(完整版)小学奥数知识点大全数论

合集下载

小学奥数有哪些知识点

小学奥数有哪些知识点

小学奥数有哪些知识点小学奥数知识点概览一、数论基础1. 质数与合数:理解质数的定义和性质,识别合数的因数分解。

2. 素因数分解:将一个合数分解为质数的乘积。

3. 最大公约数和最小公倍数:计算两个或多个数的GCD和LCM。

4. 整数的奇偶性:理解奇数和偶数的性质及其在问题解决中的应用。

5. 整数的四则运算:掌握整数加减乘除的规则和技巧。

6. 同余定理:理解同余的概念及其在解决数论问题中的应用。

二、分数与小数1. 分数的基本概念:分数的意义、性质和分类。

2. 分数的四则运算:分数的加、减、乘、除运算规则。

3. 分数的化简与比较:化简分数和比较分数大小的方法。

4. 小数的基本概念:小数的意义和性质。

5. 小数的四则运算:小数的加、减、乘、除运算规则。

6. 分数与小数的互化:分数与小数之间的转换方法。

三、几何知识1. 平面图形的认识:点、线、面的基本性质。

2. 常见平面图形的性质:正方形、长方形、三角形等的性质和计算。

3. 面积和周长的计算:计算各种平面图形的面积和周长。

4. 立体图形的初步认识:立方体、长方体、圆柱、圆锥等的性质。

5. 空间想象能力:通过剖面图、视图等理解三维空间。

四、代数基础1. 变量与常数:理解变量和常数的概念。

2. 简易方程:一元一次方程的建立和解法。

3. 代数表达式的简化:合并同类项、分配律等代数运算。

4. 不等式的概念:理解不等式的意义和基本性质。

5. 简单不等式的解法:解一元一次不等式。

五、逻辑推理1. 合情推理:通过已知信息推断未知信息。

2. 演绎推理:从一般到特殊的逻辑推理过程。

3. 归纳推理:从特殊到一般的推理方法。

4. 逻辑应用题:解决需要逻辑推理的实际问题。

六、组合数学1. 排列与组合:理解排列和组合的概念及其区别。

2. 简单排列组合问题:解决基础的排列组合问题。

3. 二项式定理:理解二项式定理并能够进行简单应用。

4. 容斥原理:解决涉及集合容斥问题的方法。

七、数列与级数1. 等差数列:理解等差数列的定义和性质。

奥数数论知识点总结

奥数数论知识点总结

奥数数论知识点总结整数的性质整数是自然数、0和负自然数的集合。

整数有许多独特的性质,例如:1. 整数的奇偶性:整数可以划分成奇数和偶数两类。

奇数的特点是能被2整除余1,偶数则能被2整除。

2. 整数的因数和倍数:整数m是整数n的因数,指的是m能够整除n;整数m是整数n的倍数,指的是n是m的整数倍数。

3. 整数的约数:整数的约数是整除该数的正整数。

除法除法是整数学中的一个基本运算,包括整数的除法、最大公约数和最小公倍数等内容。

1. 整数的除法:整数的除法可以分为带余除法和整除两种情况。

带余除法指的是a = bq + r,其中a和b是整数,q和r分别是商和余数。

整除指的是余数等于0的情况。

2. 最大公约数:两个整数a和b的最大公约数是能同时整除它们的最大的正整数。

3. 最小公倍数:两个整数a和b的最小公倍数是它们的公共倍数中最小的一个。

模运算模运算是数论中的一个重要概念,它有许多重要性质和应用。

1. 同余:整数a和b模m同余,记作a ≡ b (mod m),指的是m能整除a-b。

同余关系具有传递性、对称性和反对称性。

2. 模幂运算:模幂运算是指对一个整数进行多次模运算。

例如,求a^b mod m,即求a的b次幂对m取余的结果。

3. 线性同余方程:线性同余方程指的是形如ax ≡ b (mod m)的方程,其中a、b、m是已知的整数,x是未知的整数。

初等数论初等数论是数论的一部分,研究整数的基本性质和定理。

1. 质数:质数是指只有1和自身两个因数的正整数,例如2、3、5、7等。

任意合数都可以唯一地分解成若干个质数的乘积。

2. 费马小定理:费马小定理指的是如果p是一个质数,a是一个整数且a不是p的倍数,那么a^{p-1} ≡ 1 (mod p)。

3. 欧拉函数:欧拉函数是指小于n且与n互质的正整数的个数,记作φ(n)。

对于质数p,φ(p)=p-1;对于两个互质的整数m和n,φ(mn)=φ(m)φ(n)。

综上所述,奥数数论是数学竞赛中的一个重要内容,它涉及整数的性质、除法、模运算和初等数论等知识点。

小学奥数知识点总结

小学奥数知识点总结

小学奥数知识点总结小学奥数作为数学学习的拓展和延伸,对于培养孩子的逻辑思维、创新能力和解决问题的能力有着重要的作用。

以下是对小学奥数常见知识点的总结。

一、计算类1、速算与巧算这部分主要包括加法交换律、结合律,乘法交换律、结合律、分配律的灵活运用。

