(整理)基因操作原理

合集下载

基因操作原理

基因操作原理

《基因操作原理》课程教学大纲课程编码:13019课程名称:基因操作原理课程英文名称:Princeples of Gene Manipulation先修课程:生物化学、遗传学、分子生物学等适用专业:生物技术生物科学总学时:56 讲课学时56 实验学时0 实习学时0总学分:3.5一、课程性质、地位和任务“基因操作原理”是伴随着生物学尤其是分子生物学的飞速发展而兴起的一门新学科。

重点介绍基因操作中的工具酶及其种类、活性和用途;质粒载体、λ噬菌体载体和表达载体等的基本构成、种类和用途;重组DNA导入细菌和真核细胞的方法;DNA、RNA和蛋白质的分离及检测技术;定点诱变技术; PCR技术原理及其应用;cDNA文库和基因组文库的构建;分子杂交原理和技术; DNA序列分析的原理,通过Internet进行序列分析处理以及数据的获取。

本门课程开设的指导思想在于使学生在掌握一般生物学以及分子生物学知识的基础上,掌握DNA重组,转移、表达和检测等技术的基本概念和基本原理,为日后从事基因工程和分子生物学研究打下技术操作方面的理论基础。

”分子克隆技术”是与本课程配套的实验课程。

二、课程基本要求能对以基因克隆和表达为主线的基因操作自行设计技术路线,要求学生随着科学研究和技术的发展,及时掌握新的知识和方法。

本课程涉及到生物学的一些重要课程,如:普通生物学、生物化学、微生物学、遗传学和分子生物学,因此要学生选修这些课程之后,再选修本课程。

如果能做到理论与实验并至,将能巩固所学知识。

重点要求学生掌握在核酸水平上进行研究的基本方法。

三、教学内容及安排绪论:基因操作的理论基础(2学时)本章重点与难点: 掌握与基因操作有关的基本概念0.1基因的概念0.1.1 什么是基因0.1.2基因与其产物的共线性及非共线性0.1.3 基因的重叠与可变性0.2基因的结构组成0.2.1启动子0.2.2 SD序列0.2.3 转录终止区0.2.4 其它0.3基因克隆的通用策略0.3.1 基本步骤0.3.2 亚克隆第1章基因操作工具酶 (10学时)本章重点与难点:要求掌握和了解限制酶与常用工具酶的种类\活性和用途, 让学生知道“基因操作原理”是靠什么“工具”来完成的。

基因操作原理01-PPT精品文档

基因操作原理01-PPT精品文档

这里所说的基因操作并不是一个法律概
念,除了包括基因克隆外,还包括基因
的表达,调控,检测等,与基因研究相 关的内容。
了解对基因的研究是如何实施的
二、本课程在学科发展中的地位
这门课以前叫“分子克隆I” 实验课为“分子克隆II”
利用分子生物学原理,为在分子或基因水 平的研究服务的学科
20世纪是生物学发展最为迅速的时期,1953年由于 认识了DNA的双螺旋结构,从而揭开了分子生物学 研究的热潮。 在整个生物学研究进程或研究层次来说,其发展过 程涉及到个体、组织器官、细胞、亚细胞水平 同时由于遗传学的兴起与发展,DNA作为生命遗传 信息的物质基础被确定下来,从而导致分子生物学 的诞生。
基因克隆的技术路线
...GAATTC... EcoRI ...CTTAAG... ...G ...CTTAA AATTC... G...
基因克隆的技术路线
...GAATTC... EcoRI ...CTTAAG... ...G ...CTTAA AATTC... G...
酶切 连接
酶切
基因克隆的技术路线
2.基因及其产物的非共线性
interrupted gene, intron
3.基因的重叠与可变性
三、基因的基本结构组成
• 编码区 ORF • 启动子 promoter
• RBS
ribosomal binding site
• 终止区 terminator
• flanking sequence
• upstream / downstream • Cap/tail
...GAATTC... EcoRI ...CTTAAG... ...G连接
酶切
基因克隆的技术路线

基因编辑的原理和方法

基因编辑的原理和方法

基因编辑的原理和方法基因编辑是一种人工改变DNA序列的技术,可以使基因按照我们的意愿进行修改,这种技术具有非常广阔的应用前景。

例如,基因编辑可以用于创造更为健康的生育环境,培育肥沃的作物和食品来满足人类不断增长的需求,还可以对一些人类遗传疾病进行治疗。

基因编辑的原理基因编辑技术主要基于“CRISPR-Cas9系统”, CRISPR是“Clustered Regularly Interspaced Short Palindromic Repeats” 的缩写,即“短反向重复间隔区簇”,是一种细菌和古菌天然的免疫系统,可以识别并清除入侵的病毒基因。

