(完整版)初三数学圆单元测试卷(含答案)

合集下载

九年级数学 《圆》单元测试(含参考答案与试题解析)

九年级数学 《圆》单元测试(含参考答案与试题解析)

九年级数学《圆》单元测试学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+4.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上5.已知⊙O和⊙O′的半径分别为5cm和7cm,且⊙O和⊙O′相切,则圆心距OO′为()A.2 cm B.7 cm C.12 cmD.2 cm或12 cm6.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.27.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=度时,△OBC和△ABD的面积相等;②当∠BAD=度时,四边形OBCD是正方形.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为时,四边形ABCD是菱形.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.参考答案与试题解析一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l=计算即可求出n.【解答】解:设圆锥的展开图扇形的圆心角的度数为n.∵圆锥的底面圆的周长=2π•10=20π,∴圆锥的展开图扇形的弧长=20π,∴20π=,∴n=120.故选C.2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A .B .C .4D .2+【分析】根据题目的条件和图形可以判断点B 分别以C 和A 为圆心CB 和AB 为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B 点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选B .4.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥R ,则P 点( )A .在⊙O 内或⊙O 上B .在⊙O 外C .在⊙O 上D .在⊙O 外或⊙O 上【分析】根据点与圆的位置关系进行判断.【解答】解:∵d ≥R ,∴点P 在⊙O 上或点P 在⊙O 外.故选D .5.已知⊙O 和⊙O′的半径分别为5cm 和7cm ,且⊙O 和⊙O′相切,则圆心距OO′为( ) A .2 cm B .7 cm C .12 cmD .2 cm 或12 cm【分析】此题考虑两种情况:两圆外切或两圆内切.再进一步根据位置关系得到数量关系.设两圆的半径分别为R 和r ,且R ≥r ,圆心距为d :外离,则d >R +r ;外切,则d=R +r ;相交,则R ﹣r <d <R +r ;内切,则d=R ﹣r ;内含,则d <R ﹣r .【解答】解:当两圆外切时,则圆心距等于两圆半径之和,即7+5=12;当两圆内切时,则圆心距等于两圆半径之差,即7﹣5=2.故选D .6.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC=2,则OF 的长为( )A.B.C.1 D.2【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.7.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°【分析】由AB是⊙O的直径,可得知∠ACB=90°,根据三角形内角和为180°可求出∠BAC 的度数,再由同弦的圆周角相等得出结论.【解答】解:∵线段AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=180°﹣∠ACB﹣∠ABC=58°.∵∠CDB与∠BAC均为弦BC的圆周角,∴∠CDB=∠BAC=58°.故选A.8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°【分析】由A,B,C是⊙O上的三点,已知∠AOC=110°,根据圆周角定理,即可求得答案.【解答】解:∵A,B,C是⊙O上的三点,∠AOC=110°,∴∠ABC=∠AOC=55°.故B.9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故选C.10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π【分析】首先证明OE=OC=OB,则可以证得△OEC≌△BED,则S阴影=半圆﹣S扇形OCB,利用扇形的面积公式即可求解.【解答】解:连结BC.∵∠COB=2∠CDB=60°,又∵OB=OC,∴△OBC是等边三角形.∵E为OB的中点,∴CD⊥AB,∴∠OCE=30°,CE=DE,∴OE=OC=OB=2,OC=4.S阴影==.故选D.二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【分析】根据菱形的性质得到∠ACB=∠DCB=(180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是﹣π.【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图,连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×3﹣(﹣×32)=﹣π.故答案为:﹣π.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长2.【分析】由已知条件可知Rt△POA中,OP=2OA,所以可求出∠P=30°,∠O=60°,再在Rt△AOC中,利用勾股定理求解直角三角形即可得到AB的长.【解答】解:∵PA与⊙O相切于点A,∴OA⊥AP,∴三角形△POA是直角三角形,∵OA=2,OP=4,即OP=2OA,∴∠P=30°,∠O=60°,则在Rt△AOC中,OC=OA=1,则AC=,∴AB=2,故答案为2.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.【分析】(1)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;(3)最后由三角形面积公式即可求得OF的长.【解答】解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBE+∠OCF=90°,∴∠BOC=90°;(2)由(1)知,∠BOC=90°.∵OB=6cm,OC=8cm,∴由勾股定理得到:BC==10cm,∴BE+CG=BC=10cm.(3)∵OF⊥BC,∴OF==4.8cm.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.【分析】(1)根据切线长定理得到AE=AF,∠EAO=∠FAO,根据等腰三角形的性质得到AD ⊥EF,根据三角形的内角和得到∠B=∠C=(180°﹣∠BAC),∠AEF=(180°﹣∠BAC),等量代换得到∠AEF=∠B,根据平行线的性质即可得到结论.(2)由AG等于⊙O的半径,得到AO=2OE,由AB是⊙O的切线,得到∠AEO=90°,根据直角三角形的性质得到∠EAO=30°,根据三角形的内角和得到∠AOE=60°,由垂径定理得到DM=MN=,根据三角函数的定义得到∠MOD=60°,根据扇形的面积公式即可得到结论.【解答】(1)证明:∵AB、AC相切于E、F两点,∴AE=AF,∠EAO=∠FAO,∴AD⊥EF,∵AB=AC,∴∠B=∠C=(180°﹣∠BAC),∵AE=AF,∴∠AEF=(180°﹣∠BAC),∴∠AEF=∠B,∴EF∥BC,∴AD⊥BC;(2)解:∵AG等于⊙O的半径,∴AO=2OE,∵AB是⊙O的切线,∴∠AEO=90°,∴∠EAO=30°,∴∠AOE=60°,∵AE=2,∴OE=2,∵OD⊥MN,∴DM=MN=,∵OM=2,∴sin∠MOD==,∴∠MOD=60°,∴∠EOM=60°,∴S扇形EOM==π.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD是正方形.【分析】(1)连接OD.只要证明△COD≌△COB,即可推出∠ODC=∠OBC=90°,推出CD是⊙O的切线.(2))①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD 是正方形.【解答】(1)证明:连接OD.∵AD∥CO,∴∠A=∠BOC,∠ADO=∠DOC,∵OA=OD,∴∠A=∠ADO,∴∠BOC=∠DOC,在△COD和△COB中,,∴△COD≌△COB,∴∠ODC=∠OBC=90°,∴CD是⊙O的切线.(2)①当∠BAD=60度时,△OBC和△ABD的面积相等;理由此时AD=OB,AB=OC,△OBC≌△DAB,所以面积相等.②当∠BAD=45度时,四边形OBCD是正方形.此时∠DOB=90°,∵∠ODC=∠OBC=90°,∴四边形OBCD是矩形,∵OB=OD,∴四边形OBCD是正方形.故答案分别为60,45.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E 点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.【分析】(1)连接AD,由CD是⊙O的直径,得到AD⊥AC,推出AD∥OB,根据平行线等分线段定理得到PA=AB;(2)根据相似三角形的性质得到OB=8,求得AD=4,根据勾股定理得到AC==4,根据垂径定理得到AE=CE=2,由勾股定理即可得到结论【解答】解:(1)A是PB的中点,理由:连接AD,∵CD是⊙O的直径,∴AD⊥AC,∵OB⊥AC,∴AD∥OB,∵PD=OD,∴PA=AB,∴A是PB的中点;(2)∵AD∥OB,∴△APD∽△BPO,∴,∵⊙O半径为8,∴OB=8,∴AD=4,∴AC==4,∵OB⊥AC,∴AE=CE=2,∵OE=AD=2,∴BE=6,∴BC==4.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足当AC=AP时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为60时,四边形ABCD是菱形.【分析】(1)作CE⊥AB于E,由于CA=CB,根据等腰三角形的性质得CE为AB的垂直平分线,则点O在CE上,再根据平行四边形的性质得AB∥CD,(2)当AC=AP时,△CPA≌△ABC.由于AC=BC,AC=AP,则∠ABC=∠BAC,∠APC=∠ACP,根据圆周角定理得∠ABC=∠APC,则∠BAC=∠ACP,加上AC=CA,即可得到△CPA≌△ABC;(3)如图2,连接OC,AC,OB,根据平行线的性质得到∠BCD=120°,根据切线的性质得到∠OCD=90°,推出BO垂直平分AC,即可得到结论.【解答】(1)证明:连接CO并延长交AB于E,如图,∵CD与⊙O相切于点C,∴CE⊥CD,∵四边形ABCD为平行四边形,∴AB∥CD,∴CE⊥AB,∴AE=BE,∴BC=AC;(2)解:当AC=AP时,△CPA≌△ABC.证明如下:∵AC=BC,AC=AP,∴∠ABC=∠BAC,∠APC=∠ACP,∵∠ABC=∠APC,∴∠BAC=∠ACP,在△CPA与△ABC中,,∴△CPA≌△ABC;故答案为:AC=AP;(3)解:当∠ABC的度数为60°时,四边形ABCD是菱形,如图2,连接OC,AC,OB,∵∠ABC=60°,∴∠BCD=120°,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠BCO=30°,∵OB=OC,∴∠OBC=30°,∴∠ABO=30°,∴BO垂直平分AC,∴AB=BC,∴四边形ABCD是菱形.故答案为:60°.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.【分析】(1)由垂直定义得∠E=∠CFD=90°,根据中线知BD=CD,利用“AAS”证△BED≌△CFD 可得答案;(2)根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.【解答】解:(1)∵分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F,∴∠E=∠CFD=90°,∵AD是中线,∵BD=CD,在△BED和△CFD中,∵,∴△BED≌△CFD(AAS),∴BE=CF;(2)∵AB为⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°又∵∠BAC=2∠B∴∠B=30°,∠BAC=60°∵OA=OC∴△OAC是等边三角形.∴OA=AC=6,∠AOC=60°∵AP是⊙O的切线.∴∠OAP=90°∴在直角△OAP中,∠P=90°﹣∠AOC=90°﹣60°=30°∴OP=2OA=2×6=12,∴PA===6.。

