最新初中数学数据分析经典测试题及解析

合集下载

新初中数学数据分析全集汇编附答案解析(1)

新初中数学数据分析全集汇编附答案解析(1)

新初中数学数据分析全集汇编附答案解析(1)一、选择题1.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65【答案】A【解析】【分析】2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()A.15岁,14岁B.15岁,15岁C.15岁,156岁D.14岁,15岁【答案】A【解析】【分析】根据众数、平均数的定义进行计算即即可.【详解】观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.这12名队员的年龄的平均数是:1231311421551611412⨯+⨯+⨯+⨯+⨯=故选:A【点睛】本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.3.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9 B.8,8 C.8,10 D.9,8【答案】B【解析】分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.详解:由条形统计图知8环的人数最多,所以众数为8环,由于共有11个数据,所以中位数为第6个数据,即中位数为8环,故选B.点睛:本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个,则找中间两个数的平均数.4.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A.中位数是1 B.众数是1C.平均数是1.5 D.方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.5.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.6.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].8.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()队员1队员2队员3队员4平均数x51505150方差S2 3.5 3.57.58.5A.队员1 B.队员2 C.队员3 D.队员4【答案】B【解析】【分析】根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.故选B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.10.根据众数的概念找出跳高成绩中人数最多的数据即可.【详解】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人,所以,众数是1.75.因此,众数与中位数分别是1.75,1.70.故选A.【点睛】本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.11.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分,98分B.97分,98分C.98分,96分D.97分,96分【答案】A【解析】【分析】利用众数和中位数的定义求解.【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.故选A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.12.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.13.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.14.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.15.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是()A.平均数是B.中位数是C.众数是D.方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D.16.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键. 17.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:课外名著阅读量(本)89101112学生人数33464关于这20名学生课外阅读名著的情况,下列说法错误的是( )A.中位数是10 B.平均数是10.25 C.众数是11 D.阅读量不低于10本的同学点70%【答案】A【解析】【分析】根据中位数、平均数、众数的定义解答即可.【详解】解:A、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是=10.5,故本选项错误;B、平均数是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此选项不符合题意;C、众数是11,此选项不符合题意;D、阅读量不低于10本的同学所占百分比为×100%=70%,此选项不符合题意;故选:A.【点睛】本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).众数是一组数据中出现次数最多的数.18.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135某同学分析上表后得到如下结论: ①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150≥为优秀) ③甲班成绩的波动比乙班大. 上述结论中正确的是( ) A .①②③ B .①②C .①③D .②③【答案】A 【解析】 【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小. 【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确. ①②③都正确. 故选:A . 【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.19.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .22,x x S S =<乙丁乙丁B .22,x x S S =>乙丁乙丁C .22,x x S S >>乙丁乙丁 D .22,x x S S <<乙丁乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】x 乙45635552605++++==55,则215S =⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁51535856575++++==55,则215S =⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22S S >乙丁,故选:B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是( )A .甲优<乙优B .甲优>乙优C .甲优=乙优D .无法比较【答案】A 【解析】 【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案. 【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩, ∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.。

(必考题)初中八年级数学下册第二十章《数据的分析》经典测试题(含答案解析)(1)

(必考题)初中八年级数学下册第二十章《数据的分析》经典测试题(含答案解析)(1)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数B解析:B 【分析】根据方差的意义即可判断. 【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 故选:B . 【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3 B .4C .5D .9C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.3.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.故选:C.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.4.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

最新八年级数学第六章数据的分析单元测试题及答案

最新八年级数学第六章数据的分析单元测试题及答案

最新八年级数学第六章数据的分析单元测试题及答案一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.数学老师计算同学们的一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学平均成绩是( )A. 90分B. 91分C. 92分D. 93分2.每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如表,则这组数据的中位数和众数分别是( )星期一二三四五六日收入(点)15212727213021A. 27点,21点B. 21点,27点C. 21点,21点D. 24点,21点3.若样本x1,x2,x3,⋯,x n的平均数为10,方差为4,则对于样本x1−3,x2−3,x3−3,⋯,x n−3,下列结论正确的是( )A. 平均数为10,方差为2B. 众数不变,方差为4C. 平均数为7,方差为2D. 中位数变小,方差不变4.为了解新冠肺炎疫情防控期间,学生居家进行“线上学习”情况,某班进行了某学科单元基础知识“线上测试”,其中抽查的10名学生的成绩如图所示,对于这10名学生的测试成绩,下列说法正确( )A. 中位数是95分B. 众数是90分C. 平均数是95分D. 方差是155.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是( )A. 平均数B. 方差C. 中位数D. 众数6.计算一组数据方差的算式为s2=1×[(x1−10)2+(x2−10)2+⋯+(x5−10)2],则下列信息中,不5正确的是( )A. 这组数据中有5个数据B. 这组数据的平均数是10C. 计算出的方差是一个非负数D. 当x1增加时,方差的值一定随之增加7.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )参加人数平均数中位数方差甲459493 5.3乙459495 4.8A. 甲、乙两班的平均水平相同B. 甲、乙两班竞赛成绩的众数相同C. 甲班的成绩比乙班的成绩稳定D. 甲班成绩优异的人数比乙班多8.某校八(1)班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图.根据统计图提供的信息,捐款金额的众数和中位数分别是.( )A.20元、20元B. 30元、20元C. 20元、30元D. 30元、30元9.某电脑公司销售部为了制定下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售员本月销售量的平均数、中位数、众数分别是( )A. 19台、20台、14台B. 19台、20台、20台C.18.4台、20台、20台 D. 18.4台、25台、20台10.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,根据统计图提供的信息,下列推断正确的是( )A.该班学生共有44人B. 该班学生一周锻炼12小时的有9人C. 该班学生一周锻炼时间的众数是10D. 该班学生一周锻炼时间的中位数是11二、填空题(本大题共5小题,共15.0分)11.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.12.一组数据1,2,a的平均数为2,另一组数据−2,a,2,1,b的众数为−2,则数据−2,a,2,1,b的中位数为.13.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为.(用“>”连接)14. 已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是 .15. 在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为______.三、解答题(本大题共10小题,共75.0分。