而Cas9则是CRISPR反应的核心酶。

CRISPR-Cas9系统基于RNA-DNA互补对原理,通过依靠CRISPR-Cas9切割引物将外源DNA选择性地剪切,来实现基因编辑。

基因编辑的方法1.基因敲除法通过敲除Gene来验证其重要性,敲除只能删除基因或其部分序列,不能精确编辑。

2.基因点突变法通过在DNA序列内添加或删除单个碱基或数个碱基,来精确定位要修改的基因位点,然后插入、删除、替换外源DNA,并通过Cas9导向这种行为,使得基因序列随之发生改变。

3.基因插入法通过外源DNA在特定的基因位点上插入一个新的基因,使得原基因序列受到影响,随之发生改变。

4.默认激活然后禁用法通过使基因内部的元素初始隐形存在,然后将其激活,以使外源DNA嵌入基因序列中,发挥其正常功能。

基因编辑技术已经是许多学科技术的热点研究方向,但是目前仍存在许多可优化的地方。

需要更多的科学家加入和致力于这项技术的研究和发展,使得我们的生活变得更为美好。

基因操作的原理和过程

基因操作的原理和过程

基因操作的原理和过程基因操作(Genetic engineering)是一种利用基因技术对生物体的遗传物质进行修改和重组的技术手段。

通过基因操作,可以对生物的基因进行剪接、修饰或移除,并向生物中引入新的基因或基因片段,从而改变生物的遗传特征和表现形式。

基因操作在农业、医学、生物工程等领域都有广泛的应用,它不仅可以提高生物的抗病性、耐性和产量,还可以用于研究基因的功能和调控机制。

基因操作的原理是基于对生物体的基因组进行修改和优化,具体分为以下几个步骤:1. 选择目标基因:首先需要确定要操作的基因,可以是现有生物体中的某个基因,也可以是外源基因。

有时也会选择修改某个特定区域的基因片段。

2. 基因克隆和构建载体:利用分子生物学技术,将目标基因从生物体中分离提取。

然后,将目标基因插入到载体DNA中,构建成重组载体。

常用的载体包括质粒和病毒。

3. 转化目标细胞:将构建好的重组载体导入到目标细胞中。

可以通过多种途径实现细胞的转化,如化学转化、电转化、冷冻复苏等。

4. 基因表达和筛选:在转化成功后,目标基因会在细胞内进行表达,从而改变生物的遗传特征和表现形式。

为了筛选出表达目标基因的细胞,可以在重组载体中引入选择标记基因,如抗生素抗性基因。

5. 验证和分析:在筛选出表达目标基因的细胞后,需要对其进行验证和分析。

可以通过PCR、酶切、同源重组等技术手段来验证基因操作的结果,并进一步分析基因的功能。

基因操作的过程中有一些关键技术和工具,如PCR技术、限制性内切酶、连接酶、DNA测序等。

这些技术和工具的应用使得基因操作的过程更加高效、准确。

基因操作的应用领域广泛,涉及农业、医学、生物工程等多个领域。

在农业领域,基因操作可以用于改良农作物的品质和产量,提高抗病虫害的能力,延长保存期限等。

比如,通过引入抗病虫害基因,使植物对害虫和病毒的侵害产生免疫反应。

在医学领域,基因操作可以用于治疗遗传性疾病、癌症等疾病。

比如,通过修正患者的遗传突变,可以恢复正常的基因功能。

基因操作原理08

基因操作原理08

二、cDNA第一链的合成
• 反转录酶 AMV (42℃) RNase H M-MuLV (37℃) RNase H弱 长mRNA
• 引物 oligo(dT) 12-18 一般要求浓度高 • 模板 氢氧化甲基汞预处理,减弱链内二级结构 RNase 抑制剂 5' mRNA
cDNA
AAAAAAA 3' TTTTTTTT
p=99% f=10kb/4的外源 DNA不是基因组DNA,而是由某一生物的
特定器官或特定发育时期细胞内的mRNA经
反转录形成的cDNA,它们所构成的重组
DNA克隆群体,则称之为cDNA基因第一节 基因组DNA的构建
一、载体的选择第八章 DNA的构建DNA libraries有基因组 DNA(即某一生物的全部DNA序列)的不同 DNA片段的克隆所构成的 Genomic library
1976年L.Clark,NA
Plasmid Phage Cosmid BAC YAC
<10kb 0-23kb ~45kb ~ 100kb ~ 300kb-1.2Mb
粘粒克隆所需的克隆子数是phage的一半, 如需700000时,cosmid需350000个
如无特殊需要(如单个phage不能包容靶基因片段或 要分离一系列跨过染色体DNA特大区段的重叠克隆 时)一般不采用cosmid,因其在构建和贮存QOQI
5‘末端克隆
mRNA GSP1 AAAAAAA 反转录
AAAAA Q1-Q2- TTTTTT
GSP1
Q1/ GSP1 PCR
GSP2
Q2/ GSP2 PCR
获得的cDNA 克隆片段
B. 新RACE
NNNNNNNN
连接RNA寡聚物

