生物化学第十章核酸的酶促降解和

合集下载

生物化学生物化学考试大纲

生物化学生物化学考试大纲

生物化学生物化学考试大纲《生物化学》考试大纲一、考试性质硕士研究生生物化学入学考试是为所招收与生物化学有关专业硕士研究生而实施的具有选拔功能的水平考试。

要求学生比较系统地懂得与掌握生物化学的基本概念、基本理论、基本实验技术与计算方法,掌握生物大分子的结构、构成、性质与功能与分析分离方法,生物大分子在体内的代谢与调节,生物能的转化与利用,生物信息分子的复制、转录、表达与调节等,懂得各类生物大分子在代谢过程的作用机理,灵活运用所学的生物化学知识从分子水平认识与解释生命过程中所发生的现象,能综合运用所学的知识分析问题与解决问题。

二、考试形式与试卷结构(一)考试方式:闭卷,笔试(二)考试时间:180分钟(三)题型及分值1. 填空题30分2. 选择题20分3. 是非题 10分4. 名词解释30分5. 完成反应方程式 10分6. 问答及计算题 50分合计 150分三、参考书目王镜岩,朱圣庚,徐长法主编.《生物化学》(上、下册)(第三版)高等教育出版社2003.四、考试内容及考试要求1. 蛋白质化学考试内容●蛋白质的化学构成,20种氨基酸的三字母缩写符号●氨基酸的理化性质及化学反应●蛋白质分子的结构(一级、二级、三级、四级结构的概念及形式)●蛋白质一级结构测定的通常步骤及肽链中氨基酸排列顺序的确定●蛋白质的理化性质及分离纯化与纯度鉴定的方法●蛋白质的变性作用●蛋白质结构与功能的关系考试要求●懂得氨基酸、肽的分类●掌握氨基酸与蛋白质的物理性质与化学性质●掌握蛋白质一级结构的测定方法●懂得氨基酸的通式与结构●懂得蛋白质二级与三级结构的类型及特点,四级结构及亚基的概念●掌握肽键的特点●掌握蛋白质的变性作用●掌握蛋白质结构与功能的关系2. 核酸化学考试内容●核酸的基本化学构成及分类●核苷酸的结构●DNA与RNA一级结构的概念与二级结构特点;RNA的三级结构的特点●RNA的分类及各类RNA的生物学功能●核酸的要紧理化特性●核酸的研究方法考试要求●全面熟悉核酸的构成、结构、结构单位与掌握核酸的性质●全面熟悉核苷酸构成、结构、结构单位与掌握核苷酸的性质●掌握DNA的二级结构模型与核酸杂交技术及有关应用3. 糖类结构与功能考试内容●糖的要紧分类及其各自的代表●糖聚合物及其代表与它们的生物学功能考试要求●掌握糖的概念及其分类●掌握糖类的元素构成、化学本质及生物学功用●懂得变旋现象●掌握单糖、二糖、寡糖与多糖的结构与性质●掌握斐林氏法测定糖含量的原理4. 脂质与生物膜考试内容●生物体内脂质的分类,其代表脂及各自特点●磷脂类、鞘脂类、固醇类化合物的结构特点及天然脂肪酸的特性;●生物膜的化学构成与结构,“流体镶嵌模型”的要点考试要求●熟悉脂质的类别、功能●熟悉重要脂肪酸、重要磷脂的结构●掌握磷脂、鞘脂的通式与脂肪酸的特性5. 酶学考试内容●酶的作用特点●酶的作用机理●影响酶促反应的因素(含米氏方程的推导)●酶的提纯与活力测定的基本方法●熟悉酶的国际分类与命名●熟悉抗体酶、核酶与同工酶的基本概念与应用考试要求●熟悉酶的概念●掌握酶活性调节的因素、酶的作用机制●熟悉酶的分离提纯基本方法●熟悉酶的国际分类(第一级分类)●熟悉特殊酶,如溶菌酶、丝氨酸蛋白酶催化反应机制●掌握酶活力概念、米氏方程与酶活力的测定方法●熟悉抗体酶、核酶与同工酶的基本概念6. 维生素与辅酶考试内容●维生素的分类及性质●各类维生素的活性形式、生理功能考试要求●熟悉水溶性维生素的结构特点、生理功能与缺乏病●熟悉脂溶性维生素的结构特点与功能7.新陈代谢与生物能学考试内容●新陈代谢的概念、类型及其特点●ATP与高能磷酸化合物●ATP的生物学功能●电子传递过程与ATP的生成●呼吸链的组分、呼吸链中传递体的排列顺序考试要求●懂得新陈代谢的概念、类型及其特点●熟悉高能磷酸化合物的概念与种类●懂得ATP的生物学功能●掌握(NADH与FADH2)呼吸链的组分、呼吸链中传递体的排列顺序●掌握氧化磷酸化偶联机制8.糖的分解代谢与合成代谢考试内容●糖的代谢途径,包含物质代谢、能量代谢与有关的酶●糖的无氧分解、有氧氧化的概念、部位与过程●糖异生作用的概念、场所、原料及要紧途径●糖原合成作用的概念、反应步骤及限速酶●糖酵解、丙酮酸的氧化脱羧与三羧酸循环的反应过程及催化反应的关键酶考试要求●全面熟悉糖的各类代谢途径,包含物质代谢、能量代谢与酶的作用●懂得糖的无氧分解、有氧氧化的概念、部位与过程●熟悉糖原合成作用的概念、反应步骤及限速酶●掌握糖酵解、丙酮酸的氧化脱羧与三羧酸循环的途径及其限速酶调控位点●掌握磷酸戊糖途径及其限速酶调控位点9. 脂类的代谢与合成考试内容●脂类的酶促水解;甘油代谢●脂肪酸的 -氧化过程及其能量的计算●酮体的生成与利用●胆固醇合成的部位、原料及胆固醇的转化及排泄●血脂及血浆脂蛋白考试要求●全面熟悉甘油代谢:甘油的来源与去路,甘油的激活●熟悉脂类的消化、汲取及血浆脂蛋白●掌握脂肪酸β-氧化过程及能量生成的计算●掌握脂肪的合成代谢●懂得脂肪酸的生物合成途径●熟悉磷脂与胆固醇的代谢10. 蛋白质的酶促降解及氨基酸代谢考试内容●蛋白质的酶促降解●氨基酸的通常分解代谢●氨基酸的通常合成代谢考试要求●掌握氨基酸的脱氨基作用、脱羧基作用●掌握L-Glu脱氢酶,GPT, GOT所催化的反应●懂得鸟氨酸循环,生糖氨基酸,生酮氨基酸的概念●熟悉生物体合成氨基酸的基本途径11. 核酸的酶促降解与核苷酸代谢考试内容●嘌呤、嘧啶核苷酸的分解代谢与合成代谢的途径●外源核酸的消化与汲取●碱基的分解●核苷酸的生物合成●常见辅酶核苷酸的结构与作用考试要求●熟悉外源核酸的消化与汲取●懂得碱基的分解代谢●懂得核苷酸的分解与合成途径●掌握核苷酸的从头合成途径●熟悉常见辅酶核苷酸的结构与作用12. 核酸的生物合成考试内容●DNA复制的通常规律●参与DNA复制的酶类与蛋白质因子的种类与作用(重点是原核生物的DNA聚合酶)●DNA复制的基本过程●真核生物与原核生物DNA复制的比较●不对称转录的概念;参与转录的酶●原核生物的转录过程●RNA转录后加工的意义●逆转录的过程考试要求●懂得DNA复制的半保留方式与分子机制●掌握参与DNA复制的酶与蛋白质因子的性质与种类●掌握DNA复制的特点●掌握真核生物与原核生物DNA复制的异同点●掌握RNA转录的通常规律●掌握RNA聚合酶的作用机理●懂得原核生物的转录过程●懂得RNA转录后加工过程及其意义●熟悉逆转录的过程13. 蛋白质的生物合成考试内容●mRNA在蛋白质生物合成中的作用、原理与密码子的概念、特点●tRNA、核糖体在蛋白质生物合成中的作用与原理●蛋白质生物合成的过程●翻译后的加工过程考试要求●全面熟悉蛋白质生物合成的分子基础●掌握翻译的步骤●掌握翻译后加工过程14. 物质代谢的相互联系与调节操纵考试内容●物质代谢的相互联系●代谢的调节考试要求●懂得糖、脂肪、蛋白质与核酸代谢的相互关系●懂得酶水平的调节对物质代谢所起的作用●熟悉激素对代谢所起的调节●熟悉激素的分类●常见激素的结构与功能(甲状腺素、肾上腺素、胰岛素、胰高血糖素)。