人教版初中数学数据分析经典测试题附答案

人教版初中数学数据分析经典测试题附答案

人教版初中数学数据分析经典测试题附答案一、选择题1.在去年的体育中考中,某校6名学生的体育成绩统计如下表:则下列关于这组数据的说法错误的是()A.众数是18 B.中位数是18 C.平均数是18 D.方差是2【答案】D【解析】【分析】根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可.【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:16[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选D.【点睛】本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有数据的和除以数据总数;一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数3.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A.中位数是1 B.众数是1C.平均数是1.5 D.方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.4.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于()A.34abB.43abC.34baD.43ba【答案】D【解析】【分析】根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520 (1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a =,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.5.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.6.回忆位中数和众数的概念;7.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差239s=.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6【答案】A【解析】【分析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662+=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是()A.平均数是6B.中位数是6.5C.众数是7D.平均每周锻炼超过6小时的人数占该班人数的一半【答案】A【解析】【分析】根据中位数、众数和平均数的概念分别求得这组数据的中位数、众数和平均数,由图可知锻炼时间超过6小时的有20+5=25人.即可判断四个选项的正确与否.【详解】A、平均数为150×(5×7+18×6+20×7+5×8)=6.46,故本选项错误,符合题意;B、∵一共有50个数据,∴按从小到大排列,第25,26个数据的平均值是中位数,∴中位数是6.5,故此选项正确,不合题意;C、因为7出现了20次,出现的次数最多,所以众数为:7,故此选项正确,不合题意;D、由图可知锻炼时间超过6小时的有20+5=25人,故平均每周锻炼超过6小时的人占总数的一半,故此选项正确,不合题意;故选A.【点睛】此题考查了中位数、众数和平均数的概念等知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.10.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】先根据平均数为5得出a b10+=,由众数是3知a、b中一个数据为3、另一个数据为7,再根据中位数的定义求解可得.【详解】解:Q数据3,a,4,b,8的平均数是5,3a4b825∴++++=,即a b10+=,又众数是3,a∴、b中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252+=25,故选:A.12.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()(℃)人数(人)48810x2A.这些体温的众数是8 B.这些体温的中位数是36.35 C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.13.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.14.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键. 15.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:学生人数33464关于这20名学生课外阅读名著的情况,下列说法错误的是( )A.中位数是10 B.平均数是10.25 C.众数是11 D.阅读量不低于10本的同学点70%【答案】A【解析】【分析】根据中位数、平均数、众数的定义解答即可.【详解】解:A、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是=10.5,故本选项错误;B、平均数是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此选项不符合题意;C、众数是11,此选项不符合题意;D、阅读量不低于10本的同学所占百分比为×100%=70%,此选项不符合题意;故选:A.【点睛】本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).众数是一组数据中出现次数最多的数.16.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:成绩(m) 2.3 2.4 2.5 2.4 2.4则下列关于这组数据的说法,正确的是()A.众数是2.3 B.平均数是2.4C.中位数是2.5 D.方差是0.01【答案】B【解析】【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】这组数据中出现次数最多的是2.4,众数是2.4,选项A不符合题意;∵(2.3+2.4+2.5+2.4+2.4)÷5=12÷5=2.4∴这组数据的平均数是2.4,∴选项B符合题意.17.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;为优秀)②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③【答案】A【解析】【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.18.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间..的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【答案】A【解析】【分析】根据中位数和众数的定义进行解答即可.【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8.【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.19.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.20.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.。