_冀教新版九年级上册数学《第28章 圆》单元测试卷(有答案)

_冀教新版九年级上册数学《第28章 圆》单元测试卷(有答案)

冀教新版九年级上册数学《第28章圆》单元测试卷【有答案】一.选择题1.下列说法正确的是()A.长度相等的两条弧是等弧B.三点确定一个圆C.同一条弦所对的两条弧一定是等弧D.半圆是弧2.已知⊙O的半径OA长为1,OB=,则可以得到的正确图形可能是()A.B.C.D.3.如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为()A.3πB.4πC.6πD.9π4.如图,四边形ABCD内接于⊙O,∠D=100°,CE⊥AB交⊙O于点E,连接OB、OE,则∠BOE的度数为()A.18°B.20°C.25°D.40°5.如图,在⊙O中,弦AC,BD交于点E,连结AB、CD,在图中的“蝴蝶”形中,若AE=,AC=5,BE=3,则BD的长为()A.B.C.5D.6.如图,圆O通过五边形OABCD的四个顶点.若=150°,∠A=75°,∠D=60°,则的度数为何?()A.25°B.40°C.50°D.60°7.如图,点A、B、C在⊙O上,若∠BOC=70°,则∠A的度数为()A.35°B.40°C.55°D.70°8.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,∠AOB=60°,点C是的中点,CD⊥AB,且CD=5m,则这段弯路所在圆的半径为()A.(20﹣10)m B.20m C.30m D.(20+10)m 9.如图,△OAC按顺时针方向旋转,点O在坐标原点上,OA边在x轴上,OA=8,AC=4,把△OAC绕点A按顺时针方向转到△O′AC′,使得点O′的坐标是(4,4)则在这次旋转过程中线段OC扫过部分(阴影部分)的面积为()A.8πB.πC.2πD.48π10.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.二.填空题11.如图,已知⊙O的两条弦AB、CD相交于点E,且E分AB所得线段比为1:3,若AB =4,DE﹣CE=2,则CD的长为.12.一个圆柱体的侧面积是188.4dm2,底面半径是2dm,它的高是dm.(π≈3.14)13.如图,在⊙O中,弦CD与直径AB相交于点P,∠ABC=65°.则∠CDB的大小等于.14.如图,O是△ABC的外心,∠ABC=42°,∠ACB=72°,则∠BOC=°.15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=5cm,则该圆锥的母线长l=12cm,扇形的圆心角θ=°.16.为了销售方便,售货员把啤酒捆成如图形状,如果捆一圈,接头不计,问至少用绳子厘米.17.如图,⊙O是ΔABC的外接圆,∠ABC=30°,AC=8,则优弧ABC的长为.18.如图,AB是⊙O的弦,半径OD⊥AB于点C,AE为直径,AB=8,CD=2,则线段CE 的长为.19.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=12cm,则球的半径为cm.20.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为.三.解答题21.如图,在⊙O中,若=,且AD=3,求CB的长度.22.已知,如图,四边形ABCD的顶点都在同一个圆上,且∠A:∠B:∠C=2:3:4.(1)求∠A、∠B的度数;(2)若D为的中点,AB=4,BC=3,求四边形ABCD的面积.23.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,求此扇形的面积.24.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2.(1)求证:△AEC≌△BED;(2)若∠C=75°,求∠AEB的度数;(3)若∠AEC=90°,当△AEC的外心在直线DE上时,CE=2,求AE的长.25.如图所示,圆柱的高4cm,底面半径3cm,请求出该圆柱的表面积和体积.26.如图,点A、B、C在⊙O上,AB=CB=9,AD∥BC,CD⊥AD,且AD=2.(1)求线段CD、AC的长;(2)求⊙O的半径.27.在Rt△ABC中,∠A=90°,∠B=22.5°,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D为线段BC延长线上一点,且点D到点A的距离也等于a.(1)求直线DA与图形W的公共点的个数;(2)过点A作AE⊥BD交图形W于点E,EP的延长线交AB于点F,当a=2时,求线段EF的长.参考答案与试题解析一.选择题1.解:A、长度相等的两条弧不一定是等弧,所以A选项错误;B、不共线的三点确定一个圆,所以B选项错误;C、同一条弦所对的两条弧不一定是等弧,所以C选项错误;D、半圆是弧,所以D选项正确.故选:D.2.解:∵⊙O的半径OA长1,若OB=,∴OA<OB,∴点B在圆外,故选:D.3.解:∵AB=AC,AD是∠BAC的平分线,∴BD=CD,AD⊥BC,∵EF是AC的垂直平分线,∴点O是△ABC外接圆的圆心,∵OA=3,∴△ABC外接圆的面积=πr2=π×32=9π.故选:D.4.解:∵四边形ABCD内接于⊙O,∠D=100°,∴∠ABC=180°﹣∠D=80°,∵CE⊥AB,∴∠ECB+∠ABC=90°,∴∠BCE=90°﹣80°=10°,∵在同圆或等圆中,圆周角是所对弧的圆心角的一半,∴∠BOE=2∠BCE=20°,故选:B.5.解:EC=AC﹣AE=,由相交弦定理得,AE•EC=DE•BE,则DE==,∴BD=DE+BE=,故选:B.6.解:连接OB、OC,∵OA=OB=OC=OD,∴△OAB、△OBC、△OCD,皆为等腰三角形,∵∠A=75°,∠D=60°,∴∠1=180°﹣2∠A=180°﹣2×75°=30°,∠2=180°﹣2∠D=180°﹣2×60°=60°,∵=150°,∴∠AOD=150°,∴∠3=∠AOD﹣∠1﹣∠2=150°﹣30°﹣60°=60°,则的度数为60°.故选:D.7.解:∵如图,∠BOC=70°,∴∠A=∠BOC=35°.故选:A.8.解:∵点O是这段弧所在圆的圆心,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB =OA =OB ,设AB =OB =OA =rm ,∵点C 是的中点,∴OC ⊥AB ,∴C ,D ,O 三点共线,∴AD =DB =rm ,在Rt △AOD 中,∴OD =r ,∵OD +CD =OC ,∴r +5=r ,解得:r =(20+10)m ,∴这段弯路的半径为(20+10)m 故选:D .9.解:过O ′作O ′M ⊥OA 于M ,则∠O ′MA =90°,∵点O ′的坐标是(4,4), ∴O ′M =4,OM =4, ∵AO =8,∴AM =8﹣4=4,∴tan ∠O ′AM ==, ∴∠O ′AM =60°,即旋转角为60°,∴∠CAC ′=∠OAO ′=60°,∵把△OAC 绕点A 按顺时针方向旋转到△O ′AC ′, ∴S △OAC =S △O ′AC ′,∴阴影部分的面积S =S扇形OAO ′+S △O ′AC ′﹣S △OAC ﹣S 扇形CAC ′=S 扇形OAO ′﹣S 扇形CAC ′=﹣=8π,故选:A .10.解:如图,连接DE,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=AB=4,∵D是BC中点,∴CD=BC=2,∵∠CAD=∠CBE,∴点A,点B,点D,点E四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=CD=,∴AE=AC﹣CE=3,故选:B.二.填空题11.解:∵E分AB所得线段比为1:3,AB=4,∴AE=1,EB=3,由相交弦定理得,AE•EB=CE•ED,∴1×3=CE×(CE+2),解得,CE1=1,CE2=﹣3(舍去),则CE=1,DE=2,∴CD=1+3=4,故答案为:4.12.解:∵底面半径是2dm,∴圆柱的底面周长为:4πdm,∵圆柱体的侧面积是188.4dm2,∴高为:188.4÷4π≈15dm,故答案为:15.13.解:∵AB为直径,∴∠ADB=90°,∵∠ADC=∠ABC=65°,∴∠CDB=90°﹣65°=25°.故答案为25°.14.解:∵∠ABC=42°,∠ACB=72°,∴∠BAC=180°﹣42°﹣72°=66°,∵O是△ABC的外心,∴以O为圆心,OB为半径的圆是△ABC的外接圆,∴∠BOC=2∠BAC=132°.故答案为132,15.解:根据题意得=2π•5,解得θ=150.故答案为150.16.解:如图所示:圆的直径为:7cm.则根据题意得:7×4+7π=28+7π≈49.98(cm)答:捆一圈至少用绳子49.98cm.17.解:如图,连接OA,OC.∵∠AOC=2∠ABC,∠ABC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=OC=AC=8,∴优弧ABC的长==,故答案为.18.解:连接BE,如图所示:∵OD⊥AB,AB=8,∴AC=AB=4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,由勾股定理得:r2=(r﹣2)2+42,解得:r=5,∴AE=2r=10;∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2,故答案为:2.19.解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=12,设OF=xcm,则ON=OF,∴OM=MN﹣ON=12﹣x,MF=6,在直角三角形OMF中,OM2+MF2=OF2即:(12﹣x)2+62=x2解得:x=7.5,故答案为:7.5.20.解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°﹣∠ACD=18°,故答案为:18°.三.解答题21.解:∵=,∴﹣=﹣,即=,∴CB=AD=3.22.解:(1)设∠A、∠B、∠C分别为2x、3x、4x,∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,即2x+4x=180°,解得,x=30°,∴∠A、∠B分别为60°、90°;(2)连接AC,∵∠B=90°,∴AC为圆的直径,AC==5,△ABC的面积=×3×4=6,∠D=90°,∵点D为的中点,∴AD=CD=AC=,∴△ADC的面积=××=,∴四边形ABCD的面积=6+=.23.解:连接AC,∵AB=CB,∠ABC=90°,∴AC是⊙O的直径,即AC=2,∴AB=BC=,∴扇形的面积为:=.24.证明:(1)∵∠ADE=∠1+∠DCE=∠2+∠BDE,且∠1=∠2,∴∠DCE=∠BDE,且∠A=∠B,AE=BE,∴△AEC≌△BED(AAS)(2)∵△AEC≌△BED,∴DE=EC,∠BED=∠AEC,∴∠EDC=∠C=75°,∴∠1=180°﹣2×75°=30°,∵∠BED=∠AEC,∴∠AEB=∠1=30°;(3)∵∠AEC=90°,∴△AEC的外心是斜边AC的中点,∵△AEC的外心在直线DE上,∴点D是AC的中点,∴AD=CD=DE,又∵DE=EC,∴CD=EC=DE,∴△ECD是等边三角形,∴∠C=60°,∴AE=EC=2.25.解:根据圆柱表面积的计算公式可得π×2×3×4+π×32×2=42π(cm2).体积π×32×4=36π(cm3)26.解:(1)作AE⊥BC于E,如图1所示:则AE=DC,EC=AD=2,∴BE=BC﹣EC=9﹣2=7,∴CD=AE===4,∴AC===6;(2)作BF⊥AC于F,连接OA,如图2所示:则AF=CF=AC=3,∴BF垂直平分AC,∴BF一定过圆心O,BF===6,设⊙O的半径为r,则OF=6﹣r,在Rt△OAF中,由勾股定理得:(6﹣r)2+32=r2,解得:r=,即⊙O的半径为.27.解:(1)直线DA与图形W的公共点的个数为1个;∵点P到点A,B的距离都等于a,∴点P为AB的中垂线与BC的交点,∵到点P的距离等于a的所有点组成图形W,∴图形W是以点P为圆心,a为半径的圆,根据题意补全图形如图所示,连接AP,∵∠B=22.5°,∴∠APD=45°,∵点D到点A的距离也等于a,∴DA=AP=a,∴∠D=∠APD=45°,∴∠PAD=90°,∴DA⊥PA,∴DA为⊙P的切线,∴直线DA与图形W的公共点的个数为1个;(2)∵AP=BP,∴∠BAP=∠B=22.5°,∵∠BAC=90°,∴∠PAC=∠PCA=67.5°,∴PA=PC=a,∴点C在⊙P上,∵AE⊥BD交图形W于点E,∴=,∴AC=CE,∴∠DPE=∠APD=45°,∴∠APE=90°,∵EP=AP=a=2,∴AE=,∠E=45°,∵∠B=22.5°,AE⊥BD,∴∠BAE=67.5°,∴∠AFE=∠BAE=67.5°.∴EF=AE=.。