生物化学讲义第十章物质代谢的联系和调节

生物化学讲义第十章物质代谢的联系和调节

生物化学讲义第十章物质代谢的联系和调节 【目的与要求】1.熟悉三大营养物质氧化供能的通常规律与相互关系。

2.熟悉糖、脂、蛋白质、核酸代谢之间的相互联系。

3.熟悉代谢调节的三种方式。

掌握代谢途径、关键酶(调节酶)的概念;掌握关键酶(调节酶)所催化反应的特点。

熟悉细胞内酶隔离分布的意义。

熟悉酶活性调节的方式。

4.掌握变构调节、变构酶、变构效应剂、调节亚基、催化亚基的概念;5.掌握酶的化学修饰调节的概念及要紧方式。

6.熟悉激素种类及其调节物质代谢的特点。

7.熟悉饥饿与应激状态下的代谢改变。

【本章重难点】1.物质代谢的相互联系2.物质代谢的调节方式及意义3.酶的变构调节、化学修饰、阻遏与诱导4.作用于细胞膜受体与细胞内受体的激素学习内容第一节物质代谢的联系第二节物质代谢的调节第一节物质代谢的联系一、营养物质代谢的共同规律物质代谢:机体与环境之间不断进行的物质交换,即物质代谢。

物质代谢是生命的本质特征,是生命活动的物质基础。

二、三大营养物质代谢的相互联系糖、脂与蛋白质是人体内的要紧供能物质。

它们的分解代谢有共同的代谢通路—三羧酸循环。

三羧酸循环是联系糖、脂与氨基酸代谢的纽带。

通过一些枢纽性中间产物,能够联系及沟通几条不一致的代谢通路。

对糖、脂与蛋白质三大营养物质之间相互转变的关系作简要说明:㈠糖可转变生成甘油三酯等脂类物质(除必需脂肪酸外),甘油三酯分解生成脂肪酸,脂肪酸经β-氧化生成乙酰CoA,乙酰CoA或者进入三羧酸循环或者生成酮体,因此甘油三酯的脂肪酸成分不易生糖,但甘油部分能够转变为磷酸丙糖而生糖,但是甘油只有三个碳原子,只占甘油三酯的很小部分。

㈡多数氨基酸是生糖或者生糖兼生酮氨基酸。

因此氨基酸转变成糖较为容易。

糖代谢的中间产物只能转变成非必需氨基酸,不能转变成必需氨基酸。

㈢少数氨基酸能够生酮,生糖氨基酸生糖后,也可转变为脂肪酸(除必需脂肪酸外),因此氨基酸转变成脂类较为容易。

脂肪酸经β-氧化生成乙酰CoA进入三羧酸循环后,即以CO2形式被分解。

生物化学试题库

生物化学试题库

核酸的酶促降解和核苷酸代谢一、名词解释1.核苷磷酸化酶(nucleoside phosphorylase):能分解核苷生成含氮碱和戊糖的磷酸酯的酶。

2.从头合成(de novo synthesis ):生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。

3.补救途径(salvage pathway):与从头合成途径不同,生物分子的合成,例如核苷酸可以由该类分子降解形成的中间代谢物,如碱基等来合成,该途径是一个再循环途径。

4.限制性内切酶:二、单选题(在备选答案中只有一个是正确的)( 3 )1.嘌呤核苷酸从头合成时首先生成的是:①GMP; ②AMP; ③IMP; ④ATP( 2 )2.提供其分子中全部N和C原子合成嘌呤环的氨基酸是:①天冬氨酸; ②甘氨酸; ③丙氨酸; ④谷氨酸( 1 )3.嘌呤环中第4位和第5位碳原子来自下列哪种化合物?①甘氨酸②天冬氨酸③丙氨酸④谷氨酸( 3 )4.嘌呤核苷酸的嘌呤核上第1位N原子来自①Gly②Gln③ASP④甲酸三、多项选择题1.嘧啶分解的代谢产物有:(ABC)A.CO2; B.β-氨基酸C.NH3D.尿酸2.嘌呤环中的氮原子来自(ABC)A.甘氨酸; B.天冬氨酸; C.谷氨酰胺; D.谷氨酸四、填空题1.体内脱氧核苷酸是由____核糖核苷酸_____直接还原而生成,催化此反应的酶是____核糖核苷酸还原酶______酶。

2.人体内嘌呤核苷酸分解代谢的最终产物是______尿酸______,与其生成有关的重要酶是___黄嘌呤氧化酶_________。

3.在生命有机体内核酸常与蛋白质组成复合物,这种复合物叫做染色体。

4.基因表达在转录水平的调控是最经济的,也是最普遍的。

五、问答题:1.降解核酸的酶有哪几类?举例说明它们的作用方式和特异性。

2.什么是限制性内切酶?有何特点?它的发现有何特殊意义?3.简述蛋白质、脂肪和糖代谢的关系?蛋白质AA糖EMP 丙酮酸乙酰辅酶A TCA脂肪甘油脂肪酸六、判断对错:(对)人类和灵长类动物缺乏尿酸氧化酶,因此嘌呤降解的最终产物是尿酸。