最新初中数学数据分析解析含答案

最新初中数学数据分析解析含答案

最新初中数学数据剖析分析含答案一、选择题1.下边的统计图表示某体校射击队甲、乙两名队员射击竞赛的成绩,依据统计图中的信息,以下结论正确的选项是()A.甲队员成绩的均匀数比乙队员的大B.乙队员成绩的均匀数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】 D【分析】【剖析】依据均匀数、中位数和方差的计算公式分别对每一项进行剖析,即可得出答案.【详解】甲队员 10 次射击的成绩分别为6,7, 7, 7, 8, 8, 9, 9,9,10,则中位数88=8,2甲 10 次射击成绩的均匀数 =( 6+3×7+2×8+3×9+10)÷10=8(环),乙队员 10 次射击的成绩分别为 6 ,7, 7, 8, 8, 8, 8, 9,9 ,10,则中位数是8,乙 10 次射击成绩的均匀数 =( 6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=1×[(6-8)2+3×( 7-8)2 +2×( 8-8)3+3×( 9-8)2+( 10-8)2]=1.4;10乙队员成绩的方差=1×[(6-8)2+2×( 7-8)2 +4×( 8-8)3+2×( 9-8)2+( 10-8)2]=1.2,10综上可知甲、乙的中位数同样,均匀数同样,甲的方差大于乙的方差,应选 D.【点睛】本题考察了均匀数、中位数和方差的定义和公式,娴熟掌握均匀数、中位数、方差的计算是解题的重点 .2.在只有 15 人参加的演讲竞赛中,参赛选手的成绩各不同样,若选手要想知道自己能否进入前 8 名,只要要认识自己的成绩以及所有成绩的( )A.均匀数B.中位数C.众数D.以上都不对【答案】 B【分析】【剖析】本题是中位数在生活中的运用,知道自己的成绩以及所有成绩的中位数便可知道自己能否进入前8 名.【详解】15 名参赛选手的成绩各不同样,第8 名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数便可知道自己能否进入前8 名.应选 B.【点睛】理解均匀数,中位数,众数的意义.3.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6: 4 记入总成绩,若小李笔试成绩为80 分,面试成绩为90 分,则他的总成绩为()A.84 分B.85 分C.86 分D.87 分【答案】 A【分析】【剖析】依据笔试与面试所占比率求出总成绩即可.【详解】依据题意,依据笔试与面试所占比率求出总成绩:80649084 (分)1010应选 A【点睛】本题主要考察了加权均匀数的计算,解题重点是正确理解题目含义.4.在学校的体育训练中,小杰扔掷实心球的7 次成绩如统计图所示,则这7 次成绩的中位数和均匀数分别是()A.9.7 m, 9.9 m B. 9.7 m, 9.8 m C. 9.8 m, 9.7 m D. 9.8 m, 9.9 m【答案】 B【分析】【剖析】将这 7 个数据从小到大排序后处在第4位的数是中位数,利用算术均匀数的计算公式进行计算即可.【详解】把这 7 个数据从小到大摆列处于第 4 位的数是9.7 m,因其中位数是9.7 m,均匀数为: (9.5 9.6 9.7 9.79.810.110.2) 7 9.8 m,应选: B.【点睛】考察中位数、算术均匀数的计算方法,将一组数据从小到大摆列后处在中间地点的一个数或两个数的均匀数就是这组数据的中位数,均匀数则是反应一组数据的集中水平.5.某青年排球队 12 名队员的年纪状况以下:年纪(单位:岁)1819202122人数14322则 12 名队员的年纪()A.众数是 20 岁,中位数是19 岁B.众数是 19 岁,中位数是19 岁C.众数是 19 岁,中位数是20.5 岁D.众数是 19 岁,中位数是20 岁【答案】 D【分析】【剖析】中位数是指将统计整体中间的各个变量值按大小次序摆列起来,形成一个数列,处于变量数列中间地点的变量值就称为中位数;众数是指在统计散布上拥有显然集中趋向点的数值,代表数据的一般水平(众数能够不存在或多于一个).【详解】解:在这一组数据中19 岁是出现次数最多的,故众数是19 岁;将这组数据从小到大的顺序摆列后,处于中间地点的数是20 岁,那么由中位数的定义可知,这组数据中的中位数是20 岁.应选: D.【点睛】理解中位数和众数的定义是解题的重点.6.甲、乙两名同学分别进行 6 次射击训练,训练成绩(单位:环)以下表第一次第二次第三次第四次第五次第六交甲9867810乙879788对他们的训练成绩作以下剖析,其中说法正确的选项是()A .他们训练成绩的均匀数同样B .他们训练成绩的中位数不一样C .他们训练成绩的众数不一样D .他们训练成绩的方差不一样【答案】 D【分析】【剖析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案. 【详解】∵甲 6 次射击的成绩从小到大摆列为 6、 7、8、 8、 9、 10,∴甲成绩的均匀数为 6 7 88 9 108 88,6=8,中位数为=8、众数为2方差为1×[(6﹣8) 2+( 7﹣ 8) 2+2×(8﹣ 8) 2+( 9﹣ 8) 2+( 10﹣ 8) 2]=5 ,63∵乙 6 次射击的成绩从小到大摆列为: 7、 7、 8、 8、 8、9,∴乙成绩的均匀数为7 7 88 8 9 = 47,中位数为 8 8 =8、众数为 8,662方差为1× [2(×7﹣47) 2+3×( 8﹣47)2+(9﹣47) 2]= 17 ,666636则甲、乙两人的均匀成绩不同样、中位数和众数均同样,而方差不同样,应选 D .【点睛】本题考察了中位数、方差以及众数的定义等知识,娴熟掌握有关定义以及求解方法是解题的重点.7.为认识我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27 名女生进行一分钟跳绳次数测试,测试数据统计结果以下表.假如每分钟跳绳次数≥105次的为优异,那么甲、乙两班的优异率的关系是()A .甲 优 <乙 优B .甲 优 >乙 优C .甲 优=乙 优D .没法比较【答案】 A【分析】【剖析】依据中位数可得甲班优异的人数最多有 13 人,乙班优异的人数最罕有14 人,据此可得答案.【详解】解:由表格可知,每班有27 人,则中位数是排序后第14 名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优异的人数最多有13 人,乙班优异的人数最罕有14 人,∴甲 优<乙 优,应选:A .【点睛】本题考察了中位数的应用,娴熟掌握中位数的意义和求法是解题的重点.8.某班 40 名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40 名同学一周参加体育锻炼时间的众数、中位数分别是()A. 17, 8.5B. 17,9C.8,9D. 8, 8.5【答案】 D【分析】【剖析】依据中位数、众数的观点分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20, 21 两个数的均匀数就是中位数,8 9∴这组数据的中位数为8.5 ;2应选: D.【点睛】考察了中位数、众数的观点.本题为统计题,考察众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数.9.一组数据 2,x,6, 3, 3, 5 的众数是 3 和 5,则这组数据的中位数是()A.3B. 4C. 5D. 6【答案】 B【分析】【剖析】由众数的定义求出x=5,再依据中位数的定义即可解答.【详解】解:∵数据2, x, 3,3,5 的众数是 3 和 5,∴x=5,则数据为 2 、3、 3、 5、 5、 6,这组数据为3 5=4.2故答案为B.【点睛】本题主要考察众数和中位数,依据题意确立x 的值以及求中位数的方法是解答本题的关键.10.某篮球运动员在连续7 场竞赛中的得分(单位:分)挨次为23, 22,20, 20, 20,25, 18.则这组数据的众数与中位数分别是()A.20 分, 22 分B.20 分, 18 分C.20 分, 22 分D.20 分, 20 分【答案】 D【分析】【剖析】依据众数和中位数的观点求解可得.【详解】数据摆列为18, 20, 20,20, 22, 23,25,则这组数据的众数为20,中位数为20.应选: D.