例如,通过凑整、拆数等方法,可以让计算变得更加简便。

2、等差数列要掌握等差数列的通项公式:第 n 项=首项+(n 1)×公差;求和公式:和=(首项+末项)×项数÷2 。

3、定义新运算根据给出的新运算规则,进行计算和推理。

二、数论类1、整除能被 2、3、5、9 等整除的数的特征要牢记。

例如,能被 2 整除的数末尾是偶数,能被 3 整除的数各位数字之和能被 3 整除。

2、质数与合数理解质数和合数的概念,知道 20 以内的质数有 2、3、5、7、11、13、17、19 。

3、最大公因数与最小公倍数通过短除法等方法求两个或多个数的最大公因数和最小公倍数。

三、图形类1、平面图形(1)三角形三角形的内角和是 180 度,三角形的面积=底×高÷2 。

(2)四边形包括平行四边形、长方形、正方形、梯形等。

要掌握它们的周长和面积计算公式。

(3)圆形圆的周长=2πr ,面积=πr² 。

2、立体图形(1)长方体和正方体了解它们的表面积、体积计算公式。

(2)圆柱体和圆锥体圆柱体的表面积=侧面积+两个底面积,体积=底面积×高;圆锥体的体积= 1/3×底面积×高。

四、应用题类1、行程问题涉及速度、时间和路程的关系,如相遇问题、追及问题。

2、工程问题工作总量=工作效率×工作时间,通常把工作总量看作单位“1”。

3、利润问题要清楚成本、售价、利润、利润率之间的关系。

4、浓度问题浓度=溶质÷溶液×100% ,通过溶质和溶液的变化来解决问题。

5、植树问题分为两端都种、两端都不种、一端种一端不种等情况。

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。

下面为大家汇总小学阶段常见的奥数知识点。

一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。

小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。

3、分数四则运算同分母分数加减法:分母不变,分子相加减。

异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。

分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。

分数除法:除以一个数等于乘这个数的倒数。

二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。

偶数:能被 2 整除的整数。

奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。

合数:除了 1 和它本身还有别的因数的自然数。

1 既不是质数也不是合数。

3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。

倍数:c 就是 a 和 b 的倍数。

4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。

小学奥数数论位值原理知识点

小学奥数数论位值原理知识点

小学奥数数论位值原理知识点【篇一】1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个"位置值"。

例如"2",写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三*宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答4、位置原理重难点:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答【篇二】位置原理例题:例1.a、b、c是1——9中的三个不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?解答:组成六个数之和为:10a+b+10a+c+10b+a+10b+c+10c+a+10c+b=22a+22b+22c=22(a+b+c)很显然,是22倍例2.一个三位数,它等于抹去它的首位数字之后剩下的两位数的4倍于25之差,求这个数。

解答:设它百位数字为a,十位数字为b,个位数字为c则100a+10b+c=4(10b+c)化简得5(20a-6b+5)=3c因为c为正整数,所以20a-6b+5是3的倍数又因为0≤c≤9所以0≤3c/5≤5.4所以0≤20a-6b+5=3c/5≤5.4所以3c/5=3即c=5所以20-6b+5=3化简得3b-1=10a按照同样的分析方法,3b-1是10的倍数,解得b=7最后再算出10a=3*7-1=20则a=2所以答案为275。

