广州中考数学 反比例函数 综合题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.

(1)当点C的横坐标为1时,求点B的坐标;

(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.

(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.

【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,

∴C(1,1),

∵AC∥y轴,AB∥x轴,

∴A点横坐标为1,

∵A点在函数y= (x>0)图象上,

∴A(1,4),

∴B点纵坐标为4,

∵点B在y= 的图象上,

∴B点坐标为(,4);

(2)解:设A(a,),则C(a,),B(,),

∴AB=a﹣ = a,AC= ﹣ = ,

∴S△ABC= AB•AC= × × = ,

即△ABC的面积不发生变化,其面积为;

(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,

∵AB∥x轴,

∴△ABC∽△EFC,

∴ = ,即 = ,

∴EF= a,

由(2)可知BG= a,

∴BG=EF,

∵AE∥y轴,

∴∠BDG=∠FCE,

在△DBG和△CFE中

∴△DBG≌△CEF(AAS),

∴BD=EF.

【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.

2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣

2),与y轴交于点C.

(1)m=________,k1=________;

(2)当x的取值是________时,k1x+b>;

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

【答案】(1)4;

(2)﹣8<x<0或x>4

(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).

∴CO=2,AD=OD=4.

∴S梯形ODAC= •OD= ×4=12,

∵S四边形ODAC:S△ODE=3:1,

∴S△ODE= S梯形ODAC= ×12=4,

即OD•DE=4,

∴DE=2.

∴点E的坐标为(4,2).

又点E在直线OP上,

∴直线OP的解析式是y= x,

∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).

【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,

即反比例函数解析式为y2= ,

将点A(4,m)代入y2= ,得:m=4,即点A(4,4),

将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,

得:,

解得:,

∴一次函数解析式为y1= x+2,

故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),

∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,

故答案为:﹣8<x<0或x>4;

【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.

3.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).

(1)求反比例函数和一次函数的解析式;

(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.

【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,

∴k=﹣2×3=﹣6,

∴反比例函数的解析式为y=﹣,

∵点B在反比例函数y=﹣的图形上,

∴﹣2m=﹣6,

∴m=3,

∴B(3,﹣2),

∵点A,B在直线y=ax+b的图象上,

∴,

∴,

∴一次函数的解析式为y=﹣x+1

(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,

∴AB=PQ,AB∥PQ,

设直线PQ的解析式为y=﹣x+c,

设点Q(n,﹣),

∴﹣ =﹣n+c,

∴c=n﹣,

∴直线PQ的解析式为y=﹣x+n﹣,

∴P(1,n﹣﹣1),

∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,

相关文档
最新文档