基因操作原理01

基因操作原理01
了解对基因的研究是如何实施的
二、本课程在学科发展中的地位
这门课以前叫“分子克隆I” 实验课为“分子克隆II”
利用分子生物学原理,为在分子或基因水 平的研究服务的学科
20世纪是生物学发展最为迅速的时期,1953年由于 认识了DNA的双螺旋结构,从而揭开了分子生物学 研究的热潮。
在整个生物学研究进程或研究层次来说,其发展过 程涉及到个体、组织器官、细胞、亚细胞水平
二、基因的基本概念
• 基因是遗传信息的基本单位 • 从物质结构上看,基因是染色体组核酸分子
基因是作为遗传物质的核酸分子上的一段片段,可 以是连续的,也可以是不连续的,可以是DNA也可 以是RNA,可以存在于染色体上,也可存在于染色 体之外(如质粒、噬菌体等)
1.基因及其产物的共线性
一个基因的核苷酸序列与其产物的氨基酸序 列一一对应
酶切
基因克隆的技术路线
...GAATTC... EcoRI ...CTTAAG...
...G
AATTC...
...CTTAA
G...
酶切 连接
转化
酶切
ቤተ መጻሕፍቲ ባይዱ
筛选
5.亚克隆
初步克隆中的外源片段往往较长,含有 许多目的基因片段以外的DNA片段,在 诸如表达序列分析和突变等操作中不便 进行,因此必须将目的基因所对应的一 小段DNA找出来,这个过程叫“亚克隆”
2.基因及其产物的非共线性
interrupted gene, intron
3.基因的重叠与可变性
三、基因的基本结构组成
• 编码区 ORF
• 启动子 promoter
• RBS ribosomal binding site
• 终止区 terminator

基因操作原理和方法

基因操作原理和方法
DNA重组的基本步骤包括:断裂DNA分子、交换DNA片段 和修复断裂的DNA。
克隆和重组技术的应用
克隆和重组技术广泛应 用于基因工程、生物制 药、农业和医学等领域 。
在基因工程中,克隆和 重组技术用于生产重组 蛋白、疫苗和抗体等生 物制品。
在农业中,克隆和重组 技术用于改良作物品种 和提高农作物的抗逆性 和产量。
生物科学研究
基因敲除和敲入技术可用于研究基因功能、细胞信 号转导、药物筛选等生物科学研究领域,有助于深 入了解生命活动的本质。
生物制药
基因敲除和敲入技术可用于生产基因工程药物,通 过改造或增强微生物、细胞或动物细胞中的基因表 达,生产具有特定功能的药物。
敲除和敲入技术的限制和挑战
80%
技术难度高
基因敲除和敲入技术需要精确的 操作和设计,对技术和实验条件 要求较高,且存在一定的失败率 和不确定性。
05
基因编辑新技术
CRISPR-Cas9系统
总结词
CRISPR-Cas9系统是一种高效、简单、低成本的基因编辑技术,通过向导RNA和Cas9 蛋白的引导,实现对特定DNA序列的切割和修复。
详细描述
CRISPR-Cas9系统利用向导RNA与目标DNA序列的特异性结合,将Cas9蛋白引导至目 标位置,通过切割DNA双链形成缺口,启动细胞内的DNA修复机制。在修复过程中, 插入、删除或替换特定DNA序列成为可能,从而实现基因敲除、敲入和点突变等基因
基因操作的历史与发展
基因操作技术的起源可以追溯到20 世纪70年代,当时科学家开始探索 限制性内切酶和DNA连接酶等工具 的应用。
随着技术的不断发展,基因操作逐渐 成为现代生物学和医学研究的重要手 段,广泛应用于基因克隆、基因治疗 、基因工程等领域。