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离: (3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长. 【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD=⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.4.如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在y 轴的正半轴上,点A 在x 轴的正半轴上,点C 的坐标为(0,8),将△ABC 沿直线AB 折叠,点C 落在x 轴的负半轴D (−4,0)处.(1)求直线AB 的解析式;(2)点P 从点A 出发以每秒5AB 方向运动,过点P 作PQ ⊥AB ,交x 轴于点Q ,PR ∥AC 交x 轴于点R ,设点P 运动时间为t (秒),线段QR 长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点N 是射线AB 上一点,以点N 为圆心,同时经过R 、Q 两点作⊙N ,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42, 解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k bb+==,解得:1{23kb=-=,故直线AB的解析式为:y=-12x+3;(2)如图所示:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则22135,tan2OBOB OA BAOOA+=∠==,255OAcos BAOAB∠==,在Rt△PQA中,905APQ AP t∠=︒=,则AQ=10cosAPtBAO=∠,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=12AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=1522QR t=,∴1115151022224NT AT AQ TQ t t t==-=-=()(),分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。

九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷一、选择题1、如果⊙O 的半径为6 cm ,OP =7cm ,那么点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 D .不能确定2、如图,在⊙O 中,AB =AC ,∠AOB=40°,则∠ADC 的度数是( )。

A .40° B .30° C .20° D .15°(第2题图) (第3题图) (第4题图) (第5题图) 3、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD=8,OP=3,则⊙O 的半径为() A .10 B .8 C .5 D .34、如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且弧DF=弧BC ,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A. 45°B. 50°C. 55°D. 60°5、如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C.若∠BAO =40°,则∠CBA 的度数为( )A. 15°B. 20°C. 25°D. 30°6、如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=8,BD=6,以AB 为直径作一个半圆,则图中阴影部分的面积为( )(第6题图) (第7题图)A .25π-6B .π-6C .π-6 D .π-67、如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D .过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )A .①②B .①②③C .①④D .①②④二、填空题8、如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D ,C ,E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是 。

初三圆单元测试题及答案

初三圆单元测试题及答案

初三圆单元测试题及答案一、选择题(每题2分,共10分)1. 半径为1的圆的周长是多少?A. 2πB. 3πC. 4πD. 6π2. 圆的内接四边形的对角线之间的关系是什么?A. 互相垂直B. 互相平行C. 互相平分D. 长度相等3. 圆的切线与半径在切点处的关系是什么?A. 垂直B. 平行C. 相交D. 重合4. 圆的面积公式是什么?A. πr²B. 2πrC. r²D. r³5. 圆心角、弧长、半径三者之间的关系是什么?A. 弧长 = 半径× 圆心角(弧度制)B. 弧长 = 半径× 圆心角(度制)C. 半径 = 弧长 / 圆心角(弧度制)D. 半径 = 弧长× 圆心角(弧度制)二、填空题(每题2分,共10分)6. 半径为2的圆的直径是________。

7. 圆的周长与直径的比值称为________。

8. 圆的内切角等于________度。

9. 圆的外切角等于________度。

10. 圆的切线与半径在切点处的关系是________。

三、计算题(每题5分,共20分)11. 已知圆的半径为3,求圆的周长和面积。

12. 已知圆心角为60°,半径为4,求对应的弧长。

13. 已知圆的周长为12π,求圆的半径。

14. 已知圆的面积为9π,求圆的半径。

四、解答题(每题10分,共20分)15. 证明:圆的内接四边形的对角线互相平分。

16. 已知点A、B、C是圆上的三点,且AB=AC,求证:点B、C关于圆心对称。

五、综合题(每题15分,共30分)17. 已知圆O的半径为5,点P在圆O上,PA、PB是点P到圆O的两条切线,PA=PB=8。

求切线PA、PB的长度。

18. 已知圆O的半径为6,点A在圆上,PA垂直于OA,PA=4。

求点A 到圆O的切线长。

答案:一、选择题1. C2. C3. A4. A5. A二、填空题6. 47. 圆周率8. 909. 6010. 垂直三、计算题11. 周长:6π,面积:9π12. 弧长:2π13. 半径:614. 半径:3四、解答题15. 略16. 略五、综合题17. 切线PA、PB的长度为:√(8² - 5²) = √(64 - 25) = √3918. 点A到圆O的切线长为:√(6² - 4²) = √(36 - 16) = 2√5结束语:本测试题旨在帮助学生巩固圆的基本概念、性质和计算方法,通过不同类型的题目,检验学生对圆单元知识的掌握程度。

