不等式 ,则其必为异字头码。

(⨯)
3. Huffman 编码一定是不等长码。

(⨯ )
4. 平均互信息是下凸函数。

( ⨯ )
5. 对于离散无记忆信道,达到信道容量时的输入概率分布可以是不唯一的 (√) 四、计算题(60分)
1)(12分)设随机变量Y X ,的联合概率分布如下:
Y X Z ⊕=,⊕为模2加。

分别求);(),|(),(),(Z X I Y X H Y H X H 。

解: X 的分布率为
则1)(=X H 比特/符号.
Y 的分布率为
则3log 4
3
2)(2-=Y H 比特/符号.
)0()0,0()0|0(====
==Y P Y X p Y X p =1,)
1()1,0()1|0(======Y P Y X p Y X p =31
)0()0,1()0|1(====
==Y P Y X p Y X p =0,)
1()1,1()1|1(======Y P Y X p Y X p = 32
)1|0(log )1,0()0|0(log )0,0()|(22p p p p Y X H --=)1|1(log )1,1()0|1(log )0,1(22p p p p --
=32log 210log 031log 411log 412222----=2
1
3log 432-=0.6887比特/符号.
)0()0,0()0|0(====
==Z P Z X p Z X p =31,)
1()
1,0()1|0(======Z P Z X p Z X p =1 )0()0,1()0|1(======Z P Z X p Z X p =32,)
1()1,1()1|1(======Z P Z X p Z X p =0 则
)
1()1|1(log )1,1()1()0|1(log )0,1()0()1|0(log )1,0()0()0|0(log )0,0();(2
222
=+=+=+==X p p p X p p p X p p p X p p p Z X I =2
10log 02132
log 21211log 412131
log 4
12
2
22+++=3log 43232-比特/符号.
2)(18分)若离散无记忆信源的概率分布为
⎪⎪⎭
⎫ ⎝⎛=3.01.04.005.005.01.0654321
a a a a a a U
① 分别构造二元,三元Huffman 编码(要求码长方差最小,但不需求出),Shannon
编码,Fano 编码,Shannon-Fano-Elias 编码。

② 并求①中二元Huffman 编码的编码效率。

(只列出式子即可) 解:对信源按概率从大到小排序, ⎪⎪⎭


⎛=05.005.01.01.03.04
.0321564
a a a a a a U ,建立码树则有二
元Huffman 编码: ,00111→a ,00012→a ,00003→a ,14→a ,00105→a ,016→a 要进行三元Huffman 编码,则需要添加一个空信源,成为
⎪⎪⎭
⎫ ⎝⎛=005.005.01.01.03.04.07321
564a a a a a a a U ,建立码树则有三元Huffman 编码:
,011→a ,0002→a ,0013→a 24→a ,,025→a ,16→a
Shannon 编码如下:
Fano 编码如下:
Shannon-Fano-Elias 编码
二元Huffman 编码的平均码长为l =3.021.044.0105.0405.041.04⨯+⨯+⨯+⨯+⨯+⨯=2.2, 编码效率为2.2)3.0,1.0,4.0,05.0,05.0,1.0(2log )()(H l U H R U H ===η
3)(10分)若二元信源}1,0{,21)0(=
p ,2
1
)1(=p ,对10011进行算术编码。

32)21()21()10011(==s P ,码长5)(=⎤

⎢⎡=s P l
利用)()()()(r F P F r F +=,)0()1(,0)0(P F F ==,
)10011(=F =)0()1001()1001(P P F ⋅+==)
10010()0()100()100(P P P F +⋅+=
=)10010()1000
()0(P P P ++=32
19
=0.59375=(0.10011). 编码为10011. 4)(20分)对输入流10111000分别用LZ-77,LZ-78,LZW 和KY
算法进行编码,并对LZW 编码进行解码。

解:LZ-77编码:
(0,0,1),(0,0,0),(2,1,1),(4,2,0)(1,1, eof) , ………………………………………….…...4分 LZ-78编码:
将输入流序列分段为1,0,11,10,00,则有字典
码字为(0,1), (0,0), (1,1),(1,0), (2,0) ………………………………………….…...8分
LZW 编码:
编码为初始字典和数列2,1,2,5,1,7, eof. ………………………….…...12分 解码:收到初始字典和数列2,1,2,5,1,7, eof.后重构字典和输出流如下: 1) 输入2,输出1,由于下一个输入为1,则存10为新词条3, 2) 输入1,输出0,由于下一个输入为2,则存01为新词条4, 3) 输入2,输出1,由于下一个输入为5,则存11为新词条5, 4) 输入5,输出11,由于下一个输入为1,则存110为新词条6, 5) 输入1,输出0,由于下一个输入为4,则存00为新词条7, 6) 输入7,输出00,由于下一个输入为eof ,则终止。

译码为10111000。

………………………………….…...16分 KY 编码:
1)读入前6位,令00=D ,11=D ,则0111011D D D D D D S =,令012D D D =,则
21121D D D D S =,动态字典为}10{2=D ;
2)读入第7位0,则021122D D D D D S =,动态字典为}0,10{02==D D ; 3)读入第8位0,则0021123D D D D D D S =,动态字典为}1,0,10{102===D D D . 故KY 编码为211200,其中动态字典为}1,0,10{102===D D D ……….…20 分。

相关文档
最新文档