研究生《生物化学》考试大纲

研究生《生物化学》考试大纲

研究生《生物化学》考试大纲一、考试总体要求考查目标生物化学是生命科学的重要基础学科和前沿学科,在现代生物学中具有十分重要的地位和作用。

《生物化学》考试在重点考查生物化学的基础知识、基本理论的基础上,注重考查理论联系实际和综合分析能力。

正确地理解和掌握生物化学有关的基本概念、理论、假说、规律和论断;运用掌握的基础理论知识和原理分析和解决生物学的基本问题。

要求考生:①系统准确地掌握生物化学的基本概念、基础知识和基本理论;②比较全面了解生物化学的常用技术的原理、方法和应用范围;③能运用生化技术和知识分析生物学基本问题。

同时考生应了解生物化学及相关领域的重大研究进展。

考查内容(一)蛋白质的结构与功能1、蛋白质的化学组成;2、氨基酸的分类及简写符号;3、氨基酸的理化性质及化学反应;4、氨基酸的分析分离方法;5、肽的结构、性质与生物活性肽;6、蛋白质分子结构:一级、二级、高级结构的概念、主要化学键及形式,包括超二级结构、结构域等;7、蛋白质一级结构测定:多肽链N端和C端氨基酸残基测定的各种方法;蛋白酶、肽段的氨基酸序列测定方法;二硫键的断裂和多肽的分离,二硫键位置的确定,多肽的人工合成等;8、蛋白质的理化性质:包括蛋白质的两性解离和等电点、蛋白质分子的大小、紫外吸收和胶体性质、蛋白质的沉淀作用、蛋白质的变性作用、蛋白质的颜色反应等;9、蛋白质分离纯化和纯度鉴定方法与技术:包括蛋白质的分离纯化的一般原则、蛋白质的分离纯化的方法、蛋白质的分析测定等;10、蛋白质结构与功能的关系:包括一级结构和高级结构与功能的关系,如肌红蛋白、血红蛋白的结构和功能,血红蛋白分子病的机理。

(二)核酸的结构与功能1、核酸的基本化学组成、种类、分布和生物学功能;2、核苷酸的结构——组成、碱基分子式、稀有碱基等;3、DNA的分子结构:DNA的一、二、三级结构的概念和结构特点;核酸的早期研究和双螺旋结构模型的理论依据等;4、RNA的分子结构:包括RNA一级结构、高级结构,如tRNA的二、三级结构,真核生物mRNA 结构特点,tRNA及rRNA的结构、RNA的降解等;5、RNA 的分类及各类RNA的生物学功能,包括各种新发现的小RNA的功能;6、DNA测序方法及其过程;7、核酸及核苷酸的性质:包括溶解性、紫外吸收、核酸及其组分的两性性质;8、核酸的变性、复性与杂交;9、核酸及其组分的分离纯化:包括分离核酸的一般原则、DNA的分离纯化、RNA的分离纯化、核酸组分的分离纯化、核酸及其组分含量的测定、核酸纯度的测定、核苷酸的分离分析鉴定等;10、核酸研究的常用技术和方法:包括核酸凝胶电泳技术、核酸分子印迹与杂交技术、PCR技术等。

生物化学第十章核酸的酶促降解和核苷酸代谢

生物化学第十章核酸的酶促降解和核苷酸代谢

①腺苷酸代琥珀酸合成酶 ③IMP脱氢酶
②腺苷酸代琥珀酸裂医解学p酶pt ④GMP合成酶
19
• 嘌呤核苷酸从头合成特点
• 嘌呤核苷酸是在磷酸核糖分子上逐步合成的。 • IMP的合成需5个ATP,6个高能磷酸键。
AMP或GMP的合成又需1个ATP。
医学ppt
20
(3)嘌呤核苷酸合成补救途径
参与补救合成的酶:
医学ppt
27
(4). dTMP或TMP的生成
脱氧核苷酸还原酶
UDP
dUDP
CTP CDP dCDP dCMP
TMP合酶
dUMP
N5, N10-甲烯FH4
FH2
FH4 FH2还原酶 NADP+ NADPH+H+
脱氧胸苷一磷酸
dTMP
医学ppt
28
(5) 嘧啶核苷酸的补救合成
嘧啶 + PRPP 嘧啶磷酸核糖转移酶 磷酸嘧啶核苷 + PPi
六核苷酸,粘端切口 六核苷酸,粘端切口
Sal I
‥ ‥G T C G A C ‥‥ ‥ ‥C A G C T G ‥‥
六核苷酸,粘端切口
Sma I
‥ ‥
‥C ‥G
C G
CG GC
G C
G C
‥‥ ‥‥医学ppt
六核苷酸,平端切口 9
限制性内切酶的命名和意义
例:Eco R I,这是从大肠杆菌(Ecoli)R菌珠中分离出的一种限
AMP
AT医P学ppt ADP
21
•补救合成的生理意义
补救合成节省从头合成时的能量和一些氨 基酸的消耗。
体内某些组织器官,如脑、骨髓等只能进 行补救合成。
医学ppt

大学生物化学简答题 [生物化学问答题和计算题]

大学生物化学简答题 [生物化学问答题和计算题]

大学生物化学简答题 [生物化学问答题和计算题]蛋白质化学 1、试举例说明蛋白质结构与功能的关系(包括一级结构、高级结构与功能的关系)。

蛋白质的结构决定功能。

一级结构决定高级结构的形成,高级结构则与蛋白质的功能直接对应。

1.一级结构与高级结构及功能的关系:氨基酸在多肽链上的排列顺序及种类构成蛋白质的一级结构,决定着高级结构的形成。

很多蛋白质在合成后经过复杂加工而形成天然高级结构和构象,就其本质来讲,高级结构的加工形成是以一级结构为依据和基础的。

有些蛋白质可以自发形成天然构象,如牛胰RNA酶,尿素变性后,空间构象发生变化,活性丧失,逐渐透析掉尿素后可自发形成天然三级结构,恢复95%生物活性。

这个例子说明了两点:一级结构决定特定的高级结构;特定的空间构象产生特定的生物功能。

一级结构中,特定种类和位置的氨基酸出现,决定着蛋白质的特有功能。

例如同源蛋白中所含的不变氨基酸残基,一但变化后会导致功能的丧失;而可变氨基酸残基在不同物种的变化则不影响蛋白质功能的实现。

又如人类的镰刀型贫血,就是因为一个关键的氨基酸置换突变后引发的。

某些一级结构的变化会导致功能的明显变化,如酶原激活过程,通过对酶原多肽链局部切除而实现酶的天然催化功能。

2.高级结构与功能的关系:任何空间结构的变化都会直接影响蛋白质的生物功能。

一个蛋白质的各种生物功能都可以在其分子表面或内部找到相对应的空间位点。

环境因素导致的蛋白质变性,因天然构象的解体而活性丧失;结合变构剂导致的蛋白质变构效应,则是因空间构象变化而改变其活性 2、参与维持蛋白质空间结构的力有哪些?蛋白质的空间结构主要是靠氨基酸侧链之间的疏水键,氢键,范德华力和盐键维持的(盐键又称离子健,是蛋白质分子中正、负电荷的侧链基团互相接近,通过静电吸引而形成的) 4、试述蛋白质多肽链的氨基酸排列顺序测定的一般步骤。