初三圆单元测试题及答案

初三圆单元测试题及答案

初三圆单元测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的面积为()A. πr²B. 2πrC. πrD. 4πr²2. 圆的周长公式为()A. 2πrB. πrC. 2πr²D. πr²3. 圆的直径是半径的()A. 1倍B. 2倍C. 3倍D. 4倍4. 圆的切线垂直于()A. 半径B. 直径C. 弦D. 切点5. 圆的内接四边形的对角线()A. 相等B. 互补C. 垂直D. 平行6. 圆的外切四边形的对角线()A. 相等B. 互补C. 垂直D. 平行7. 圆的切线与半径的关系是()A. 垂直B. 平行C. 相交D. 重合8. 圆的弦中,最长的弦是()A. 直径B. 半径C. 切线D. 弦9. 圆的半径增加1倍,面积增加()A. 1倍B. 2倍C. 3倍D. 4倍10. 圆的半径减少1倍,面积减少()A. 1倍B. 2倍C. 3倍D. 4倍二、填空题(每题3分,共30分)1. 圆的周长公式为C=2πr,其中C表示______,r表示______。

2. 圆的面积公式为A=πr²,其中A表示______,r表示______。

3. 直径是圆的两个点之间的最长距离,它的计算公式为d=______。

4. 圆的切线与半径的关系是______。

5. 圆的内接四边形的对角线具有______的性质。

6. 圆的外切四边形的对角线具有______的性质。

7. 圆的切线与半径垂直,即切线与半径的夹角为______度。

8. 圆的弦中,直径是______的弦。

9. 圆的半径增加1倍,面积增加到原来的______倍。

10. 圆的半径减少1倍,面积减少到原来的______倍。

三、解答题(每题20分,共40分)1. 已知圆的半径为5cm,求该圆的周长和面积。

2. 已知圆的周长为31.4cm,求该圆的半径,并计算其面积。

答案:一、选择题1-5:A A B A B6-10:A B A A D二、填空题1. 周长,半径2. 面积,半径3. 2r4. 垂直5. 互补6. 垂直7. 908. 最长9. 410. 1/4三、解答题1. 周长:C=2πr=2×3.14×5=31.4cm;面积:A=πr²=3.14×5²=78.5cm²。

完整word版,初三数学圆测试题及答案,推荐文档

完整word版,初三数学圆测试题及答案,推荐文档

九年级上册圆单元测试选择题(本大题共10小题,每小题3分,共计30分)1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆在三角形的一条边上的三角形是直角三角形,其中真命题共有A. 0个B. 1个C. 2个D. 3个四边形 ABCD 内接于O 0,若它的一个外角/ DCE=70,则/ B0D=() 0的直径为10,弦AB 的长为8, M 是弦AB 上的动点,贝U 0M 勺长的取值范围()0的直径 AB 与弦CD 的延长线交于点 E ,若DE=0B / A0C=84,则/ E 等于()圆心角都是 90°的扇形0AB 与扇形0CD 叠放在一起,0A=3 0C=1分别连结 AC BD,则图个圆 2 .同一平面内两圆的半径是 R 和r ,圆心距是d ,若以R 、r 、d 为边长,能围成一个三角形,则这两A.外离 的位置关系是()B.相切C.相交D.内含 ③相等的圆心角所对的弦相等 ④外心3 .如图, A.35 B.704 .如图,OA.3 < 0MS 5B.4 < 0MC 5C.3 V 0M k 5D.4 V 0M V 55 ,OA.42B.28 6 .如图, ABC 内接于OA.2cmB.4cmC.6cm7 .如图, C.110°影部分的面积为()1—7TA. 28 .已知O O 与O O 2外切于点 A ,O 0的半径R=2,O Q 的半径r=1,若半径为4的O C 与O 0、O O 2都 相切,则满足条件的O C 有() A.2个B.4个C.5个D.6个9. 设O 0的半径为2,圆心0到直线〕的距离OP=m 且m 使得关于x 的方程--」;-丄 … --有实数根,则直线[与O 0的位置关系为() A.相离或相切B.相切或相交C.相离或相交D.无法确定10. 如图,把直角厶ABC 的斜边AC 放在定直线[上,按顺时针的方向在直线 [上转动两次,使它转到△ A 2B 2C 2的位置,设 AB=」-,BC=1,则顶点A 运动到点A 的位置时,点 A 所经过的路线为()、填空题(本大题共5小题,每小4分,共计20分)11. (山西)某圆柱形网球筒,其底面直径是 包10cm,长为80cm,将七个这样的网球筒如图所示放置并装侧面,则需 _________________ 旳‘的包装膜(不计接缝,朮取3).12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到 A 点时,同样乙已经被攻冲到 B 点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅中阴D.~:~25苗 ,12 2 ,A.B.C.--从射门角度考虑,应选择种射门方式13. 如果圆的内接正六边形的边长为 _________ 6cm,则其外接圆的半径为14. (北京)如图,直角坐标系中一条圆弧经过网格点AB、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_______________ .15•如图,两条互相垂直的弦将O 0分成四部分,相对的两部分面积之和分别记为S i、S2,若圆心到两弦的距离分别为2和3,则|S i-S2|= ___________三、解答题(16〜21题,每题7分,22题8分,共计50分)16.(丽水)为了探究三角形的内切圆半径r与周长'、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究• O 0是厶ABC的内切圆,切点分别为点 D E、F.(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长'和面积S.(结果精确到0.1厘米)AC BC AB r S图甲0.6图乙 1.0(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与■' > S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?.匚'「的一腰上工 为直径的O O 交底边于点丄•,交-二’于点二「, 连结-応,并过点匚作,垂足为三.根据以上条件写出三个正确结论(除-s :_..S7-_.iCS 外)是:18.(黄冈)如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面•问怎样才能截出直径最大的凳面,最大直径是多少厘米?圏乙17.(成都)如图,以等腰三角形19.(山西)如图是一纸杯,它的母线AC 和EF 延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB •经测量,纸杯上开口圆的直径是心角及这个纸杯的表面积(面积计算结果用 6cm,下底面直径为 4cm,母线长为洱表示)•EF=8cm 求扇形OAB 的圆EB20.如图,在△ ABC中,/ BCA =90°,以BC为直径的O O交AB于点P, Q是AC的中点•判断直线PQ 与OO的位置关系,并说明理由•21.(武汉)有这样一道习题: 如图1,已知0A 和0B 是O O 的半径,并且OAL OB P 是0A 上任一点(不 与 OA 重合),BP 的延长线交O O 于Q,过Q 点作O O 的切线交0A 的延长线于 R.说明:RP=RQ. 请探究下列变化: 变化一:交换题设与结论• 已知:如图1 , 0A 和 0B 是O 0的半径,并且 OAL OB P 是0A 上任一点(不与O A 重合),BP 的延长 线交O 0于Q, R 是0A 的延长线上一点,且 RP=RQ. 说明:RQ 为O O 的切线• 变化二:运动探求• (1) 如图2,若0A 向上平移,变化一中的结论还成立吗? (只需交待判断)答: (2) 如图3,如果P 在0A 的延长线上时,BP 交O 0于Q 过点Q 作O 0的切线交0A 的延长线于 R ,原 题中的结 论还成立吗?为什么? 22.(深圳南山区)如图,在平面直角坐标系中,矩形 ABC0的面积为15,边0A 比0C 大2.E 为BC 的中 点,以0E 为直径的O 0'交工'轴于D 点,过点D 作DF 丄AE 于点F. ⑴(2) (3) 占 八、、 求0A 0C 的长;求证:DF 为O 0'的切线; 小明在解答本题时,发现△ A0E 是等腰三角形•由此,他断定:“直线BC 上一定存在除点 E 以外的巳使厶AOP 也是等腰三角形,且点 P 一定在O 0'夕卜” •你同意他的看法吗?请充分说明理由、选择题1.B2.C3.D4.A5.B6.C7.C為二爲©LB +氓妙—“ULOG ~洱Q38.D 9.B 10.B、填空题11.12000 12.第二种 13.6cm 14.(2].4 d 7 2 , '丄等于e 的面积,即为4X 6=24)三、解答题略;(2)由图表信息猜测,得 2 ,并且对一般三角形都成立 .连接OA OB OC 运用面积法证明:…讥况十S 十 S 冷肚S 十非十討B 0尸 =ACAB}r = hrBD = DC ,(2)/ BAD / CAD (3)刃总是3 的切线(以及 ADL BC,弧 BD=M DG 等).的最大直径为25(-1)厘米.19. 扇形OAB 的圆心角为45°,纸杯的表面积为 44;丁 . 解:设扇形OAB 的圆心角为n °答案与解析:提示:易证得△ AOd A BOD,0) 15.24(提示:如图,由圆的对称性可知18.设计方案如左图所示,在右图中,易证四边形 OAO C 为正方形,OO +O' B=25,所以圆形凳面16.(1) 17.(1) 弧长AB 等于纸杯上开口圆周长:180OF弧长CD 等于纸杯下底面圆周长:130所以扇形OAB 的圆心角为45°, OF 等于16cm纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB 的面积-扇形OCD 的面积+纸杯底面积=-4JT20. 连接 OR CP 则/ OPC M OCP.由题意知厶ACR 是直角三角形,又 Q 是AC 的中点,因此 QP=QC / QPC 2 QCR. 而/ OCP y QCP=90,所以/ OPC 丄 QPC=90 即 OPL PQ PQ 与O O 相切. 21. 解:连接OQ•/ OQ=OB •••/ OBP=/ OQP又••• QR 为O O 的切线,• OQL QR 即/ OQP # PQR=90 而/ OBP # OPB=90 故/ PQR # OPB又•••/ OPB 与/ QPF 为对顶角 •••/ OPB # QPR PQR # QPR• RP=RQ变化一、连接OQ 证明OQL QR变化二、(1)结论成立(2)结论成立,连接OQ 矩形OABC 中,设OC=x 则OA=x+2依题意得…/ 1解得:■. 一' -_冷=7(不合题意,舍去)• OC=3 OA=55(2) 连结 O' D,在矩形 OABC 中,OC=AB # OCB # ABC=90 , CE=BE=••• △OCE^A ABE • EA=EO 「.# 1 = # 2在O O'中,•/ O ' O= O' D •••# 仁# 3•••# 3=# 2 • O' D// AE, •/ DF 丄 AE • DF 丄O' D又•••点 D 在O O'上,O' D 为O O'的半径,• DF 为O O'切线. (3) 不同意.理由如下:①当 AO=AP 寸,以点A 为圆心,以AO 为半径画弧交 BC 于 P 1和P 4两点过 P 1 点作 RH 丄 OA 于点 H, BH=OC=3 T AP=OA=5 • AH=4 • OH =1 求得点 R(1 , 3)同理可得:P 4(9 , 3)②当OA=OP 寸,同上可求得: P 2(4 , 3) , P s ( 4, 3)因此,在直线BC 上,除了 E 点外,既存在O O'内的点P 1,又存在O O 外的点P 2、P 3、P 4, 它们分别使△ AOP为等腰三角形.可列方程组 180N - OF .4L 1801 1 f 4 -X S TTK OA — 4-TF | - 即S 纸杯表面积=■- -2) 1 1(4=—(8 + 16)- -X 4TTX 16 + TT -2 2 证明# B=# OQB 则# P=# PQR 所以 RQ=PR. 22.(1)在。