【点睛】本题考察众数和中位数,解题重点在于掌握一组数据中出现次数最多的数据叫做众数.将一组数据依据从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数.假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.11.某班有 40 人,一次体能测试后,老师对测试成绩进行了统计.因为小亮没有参加本次集体测试所以计算其余39 人的均匀分为90 分,方差s2= 41.此后小亮进行了补测,成绩为 90 分,对于该班40 人的测试成绩,以下说法正确的选项是()A.均匀分不变,方差变大B.均匀分不变,方差变小C.均匀分和方差都不变D.均匀分和方差都改变【答案】B【分析】【剖析】依据均匀数、方差的定义计算即可.【详解】∵小亮的成绩和其余39 人的均匀数同样,都是90 分,∴40人的均匀数是90 分,∵39人的方差为41,小亮的成绩是90 分, 40人的均匀分是90 分,∴人的方差为×240[4139+(90-90)] ÷ 40<41,∴方差变小,∴均匀分不变,方差变小应选 B.【点睛】本题考察了均匀数与方差,娴熟掌握定义是解题重点.12. 某校九年 数学模 中,六名学生的数学成 以下表所示,以下对于 数据描述正确的选项是()姓名小小明小小亮小小成 (分)110106109111108110A .众数是110B .方差是 16C .均匀数是 【答案】 A109.5D .中位数是109【分析】 【剖析】依据众数、中位数的观点求出众数和中位数,依据均匀数和方差的 算公式求出均匀数和方差.【 解】解: 数据的众数是110, A 正确;1 x ×(110+106+109+111+108+110 )= 109,C ;6S21[ (110 109) 2+( 106 109) 2+( 109 109) 2+(111 109) 2+( 108 109)2+6( 110 109) 2]= 8, B ; 3中位数是 109.5, D ;故 A .【点睛】本 考 的是众数、均匀数、方差、中位数,掌握它 的观点和 算公式是解 的关 .13. 某 趣小 认识我市气温 化状况, 了今年代份6 天的最低气温(位:℃):7, 4, 2,1, 2,2 ,对于 数据,以下 不正确的选项是()A .均匀数是B .中位数是C .众数是D .方差是【答案】 D【分析】 【剖析】一 数据中出 次数最多的数据叫做 数据的众数.将一 数据依据从小到大(或从大到小)的 序摆列,假如数据的个数是奇数, 于中 地点的数就是 数据的中位数;假如 数据的个数是偶数, 中 两个数据的均匀数就是 数据的中位数.均匀数是指在一 数据中所有数据之和再除以数据的个数.一般地n 个数据, x 1, x 2, ⋯x n 的均匀数 , 方差S 2= [( x 1 ) 2+( x 2 ) 2 +⋯+( x n ) 2].【详解】解:有题意可得,这组数据的众数为 -2,中位数为 -2,均匀数为 -2,方差是 9 应选D.14.已知一组数据a 2 ,42a ,6, 8 3a ,9,其中a为随意实数,若增添一个数据5,则该组数据的方差必定()A.减小B.不变C.增大D.不确立【答案】 A【分析】【剖析】先把本来数据的均匀数算出来,再把方差算出来,接着把增添数据5此后的均匀数算出来,进而能够算出方差,再把两数进行比较可获得答案.【详解】解:本来数据的均匀数= a242a683a9255,55本来数据的方差 = S2(a25)2(45)2(2a65)2(83a5) 2(9 5)2,5增添数据 5 后的均匀数a242a683a95305 (均匀数没变化),=65增添数据 5 后的方差 =2 (a 2 5)2(45)2(2a 6 5)2(83a5) 2(9 5)2(5 5)2S16,比较S2, S12发现两式子分子同样,所以S2> S12(两个正数分子同样,分母大的反而小),故答案为 A.【点睛】本题主要考察了方差的基本观点,熟记方差的公式是解本题的重点,要比较增添数据后的方差的变化,可分别求出本来的方差和改变数据后的方差,再进行比较.15.对于数据- 4, 1, 2,- 1, 2,下边结果中,错误的选项是( )A.中位数为1B.方差为26C.众数为 2D.均匀数为0【答案】 B【分析】【剖析】【详解】A.∵从小到大排序为-4, -1,, 1, 2, 2,∴中位数为 1 ,故正确;41212B.x0 ,54 2 1 2 12 2 02s22 26 ,故不正确;55C .∵众数是 2,故正确;D . x4 1 2 1 2,故正确;5应选 B.16. 如图是成都市某周内日最高气温的折线统计图,对于这7 天的日最高气温的说法正确的是( )A .极差是 8℃B .众数是 28℃C .中位数是 24℃D .均匀数是 26℃【答案】 B【分析】剖析:依据折线统计图中的数据能够判断各个选项中的数据能否正确,进而能够解答本题.详解:由图可得,极差是: 30-20=10℃,应选项 A 错误, 众数是 28℃,应选项 B 正确,这组数依据从小到大摆列是: 20 、 22 、 24 、 26、 28、 28、 30,故中位数是 26℃,应选项 C错误,均匀数是:20 22 24 26 28 2830 25 3℃,应选项 D 错误,77应选 B .点睛:本题考察折线统计图、极差、众数、中位数、均匀数,解答本题的重点是明确题意,能够判断各个选项中结论能否正确.17. 5、 2.4、 2.4、 2.4、 2.3 的中位数是 2.4,选项 C 不切合题意.15×[(2.3﹣ 2.4)2+( 2.4﹣2.4)2+( 2.5﹣ 2.4)2+(2.4﹣ 2.4)2+( 2.4﹣2.4)2]=1×(0.01+0+0.01+0+0 )5=1× 0.02 5=0.004∴这组数据的方差是∴选项 D 不切合题意.应选 B.【点睛】本题主要考察了中位数、众数、算术均匀数、方差的含义和求法,要娴熟掌握.18.在一次中学生田径运动会上,参加男子跳高的15 名运动员的成绩以下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70, 1.75B. 1.70, 1.70C. 1.65, 1.75D. 1.65, 1.70【答案】 A【分析】剖析:找中位数要把数据按从小到大的次序摆列,位于最中间的一个数或两个数的均匀数为中位数;众数是一组数据中出现次数最多的数据,注意众数能够不只一个.详解:共 15 名学生,中位数落在第 8 名学生处,第 8 名学生的跳高成绩为 1.70m ,故中位数为1.70;跳高成绩为 1.75m 的人数最多,故跳高成绩的众数为 1.75;应选 A.点睛:本题为统计题,考察众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数.19.甲、乙两班举行电脑汉字输入竞赛,参赛学生每分输入汉字的个数统计结果以下表:班级参加人数中位数方差均匀数甲55149 1.91135乙55151 1.101350.004,最新初中数学数据分析解析含答案某同学剖析上表后获得以下结论:① 甲、乙两班学生均匀成绩同样;② 乙班优异的人数多于甲班优异的人数(每分输入汉字个数150 为优异)③ 甲班成绩的颠簸比乙班大.上述结论中正确的选项是()A.①②③B.①②C.①③D.②③【答案】 A【分析】【剖析】均匀水平的判断主要剖析均匀数;优异人数的判断从中位数不一样能够获得;颠簸大小比较方差的大小.【详解】从表中可知,均匀字数都是135,① 正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而均匀数都要为135,说明乙的优秀人数多于甲班的,② 正确;甲班的方差大于乙班的,又说明甲班的颠簸状况大,所以③ 也正确.①②③都正确.应选:A.【点睛】本题考察均匀数,中位数,方差的意义.解题重点在于掌握均匀数表示一组数据的均匀程度.中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(或最中间两个数的均匀数);方差是用来权衡一组数据颠簸大小的量.20.某小组长统计组内6 人一天在讲堂上的讲话次数分別为3,3, 4, 6, 5,0.则这组数据的众数是 ()A.3B. 3.5C. 4D. 5【答案】A【分析】【剖析】依据众数的定义,找数据中出现次数最多的数据即可.【详解】在 3, 3, 4,6 ,5, 0 这组数据中,数字 3 出现了 2 次,为出现次数最多的数,故众数为3.应选 A.【点睛】本题考察了众数的观点.众数是一组数据中出现次数最多的数据.。