1.测定蛋白质分子中多肽链的数目。

通过测定末端氨基酸残基的摩尔数与蛋白质分子量之间的关系,即可确定多肽链的数目。

第十章 核酸的酶促降解和核苷酸代谢精品PPT课件

第十章 核酸的酶促降解和核苷酸代谢精品PPT课件
如牛胰脱氧核糖核酸酶 ( DNaseⅠ),可切割 双链和单链 DNA ,产物为 5′-磷酸为末端的寡核 苷酸。
三、限制性内切酶
限制性内切酶主要是从细菌中分离得到,能识
别特定的核苷酸顺序,细菌自身的DNA序列已被甲 基化(甲基化酶),不会被水解。因此这些酶仅限 于水解外源 DNA 以保护自身,故称为“限制性” 酶。
(一)核酸外切酶
➢ 作用于核苷酸链的一端,逐个水解下核苷酸。 ➢ 是非特异性的磷酸二酯键
3’-核酸外切酶:从3’-OH 端开始,生成 5’- 单
核苷酸,如蛇毒磷酸二酯酶。 5’-核酸外切酶:从5’-OH 端开始,生成3’单核苷酸,如牛脾磷酸二酯酶。
外切核酸酶对核酸的水解位点
BBBBBBBB
5´ p
RNAase T1
Pu :嘌呤
Py:嘧啶
牛胰核酸酶(牛胰 RNase) 作用于嘧啶核苷酸的磷酸二酯键,其专一作用
于 RNA,对 DNA 不作用。
核酸酶促水解作用部位
二、脱氧核糖核酸酶
脱氧核糖核酸酶专一水解 DNA ,作用方式作为 内切酶,切断双链,或切断单链,作为外切酶有 5′ 3′切割或是 3′ 5′切割。
(1)5’端凸出(如EcoR I切点)
5’-
GAATTC
-3’
3’-
CTTAAG
-5’
5’-
G AATTC
-3’
3’-
CTTAA G
-5’
(2)3’端凸出(如Pst I切点)
5’-
CTGCAG
-3’
3’-
GACGTC
-5’
5’-
CTGCA
G
-3’
3’-
G
ACGTC
-5’

生物化学_09 核酸降解和核苷酸的代谢

生物化学_09 核酸降解和核苷酸的代谢

IMP转变为GMP和 转变为GMP (3)IMP转变为GMP和AMP
2、 补救途径
(利用已有的碱基和核苷合成核苷酸) (1) 磷酸核糖转移酶途径(重要途径)
核苷磷酸化酶
嘌呤核苷 + 磷酸 腺嘌呤 + 5-PRPP
次黄嘌呤(鸟嘌呤) 磷酸核糖转移酶
嘌呤碱 + 戊糖-1-磷酸 AMP + PPi
腺嘌呤磷酸核糖转移酶
基因组DNA 基因组 不被切割
限制—修饰的酶学假说 限制 修饰的酶学假说 1968年,Meselson 和Yuan发现了 型限制性核酸内切酶 年 发现了I型限制性核酸内切酶 发现了 1970年,Smith和Wilcox从流感嗜血杆菌中分离纯化了 年 和 从流感嗜血杆菌中分离纯化了 第一个II型限制性核酸内切酶 第一个 型限制性核酸内切酶Hind II 型限制性核酸内切酶
(2)尿嘧啶核苷酸的合成 )
天冬氨酸转氨甲酰酶 二氢乳清酸酶
乳清苷酸焦磷酸化酶/Mg2+ 二氢乳清酸脱氢酶
乳清苷酸脱羧酶
(3) 胞嘧啶核苷酸的合成
尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(动物) 细菌) 尿嘧啶核苷三磷酸可直接与 (动物) 反应,生成胞嘧啶核苷三磷酸。 反应,生成胞嘧啶核苷三磷酸。
二、脱氧核糖核酸酶
只能水解DNA磷酸二酯键的酶。 只能水解DNA磷酸二酯键的酶。 DNA磷酸二酯键的酶 牛胰脱氧核糖核酸酶(DNaseⅠ) 牛胰脱氧核糖核酸酶(DNaseⅠ): 可切割双链和单链DNA 降解产物为3 DNA, 可切割双链和单链 DNA, 降解产物为 3’ - 磷酸 为末端的寡核苷酸。 为末端的寡核苷酸。 限制性核酸内切酶: 限制性核酸内切酶: 细菌产生的、能识别并特异切割外源DNA DNA特定 细菌产生的 、 能识别并特异切割外源 DNA 特定 中的磷酸二脂键( 序列中的磷酸二脂键 对碱基序列专一) 序列中的磷酸二脂键(对碱基序列专一)的核酸内 切酶。 切酶。

东北师范大学生物化学 第十章氨基酸代谢

东北师范大学生物化学 第十章氨基酸代谢

必需氨基酸
(氨基酸和糖的转 变是不可逆的)
酮体
生酮兼生糖氨基酸
Tyr(酪),Phe(苯),Ile(异), Trp(色)
生酮氨基酸 Lys Leu 生糖氨基酸:
三 氨基酸合成代谢 非必需氨基酸(10) 必需氨基酸(8):
Phe 、Met 、 Thr、 Val、 Leu、 Lys、Trp、Ile
半必需氨基酸:His Arg
NAD+ + H2O + (NADP+)
+ NH4+ + NADH +H+ (NADPH)
在动物体内辅酶为NAD+,在植物体内辅酶为NADP+
非必需氨基酸由相应的α -酮酸氨基化生成
八种必需氨基酸中,除赖氨酸和苏氨酸外其余六种亦可由相 应的α-酮酸加氨生成。但和必需氨基酸相对应的α-酮酸不能 在体内合成,所以必需氨基酸依赖于食物供应。
一 蛋白质的酶促降解
(一)外源蛋白质的降解
(二)内源蛋白质的降解
(一)外源蛋白质的降解(细胞外途径)
1 蛋白质的消化
胃蛋白酶:水解芳香族氨基酸的羧基形成的肽键
胰蛋白酶:水解碱性氨基酸羧基形成的肽键
肽链内切酶
胰凝乳蛋白酶:水解芳香族氨基酸的羧基形成 的肽键
弹性蛋白酶:脂肪族氨基酸的羧基形成的肽键 氨肽酶
肝脏是合成尿素的主要器官,肾脏是排出尿素的主要器官
氨基甲酰磷酸合成酶
一种在线粒体中参与尿素的合成
一种在细胞质中参与嘧啶的从头合成
尿素合成的特点: 主要在肝脏的线粒体和胞液中进行 一分子尿素需消耗4个 高能磷酸键 精氨琥珀酸合成酶是尿素合成的关键酶 尿素分子中的两个氮原子,一个来源于NH3, 一个来源于天冬氨酸