人教版数学九年级上册《圆》单元测试题(含答案)

人教版数学九年级上册《圆》单元测试题(含答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(每小题只有一个正确选项,把正确选项的代号填在题后的括号内,本大题共8小题,每小题3分,共24分)1.有4个命题:①直径相等的两圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧,其中真命题是【 】A .①③ B .①③④ C .①④ D .①2.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 【 】 A .3 B .5 C .15 D .173.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于 【 】 A .116° B .32° C .58° D .64°4.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 【 】 A .相离 B .相切 C .相交 D .无法判断5.△ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是 【 】A .80°B .160°C .100°D .80°或100°6.△ABC 中,内切圆I 和边BC 、CA 、AB 分别切于点D 、E 、F ,则∠FDE 与∠A 的关系是A .∠FDE 与21∠A 相等 B .∠FDE 与21∠A 互补 【 】 C .∠FDE 与21∠A 互余 D .无法确定7.如图,圆O 与正方形ABCD 的两边AB 、AD 分别相切于点M 、N ,且DE 与圆O 相切于 E 点.若圆O 的半径为5,且AB =11,则DE 的长度是 【 】 A .5B .6C .D .(第2题)8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为 【 】 A . B . C .D . 32二、填空题(本大题共6小题,每小题3分,共18分)9.如图,AB 是半圆的直径,点D 是AC 的中点,∠ABC =50°,则∠DAB = .10.如图,△ABC 放置在平面直角坐标系中,其中A (3,0),B (2,1),C (2,-3),则这个三角形的外心坐标是__ __.11.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(﹣3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为 . 12.正六边形的外接圆与内切圆的半径之比为 .13.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的 格点上,将△ABC 绕点B 逆时针旋转到△A ′BC ′的位置,且点A ′、C ′仍落在格点上,则图中阴影部分的面积是 .(结果保留π)14.平面内有四个点A 、O 、B 、C ,其中∠AOB =120°,∠ACB =60°,AO =BO =2,则满足 题意的OC 长度为整数的值可以是 .三、(本大题共2小题,每小题6分,共12分)15. 如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC =BD .求证:OC =OD .(第15题)(第9题)(第10题)(第8题)(第7题)(第13题)16.如图,△ABC 内接于⊙O ,BD 为⊙O 的直径,∠BAC =120°,AB =AC , AD =6,求DC 的长.四、(本大题共2小题,每小题7分,共14分)17.如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD . (1) 求证:BD CD =;(2) 小明说:“B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.” 你认为小明的说法正确吗?请说明理由.18.如图,⊙O 的直径AB =10,C 、D 是圆上的两点,且.设过点D 的切线ED 交AC的延长线于点F .连接OC 交AD 于点G . (1)求证:DF ⊥AF . (2)求OG 的长.五、(本大题共2小题,每小题8分,共16分) 19.如图,ABC △是O 的内接三角形,点C 是优弧AB 上一点(点C 不与A B ,重合),设OAB α∠=,C β∠=.(1)当35α=时,求β的度数;(2)猜想α与β之间的关系,并给予证明.20.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD , 且∠CDB =∠OBD =30°,DB =cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)CBAO(第19题)(第16题)ABCEFD(第17题)(第18题)(第20题)六、填空题(本大题共2小题,每小题8分,共16分)21.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.(第21题)22.如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD 上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.(第22题)参考答案一、1.A 2.B 3.B 4.C 5.D 6.C 7.B 8.A二、9. 650; 10. (-2,-1); 11. 1或5 ; 12.23: ; 13.1334-π ; 14.2或3或4 三、15.证明:方法一.如图,连结OA ,OB ,∵∠OCD =∠ODC∴∠OCA =∠ODB 又∵OA =OB ∴∠OAC =∠OBD∴△AOC ≌△BOD (SAS ) ∴AC =BD方法二.如图,过O 作OE ⊥AB 于点E ,∵OE ⊥AB ∴EA =EB∵∠OCD =∠ODC ∴OC =OD∴CE =DE ∴AC =BD 16.解:∵BD 为⊙O 的直径,∴∠BAD =∠BCD =90°,∵∠BAC =120°,∴∠CAD =120°﹣90°=30°, ∴∠CBD =∠CAD =30°, 又∵∠BAC =120°,∴∠BDC =180°﹣∠BAC =180°﹣120°=60°, ∵AB =AC ,∴∠ADB =∠ADC ,∴∠ADB =∠BDC =×60°=30°,∵AD =6,∴在Rt △ABD 中,BD =AD ÷cos60°=6÷=4,在Rt △BCD 中,DC =BD =×4=2.四、17.(1)证明:∵AD 为直径,AD BC ⊥,∴BD CD =.∴BD CD =.(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =由(1)知:BD CD =.∴DB DE DC ==.∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 18.解:(1)连接OD ,∵,OBAC DOBAC DE∴∠CAD =∠DAO =∠ODA =30°,∠ABD =60°, ∵ED 是⊙O 的切线∴∠ODF =90°∴∠ADF =60°,∴∠CAD +∠ADF =90°, ∴∠AFD =90°∴DF ⊥AF .(2)连结BD ,在Rt △ABD 中,∠BAD =30°,AB =10, ∴BD =5, ∵=,∴OG 垂直平分AD ,∴OG 是△ABD 的中位线, ∴OG =BD =.五、19.(1)解:连接OB ,则OA OB =,35OBA OAB ∴∠=∠=.180110AOB OAB OBA ∴∠=-∠-∠=. 1552C AOB β∴=∠=∠=.(2)答:α与β之间的关系是90αβ+=. 连接OB ,则OAOB =.OBA OAB α∴∠=∠=.1802AOB α∴∠=-.11(1802)9022C AOB βαα∴=∠=∠=-=-.90αβ+=.20.(1)证明:连结OC ,OD ,根据圆周角定理得:∠COB =2∠CDB =2×30°=60°, ∵AC ∥BD ,∴∠A =∠OBD =30°,∴∠OCA =180°﹣30°﹣60°=90°,即OC ⊥AC , ∵OC 为半径,∴AC 是⊙O 的切线;(2)解:∵AC 为⊙O 的切线,∴OC ⊥AC . ∵AC ∥BD , ∴OC ⊥BD .由垂径定理可知,MD =MB =BD =.在Rt △OBM 中,∠COB =60°,OB ===6.在△CDM 与△OBM 中,第20题∴△CDM ≌△OBM ∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC ==6πcm 2.六、21.解:(1)证明:在△AEB 和△DEC 中,∴△AEB ≌△DEC (ASA ),∴EB=EC ,又∵BC=CE ,∴BE=CE=BC ,∴△EBC 为等边三角形,∴∠ACB =60°; (2)解:∵OF ⊥AC ,∴AF=CF ,∵△EBC 为等边三角形,∴∠GEF =60°, ∴∠EGF =30°, ∵EG =2,∴EF =1,又∵AE=ED =3,∴CF=AF =4, ∴AC =8,EC =5,∴BC =5,作BM ⊥AC 于点M ,∵∠BCM =60°, ∴∠MBC =30°, ∴CM =52,BM =22532BC CM -=,∴AM =AC ﹣CM =112, ∴AB =227AM BM +=.(1)根据题意,当AP =DQ 时,四边形APQD 为矩形.此时,4t =20﹣t ,解得t =4(s ).答:t 为4时,四边形APQD 为矩形; (2)当PQ =4时,⊙P 与⊙Q 外切.①如果点P 在AB 上运动.只有当四边形APQD 为矩形时,⊙P 与⊙Q 外切. PQ=4.由(1),得t =4(s );②如果点P 在BC 上运动.此时t ≥5,则CQ ≥5,PQ ≥CQ ≥5>4, ∴⊙P 与⊙Q 外离;③如果点P 在CD 上运动,且点P 在点Q 的右侧.可得CQ =t ,CP =4t ﹣24.当CQ ﹣CP =4时,⊙P 与⊙Q 外切.此时,t ﹣(4t ﹣24)=4,解得;④如果点P 在CD 上运动,且点P 在点Q 的左侧.当CP ﹣CQ =4时,⊙P 与⊙Q 外切. 此时,4t ﹣24﹣t =4,解得,∵点P 从A 开始沿折线A ﹣B ﹣C ﹣D 移动到D 需要11s , 点Q 从C 开始沿CD 边移动到D 需要20s ,而,∴当t为4s,,时,⊙P与⊙Q外切.22.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°.即PN与⊙O相切.(2)成立.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.在Rt△AOM中,∴∠OMA+∠OAM=90°,∴∠PNM+∠ONA=90°.∴∠PNO=180°﹣90°=90°.即PN与⊙O相切.(3)解:连接ON,由(2)可知∠ONP=90°.∵∠AMO=15°,PM=PN,∴∠PNM=15°,∠OPN=30°,∵∠PON=60°,∠AON=30°.作NE⊥OD,垂足为点E,则NE=ON•sin60°=1×=.S阴影=S△AOC+S扇形AON﹣S△CON=OC•OA+CO•NE =×1×1+π﹣×1×=+π﹣.。