基因操作的主要技术原理讲解

基因操作的主要技术原理讲解

二、RNA/RNA印迹杂交-Northern blotting 1、原理
1979年,J. C. Alwine等人发展而来,是将RNA分 子从电泳凝胶转移到硝酸纤维素滤膜或其他化学 修饰的活性滤纸上,进行核酸杂交的一种实验方 法。由于这种方法与萨瑟恩DNA印迹杂交技术十 分类似,所以叫做Northern blotting。
在凝胶电泳中,一般加入溴化乙锭(EB)-ethidium bromide染色,此时,核酸分子在紫 外光下发出荧光,能看到约1-10ngDNA所形 成的条带。
溴化乙锭(EtBr)
一种具扁平分子的核酸 染料,可插入到DNA或 RNA分子的碱基之间。 在300nm紫外灯照射下 发射出荧光。
6、其他染色方法
菌落或噬菌斑转印 到膜上
斑点杂交
Southern印迹
抽提DNA/RNA
提取DNA
Northern印迹 提取RNA
裂解细菌或噬菌斑
变性核酸样品
琼脂糖凝胶电泳
变性DNA
将核酸点加到膜上
将凝胶上核酸条带转移到膜 上,同时变性
将核酸固定在膜上→预杂交(消除非特异吸附位点)→加入 核素标记探针进行杂交→漂洗膜(洗去非特异结合探针) →
(2)聚丙烯酰胺凝胶分离范围如下:
(3)制备:
凝胶铺于两块玻 璃板之间,两块玻 璃板由间隔片所隔 开,并封一绝缘胶 布。
(4)检测方法
EB染色 放射自显影 硝酸银染色
聚丙烯凝胶电泳的银染结果分析
4、脉冲电场凝胶电泳(pulsed-field gel electrophoresis,PFGE)
转化作用就是一种基因型细胞(感受态细菌)从 周围介质中吸收来自另一种基因型细胞的DNA, 进而使原来细胞的遗传基因和遗传性发生相应变 化的现象。

最新基因操作原理01

最新基因操作原理01

...G
AATቤተ መጻሕፍቲ ባይዱC...
...CTTAA
G...
酶切 连接
转化
酶切
基因克隆的技术路线
...GAATTC... EcoRI ...CTTAAG...
...G
AATTC...
...CTTAA
G...
酶切 连接
转化
酶切
筛选
5.亚克隆
初步克隆中的外源片段往往较长,含有 许多目的基因片段以外的DNA片段,在 诸如表达序列分析和突变等操作中不便 进行,因此必须将目的基因所对应的一 小段DNA找出来,这个过程叫“亚克隆”
...GAATTC... EcoRI ...CTTAAG...
...G
AATTC...
...CTTAA
G...
酶切 连接
酶切
基因克隆的技术路线
...GAATTC... EcoRI ...CTTAAG...
...G
AATTC...
...CTTAA
G...
酶切 连接
酶切
基因克隆的技术路线
...GAATTC... EcoRI ...CTTAAG...
Black well Scientific Publications S Primrose, R Twyman, B OLD, 2001.
二、基因的基本概念
• 基因是遗传信息的基本单位 • 从物质结构上看,基因是染色体组核酸分子
基因是作为遗传物质的核酸分子上的一段片段,可 以是连续的,也可以是不连续的,可以是DNA也可 以是RNA,可以存在于染色体上,也可存在于染色 体之外(如质粒、噬菌体等)
结束语
谢谢大家聆听!!!
29
生物科学 领域 医学生物 农业生物

基因操作原理知识点总结

基因操作原理知识点总结

基因操作原理知识点总结基因操作是一种在生物体内对基因进行修改或操作的技术,它的出现为生物学、医学和农业等领域带来了革命性的变革。

通过基因操作技术,科学家们可以改变生物体的一些性状,使得其具有更好的抗病性、生长速度、产量等特性,从而为人类生活和生产带来了巨大的便利和利益。

在这篇文章中,我将从基因操作的原理、技术、应用和风险等方面进行详细的介绍和讨论。

基因操作的原则基因操作的基本原理是对生物体的基因进行修改或操作,使得其具有某些特定的性状。

这是通过DNA重组技术来实现的,DNA重组技术是一种利用酶的作用或化学方法,将DNA片段进行切割、粘接、合成等操作,从而实现对基因的改变或移植。

利用这一技术,科学家们可以将某种物种的基因转移到另一种物种中,或者通过改变某个基因的表达方式来使得生物体产生一些新的性状。

基因操作的技术基因操作技术主要包括DNA重组技术、基因克隆技术、基因敲除技术、基因编辑技术等。

其中,DNA重组技术是最基本的技术,它通过切割、粘接、重组DNA片段来改变基因的结构和表达方式;基因克隆技术是一种通过细胞培养和分裂来复制基因的方法,可以用于大规模生产具有某些特定性状的生物体;基因敲除技术是一种通过干扰某个基因的表达来观察该基因在生物体中的功能和作用;基因编辑技术是一种通过精确的操纵基因序列来实现对基因的改变和操作。

基因操作的应用基因操作技术在农业、医学、生物工程等领域都有着广泛的应用。

在农业领域,基因操作技术可以用来改良作物的产量、抗病性、品质等性状,从而为农业生产提供更多的选择和可能;在医学领域,基因操作技术可以用来治疗或预防一些遗传疾病,为人类健康带来更多的希望和机会;在生物工程领域,基因操作技术可以用来生产某些特定的物质或药物,从而为生产和生活提供更多的可能性。