生物化学_第十章_物质代谢的调节

生物化学_第十章_物质代谢的调节

细胞核:核酸合成
内质网:蛋白质合 成;磷脂合成
真核细胞主要代谢途径与酶的区域分布
代谢途径(酶或酶系) 细胞内分布 代谢途径(酶或酶系) 细胞内分布 糖酵解 三羧酸循环 磷酸戊糖途径 糖异生 糖原合成与分解 脂肪酸β氧化 脂肪酸合成 呼吸链 多种水解酶 磷脂合成 胞质 线粒体 胞质 胞质 胞质 线粒体 胞质 线粒体 溶酶体 内质网 氧化磷酸化(呼吸链) 线粒体 尿素合成 胞质、线粒体 蛋白质合成 内质网、胞质 DNA合成 细胞核 mRNA合成 细胞核 tRNA合成 核质 rRNA合成 核仁 血红素合成 胞质、线粒体 胆红素生成 微粒体、胞质 胆固醇合成 内质网、胞质
酮体 乳酸 游离脂酸 葡萄糖
• 以葡萄糖有氧氧化供能为主
(六)红细胞
•能量主要来自糖酵解
(七)肾脏
• 也可进行糖异生和生成酮体; • 肾髓质主要由糖酵解供能;肾皮质主要由脂酸、 酮体有氧氧化供能。
第 二 节 物质代谢的相互联系
Metabolic Interrelationships
一、在能量代谢上的相互联系
酶的隔离分布的意义 —— 避免了各种代谢途径互相干扰,而且有利于它们协调 地发挥作用。
(二)细胞内物质代谢调节的基本方式
在一个代谢途径中,其速率和方向不完全由途径的所 有酶决定和调节,而是由其中的一个或几个具有调节作用
的酶所决定,这些酶称为调节酶(regulatory enzymes)、
关键酶(key enzymes)。或限速酶(rate-limiting enzyme)。由此酶催化的反应称为限速反应。限速酶活性 改变不但可以影响整个酶体系催化反应的总速率,甚至还 可以改变代谢反应的方向。
调节或细胞水平代谢调节。
高等生物 —— 三级水平代谢调节

第十章__代谢总论--王镜岩《生物化学》第三版笔记(完美打印版)

第十章__代谢总论--王镜岩《生物化学》第三版笔记(完美打印版)
合成代谢所需的能量主要用于活化前体或构件分子,以及用于还原步骤等。
四、信息来源
生物大分子有两种组装模式:
1.模板指导组装核酸和蛋白质的合成,都以先在的信息分子为模板。如DNA复制、转录以及反转录、翻译都是在模板指导下的聚合过程。所需的信息存在于模板分子的构件序列中,能量来自活化的构件分子或ATP等。生物大分子形成高级结构并构成亚细胞结构是自我组装过程,其信息存在于一级结构中,其能量来自非共价作用力,即组装过程中释放的自由能。
3.其它高能化合物
UTP参与多糖合成,CTP参与脂类合成,GTP参与蛋白质合成。
烯醇酯、硫酯等也是高能化合物,如磷酸烯醇式丙酮酸、乙酰辅酶A等。高能化合物根据键型可分为磷氧键型、氮磷键型、硫酯键型、甲硫键型等,绝大多数含磷酸基团。
磷酸肌酸和磷酸精氨酸可通过磷酸基团的转移作为储能物质,称为磷酸原。磷酸肌酸是易兴奋组织如肌肉、脑、神经等唯一能起暂时储能作用的物质ΔG0’为-10.3千卡/摩尔,是ATP的能量储存库。肌肉中的含量比ATP高3-4倍,可维持ATP水平的恒定。磷酸精氨酸是无脊椎动物肌肉中的储能物质,与磷酸肌酸类似。
2.酶促组装有些构件序列简单均一的大分子通过酶促组装聚合而成。其信息指令来自酶分子,不需要模板。如糖原、肽聚糖、一些小肽等,都在专一的酶指导Fra bibliotek催化下合成。
第三节 分解代谢
一、阶段性和趋同性
生物大分子的分解有三个阶段:水解产生构件分子、氧化分解产生乙酰辅酶A、氧化成二氧化碳和水。在这个过程中,随着结构层次的降低,倾向产生少数共同的分解产物,即具有趋同性。
2.ATP及其偶联作用
生物体内的放能和需能反应经常以ATP相偶联。ATP可分解为ADP或AMP。前者如各种激酶,后者如乙酰辅酶A的合成。反应过程中有的由一个酶催化,如谷氨酰胺合成酶,先生成磷酰谷氨酸中间物,它是谷氨酸的活化形式,再与氨反应;有的需多个酶参与,如蔗糖的合成需3个酶,首先生成葡萄糖6磷酸的活化形式;也有的没有ATP直接参与,如苹果酸生成草酰乙酸,是需能反应,利用下一步由草酰乙酸生成柠檬酸时高能硫酯键放能促进其反应。

基础生化试题集

基础生化试题集

基础生物化学试题集基础生物化学教研室第二章核酸一.填空1、tRNA的二级结构为型,三级结构为型。

2、TRNA运送氨基酸时与氨基酸相连的臂称为,末端最后三个碱基排列顺序为,位于端。

3、核酸中富含修饰成分的是,含帽子结构的是。

4、B-DNA双链中一条链的方向是,另一条链的方向是,每对碱基旋转一圈,螺距为nm,碱基平面与螺轴,且位于螺旋的侧,磷酸-脱氧核糖位于螺旋侧。

5、双螺旋结构稳定的作用力是、、。

6、任何有机体都含有和两种最基本的化学成分.7. 核酸根据其化学组成可分为和两大类;核苷酸由和和.组成.8、细胞质中的RNA主要分为和和.其中是具有传递遗传信息的作用; 是转运氨基酸的工具; 是和核糖体结合构成蛋白质合成的场所。