【篇三】练习题1.有一类三位数,它的各个数位上的数字之和是12,各个数位上的数字之积是30,所有这样的三位数的和是多少2.一个两位数,各位数字的和的5倍比原数大4,求这个两位数.3.一个三位数除以11所得的商等于这个三位数各位数码之和,求这个三位数.4.将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数.5.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.6.将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.7.将四位数的数字顺序重新排列后,可以得到一些新的四位数.现有一个四位数码互不相同,且没有0的四位数M,它比新数中最大的小3834,比新数中最小的大4338.求这个四位数.。

奥数数论基础知识

奥数数论基础知识

奥数数论基础知识一质数与合数(1)一个数除了1与它本身,不再有别得约数,这个数叫做质数(也叫做素数)。

一个数除了1与它本身,还有别得约数,这个数叫做合数。

(2)自然数除0与1外,按约数得个数分为质数与合数两类。

任何一个合数都可以写成几个质数相乘得形式。

要特别记住:0与1不就是质数,也不就是合数。

(3)最小得质数就是2 ,2就是唯一得偶质数,其她质数都为奇数;最小得合数就是4。

(4)质数就是一个数,就是含有两个约数得自然数。

互质数就是指两个数,就是公约数只有一得两个数,组成互质数得两个数可能就是两个质数(3与5),可能就是一个质数与一个合数(3与4),可能就是两个合数(4与9)或1与另一个自然数。

(5)如果一个质数就是某个数得约数,那么就说这个质数就是这个数得质因数。

把一个合数用质因数相乘得形式表示出来,叫做分解质因数。

(6)100以内得质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.二整除性(1)概念一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得得商c正好就是整数而没有余数(或者说余数就是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a、否则,称为a不能被b 整除,(或b不能整除a),记作b a。

如果整数a能被整数b整除,a就叫做b得倍数,b就叫做a得约数。

(2)性质性质1:(整除得加减性)如果a、b都能被c整除,那么它们得与与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

也就就是说,被除数加上或减去一些除数得倍数不影响除数对它得整除性。

性质2:如果b与c得积能整除a,那么b与c 都能整除a、即:如果bc|a,那么b|a,c|a。

性质3:(整除得互质可积性)如果b、c都能整除a,且b与c互质,那么b与c得积能整除a。

小学奥数数论知识点

小学奥数数论知识点

小学奥数数论知识点一、数的认识1. 自然数:用于计数和排序的数,包括0和正整数。

2. 奇数与偶数:奇数是不能被2整除的整数,偶数是能被2整除的整数。

3. 质数与合数:质数是只有1和本身两个因数的大于1的自然数,合数是除了1和本身外还有其他因数的自然数。

4. 因数与倍数:如果整数a能被整数b整除,a是b的倍数,b是a的因数。

二、数的运算1. 加法与减法:加法是将两个或多个数合并成一个数的运算,减法是从一个数中去掉另一个数的运算。

2. 乘法与除法:乘法是重复加法的简化,除法是将一个数分成几个相等部分的运算。

3. 余数:在除法中,被除数除以除数后剩下的数称为余数。

三、数的性质1. 唯一分解定理:每个大于1的整数都可以唯一地表示为质数的乘积。

2. 最大公约数和最小公倍数:最大公约数是两个或多个整数共有的最大的因数,最小公倍数是这些整数的最小公共倍数。

3. 奇偶性:奇数加奇数得偶数,偶数加偶数得偶数,奇数加偶数得奇数。

四、数的应用1. 约数倍数问题:涉及找出一个数的约数或倍数的问题。

2. 质数问题:涉及质数的分布、判断和性质的问题。

3. 分数的拆分与比较:涉及将分数拆分为不同单位的和,以及比较分数大小的问题。

五、解题技巧1. 枚举法:通过列举所有可能的情况来找到答案。

2. 反证法:假设某个结论是错误的,通过推理得出矛盾,从而证明原结论是正确的。

3. 归纳法:通过观察一系列特殊情况,找出一般规律。

六、例题解析1. 例题一:找出20以内的所有质数。

- 解析:20以内的质数有2, 3, 5, 7, 11, 13, 17, 19。

2. 例题二:求36和54的最大公约数。

- 解析:通过辗转相除法,可以求得36和54的最大公约数是18。

七、总结数论是数学的基础分支之一,对于培养逻辑思维和解决问题的能力具有重要作用。

小学奥数数论涉及的知识点广泛,包括数的认识、数的运算、数的性质、数的应用以及解题技巧等。

掌握这些知识点,对于提高学生的数学素养和解决复杂问题的能力至关重要。

小学奥数关于数论知识点的总结

小学奥数关于数论知识点的总结

小学奥数关于数论知识点的总结数论是纯粹数学的分支之一,主要研究整数的性质。

整数可以是方程式的解(丢番图方程)。

有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。

透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。

以下是无忧考网整理的相关资料,希望对您有所帮助。

【篇一】1. 奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2. 位值原则形如:abc =100a+10b+c3. 数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4. 整除性质①如果c|a、c|b,那么c|(a b)。