基因操作的风险尽管基因操作技术为人类带来了巨大的利益和希望,但是它可能也会带来一些潜在的风险和问题。

其中,最主要的风险包括对环境的影响和对人类健康的影响。

基因操作的主要技术原理

基因操作的主要技术原理

基因操作的主要技术原理1.核酸的凝胶电泳(Agarose & Polyacrylamide)将某种分子放到特定的电场中,它就会以一定的速度向适当的电极移动。

某物质在电场作用下的迁移速度叫作电泳的速率,它与电场强度成正比,与该分子所携带的净电荷数成正比,而与分子的磨擦系数成反比(分子大小、极性、介质的粘度系数等)。

在生理条件下,核酸分子中的磷酸基团是离子化的,所以,DNA和RNA实际上呈多聚阴离子状态(Polyanions)。

将DNA、RNA放到电场中,它就会由负极→正极移动。

在凝胶电泳中,一般加入溴化乙锭(EB)--ethidium bromide染色,此时,核酸分子在紫外光下发出荧光,肉眼能看到约50ng DNA所形成的条带。

DNA的脉冲电泳技术 :PFGE-Pulse-field gel electrophoresis2.核酸的分子杂交技术在大多数核酸杂交反应中,经过凝胶电泳分离的DNA或RNA分子,都是在杂交之前,通过毛细管作用或电导作用按其在凝胶中的位置原封不动地"吸印" 转移到滤膜上的。

常用的滤膜有尼龙滤膜、硝酸纤维素滤膜,叠氮苯氧甲基纤维素滤纸(DBM)和二乙氨基乙基纤维素滤膜(DEAE)等。

核酸分子杂交实验包括如下两个步骤:将核酸样品转移到固体支持物滤膜上,这个过程特称为核酸印迹(nucleic acid blotting)转移,主要有电泳凝胶核酸印迹法、斑点和狭线印迹法(dot and slot blotting)、菌落和噬菌斑印迹法(colony and plaque blotting);将具有核酸印迹的滤膜同带有放射性标记或其它标记的DNA或RNA探针进行杂交。

所以有时也称这类核酸杂交为印迹杂交。

3.细菌的转化所谓细菌转化,是指一种细菌菌株由于捕获了来自另一种细菌菌株的DNA,而导致性状特征发生遗传改变的生命过程。

这种提供转化DNA的菌株叫做供体菌株,而接受转化DNA的寄主菌株则称做受体菌株。

(整理)基因工程试验.

(整理)基因工程试验.

(整理)基因⼯程试验.基因⼯程实验流程实验⼀丹参总DNA的提取实验⽬的:掌握从植物或动物的组织(细胞)中抽提DNA的⽅法。

实验材料:丹参叶⽚实验器材:台式离⼼机,恒温⽔浴锅,电泳仪,研钵和杵,离⼼管,微量移液器,枪头实验步骤:第⼀次使⽤前请先在漂洗液WB和结合液PQ中加⼊指定量的⽆⽔⼄醇,充分混匀,加⼊后请及时在⽅框打钩标记已加⼊⼄醇,以免多次加⼊!取所需适量裂解液PL放置在65℃预热,使⽤前加⼊β-巯基⼄醇到终浓度2%。

1.取适量植物组织(新鲜组织100mg 或⼲重组织30 mg)在研钵中加⼊液氮充分碾磨成细粉。

2.转移细粉到⼀个1.5ml离⼼管,不要解冻,加600µl 65℃预热的裂解液PL (确认已加⼊β-巯基⼄醇⾄2%),剧烈涡旋振荡混匀,⽤⼤⼝径枪头轻柔吹打帮助裂解。

如果组织裂解困难,可根据需要加⼀个轻柔匀浆10秒的步骤帮助裂解。

3.65℃⽔浴20-60分钟,在⽔浴过程中颠倒离⼼管以混合样品数次。

可选如果组织⼲燥或者产量低,可以适当延长⽔浴时间。

如RNA残留多,可在⽔浴前加⼊6µlRNA酶(20mg/ml)。

4.加⼊700µl氯仿/异戊醇(体积⽐24:1混合),颠倒充分混匀⼏分钟(或者涡旋混匀),13,000rpm 离⼼5分钟。

若提取的植物组织富含多糖多酚,可以在第4步前⽤等体积酚/氯仿(1:1)抽提⼀遍。

5.⼩⼼吸取上清到⼀个新的1.5ml离⼼管,注意不要吸到界⾯物质。

如上清⽐较浑浊,则需要重复步骤4⼀遍,直到得到透亮上清。

6.较精确估算上清量,加⼊1.5倍体积结合液PQ (请先检查是否已加⼊⽆⽔⼄醇!)后⽴刻涡旋,充分混匀。

此时可能出现沉淀,但不影响实验结果。

7.将上⼀步所得混合物(包括可能出现的沉淀)加⼊⼀个吸附柱AC中,(吸附柱放- 5 - ⼊收集管中)13,000rpm离⼼30秒,倒掉收集管中的废液(先加700µl离⼼,弃废液,再加⼊剩余的溶液,再次离⼼)。