圆单元测试题及答案初三

圆单元测试题及答案初三

圆单元测试题及答案初三一、选择题(每题3分,共30分)1. 圆的周长公式为:A. C=2πrB. C=πdC. C=2πdD. C=πr²答案:A2. 圆的面积公式为:A. A=πr²B. A=2πrC. A=πd²D. A=πd答案:A3. 圆的半径扩大2倍,面积扩大:A. 2倍B. 4倍C. 6倍D. 8倍答案:B4. 圆的直径扩大3倍,周长扩大:A. 3倍B. 6倍C. 9倍D. 12倍5. 圆的半径扩大到原来的4倍,周长扩大:A. 4倍B. 8倍C. 16倍D. 32倍答案:A6. 圆心角为90°的扇形面积是整个圆面积的:A. 1/4B. 1/3C. 1/2D. 2/3答案:A7. 一个圆的半径为5cm,那么这个圆的直径是:A. 2.5cmB. 5cmC. 10cmD. 15cm答案:C8. 一个圆的周长为12.56cm,那么这个圆的半径是:A. 2cmB. 3cmC. 4cmD. 5cm答案:B9. 一个圆的直径为10cm,那么这个圆的周长是:B. 31.4dmC. 31.4mD. 31.4km答案:A10. 一个圆的半径为3cm,那么这个圆的面积是:A. 28.26cm²B. 28.26dm²C. 28.26m²D. 28.26km²答案:A二、填空题(每题2分,共20分)11. 如果一个圆的半径为r,那么它的直径是__2r__。

12. 一个圆的周长为6.28cm,那么它的半径是__1cm__。

13. 一个圆的面积为12.56cm²,那么它的半径是__2cm__。

14. 圆的周长和直径的比值,叫做圆周率,用字母__π__表示。

15. 一个圆的周长为31.4cm,那么它的直径是__10cm__。

16. 圆的面积公式为__A=πr²__。

17. 一个圆的半径为4cm,那么它的周长是__25.12cm__。

九年级数学上册《第二十四章 圆》单元测试卷带答案(人教版)精选全文

九年级数学上册《第二十四章 圆》单元测试卷带答案(人教版)精选全文

可编辑修改精选全文完整版九年级数学上册《第二十四章圆》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.如L是⊙O的切线,要判定AB⊥L,还需要添加的条件是()A.AB经过圆心O B.AB是直径C.AB是直径,B是切点D.AB是直线,B是切点2.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25∘,则∠BOD的度数是()A.25∘B.30∘C.40∘D.50∘3.如图,⊙O的半径OD垂直于弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为()A.2√15B.8C.2√10D.2√134.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO.则图中阴影部分的面积之和()A.10−32πB.14−52πC.12 D.145.如图,点A,B,C在⊙O上,若∠BOC=72∘,则∠BAC的度数是( )A.72∘B.36∘C.18∘D.54∘6.如图,在半径为5的⊙O中AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A.3B.4C.3√2D.4√27.如图,已知OB为⊙C的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为( )A.3cm B.6cm C.12cm D.24cm8.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(−1,2),则点Q的坐标是( )A.(−4,2)B.(−4.5,2)C.(−5,2)D.(−5.5,2)二、填空题9.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120∘,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为.(结果保留π)10.在半径为3cm的圆中,120∘的圆心角所对的弧长等于.11.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50∘,则∠AOD=.12.如图所示,点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP= 4,PB=2则PC的长为.13.如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9则⊙O的半径是.三、解答题14.已知:点I是△ABC的内心,AI的延长线交外接圆于D.则DB与DI相等吗?为什么?15.如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.16.如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.17.如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1)求证:∠A=∠AEB;(2)如果DC⊥OE,求证:△ABE是等边三角形.18.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC.(2)若PC=2 √5,求⊙O的半径.参考答案1.C2.A3.C4.B5. B6. C7. C8. A9. 350πcm210. 2πcm11. 80°12. 2√213. 514.解:ID=BD.理由:如图所示:连接BI.由三角形的外角的性质可知:∠1+∠2=∠BIA.∵点I是△ABC的内心∴∠1=∠4,∠2=∠3.又∵∠4=∠5∴∠1+∠2=∠3+∠4=∠3+∠5,即∠BIA=∠IBD.∴ID=BD.15.证明:∵∠DAE是⊙O的内接四边形ABCD的一个外角,∴∠DAE=∠DCB,又∠DAE=∠DAC,∴∠DCB=∠DAC,又∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC16.解:如图,连接OD∵OD=OA∴∠ODA=∠DAB=30°∴∠DOB=∠ODA+∠DAB=60°∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°即OD⊥BD∴直线BD与⊙O相切.17.(1)证明:∵四边形ABCD是⊙O的内接四边形∴∠A=∠DCE∵DC=DE∴∠DCE=∠DEC∴∠A=∠AEB(2)证明:∵DC⊥OE∴DF=CF∴OE是CD的垂直平分线∴ED=EC,又DE=DC∴△DEC为等边三角形∴∠AEB=60°,又∠A=∠AEB∴△ABE是等边三角形.18.(1)证明:连接OB∵OB=OP∴∠OPB=∠OBP∵∠OPB=∠APC∴∠OBP=∠APC∵AB与⊙O相切于点B∴OB⊥AB∴∠ABO=90°∴∠ABP+∠OBP=90°∵OA⊥AC∴∠OAC=90°∴∠ACB+∠APC=90°∴∠ABP=∠ACB∴AB=AC(2)证明:设⊙O的半径为r在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2 在Rt△ACP中,AC2=PC2﹣PA2AC2=(2 √5)2﹣(5﹣r)2∵AB=AC∴52﹣r2=(2 √5)2﹣(5﹣r)2 解得:r=3则⊙O的半径为3。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知与的半径分别为和3,若两圆相交,则两圆的圆心距满足( )A .B .C .D .2.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .73.如图,AB 为O 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )A . 070B . 035C . 030D .20︒4.在同圆中,CD 的度数小于180︒,且2AB CD =,那么弦AB 和弦CD 的大小关系为( )A .AB CD > B .AB CD =C .AB CD < D .无法确定5.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A .115︒B .105︒C .100︒D .95︒ 6.Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm 长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是1O 2O 2m 5m =1m =5m >15m <<EDC BA( )A .0个B .l 个C .2个D .3个7.在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )A .B .cmC .cmD .cm8.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则ABE 面积的最小值是A .2B .1C .D .9.在圆柱形油槽内装有一些油.截面如图所示,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽度为8分米,圆柱形油槽直径MN 为( ) A .6分米 B .8分米 C .10 分米 D .12 分米10.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=4,则⊙O 的直径等于( )Rt ABC △90C ∠=︒4BC cm =3AC cm =ABC △A 90︒11AB C △B 54π52π5π△22-2A.B. C. D .7 二 、填空题(本大题共5小题,每小题3分,共15分)11.已知1O ⊙与2O ⊙半径的长是方程27120x x -+=的两根,且1212O O =,则1O ⊙与2O ⊙的位置关系是___________.12.在Rt △ABC 中,∠C=90°,AC=3,BC=4,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .13.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.14.如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 cm 2.(结果保留π)15.已知正六边形的边心距为,则它的周长是 .三 、解答题(本大题共7小题,共55分)16.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;B(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.17.如图⊙O 半径为2,弦BD =,A 为弧BD 的中点,E 为弦AC 的中点,且在BD上。