9、在寡聚核苷酸5'GACGTCACT3’的互补序列为。

10. DNA的紫外吸收峰是nm,蛋白质是nm.11. tRNA分子3端有一共同的碱基序列,其功能是.12. RNA中常见的碱基是, , 和.二选择题:1.RNA和DNA彻底水解后的产物A.核糖相同,部分碱基不同 B.碱基相同,核糖不同C.部分碱基不同,核糖不同 D.碱基不同,核糖相同E.以上都不是2.核酸分子中核苷酸之间的连接方式是:A.2’,3’磷酸二酯键 B.3’,5’磷酸二酯键C.2’,5’磷酸二酯键 D.糖苷键E.氢键3.下列哪组碱基的含量高,则双螺旋DNA的Tm值也高A.A+G B.A+TC.C+T D.C+GE.A+C4.核酸的最大吸收波长是A、260nm B 290nm C 270nm D 280nm5. 原核生物的mRNA不含.A. poly(A) B SD序列 C 插入顺序 D 先导区6. 下列几个双螺旋DNA分子中,Tm值最高的是.A AAGTTCTCTGAAB AGTCGTCAATGCATTCAAGAGACTT TCAGCAGTTACGTC. GGACCTCTCAGG D AGCGAGCATAGCCTGGAGAGTCC TCGCTCGTA TC7. 某双链DNA纯样品含15%的A,该样品中G的含量为.A 35%B 15%C 30%D 20%8. 维系DNA双螺旋稳定的最主要的力是.A 氢键B 离子键C 碱基堆积力D 范德华力三名词解释增色效应减色效应DNA的变性DNA的复性Tm值Chargaff定律DNA的一级结构四.问答1.核酸的基本结构单位是什么?其组成如何?写出嘌呤和嘧啶的简化式.2.比较DNA和RNA的异同.3.比较tRNA、mRNA、rRNA的分布,结构特点及功能.4.试述碱基,核苷酸和核酸在结构上的关系.5.简述DNA双螺旋的特点.第三章蛋白质一、填空1.处于等电点的蛋白质,其净电荷为,溶解度处于。

生物化学第十一章核酸降解与核苷酸生物合成

生物化学第十一章核酸降解与核苷酸生物合成

第二节
一.核苷酸的降解 二.嘌呤的降解 三.嘧啶的降解
核苷酸的降解
核苷酸的降解
• 核苷酸水解掉磷酸基就就会变成核苷,生 物体内广泛存在的磷酸单酯酶和核苷酸酶 可以催化这个反应。 • 核苷酸+水+核苷酸酶→ → →核苷+磷酸 • 核苷在核苷酶的作用下继续分解: 1. 核苷+磷酸(核苷磷酸化酶)←→碱基+戊 糖-1-磷酸; 2. 核苷+水*(核苷水解酶)→ → →碱基+戊 糖
第四节


1. 降解核酸的不同酶 2. 核苷酸的从头合成过程的要点(包括嘌呤 和嘧啶) 3. 嘌呤和嘧啶环中的原子来源 4. 补救途径的意义
第十章 核酸降解与核苷酸生物合 成
第一节 第二节 第三节 第四节 核酸的降解 核苷酸的降解 核苷酸的生物合成 小 结
第一节
一.概述 二.核酸酶的种类
核酸的降解


1. 2. 3. 4. 5. 6.

核酸酶促降解产物核苷酸及其衍生物,在代谢 上非常重要: 核苷酸是核酸生物合成的前体; 某些核苷酸及其衍生物是很多生物合成过程中 的重要中间物,比如UDPG等等; 腺苷酸是生物体中重要的辅因子,比如NAD+、 FAD等等; 某些核苷酸是重要的中间代谢调节物质,如 cAMP 等等; 肌苷酸和鸟苷酸是强力的助鲜剂; ATP是生物能量代谢中通用的高能化合物。
1. 嘌呤核苷酸的合成特点是首先直接形成次黄嘌 呤核苷酸,然后才能转变成为其他的嘌呤核苷 酸,而不是先形成游离的嘌呤,再生成核苷酸; 2. PRPP是核苷酸中磷酸核糖部分的供体; 3. 嘌呤的各原子是在PRPP的C-1位置上逐个加上 去的,关键步骤是PRPP和谷氨酰胺形成5-磷酸 核糖胺; 4. 由不同的化合物提供不同的原子,最终形成次 黄嘌呤核苷酸。

基础生物化学-核苷酸代谢

基础生物化学-核苷酸代谢
分解核苷的酶有两类
①核苷磷酸化酶(nucleoside phosphorylase)广 泛存在于生命机体中,催化反应可逆;
②核苷水解酶(nucleoside hydrolase)主要存在 于植物、微生物体内,只作用于核糖核苷, 催化反应不可逆。
戊糖和戊糖-1-磷酸可进入糖代谢分解或重新利 用,嘌呤和嘧啶也可以继续分解。
11.3 核苷酸的生物合成
11.3.1 核糖核苷酸的合成
核苷酸是核酸合成的原料,所有的生物通常都 能合成各种核苷酸。合成途径有从头合成和 救补途径。
从头合成(de nove synthesis):利用氨基酸、磷 酸戊糖等简单的化合物合成核苷酸。
救补途径(salvage pathway):利用核酸降解或 进食等从外界补充的含氮碱基或核苷合成新 的核苷酸。
⑵GMP和AMP的合成
IMP由天冬氨酸提供氨基转移到C6位上生成 AMP。
IMP经过脱氢酶催化的脱氢反应,由NAD+接 受脱下的氢,IMP生成黄嘌呤核苷酸(XMP), 再由谷氨酰胺提供酰胺上的氨,ATP供能, XMP转变成GMP。
嘌呤核苷酸生物合成过程的阐明对于临床医学 及生产实践有重要意义。在了解核苷酸合成 途径的基础上,可设计有效的核苷衍生物作 为治癌药物,可以指导有关核苷酸生产的菌 种选育等。
动物中,合成场所是肝脏。从氨甲酰磷酸合成 开始,到尿嘧啶核苷酸生成为止共需6个步 骤。
儿童有一种生长异常的遗传性疾病——巨红细 胞贫血症,患者排泄大量的乳清酸,这是由 于患者体内乳清酸核苷5-磷酸脱羧酶和乳清 酸磷酸核糖转移酶的活力较低。当用尿嘧啶 核苷等嘧啶核苷来供给这些儿童食用时,贫 血症可得到改善,并且乳清酸的排出减少。 可能是尿嘧啶核苷经磷酸化变成UMP,然后 UMP可能变为其他嘧啶核苷酸使核酸和蛋白 质的合成重新恢复正常。