基因操作原理-

基因操作原理-

Some DNA Polymerases Used in PCR
Enzyme MicrobialSource
Thermotolerance
Klenow Escherichiacoli
No
Sequenase T7bacteriophage
No
Taq
Thermus aquaticus
Yes
BstE
Bacillus stearothermophilus
水稻(Oryza sativa L.)的叶绿体DNA分别用核酸内切限制酶BglⅡ(AC)、BamHⅠ(D-F)、EcoRⅠ(G-I)、和HindⅢ(J-L)消化,加样在 含有EtBr染料的1%的琼脂糖凝胶电泳中作电泳分离,然后同32P标记的玉 米psbA探针作Southern杂交。X光底片中显现的阳性条带 ,表明含有水 稻的psbA基因序列。
Separation Range Vs. % Agarose
Low Geling Agarose 4-6
0.02-0.4
用已知分子量的标准DNA对DNA片断大小的估算
Sample Well
25 ng 1 kb ladder 0.8% Agarose
Agarose Gel Electrophoresis
• PCR技术
在1983年,美国Cetus公司人类遗传 研究室的科学家K.B.Mullis发明的。
PCR是一种在体外快速扩增特定基因 或DNA序列的方法,有称之为体外扩 增法。
靶DNA的扩增
5’
(a)
引物2 5’
(b)
3’
3’
3’ 5’ 引物1
5’ (c) 引物2互补链
3’
3’ 引物1互补链
5’

基因操作原理与方法

基因操作原理与方法
Restriction endonucleases & ligase
能识别并切割dS-DNA分子内特殊核甘酸序 列的酶称为限制性核酸内切酶。
细菌的限制与修饰系统
1952午Luria和Human在研究T偶数噬茵体 及1953年Bertani和Weigle在研究λ和P2噬菌体的 宿主范围时发现:当一个噬茵体从其天然宿主E. coli品系A转到另一个品系B细胞中时,往往不 能生长。他们把此现象称为宿主控制性限制现 象 1962年,Arber及其同事们作了大量工作, 经过放射性同位素标记证明,噬菌体在新品系 中的损害伴随有其DNA的降解,但宿主自己的 DNA并不降解,他们提出了限制-修饰酶假说 来解释这种现象。
基因工程原理与方法
基因操作、基因重组、基因工程 基因克隆、分子克隆
First, restriction endonucleases cleave DNA at specific sequences to generate a set of smaller fragments. Second, the DNA fragment to be cloned can be isolated and joined to a suitable cloning vector using DNA ligase to seal the
DNA ligase
1、T4 DNA ligase 催化DNA分子的5‘-P与3’-OH 之间形成磷酸二酯键。它既能连接粘性末端, 又能连接平端,但连接粘端的效率比平端的要 高得多。其连接活性多数厂商用Weiss单位(μ) 表示, 浓度 一般是1-3 μ/ μl。在多数情况下对于 DNA重组来说,平端用1 μ,而粘端用0.1 μ即 可达到有效连接DNA分子的目的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(这份材料根据老师给的PDF课件整理,仅供参考)第一章编码产生一种有生物学功能产物---蛋白质(多肽)或RNA所需信息的一段DNA称基因。

Include:1.编码蛋白质肽链或RNA所必需的核苷酸序列(open reading frame)2.保证转录所必须的调控序列(S-D)3. 5’-和3’-非翻译序列(leader and trailer)4.内含子(intron)Recombinant DNA(重组DNA):是将一种生物体(供体)的基因与载体在体外进行拼重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。

这项技术可概括为∶分、切、连、转、选。

两个最基本的特点是分子水平上的操作和细胞水平上的表达。

基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大部分。

上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。

Genetic Engineering(基因工程)重组DNA技术与基因工程的基本用途分离、扩增、鉴定、研究、整理生物信息资源大规模生产生物活性物质设计、构建生物的新性状甚至新物种大规模生产生物活性物质工程细胞。