②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a整除。

5. 带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q 为a除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为a ÷b=q……r, 0≤r【篇二】分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 ×p2 ×...×pk约数个数与约数和定理设自然数n的质因子分解式如n= p1 ×p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

六年级奥数(精品)数论综合

六年级奥数(精品)数论综合

第19讲数论综合知识点精讲一、特殊数的整除特征1.尾数判断法1)能被2整除的数的特征:2)能被5整除的数的特征:3)能被4(或25)整除的数的特征:4)能被8(或125)整除的数的特征:2.数字求和法:3.99的整除特性:4.奇偶位求差法:5.三位截断法:特别地:7×11×13=1001,abcabc=abc×1001二、多位数整除问题技巧:1>目的是使多位数“变短”,途径是结合数的整除特征和整除性质2>对于没有整除特性的数,利用竖式解决。

三、质数合数1.基本定义【质数】——【合数】——注:自然数包括0、1、质数、合数.【质因数】——【分解质因数】——用短除法和分拆相乘法分解质因数。

任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=a1×a2×a3×……×a n,其中a1、a2、a3……a n都是合数N的质因数,且a1<a2<a3<……<a n。

【互质数】——【偶数】——【奇数】——2.质数重要性质1)100以内有25个质数:2)除了2和5,其余的质数个位数字只能是:3)1既不是质数,也不是合数4)在质数中只有2是偶数,其他质数都是奇数5)最小的质数是2.最小的奇质数是36)有无限多个3.质数的判断:1)定义法:判断整除性2)熟记100以内的质数3)平方判断法:例如:对2011,首先442<2011<452,然后用1至44中的全部质数去除2011,即可叛断出2011为质数. 4.合数1)无限多个2)最小的合数是43)每个合数至少有三个约数5.互质数1)什么样的两个数一定是互质数?注意:分解质因数是指一个合数写成质因数相乘的形式.因此,要分解的合数应写在等号左边,如:21=3⨯7,不能写成:3⨯7=21.6.偶数和奇数1)0属于偶数2)十进制中,个位数字是0,2,4,6,8的数是偶数;个位数字是1,3,5,7,9的数是奇数3)除2外所有的正偶数均为合数4)相邻偶数的最大公约数为2,最小公倍数是他们乘积的一半5)奇±奇=偶偶±偶=偶偶±奇=奇奇×奇=奇偶×奇=偶偶×偶=偶四、约数与倍数1.约数与倍数概念:2.一个数约数的个数:3.平方数与约数个数的关系:4.最大公约数与最小公倍数求法:分解质因数:辗转相除法:5.两数的最大公约数乘以最小公倍数等于这两个数的乘积。

小学奥数奥数知识点汇总(全)

小学奥数奥数知识点汇总(全)

小学奥数重要知识点整理汇总资料目录数论知识点…………………………………………2~6计算知识点…………………………………………7~14应用题知识点…………………………………………15~23几何知识点…………………………………………24~27组合专题…………………………………………28~35数论知识点整除,奇数偶数,质数,合数,分解质因数,约数,倍数。

\r\n余数问题:完全平方数,数的进制,数的综合,周期性问题,数的拆分。

数的整除性1、整数a除以整数b(b≠0),所得的商是整数而没有余数,则称a能被b整除,或b整除a,记作:b|a。

2、整除的性质:性质1.如果c|a,c|b,则c|(a±b)。

性质2.如果bc|a,则b|a,c|a。

性质3.如果c|b,b|a,则c|a。

3、整除问题的解决方法:整除特征法;补9、补0试除法。

4、涉及极值的整除问题:逐步调整法。

5、数的整除特征:a.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……b.一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;c.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;d.一个数从个位到高位,每三位进行分段,将形成的奇位之和与偶位之和以大减小,如果差可以被7、11、13整除,则此数也可被7、11、13整除;如果一个整数的末三位与末三位之前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;e.如果逐次去掉最后一位数字并减去末位数字的2倍后能被7整除,那么这个数能被7整除;如果逐次去掉最后一位数字并减去末位数字后能被11整除,那么这个数能被11整除;如果逐次去掉最后一位数字并减去末位数字的9倍后能被13整除,那么这个数能被13整除;f.一个数从个位到高位,每两位分成一段,将每段上的数相加。