《生物化学导论绪论》PPT课件

《生物化学导论绪论》PPT课件

DNA的双螺旋结构
1953年,Watson 和 Crick 提出的DNA双 螺旋结构。
细胞中的DNA分子几乎 都是由两条多聚脱氧 核苷酸链构成的。
DNA的二级结构就是指 两条多核苷酸链反向 平行盘绕所生成的双 螺旋结构。
划时代的里程碑,现代生物完科整学版课的件p奠pt 基石。
21
3 所有的独立的生命体都有蛋白质的合成系统:
生物分子的主要类型包括:
Saccharide(糖)、lipids(脂)、Nucleic Acids(核酸)、protein(蛋白质)
维生素、辅酶、激素、核苷酸和氨基酸等。
生物分子中最重要的是糖、脂、核酸和蛋白 质四类物质,分子量一般都很大,所以又称 为生物大分子。
完整版课件ppt
11
生命的物质组成 多酶复合体
Biochemistry Seeks to Explain Life in Chemical Terms
Chemical processes associated with living things.
Biochemistry may be defined as the study of the molecular basis of life.
蛋白质是生物体生物功能的执行者。没有蛋白质也就没有生命
氨基酸 含N碱 核糖
肽 核苷
蛋白质 核苷酸
染色体 生物膜
细胞器
葡萄糖 多聚糖
多糖
细胞
组织
脂肪酸
器官
甘油
磷脂酸
脂类
生物体
胆碱 4种生物大分子
动物植物微生物
基本生物分子
4完种整版课生件pp物t 高分子
12
2、这些物质在生物体内发生什么变化?是怎样变化的?变化 过程中能量是怎样转变 的?也就是说这些物质在生物体内是 怎样进行物质和能量代谢的?

华中农业大学生物化学考研试题库附答案核酸的降解和核苷酸代谢

华中农业大学生物化学考研试题库附答案核酸的降解和核苷酸代谢

第12章核酸的降解和核苷酸代谢一、教学大纲基本要求核酸的酶促降解,水解核酸的有关酶(核酶外切酶、核酶内切酶、限制性内切酶),核苷酸、嘌呤碱、嘧啶碱的分解代谢,嘌呤核苷酸的合成,嘧啶核苷酸的合成,脱氧核糖核苷酸的合成,辅酶核苷酸的合成。

二、本章知识要点(一)核酸的酶促降解核酸酶(nucleases):是指所有可以水解核酸的酶,在细胞内催化核酸的降解,以维持核酸(尤其是RNA)的水平与细胞功能相适应。

食物中的核酸也需要在核酸酶的作用下被消化。

核酸酶按照作用底物可分为:DNA酶(DNase)、RNA酶(Rnase)。

按照作用的方式可分为:核酸外切酶和核酸内切酶,前者指作用于核酸链的5‘或3’端,有5’末端外切酶和3’末端外切酶两种;后者作用于链的内部,其中一部分具有严格的序列依赖性(4~8 bp),称为限制性内切酶。

核酸酶在DNA重组技术中是不可缺少的重要工具,尤其是限制性核酸内切酶更是所有基因人工改造的基础。

(二)核苷酸代谢1.核苷酸的生物学功能①作为核酸合成的原料,这是核苷酸最主要的功能;②体内能量的利用形式;③参与代谢和生理调节;④组成辅酶。

核苷酸最主要的功能是作为核酸合成的原料,体内核苷酸的合成有两条途径,一条是从头合成途径,一条是补救合成途径。

肝组织进行从头合成途径,脑、骨髓等则只能进行补救合成,前者是合成的主要途径。

核苷酸合成代谢中有一些嘌呤、嘧啶、氨基酸或叶酸等的类似物,可以干扰或阻断核苷酸的合成过程,故可作为核苷酸的抗代谢物。

不同生物嘌呤核苷酸的分解终产物不同,人体内核苷酸的分解代谢类似于食物中核苷酸的消化过程,嘌呤核苷酸的分解终产物是尿酸。

嘧啶核苷酸的分解终产物是β-丙氨酸或β-氨基异丁酸。

核苷酸的合成代谢受多种因素的调节。

(1)嘌呤核苷酸代谢①嘌呤核苷酸的合成代谢:体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。

嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H2O
O
H2O
HO H2N
C
CH-CH3
C O
N H
CH2
β-脲基异丁酸
嘧啶核苷酸与嘌呤核苷酸分解代谢最大 的不同是嘧啶环的裂解,最后生成β-氨基酸
嘧啶碱的降解产物易溶于水,故嘧啶代 谢异常的疾病较少。
第三节 核苷酸的生物合成
核苷酸在细胞内合成有两条基本途径: 1、从头合成或从无到有途径:由AA、磷酸 戊糖、CO2 和NH3 等简单的化合物合成核苷酸 2、补救途径:由预先形成的碱基或核苷合成 核苷酸。
第二节 核苷酸的降解
一、核苷酸的降解
核苷酸酶
核苷磷酸化酶 碱基 + 戊糖-1-磷酸
核苷酸
核苷
(生物体内广泛存在)
磷酸
核苷水解酶
碱基 + 戊糖(植物和微 生物)
1、嘌呤的降解 2、嘧啶的降解
二、嘌呤的分解代谢
嘌呤核苷酸的结构
AMP
GMP
二、嘌呤的分解代谢
AMP GMP
H 黄嘌呤氧化酶
(次黄嘌呤)
三、脱氧核苷酸的合成
1、脱氧核苷酸的合成 2、脱氧胸腺嘧啶核苷酸的合成
O
O
HO P O P O
O 碱基
OH OH H H
HH
NADPH+H+
NDP
OH OH
NADP+ +H2O
O
O
HO P O P O
O 碱基
在核苷二磷酸水平
OH OH H H H H
被还原而成
dNDP
OH H
NDP ADP GDP UDP CDP
二、核酸酶
2、核酸酶的功能
生物体内的核酸酶负责细胞内外催化核 酸的降解
参与DNA的合成与修复及RNA合成后的剪接等重要基因 复制和基因表达过程
负责清除多余的、结构和功能异常的核酸,同时也可 以清除侵入细胞的外源性核酸
在消化液中降解食物中的核酸以利吸收 体外重组DNA技术中的重要工具酶
核糖核苷酸还原酶 核糖核苷酸还原酶 核糖核苷酸还原酶 核糖核苷酸还原酶 核糖核苷酸还原酶
TDP
dNDP dADP dGDP dUDP dCDP
dTDP
dNDP+ATP dADP+ATP dGDP+ATP dUDP+ATP dCDP+ATP
dNDP
激酶 激酶 激酶 激酶 激酶
磷酸酶
? dTTP
dNTP+ADP dATP +ADP dGTP+ADP dUTP+ADP dCTP+ADP
结合 2. 先合成UMP