Development of gene engineering:第一代基因工程蛋白多肽基因的高效表达经典基因工程第二代基因工程蛋白编码基因的定向诱变蛋白质工程第三代基因工程代谢信息途径的修饰重构途径工程第四代基因工程基因组或染色体的转移基因组工程第二章目的基因的获得(DNA的准备)1.从基因组直接获得2.RT-PCR 方法获得3.人工合成法DNA抽提的基本原理•1 获得细胞,裂解细胞三种破壁、膜的方法比较:非离子型去污剂法较温和.适用于抽提10kb左右的质粒;而煮沸法与碱性SDS法相对较剧烈.只能抽提小于10kb的质粒,当然在熟练方法的前提下,碱性SDS法也能抽提较大的质粒。

非离子型去污剂的变性能力较弱,常用的TritonX—100等,常用的离子型去污别是SDS。

在选择去污剂类型对应根据变性剧烈程度的要求而定。

2 分离(质粒DNA与染色体DNA的分离)3 纯化(去除RNA)•RNA与DNA相比在化学及生化性质上有差别,因此可选用RNA酶处理.以保留DNA分子而专门分解RNA。

3 纯化(去除蛋白)•常用的去除蛋白质的试剂有酚、酚/氯仿、氯仿/异戊醇。

PCR的基本原理:变性、复性、半保留复制PCR三步曲:1. DNA热变性90~97℃ 2. 引物退火45~55℃ 3. 引物延伸72℃左右How many copies?1.到第3个循环才有目的片断(指用长DNA作为模板).2.早期并不严格按2倍增长3.30 循环时约有1,073,741,764 个目的产物(~1×109).4. 有约60 不是目的长度的片断.5.大于35 个循环时不能明显增加产物量进入平台期的原因:1.反应试剂用完2.产物之间相互退火3. Taq酶活性降低优化PCR反应:1.引物的退火温度.2.Mg2+ 的浓度.3. 延伸时间.4.模板和Taq的量能否扩增RNA?• Not directly — the DNA polymerase requires a DNA template and will not copy RNA. • mRNA can first be copied into cDNA using reverse transcriptase.• cDNA is a template for PCR — it need not be double-stranded.TA 克隆:1.Taq扩增PCR产物物末端加个A;2.可以与末端为T的载体直接连接引物设计要求:引物长度在20个碱基左右;.引物G/C 含量约 45–55%;2条引物退火温度差别不要超过1°C;引物内部最好没有反相互补序列;2条引物之间不能有互补序列;引物内部不能有重复序列。

PCR存在的问题:1 . 可信度( F i d e l i t y ): P C R 反应过程中的错配现象,给PCR克隆、变异导入带来麻烦。

2.扩增的DNA长度:一般扩增1~2 kbp以下的DNA片段。

3.扩增的DNA量:对有些检测、克隆时,DNA量往往达不到要求。

4. PCR扩增困难:当DNA富含GC或具有复杂二级结构时,PCR很难扩增。

5.PCR反应速度:当急于得到实验结果时,PCR反应速度较慢。

2-3 分子杂交1 Southern Blotting2 Northern Blotting3 Western Blotting(一)Southern Blot 基因组DNA与DNA探针的杂交功能:1 研究某一基因在基因组中的拷贝数2 研究异源物种是否有类似基因(ZooBlooting)•原理:将待检测的DNA分子用/不用限制性内切酶消化后,通过琼脂糖凝胶电泳进行分离,继而将其变性并按其在凝胶中的位置转移到硝酸纤维素薄膜或尼龙膜上,固定后再与同位素或其它标记物标记的DNA或RNA探针进行反应。

如果待检物中含有与探针互补的序列,则二者通过碱基互补的原理进行结合,游离探针洗涤后用自显影或其它合适的技术进行检测,从而显示出待检的片段及其相对大小。

用途:检测样品中的DNA及其含量,了解基因的状态, 如是否有点突变、扩增重排等。

Southern Blot Southern Blot 操作步骤:DNA →琼脂糖电泳→印迹转移→预杂交→杂交(变性探针)→洗膜→放射自显影或显色二、Northern Blooting RNA与DNA探针的杂交功能:1 分析mRNA的分子量大小 2 分析mRNA表达量3 分析mRNA表达的组织分布4 分析mRNA的发育表达化5 研究mRNA的不同剪切方式Northern blot的步骤:•1 RNA电泳(包括制备变性胶和RNA样品的处理)•2 转膜(把RNA从胶上转移到膜上)•3 杂交(用标记同位素的DNA探针与膜进行杂交)杂交前一般要进行预杂交,消除非特异性杂交•4 洗膜、曝光、冲片三、Western Blot 蛋白与蛋白的杂交,如蛋白与抗体的杂交功能:1 分析蛋白的分子量大小 2 分析蛋白表达量3 分析蛋白表达的组织分布4 分析蛋白的发育表达变化5 研究蛋白前体的后加工方式WesternBlot原理:将通过聚丙烯酰胺凝胶电泳分离的蛋白质转移到硝酸纤维素或PVDF膜上,然后与能特异性识别待检蛋白的抗体进行反应,洗涤去除没有结合的特异性抗体后,加入标记的、能识别特异性抗体的种属特异性抗体,反应一段时间后再次洗涤去除非特异性结合的标记抗体,加入适合标记物的检测试剂进行显色或发光等,观察有无特异性蛋白条带的出现,也可通过条带的密度大小来进行特异性蛋白的半定量。