小学奥数知识点梳理(完整版).doc

小学奥数知识点梳理(完整版).doc

小学奥数(知识点梳理)前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。

概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质若111a b c>>,则c>b>a.。

形如:312123m m m n n n >>,则312123n n n m m m <<。

5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②()()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c① 如果c|a 、c|b ,那么c|(a ±b)。

小学数学奥数知识点

小学数学奥数知识点

小学数学奥数知识点小学数学奥数知识常见的知识点主要有以下方面:加法原理和乘法原理排列组合分数运算勾股定理简单的代数方程逻辑推理几何图形的性质和计算概率问题数列问题质数与合数因数与倍数最大公约数与最小公倍数平均数、中位数和众数简单的立体几何速度、时间和距离问题百分数和小数对称性与反射逆向思维和试错法等式和不等式等等这些内容,就不一一列举了,后面正文里面有详细描述。

一.加法原理和乘法原理:加法原理:指如果一个事件可以分为若干个互不相交的事件,那么这个事件发生的可能性等于这些互不相交事件发生的可能性之和。

乘法原理:指如果一个事件可以分为若干个步骤,每个步骤有若干个不同的选项,那么这个事件发生的可能性等于每个步骤选项数的积。

例题:一个商店出售5种颜色的T恤,6种颜色的裤子,和4种颜色的帽子。

一个顾客想购买一套衣服,包括一件T恤,一条裤子,和一顶帽子。

问有多少种不同的搭配?解答:根据乘法原理,共有5×6×4=120种不同的搭配。

学习方法:通过实际生活中的例子,让学生理解加法原理和乘法原理的应用,多做练习题提高运用能力。

二.排列组合:排列指的是从一组对象中选取若干个对象进行排列,而不同的排列方式被视为不同的情况。

一般来说,如果从n 个对象中选取k 个对象进行排列,那么不同的排列数为n 的k 次方,即A(n,k) = n! / (n-k)!。

组合指的是从一组对象中选取若干个对象进行组合,而不同的组合方式被视为同一种情况。

一般来说,如果从n 个对象中选取k 个对象进行组合,那么不同的组合数为C(n,k) = n!/((n-k)!k!)。

例题:有8个人参加比赛,前三名将获得奖品。

有多少种不同的获奖组合?解答:用排列公式,8×7×6=336种排名。

学习方法:学习排列组合的公式,通过例题演示如何运用公式解决问题,并进行大量实战练习。

三.分数运算:加减运算:对于两个分数进行加减运算,需要将分数的分母化为相同的数,然后将分子相加或相减即可。

小学奥数知识点汇总

小学奥数知识点汇总

小学奥数知识点汇总# 小学奥数知识点汇总一、数论# 1. 质数与合数- 质数:大于1的自然数,只能被1和自身整除。

- 合数:除了1和自身外,还有其他因数的自然数。

# 2. 因数分解- 将合数分解成质因数的乘积。

# 3. 最大公约数和最小公倍数- 最大公约数(GCD):两个或多个整数共有的最大的一个因数。

- 最小公倍数(LCM):两个或多个整数的最小公共倍数。

# 4. 整除规则- 偶数与奇数:整数除以2的余数。

- 5的倍数:以0或5结尾的数。

- 3的倍数:若一个数的各位数字之和是3的倍数,则该数是3的倍数。

# 5. 同余- 两个整数a和b,如果它们除以某个正整数m的余数相同,则称a和b对于m同余。

二、代数# 1. 代数表达式- 用字母表示数的表达式,如:\( a + b = c \)。

# 2. 方程与不等式- 方程:含有未知数的等式,如 \( x + 2 = 5 \)。

- 不等式:表示不等关系的式子,如 \( x < 3 \)。

# 3. 代数式的简化与变形- 合并同类项、分配律、提公因式等。

# 4. 多项式- 多项式是几个单项式的和或差,如 \( ax^2 + bx + c \)。

三、几何# 1. 基本图形- 点、线、面的基本性质。

# 2. 角- 角的定义、分类(锐角、直角、钝角)、角的计算。

# 3. 三角形- 三角形的性质、分类(等边、等腰、直角三角形)。

- 海伦公式:计算三角形面积的公式。

# 4. 四边形- 四边形的性质、分类(正方形、长方形、菱形、梯形)。

# 5. 圆- 圆的性质、圆周角定理、扇形面积计算。

四、组合数学# 1. 排列与组合- 排列:从n个不同元素中取出m个元素的所有可能的顺序。

- 组合:从n个不同元素中取出m个元素的所有可能的组合。

# 2. 二项式定理- 二项式定理是代数中的一个重要定理,描述了二项式的幂的展开。

# 3. 概率- 概率的基本概念、计算方法、条件概率、独立事件的概率。

小学奥数数论专题知识总结