2023年初二数学数据分析练习题及答案

2023年初二数学数据分析练习题及答案

2023年初二数学数据分析练习题及答案题目1:某班级共有50名学生,参加一次数学测试后,每位学生的得分如下所示:80, 85, 90, 78, 92, 88, 75, 82, 79, 86, 95, 83, 91, 87, 77, 84, 89, 73, 96, 81, 94, 76, 93, 85, 88, 79, 87, 90, 82, 78, 80, 84, 91, 77, 89, 93, 87, 94, 75, 92, 83, 85, 86, 89, 90, 88, 81, 84, 95, 80请计算并列出以下数据:a) 平均得分(精确到个位数)。

b) 最高分和最低分之间的差值。

c) 得分高于或等于90分的人数。

d) 得分低于80分的人数。

解答1:a) 平均得分 = (80 + 85 + 90 + 78 + 92 + 88 + 75 + 82 + 79 + 86 + 95 +83 + 91 + 87 + 77 + 84 + 89 + 73 + 96 + 81 + 94 + 76 + 93 + 85 + 88 + 79 + 87 + 90 + 82 + 78 + 80 + 84 + 91 + 77 + 89 + 93 + 87 + 94 + 75 + 92 + 83 + 85 + 86 + 89 + 90 + 88 + 81 + 84 + 95 + 80) ÷ 50 = 85b) 最高分 = 96最低分 = 73差值 = 最高分 - 最低分 = 96 - 73 = 23c) 得分高于或等于90分的人数:6人(90, 92, 91, 95, 93, 90)d) 得分低于80分的人数:3人(78, 75, 77)题目2:某电商平台销售了以下几款手机型号的数量:型号A: 25台型号B: 18台型号C: 10台型号D: 30台型号E: 12台请计算并列出以下数据:a) 所有手机型号的总销售数量。

最新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(含答案解析)(1)