ELISA原理:ELISA的基础是抗原或抗体的固相化及抗原或抗体的酶标记。

结合在固相载体表面的抗原或抗体仍保持其免疫学活性,酶标记的抗原或抗体既保留其免疫学活性,又保留酶的活性。

在测定时,受检标本与固相载体表面的抗原或抗体起反应。

再加入酶标记的抗原或抗体,也通过反应而结合在固相载体上。

此时固相上的酶量与标本中受检物质的量呈一定的比例。

加入酶反应的底物后,底物被酶催化成为有色产物,产物的量与标本中受检物质的量直接相关,故可根据呈色的深浅进行定性或定量分析。

测定方法具有很高的敏感度(pg-ng/ml 水平),并且重复性好。

类型:(1)间接法测抗体(2) 双抗体夹心法测抗原(3)竞争法测抗原cDNA法克隆目的基因的基本策略双链cDNA的克隆双链平头的cDNA通常可以使用下列三种方法克隆入载体中:1.平头末端直接与载体连接,但插入的片段无法回收2.平头两端分别接同聚物尾,最好是AT同聚物尾,分子可这样重组通过加热局部变性和S1核酸酶处理回收插入片段3.加装人工接头引入酶切口,以便插入片段回收cDNA法克隆目的基因的局限性:1.并非所有的mRNA分子都具有polyA结构2.细菌或原核生物的mRNA半衰期很短3.m RNA在细胞中含量少,对酶和碱极为敏感,分离纯化困难4.仅限于克隆蛋白质编码基因第3章基因工程酶的操作限制性核酸内切酶简称限制性内切酶,是一类能识别双链DNA中特定核苷酸序列并具有专一切割位点的脱氧核糖核酸水解酶。

限制酶的命名从其来源微生物的拉丁名中摘取,即由其属名的第一个字母(大写)与种名的第一、二两个字母(小写)组成酶的基本命名,若酶的产生菌由株系之分,则有4个或4个以上拉丁字母组成,其第四个字母之后表示株系。

如EcoRI来源于Echerichia.coli RY13 BamHI来源于B.amyloliquefaciens已发现的限制酶可以分为三类或称作三型:I、II、III型。

他们在酶反应中所需要的辅因子和切割DNA的位点都不相同,而且酶蛋白分子的大小和组成上也有差别。

II型限制酶的识别序列大多是具有双重对称结构性结构,或称回文序列(Palindromic Sequence)大部分II型限制性内切酶的识别序列长度为4-8个核苷酸。

识别长度决定了剪切DNA的频率(1/4n,n为识别的长度)。

识别长度愈长,则切点少、产生片段少而长度长,酶特异性高。

限制酶的切割特异性和酶切片段的末端结构切割位点专一作为工具酶的限制性内切酶有固定的切割位点;产物具有特定的末端结构当一个DNA分子被限制酶切开后形成两个末端,全部产物具有相同的末端结构。

即一种限制性内切酶切割任何DNA只产生一种固定形式的末端结构,在DNA连接酶的作用下,磷酸二酯键可以修复而成为一个重组的DNA分子;而不同限制酶则形成不同末端结构。

任何一种限制酶切割DNA链时,总是水解核苷酸3’、5’-磷酸双酯键的3’位磷酸酯键,使产物的5’端带磷酸单酯基团,而3’为游离羟基。

由于切割位点不同,所有的限制酶可产生两类末端结构①平末端(Blunt End)指酶切片段为齐头末端结构。

②粘性末端(Cohesive End)酶切后DNA片段末端带有1-4个核苷酸残基长度的单链结构,而片段两端突出的单链具有互补的序列。

粘性末端又可分为5‘-粘性末端与3’-粘性末同裂酶:有时两种限制性内切酶的识别核苷酸顺序和切割位置都相同,其差别只在于当识别顺序中有甲基化的核苷酸时,一种限制性内切酶可以切割,另一种则不能。

例如HpaⅡ和MspⅠ的识别顺序都是5’……CCGG……3’,如果其中有5’-甲基胞嘧啶,则只有HpaⅡ能够切割。

这些有相同切点的酶称为同裂酶(同切酶或异源同工酶)。

酶反应条件按手册或商品说明书反应缓冲液:根据不同酶使用高、中或低盐缓冲液。

相关文档
最新文档