初三圆单元测试题及答案

初三圆单元测试题及答案

初三圆单元测试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()。

A. 圆的直径是半径的2倍B. 圆的周长与直径的比值是一个常数πC. 圆心到圆上任意一点的距离都相等D. 圆的面积与半径的平方成正比2. 圆的面积公式是()。

A. S = πrB. S = πr²C. S = 2πrD. S = πr/23. 圆的周长公式是()。

A. C = 2πrB. C = πdC. C = 2πRD. C = πr + d4. 如果一个圆的半径是5cm,那么它的直径是()。

A. 10cmB. 5cmC. 2.5cmD. 15cm5. 一个圆的半径增加一倍,它的面积增加()。

A. 2倍B. 4倍C. 8倍D. 16倍6. 圆周率π的近似值是()。

A. 2.14B. 3.14C. 3.14159D. 3.141592657. 圆的内接四边形的对角线()。

A. 相等B. 垂直C. 互相平分D. 互相垂直8. 一个圆的周长是62.8cm,那么它的半径是()。

A. 10cmB. 5cmC. 20cmD. 15cm9. 圆的内接三角形的特点是()。

A. 至少有一个角是直角B. 至少有一个角是钝角C. 至少有一个角是锐角D. 所有角都是直角10. 圆的外切三角形的特点是()。

A. 至少有一个角是直角B. 至少有一个角是钝角C. 至少有一个角是锐角D. 所有角都是直角二、填空题(每题3分,共30分)1. 圆的直径是半径的________倍。

2. 圆的周长公式为C = _________。

3. 圆的面积公式为S = _________。

4. 如果圆的半径是3cm,那么它的周长是_________cm。

5. 圆的周长与直径的比值是圆周率,用符号________表示。

6. 圆的内接三角形的对边是圆的________。

7. 圆的外切三角形的对边是圆的________。

8. 圆的内接四边形的对角线互相________。

初三圆单元测试卷(含答案)(K12教育文档)

初三圆单元测试卷(含答案)(K12教育文档)

(直打版)初三圆单元测试卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)初三圆单元测试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)初三圆单元测试卷(含答案)(word版可编辑修改)的全部内容。

圆单元测试卷一、选择1。

下列命题中正确的有( )个(1) 平分弦的直径垂直于弦(2)经过半径一端且与这条半径垂直的直线是圆的切线(3)在同圆或等圆中,圆周角等于圆心角的一半 (4)平面内三点确定一个圆(5)三角形的外心到各个顶点的距离相等(A) 1个 (B ) 2个 (C ) 3个 (D ) 4个 2。

如图,直线PA PB ,是O 的两条切线,A B ,分别为切点,120APB =︒∠,10OP = 厘米,则弦AB 的长为( )A .53厘米B .5厘米C .103厘米D .53厘米 3。

小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是( )4。

已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( )A .310 B .512C .2D .3 5.若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,则该铅球的直径约为( ) A 。

10 cmB 。

14。

5 cm C. 19。

5 cm D 。

20 cmABP O6。

如图9,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B内切,那么⊙A由图示位置需向右平移_______个单位长.7。

圆单元测试题及答案初三

圆单元测试题及答案初三

圆单元测试题及答案初三一、选择题(每题3分,共30分)1. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πrD. C = 2r2. 圆的面积公式是()A. S = πr²B. S = 2πrC. S = πdD. S = 2r²3. 圆内接四边形的对角线()A. 相等B. 互补C. 垂直D. 平行4. 圆的直径是半径的()A. 2倍B. 4倍C. 1/2倍D. 1/4倍5. 圆心角为90°的扇形的面积是()A. πr²/4B. πr²/2C. πr²D. 2πr²6. 圆的半径增加一倍,则面积增加()A. 1倍B. 2倍C. 4倍D. 8倍7. 圆的周长与直径的比值是()A. πB. 2C. 1/2D. 2π8. 圆的半径是直径的()A. 1/2B. 2C. 1/4D. 49. 圆的切线与半径的关系是()A. 垂直B. 平行C. 相交D. 重合10. 圆的内接三角形的角平分线是()A. 垂直平分线B. 角平分线C. 切线D. 弦二、填空题(每题3分,共30分)1. 圆的周长公式为C = _______。

2. 圆的面积公式为S = _______。

3. 圆内接四边形的对角线互相________。

4. 圆的直径是半径的________倍。

5. 圆心角为90°的扇形面积是圆面积的________。

6. 圆的半径增加一倍,则面积增加________倍。

7. 圆的周长与直径的比值为________。

8. 圆的半径是直径的________倍。

9. 圆的切线与半径的关系是________。

10. 圆的内接三角形的角平分线是________。

三、解答题(每题10分,共40分)1. 已知圆的半径为5厘米,求圆的周长和面积。

2. 一个圆内接三角形的边长分别为3厘米、4厘米和5厘米,求圆的半径。

3. 一个圆的直径为10厘米,求圆的周长和面积。

(人教版)九年级上册数学《圆》单元测验题(附解析答案)

(人教版)九年级上册数学《圆》单元测验题(附解析答案)

九年级数学(人教版)上学期《圆》单元试卷内容:24.1 满分:100分一、选择题(本大题共10小题,每小题4分,共40分) 1.⊙O 中,直径AB =a , 弦CD =b,,则a 与b 大小为( B )A .a >bB .a ≥bC .a <bD . a ≤b 2.下列语句中不正确的有( A )①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴; ④半圆是弧。

A .1个 B.2个C .3个 D.4个3.已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的 点有( C ) A .1个B .2个C .3个D .4个4.如图,已知⊙O 的半径为5,弦AB=6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.55.如图,,已知AB 是⊙O 的直径,∠BOC=400,那么∠AOE=( B )A.400B. 600C.800D.12006.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则等于( C ) A .60° B .90° C .120° D .150°(第4题) (第5题) (第6题)7.已知⊙O 的半径是5cm ,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 与CD 的距离是( C ) A .1 cm B .7 cm C.1 cm 或7 cm D.无法确定_ O_ E_ D_ C_ B_ A8.如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是( C ) A .30︒B .45︒C .60︒D .80︒9.如图,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是( A ) A .30ºB .60ºC .45ºD .75º10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该 半圆的半径为( C )A.(4+ cm B .9 cm C..(第8题) (第9题) (第10题)二、填空题(本大题共4小题,每小题3分,共12分)11.如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 6 cm 。

九年级数学-圆-单元测试题(含答案)

九年级数学-圆-单元测试题(含答案)

龙场中学九年级《圆》单元测试题姓名班级分数一、选择题(每题3分,共30分)1.P为⊙O 内与O不重合的一点,则下列说法正确的是( ) A.点P 到⊙O 上任一点的距离都小于⊙O 的半径 B.⊙O 上有两点到点P 的距离等于⊙O 的半径 C.⊙O 上有两点到点P 的距离最小 D .⊙O 上有两点到点P的距离最大2.若⊙A的半径为5,点A 的坐标为(3,4),点P 的坐标为(5,8),则点P 的位置为( )A .在⊙A 内ﻩ ﻩB .在⊙A 上ﻩC.在⊙A 外ﻩ ﻩD.不确定3.半径为R的圆中,垂直平分半径的弦长等于( ) A.43R ﻩﻩB .23RﻩﻩﻩC .3R ﻩ D.23R4.已知:如图,⊙O 的直径CD 垂直于弦AB,垂足为P ,且A P=4cm,PD=2c m,则⊙O 的半径为( )A .4cmﻩﻩﻩB.5cmﻩC .42c mﻩﻩﻩD .23cm5.下列说法正确的是( ) A .顶点在圆上的角是圆周角 B.两边都和圆相交的角是圆周角 C .圆心角是圆周角的2倍D .圆周角度数等于它所对圆心角度数的一半6.如图,四边形ABCD 内接于⊙O ,若它的一个外角∠DC E=70°,则∠BOD =( )A.35° B.70° C.110° D.140° ﻫ第6题 第7题 第8题7.如图,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围( )A.3≤OM≤5B.4≤OM≤5 C .3<OM <5 D.4<OM<5ﻫ 8 .如图,⊙O的直径AB 与弦CD 的延长线交于点E ,若DE=OB , ∠AO C=84°,则∠E等于( )A .42 ° B.28° C.21° D.20°ﻫ下列说法错误的是( )A.等弧所对圆周角相等 B.同弧所对圆周角相等C.同圆中,相等的圆周角所对弧也相等. D.同圆中,等弦所对的圆周角相等 9.⊙O 内最长弦长为m,直线ι与⊙O 相离,设点O 到ι的距离为d ,则d 与m 的关系是( )A.d =m ﻩB.d>m ﻩﻩC .d>2mﻩ D .d<2m 10.一个扇形的弧长为厘米,面积是厘米2,则扇形的圆心角是( )A. 120°B. 150°C. 210°D. 240°ﻫ 二、填空题(每题3分,共30分)11.一点和⊙O 上的最近点距离为4c m,最远距离为9cm,则这个圆的半径 是 c m.12.A B为圆O 的直径,弦CD ⊥AB 于E,且CD =6cm,OE=4cm ,则AB= . 13.半径为5的⊙O 内有一点P,且OP=4,则过点P 的最短的弦长是 ,最长的弦长是 .14.如图,A 、B 、C是⊙O上三点,∠BAC 的平分线A M交BC 于点D,交⊙O 于点M.若∠BAC=60°,∠A BC=50°,则∠CB M= ﻩ,∠AM B=ﻩ ﻩ.15.⊙O 中,若弦A B长22cm,弦心距为2cm ,则此弦所对的圆周角等于 . 16.⊙O 的半径为6,⊙O 的一条弦AB 为63,以3为半径的同心圆与直线AB 的位置关系是 .17.已知一条弧的长是3 厘米, 这条弧所在圆的半径是6 厘米,则这条弧所对的圆心角是 度。