最新人教版初中数学八年级数学下册第五单元《数据的分析》测试题(含答案解析)(1)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定3.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( ) 年龄 13 14 15 16 人数2341A .15,15B .14,15C .14,14.5D .15,14.54.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”5.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,856.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( )A .平均数是-2B .中位数是-2C .众数是-2D .方差是57.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .88.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A .甲射击成绩比乙稳定 B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较9.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101D .方差是9310.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( ) A .89,90B .90,90C .88,95D .90,9511.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大12.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表: 锻炼时间(时) 3 4 5 6 7 人数(人)6131452这40名居民一周体育锻炼时间的众数和中位数是( ) A .14,5B .14,6C .5,5D .5,6第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.一组数据1x ,2x ,3x ,4x ,5x 的平均数是5,方差是3,则143x -,243x -,343x -,443x -,543x -的平均数是________,方差是________.15.若这8个数据-3, 2,-1,0,1,2,3,x 的极差是11,则这组数据的平均数是______.16.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某单位使用共享单车的情况,该单位有200名员工,某研究小组随机采访10位员工,得到这10位员工一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是(2)试用平均数估计该单位员工一周内使用共享单车的总次数.17.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.18.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S 甲=2.8,2S 乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)19.已知一组数据为:5,3,3,6,3则这组数据的方差是______.20.若样本数据1,2,3,2的平均数是a ,中位数是b ,众数是c ,则数据a ,b ,c 的方差是___.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图. (1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B 8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.23.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.24.学校为了让同学们走向操场、积极参加体育锻炼,启动了“学生阳光体育运动”,张明和李亮在体育运动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:平均数 中位数 方差 张明13.30.004 李亮13.30.02(1)张明第2次的成绩为: 秒;(2)张明成绩的平均数为: ;李亮成绩的中位数为: ;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.25.某区正在积极创建国家模范卫生城市,学校为了普及学生卫生健康知识,提高学生创卫意识,举办了创卫知识竞赛,以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:75 88 93 65 78 94 89 68 95 50 89 88 89 89 77 95 87 88 92 91 初二:74 96 96 89 97 74 69 76 72 78 99 72 97 85 98 74 89 73 98 74 (1)整理、描述数据: 成绩x 5059x ≤≤6069x ≤≤7079x ≤≤8089x ≤≤ 90100x ≤≤初一(频数) 1 2 3 m6 初二(频数)1937(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下不合格) 分析数据:平均数 中位数 众数 初一 84 a89初二8481.5b请根据上述的数据,填空:m =______;a =______;b =______;(2)得出结论:你认为哪个年级掌握创卫知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).26.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级: 79,85,73,80, 75,76,87, 70, 75,94,75,79,81,71, 75,80,86,59, 83, 77.八年级: 92,74, 87,82,72,81, 94,83,77, 83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据方差的意义即可判断.【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.D解析:D【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15;10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5.故选:D.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.C解析:C【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论.【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确,所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A不正确;因为B中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3,所以选项B说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定,所以甲组数据比乙组数据稳定,故选项C说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D说法不正确.故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.5.A解析:A 【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可. 【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87. 故选A . 【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.6.D解析:D 【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断. 【详解】解:A 、平均数是-2,结论正确,故A 不符合题意; B 、中位数是-2,结论正确,故B 不符合题意; C 、众数是-2,结论正确,故C 不符合题意; D 、方差是203,结论错误,故D 符合题意; 故选:D . 【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.7.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.8.B解析:B 【解析】 【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a ,b ,c 中至少有两个是8,而平均数是6,则可以得到a ,b ,c 三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果. 【详解】∵这组数中的众数是8, ∴a ,b ,c 中至少有两个是8, ∵平均数是6,∴a ,b ,c 三个数其中一个是2, ∴(4+1+1+4+4+16)=5,∵5>4,∴乙射击成绩比甲稳定. 故选:B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.10.B解析:B 【解析】 【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可. 【详解】把这组数据从小到大排列:84,89,90,90,90,91,96, 最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90; 故选B . 【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.11.D解析:D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环), 甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.12.C解析:C【解析】【分析】众数是一组数据中出现次数最多的数据,中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【详解】由统计表可知:体育锻炼时间最多的是5小时,故众数是5小时;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C .【点睛】本题考查了确定一组数据的众数和中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.1748【分析】根据平均数和方差公式的变形即可得到结果【详解】一组数据x1x2x3x4x5的平均数是5则4x1-34x2-34x3-34x4-34x5-3的平均数是4(x1+x2+x3+x4+x5)解析:17 48【分析】根据平均数和方差公式的变形即可得到结果.【详解】一组数据x1,x2,x3,x4,x5的平均数是5,则4x1-3,4x2-3,4x3-3,4x4-3,4x5-3的平均数是15[4(x1+x2+x3+x4+x5)-15]=17,∵新数据是原数据的4倍减3;∴方差变为原来数据的16倍,即48.故答案为:17;48.【点睛】本题考查方差的计算公式的运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.15或-05【分析】根据极差的概念求出x的值然后根据平均数的概念求解【详解】一组数据-32-10123x的极差是11当x为最大值时x﹣(﹣3)=11x=8平均数是:;当x是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x的极差是11,当x为最大值时,x﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=();当x是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.(1)1617;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列计算出中间两个数的平均数即是中位数出现次数最多的即为众数;(2)根据平均数的概念将所有数解析:(1)16,17;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;【详解】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.17.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.18.乙【解析】【分析】直接利用方差的意义方差越小越稳定进而分析得出答案【详解】∵方差=1515<28∴射击成绩较稳定的是:乙故答案为:乙【点睛】此题主要考查了方差正确把握方差的意义是解题关键解析:乙【解析】【分析】直接利用方差的意义,方差越小越稳定,进而分析得出答案.【详解】∵方差222.8,S S=甲乙=1.5,1.5<2.8,∴射击成绩较稳定的是:乙.故答案为:乙.【点睛】此题主要考查了方差,正确把握方差的意义是解题关键.19.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】【分析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6.【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 20.0【解析】【分析】先确定出abc 后根据方差的公式计算abc 的方差【详解】解:平均数;中位数;众数;bc 的方差故答案是:0【点睛】考查了平均数中位数众数和方差的意义解题的关键是正确理解各概念的含义解析:0.【解析】【分析】先确定出a ,b ,c 后,根据方差的公式计算a ,b ,c 的方差.【详解】解:平均数()123242a =+++÷=;中位数()2222b =+÷=;众数2c =;a ∴,b ,c 的方差(222[(22)(22)22)30⎤=-+-+-÷=⎦.故答案是:0.【点睛】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义. 三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果.【详解】解:(1)样本容量是:10÷20%=50.70≤a<80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)①108°;②9,6;(2)7.6万元.【解析】试题分析:(1)①在扇形图中,由C部门所占比例乘以360°即可得出C部门所对应的圆心角的度数.②先计算出A部门所占比例,再计算出总人数,根据B、C部门所占比例即可求出b、c的值.(2)利用加权平均数的计算公式计算即可.试题(1)①360°×30%=108°;②∵a%=1-45%-30%=25%5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.23.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.24.(1)13.4;(2)13.3秒,13.3秒;(3)选择张明,理由见解析.【分析】(1)根据统计图给出的数据可直接得出答案;(2)利用平均数的计算公式可得出张明成绩的平均数;先将李亮的成绩按照从小到大排列,然后即可得到这组数据的中位数;(3)在平均数、中位数相同的情况下,再根据方差越小数据越稳定,即可得出答案.【详解】解:(1)根据统计图可知,张明第2次的成绩为13.4秒,故答案为:13.4;(2)张明成绩的平均数为:13.313.413.313.213.35++++=13.3(秒);李亮的成绩是:13.2,13.4,13.1,13.5,13.3,把这些数从小到大排列为:13.1,13.2,13.3,13.4,13.5,则李亮成绩的中位数是:13.3秒;故答案为:13.3秒,13.3秒;(3)选择张明参加比赛,因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明成绩比李亮成绩稳定.【点睛】本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.25.(1)8,88.5,74;(2)初一的水平较好,理由见解析.【分析】(1)根据所给数据可得出m的值,根据中位数和众数的定义可得a,b的值;(2)从中位数和众数的角度分析可知初一的水平较好.【详解】解:(1)由初一的成绩可知,m=8,将初一的成绩按从低到高排列,第10、11名的成绩分别为:88,89,故初一的中位数a=888988.52;初二的成绩中74分的人数最多,故初二的众数b=74,故答案为:8,88.5,74;(2)初一的水平较好,理由:因为初一和初二的平均数都是84分,但是初一的中位数是88.5分,众数是89分,而初二的中位数是81.5分,众数是74分,即初一年级学生成绩的中位数和众数明显高于初二年级的学生成绩的中位数和众数,故初一的水平较好.【点睛】本题考查了频数分布表、中位数和众数的意义,掌握中位数和众数的求法是解题的关键.26.(1)11,10,78,81;(2)90人;(3)八年级学生对经典文化知识掌握的总体水平较好,理由是八年级学生成绩的中位数较高【分析】(1)根据已知数据及中位数和众数的概念求解即可.(2)利用样本估计总体思想求解可得.(3)答案不唯一,合理即可.【详解】(1)a=11,b=10,c=78,d=81(2)312009040⨯=(人)答:估计七八年级90分以上的学生共90人(3)八年级学生对经典文化知识掌握的总体水平较好,理由:八年级学生成绩的中位数较高【点睛】。