小学奥数数论专题知识总结

小学奥数数论专题知识总结.docx名师总结精品知识点数论基础知识小学数论问题,起因于除法算式:被除数除数商余数1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等;2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。

一、因数与倍数1、因数与倍数(1)定义:定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。

定义2:如果非零自然数a、b、c之间存在abc,或者cab,那么称a、b是c的因数,c是a、b的倍数。

注意:倍数与因数是相互依存关系,缺一不可。

(a、b是因数,c是倍数)一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。

(2)一个数的因数的特点:最小的因数是1,第二小的因数一定是质数;最大的因数是它本身,第二大的因数是:原数第二小的因数(3)完全平方数的因数特征:完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。

完全平方数的质因数出现次数都是偶数次;1000以内的完全平方数的个数是31个,20以内的完全平方数的个数是44个,3000以内的完全平方数的个数是22254个。

(31=961,44=1936,54=2916)2、数的整除(数的倍数)(1)定义:定义1:一般地,三个整数a、b、c,且b0,如有abc,则我们就说,a能被b整除,或b能整除a,或a能整除以b。

定义2:如果一个整数a,除以一个整数b(b0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

(ab)(2)整除的性质:如果a、b能被c整除,那么(a b)与(a-b)也能被c整除。

如果a能被b整除,c是整数,那么ac也能被b整除。

如果a能被b整除,b又能被c整除,那么a也能被c整除。

如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

(3)一些常见数的整除特征(倍数特征):末位判别法2、5的倍数特征:末位上的数字是2、5的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数知识点大全:数论问题
1.奇偶性问题
奇+奇=偶奇×奇=奇
奇+偶=奇奇×偶=偶
偶+偶=偶偶×偶=偶
2.位值原则
形如:abc=100a+10b+c
3.数的整除特征:
整除数特征
2末尾是0、2、4、6、8
3各数位上数字的和是3的倍数
5末尾是0或5
9各数位上数字的和是9的倍数
11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25末两位数是4(或25)的倍数
8和125末三位数是8(或125)的倍数
7、11、13末三位数与前几位数的差是7(或11或13)的倍数
4.整除性质
①如果c|a、c|b,那么c|(ab)。

②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.
⑤a个连续自然数中必恰有一个数能被a整除。

5.带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r
当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为a÷b=q……r,0≤r<ba=b×q+r
6.唯一分解定理
任何一个大于1的自然数n都可以写成质数的连乘积,即
n=p1×p2×...×pk
7.约数个数与约数和定理
设自然数n的质因子分解式如n=p1×p2×...×pk那么:
n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)…(1+Pk+Pk+…pk)
8.同余定理
①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(modm)
②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

③两数的和除以m的余数等于这两个数分别除以m的余数和。

④两数的差除以m的余数等于这两个数分别除以m的余数差。

⑤两数的积除以m的余数等于这两个数分别除以m的余数积。

9.完全平方数性质
①平方差:A-B=(A+B)(A-B),其中我们还得注意A+B,A-B同奇偶性。

②约数:约数个数为奇数个的是完全平方数。

约数个数为3的是质数的平方。

③质因数分解:把数字分解,使他满足积是平方数。

④平方和。

10.孙子定理(中国剩余定理)
11.辗转相除法
12.数论解题的常用方法:
枚举、归纳、反证、构造、配对、估计。

相关文档
最新文档