3. 在IMP基础上完成AMP和 GMP的合成
3. 以UMP为基础, 完成CTP, dTMP的合成
RNAase T1
Pu :嘌呤
Py:嘧啶
限制性内切酶
具有识别双链DNA分子中特定核苷酸序列,并由此切割DNA 双链的核酸内切酶统称限制性内切酶(ristriction endonuclease)。
这些酶主要是从细菌中分离得到,能识别特定的核苷酸 顺序,但在细菌本身的DNA 中,这些顺序已被(甲基化酶) 甲基化,因而不被水解,也就是说这些酶仅限于水解外源 DNA 以保护自身,故称为“限制性”酶。限制酶都以内切方 式水解DNA,产物5ˊ为p,3ˊ为OH。
依据底物不同分类
DNA酶(deoxyribonuclease, DNase):专一降解DNA RNA酶 (ribonuclease, RNase):专一降解RNA。 非特异性核酸酶
依据切割部位不同 核酸内切酶:分为限制性核酸内切酶和非特异性限制性 核酸内切酶。 核酸外切酶:5´→3´或3´→5´核酸外切酶。
Asp
N1
甲酰基
C2
(一碳单位)
CO2
甘氨酸
C
N
7
6C
5
4 C 3 N
C 甲炔基
8
(一碳单位)
N9
N5,N10-次甲基四氢叶酸
Gln(酰胺基) 甘氨当中站, 谷氮坐两边,
左上天冬氨, 头顶CO2 还剩下一个一碳单位
合成原料:天冬氨酸、谷氨酰胺、甘氨酸、 一碳基团、CO2、磷酸核糖。
合成特点:磷酸核糖为起始物,逐步加原料 合成嘌呤环,形成重要中间产物 IMP(次黄嘌 呤核苷酸),再由它转变为AMP和GMP。
C Gln N 3 4 5 C CO2 C 2 1 6 C
N
HOOC H2C HC NH2
HOOC
Asp
天冬氨酸列右边 谷氨酰胺左上边
剩下一个CO2
合成原料:谷氨酰胺、天冬氨酸、CO2、磷 酸核糖。
合成特点:用原料先合成嘧啶环,然后再与 磷酸核糖连接生成嘧啶核苷酸。
• 合成过程
1) 尿嘧啶核苷酸的合成
•过程 1. IMP的合成 2. AMP和GMP的生成
PP-1-R-5-P
AMP ATP
(5’-磷酸核糖-1’-焦磷酸) PRPP合成酶
PRPP
谷氨酰胺
酰胺转移酶 谷氨酸
R-5-P
(5-磷酸核糖)
H2N-1-R-5´-P
(5´-磷酸核糖胺)
IMP
在谷氨酰胺、甘氨酸、一 碳单位、二氧化碳及天冬 氨酸的逐步参与下
嘧啶核苷酸的结构
三、嘧啶的分解代谢
核苷酸酶
嘧啶核苷酸
核苷
PPi
1-磷酸核糖
核苷磷酸化酶
嘧啶碱
还原反应
开环
脱氨氧化
还原反应
开环
嘧啶核苷酸
核苷酸酶 嘧啶核苷
核苷酶
嘧啶
NH2
C
N
CH
C
CH
O
N H
胞嘧啶
NH3 HN
O NADPH+H+
C
CH
C
CH
O
N H
尿嘧啶
O NADP+
C
HN
CH2
C O
N H
2、嘌呤核苷酸的补救合成途径
利用体内游离的嘌呤或嘌呤核苷,经过 简单的反应,合成嘌呤核苷酸的过程,称为 补救合成(或重新利用)途径。
•参与补救合成的酶
腺嘌呤磷酸核糖转移酶 (adenine phosphoribosyl transferase, APRT) 次黄嘌呤-鸟嘌呤磷酸核糖转移酶(hypoxanthineguanine phosphoribosyl transferase, HGPRT) 腺苷激酶(adenosine kinase)
外切核酸酶对核酸的水解位点
BBBBBBBB
5´ p
p
p
p
p
p
p
p
OH 3´
牛脾磷酸二酯酶
( 5´端外切5得3)
蛇毒磷酸二酯酶
( 3´端外切3得5)
内切核酸酶对RNA的水解位点示意图
Py Pu Py Py G A C U G A

p
p
p
p
p
p
p
p
p
p
OH


RNAase I RNAase I RNAase T1
•合成过程
腺嘌呤 + PRPP APRT AMP + PPi 次黄嘌呤 + PRPP HGPRT IMP + PPi
鸟嘌呤 + PRPP HGPRT GMP + PPi
腺嘌呤核苷
腺苷激酶
AMP
ATP ADP
•补救合成的生理意义
补救合成节省从头合成时的能量和一些氨 基酸的消耗。
体内某些组织器官,如脑、骨髓等只能进 行补救合成。
dNMP+Pi
脱氧核苷酸的具体生成过程
核糖核苷酸还原酶,Mg2+
NDP
dNDP
还原型硫氧化 还原蛋白-(SH)2
氧化型硫氧化 还原蛋白 S
S
NADP+
NADPH+H+
硫氧化还原蛋白还原酶 (FAD)
脱氧胸腺嘧啶核苷酸(dTMP或TMP)的合成
dUDP
O
O
C Pi HN CH
dTMP合成酶
C
HN
C-CH3
限制性内切酶的命名和意义
三字母: 属名+种名+株名
例:Eco R I,这是从大肠杆菌(Ecoli)R菌珠中分离出的一种限制性内切酶
Eco R I
属名 种名 株名 序号
限制性内切酶是分析染色体结构、制作DNA限制图谱、 进行DNA序列测定和基因分离、基因体外重组等研究中不可缺 少的工具,是一把天赐的神刀,用来解剖纤细的DNA分子。
NH3
C O
N CH dR-5'-P
O N5,N10-甲烯FH4
FH2
FH4 FH2还原酶
C
N CH dR-5'-P
NADP+ NADPH+H+
dCMP
dUMP
dTMP
dTMP
激酶
dTDP

激酶
dTTP
ATP
ADP
ATP
ADP
核 苷 酸 的 合 成 及 相 互 关 系
嘌呤核苷酸与嘧啶核苷酸合成的比较
嘌呤核苷酸
嘧啶核苷酸
1. 合成原料基本相同

2. 合成部位对高等动物来说,主要在肝脏
同 点
3. 都有2种合成途径(从头和补救途径) 4. 都是先合成一个与之有关的核苷酸,然后在此基础上进
一步合成核苷酸
1. 在5'-P -R基础上合成嘌呤环 1. 先合成嘧啶环再与 5'-P-R
不 同
2. 最先合成的核苷酸是 IMP
相关文档
最新文档