九年级上册数学《圆》单元测试卷(附答案)

九年级上册数学《圆》单元测试卷(附答案)
16.已知一条圆弧所在圆的半径为9,弧长为 π,则这条弧所对的圆心角是.
17.如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.
18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是 中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).
又∵∠AOD=30°,r=1cm
∴在△OEP1中OP1=2PE=2×1=2cm
又∵OP=6cm
∴P1P=6-2=4cm
∴圆P到达圆P1需要时间为:4÷1=4(s),
同理,当圆P在直线CD的右侧时,所需的时间为(6+2)÷1=8(s).
综上可知:P与直线CD相切时,时间为4s或8s,
故选D.
点睛:P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在P1,P2两点.当P在P1点时,根据切线的性质,在直角△O P1E中,由30°的角所对的直角边等于斜边的一半,即可求得O P1的长,进而求得P P1的长,从而求得由P到P1移动的时间;根据O P2=O P1,即可求得P P2,也可以求得求得由P到P2移动的时间.
4.如图,在⊙O中, = ,∠AOB=40°,则∠ADC的度数是()
A 40°B. 30°C. 20°D. 15°
【答案】C
【解析】
【详解】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.
解:∵在⊙O中, = ,
∴∠AOC=∠AOB,
∵∠AOB=40°,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆单元测试卷
(总分:120 分时间:120 分钟)
一、填空题(每题 3 分,共 30 分)
1.如图1 所示AB 是⊙O的弦,OC⊥AB于C,若OA=2cm,OC=1cm,则AB 长为.
图1 图2 图 3
2.如图2 所示,⊙O的直径CD 过弦EF 中点G,∠EOD=40°,则∠DCF=.
3.如图 3 所示,点 M,N 分别是正八边形相邻两边 AB,BC 上的点,且 AM=BN,则
∠MON=度.
4.如果半径分别为2 和3 的两个圆外切,那么这两个圆的圆心距是.
5.如图4 所示,宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆
两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为cm.
图4 图5 图6
6.如图5 所示,⊙A的圆心坐标为(0,4),若⊙A的半径为3,则直线y=x 与⊙A 的位置
关系是.
7.如图6 所示,O 是△ABC的内心,∠BOC=100°,则∠A=.
8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为.(用含的式子表
示)
9.已知圆锥的底面半径为 40cm,母线长为 90cm,则它的侧面展开图的圆心角为

41 2
2
10. 矩形 ABCD 中,AB=5,BC=12,如果分别以 A ,C 为圆心的两圆相切,点 D 在⊙C 内,点B
在⊙C 外,那么⊙A 的半径 r 的取值范围为 .
二、选择题(每题 4 分,共 40 分)
11. 如图 7 所示,AB 是直径,点 E 是 AB 中点,弦 CD∥AB 且平分 OE ,连 AD ,∠BAD 度数为
( )
A .45°
B .30°
C .15°
D .10°
图 7 图 8 图 9
12.下列命题中,真命题是( )
A .圆周角等于圆心角的一半
B .等弧所对的圆周角相等
C .垂直于半径的直线是圆的切线
D .过弦的中点的直线必经过圆心
13.(易错题)半径分别为 5 和 8 的两个圆的圆心距为 d ,若 3<d≤13, 则这两个圆的位置关系一定是( ) A .相交
B .相切
C .内切或相交
D .外切或相交
14. 过⊙O 内一点 M 的最长弦长为 10cm ,最短弦长为 8cm ,那么 OM 长为( )
A .3cm
B .6cm
C . cm
D .9cm
15. 半径相等的圆的内接正三角形,正方形边长之比为( )
A .1:
B .:
C .3:2
D .1:2
16. 如图 8,已知⊙O 的直径 AB 与弦 AC 的夹角为 35°,过 C 点的切线 PC 与 AB 的延长线
交于点 P ,则∠P 等于( ) A .15°
B .20°
C .25°
D .30°
17. 如图 9 所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为 1,P 为 x 轴上
一动点,PQ 切⊙A 于点 Q ,则当 PQ 最小时,P 点的坐标为( ) A .(-4,0)
B .(-2,0)
C .(-4,0)或(-2,0)
D .(-3,0)
18.在半径为 3 的圆中,150°的圆心角所对的弧长是( )
2
3
A . 15
4
B . 15
2
C .
5
4
D .
5
2
19. 如图 10 所示,AE 切⊙D 于点 E ,AC=CD=DB=10,则线段 AE 的长为( )
A .10
B .15
C .10
D .20
20. 如图 11 所示,在同心圆中,两圆半径分别是 2 和 1,∠AOB=120°, 则阴影部分的面
积为( )
A. 4
B. 2
C.
3
4
D.
三、解答题(共 50 分)
21.(8 分)如图所示,CE 是⊙O 的直径,弦 AB⊥CE 于 D ,若 CD=2,AB=6,求⊙O 半径的
长.
22.(8 分)如图所示,AB 是⊙O 的直径,BC 切⊙O 于 B ,AC 交⊙O 于 P ,E 是 BC 边上的中点,连结 PE ,PE 与⊙O 相切吗?若相切,请加以证明,若不相切,请说明理由.
23.(12 分)已知:如图所示,直线 PA 交⊙O 于 A ,E 两点,PA 的垂线 DC 切⊙O 于点 C ,
过 A 点作⊙O 的直径 AB .
(1)求证:AC 平分∠DAB;(2)若 AC=4,DA=2,求⊙O 的直径.
3
24.(12 分)“五一”节,小雯和同学一起到游乐场玩大型摩天轮, 摩天轮的半径为 20m ,
匀速转动一周需要 12min ,小雯所坐最底部的车厢(离地面 0.5m ). (1)经过 2min 后小雯到达点 Q 如图所示,此时他离地面的高度是多少.
(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于 30.5m 的空中.
25.(10 分)如图所示,⊙O 半径为 2,弦 BD=2 ,A 为弧 BD 的中点,E 为弦 AC 的中点,
且在 BD 上,求四边形 ABCD 的面积.
3 3 3 3 3
答案:
13 1.2 cm 2.20° 3.45 4.5 5. 6.相交
4
7.20° 8.40cm 2
9.160° 10.1<r<8 或 18<r<25
11.C 12.B 13.D 14.A 15.B 16.B 17.D 18.D 19.C 20.B
1
21. 解:连接 OA ,∵CE 是直径,AB⊥CE,∴AD= AB=3.
2
∵CD=2,∴OD=OC-CD=OA-2.由勾股定理,得 OA 2-OD 2=AD 2, ∴OA 2-(OA-2)2=92,解得 OA=
13
,∴⊙O 的半径等于
13 .
4
4
22. 解:相切,证 OP⊥PE 即可.
23. 解:(1)连 BE ,BC ,∠CAB+∠ABC=90°,∠DCA=∠ABC,
∴∠DAC,∠CAB,AC 平分∠DAB.
(2)DA=2,AC=4,∠ACD=30°,∠ABC=∠DCA=30°,∵AC=4,∴AB=8. 1
24.(1)10.5 (2) ×12=4(min ).
3
25.解:连结 OA 交 BD 于点 F ,连接 OB .∵OA 在直径上且点 A 是 BD 中点,
∴OA ⊥BD ,•BF=DF= .
在 Rt △BOF 中,由勾股定理得 OF 2=OB 2-BF 2,
OF= =1. OA = 2,∴ AF = 1,∴ S
∆ABD =
2 3 ⨯1 = .
2
∵点 E•是 AC 中点,∴AE=CE .又∵△ADE 和△CDE 同高,∴S △CDE =S △ADE , 同理 S △CBE =S △ABE ,∴S △BCD =S △CDE +S △CBE =S △ADE +S △ABE =S △ABD = , ∴S 四边形 ABCD =S △ABD +S △BCD =2 .
22 - ( 3)2。

相关文档
最新文档