初中数学数据分析经典测试题附答案解析

初中数学数据分析经典测试题附答案解析
A.中位数是90B.平均数是90C.众数是87D.极差是9
【答案】C
【解析】
【分析】
根据中位数、平均数、众数、极差的概念求解.
【详解】
解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,
则中位数是(91+93)÷2=92,
平均数是(87+87+91+93+96+97)÷6=91 ,
∴甲优<乙优,
故选:A.
【点睛】
本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.
8.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( )
A.众数是108B.中位数是105
C.平均数是101D.方差是93
众数是87,
极差是97﹣87=10.
故选C.
【点睛】
本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.
11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:
1
2
3
4
5
小乙
45
63
55
52
60
小丁
【答案】D
【解析】
【分析】
把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论.
【详解】
解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,
∴众数是108,中位数为 ,平均数为 ,
方差为

中考数学总复习《数据的分析》专项测试卷-附参考答案

中考数学总复习《数据的分析》专项测试卷-附参考答案

中考数学总复习《数据的分析》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数,中位数,众数和方差等数个统计量中,该鞋厂最关注的是( )A.平均数B.中位数C.众数D.方差2.测试五位学生的“一分钟跳绳”成绩,得到五个不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( )A.中位数B.平均数C.方差D.极差3.一组数据2,3,4,6,6,7的众数是( )A.3B.4C.5D.64.第七届世界军人运动会将于2019年10月18日至27日在武汉举行.光谷某中学开展了“助力军动会”志愿者招募活动,同学们踊跃报名参与竞选.经选拔,最终每个班级都有同学光荣晋升为本次军运会志愿者.下面的条形统计图描述了这些班级选拔出的志愿者人数的情况;下列说法错误的是( )A.参加竞选的共有28个班级B.本次竞选共选拔出166名志愿者C.各班选拔出的志愿者人数的众数为4D.各班选拔出的志愿者人数的中位数为65.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A.中位数B.众数C.平均数D.加权平均数6.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( )A.方差B.标准差C.中位数D.平均数7.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A.20,20B.30,20C.30,30D.208.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9,8,7,7,9乙:10,8,9,7,6应该选( )参加.A.甲B.乙C.甲、乙都可以D.无法确定二、填空题(共5题,共15分)9.为了解日常生活中两个变化的量中,一个量随着另一个量的变化趋势,我们常常把这两个变化的量分别作为横坐标、纵坐标,在平面直角坐标系中描出相应的点.可以选择其中的个点作一条直线,使其他的点都这条直线,则可以用这条直线近似地表示一个量随着另一个量的变化趋势.10.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.12.已知一组数据−3,x,−2,3,1,6的中位数为1,则其标准差为.13.在某次八年级数学能力测试中,60名考生成绩的频数分布直方图如图所示(分数取正整数,满分100分).根据图中提供的信息,成绩在80分以上(含80分)的频数在总数的百分比为.三、解答题(共3题,共45分)14.我国是世界上严重缺水的国家之一,为了倡导”节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图.(1) 求这10个样本数据的平均数、众数和中位数;(2) 根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t的约有多少户?15.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下面的问题:(1) 甲成绩的平均数是环,乙成绩的中位数是环;(2) 分别计算甲、乙两人成绩的方差,并从计算结果分析哪名运动员的射击成绩较稳定.16.某鞋厂为了了解初中男生穿鞋的鞋号情况,对某中学八年级(1)班的20名男生所穿鞋号进行了调查,结果如图所示.(1) 写出男生鞋号数据的平均数、中位数、众数;(2) 在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?参考答案1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】C5. 【答案】A6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】两;靠近10. 【答案】 218911. 【答案】 712. 【答案】 713. 【答案】 240014. 【答案】(1) 这组样本数据的平均数是 6.8.这组数据的众数是 6.5.中位数是 6.5.(2) ∵10 户中月均用水量不超过 7 t 的有 7 户,有 50×710=35∴ 估计出小刚所在班 50 名同学家庭中月均用水量不超过 7 t 的约有 35 户.15. 【答案】(1) 8;7.5(2) x 乙=110×(7+10+7+7+9+8+7+9+9+7)=8(环) s 甲2=110×[(6−8)2+(10−8)2+(8−8)2+(9−8)2+(8−8)2+(7−8)2+(8−8)2+(10−8)2+(7−8)2+(7−8)2]=1.6(环 2),s 乙2=110×[(7−8)2+(10−8)2+(7−8)2+(7−8)2+(9−8)2+(8−8)2+(7−8)2+(9−8)2+(9−8)2+(7−8)2]=1.2(环 2).∵s 甲2>s 乙2∴ 乙运动员的射击成绩较稳定.16. 【答案】(1) 平均数 =(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1(码).观察题图可知:有 7 人的鞋号为 40 码,人数最多,即众数是 40 码.中位数是第 10,11 人的平均数,即 39 码.(2) 鞋厂最感兴趣的是众数.。

最新初中数学数据分析真题汇编含答案解析(1)

最新初中数学数据分析真题汇编含答案解析(1)

最新初中数学数据分析真题汇编含答案解析(1)一、选择题1.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A .3,2 B .3,4C .5,2D .5,4【答案】B 【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.2.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45,∴S2甲<S2乙,∴甲的射击成绩比乙稳定;故选:C.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.4.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1++++++=,(26282826242122)257故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.7.回忆位中数和众数的概念;8.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温(℃)36.136.236.336.436.536.6人数(人)48810x2A.这些体温的众数是8 B.这些体温的中位数是36.35C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.11.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x,2s,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s = B .1x x =,221s s > C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( ) A .5,5 B .6,6C .5,6D .6,5【答案】D 【解析】 【分析】根据中位数和众数的定义分别进行解答即可. 【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6; 5出现了6次,出现的次数最多,则众数是5. 故选D .【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.13.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.14.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.15.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .22,x x S S =<乙丁乙丁B .22,x x S S =>乙丁乙丁 C .22,x x S S >>乙丁乙丁D .22,x x S S <<乙丁乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】x 乙45635552605++++==55,则215S =⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁51535856575++++==55,则215S =⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22S S >乙丁,故选:B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4, 23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.下列说法中正确的是( ).A .“打开电视,正在播放《新闻联播》”是必然事件B .一组数据的波动越大,方差越小C .数据1,1,2,2,3的众数是3D .想了解某种饮料中含色素的情况,宜采用抽样调查 【答案】D 【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B 、一组数据的波动越大,方差越大,故本选项错误;C 、数据1,1,2,2,3的众数是1和2,故本选项错误;D 、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确. 故选D .考点:全面调查与抽样调查;众数;方差;随机事件.18.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.19.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.20.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.。

新初中数学数据分析经典测试题附答案(1)

新初中数学数据分析经典测试题附答案(1)

新初中数学数据分析经典测试题附答案(1)一、选择题1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.2.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.3.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.4.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;7.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.8.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.9.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80859095人数/人3421那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单----,关于这组数据,下列结论不正确的是()位:℃):7,4,2,1,2,2A .平均数是B.中位数是C.众数是D.方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( ) A .小明的成绩比小强稳定 B .小明、小强两人成绩一样稳定 C .小强的成绩比小明稳定D .无法确定小明、小强的成绩谁更稳定 【答案】A 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8. 平均成绩一样,小明的方差小,成绩稳定, 故选A . 【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题. 错因分析 容易题.失分原因是方差的意义掌握不牢.13.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.14.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.15.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.17.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.18.一组数据-2,3,0,2,3的中位数和众数分别是()A.0,3 B.2,2 C.3,3 D.2,3【答案】D【解析】【分析】根据中位数和众数的定义解答即可.【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2;在这一组数据中3是出现次数最多的,故众数是3.故选D.【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.。

人教版苏科版初中数学—数据的分析(经典例题含答案)

人教版苏科版初中数学—数据的分析(经典例题含答案)

一、平均数(一)算数平均数据分析例题答案数例1.一组12个数据的平均数为28,其中一个数据为25.8,那么另外11个数据的平均数是.28.2例1.变式1.有m 个数的平均值是x ,n 个数的平均值是y ,则这m n +个数的平均值是.mx ny m n++例1.变式2.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是(C )A.30吨B.31吨C.32吨D.33吨例1.变式3.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是(C)A .2B .2.8C .3D .3.3(二)加权平均数例2.某汽车配件厂在一个月(30天)中的零件产量如下:有2天是51件,3天是52件,5天是53件,9天是54件,6天是55件,4天是56件,1天是57件.则平均日产量是件.54例2.变式1.某班有50名学生,数学期中考试成绩为90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(保留小数点后第一位)()()190984127310651356245473.750x =⨯+⨯+⨯+⨯+⨯+⨯=分例2.变式2.再一次数学测试中,某班25名男生的平均成绩是86分,23名女生的平均成绩是82分,求这些学生的平均成绩。

(结果精确到0.01分)()8625822384.082523x ⨯+⨯=≈+分例2.变式3.某公司欲招聘一名推销员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下:(百分制)候选人面试笔试甲9087乙8494(1)如果公司认为面试和笔试成绩同等重要,谁将被录取?()()90+872=88.5=84+942=89.x x =÷÷∴甲乙,乙会被录取(2)如果公司认为,作为推销员,面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权.计算甲、乙两人各自的平均成绩,看看谁将被录取.()()906+87410=88.8=846+94410=88.x x =⨯⨯÷⨯⨯÷∴甲乙,甲会被录取(三)一组数据经过一定变化得到的一组新数据的平均数例3.已知数据1210,,x x x 的平均数为a ,111230,,x x x 的平均数为b ,那么1230,,x x x 的平均数为.102030a b+例3.变式1.有3个数据的平均数为6,有7个数据的平均数是9,则这10个数的平均数是.例3.变式2.已知数据12345,,,,x x x x x 的平均数为a ,则数据123454,4,4,4,4x x x x x 的平均数为;1234542,42,42,42,42x x x x x -----的平均数为.8.1例3.变式3.已知数据x 1,x 2,x 3的平均数为a ,数据y 1,y 2,y 3的平均数是b ,则数据3x 1+y 1,3x 2+y 2,3x 3+y 3的平均数为(D )A .3+a +bB .3(a +b )C .a +bD .3a +b二、中位数与众数(一)中位数例4.学校团委组织“阳光助残”捐款活动,九年级(1)班学生捐款情况如下表:捐款金额/元5102050人数/人10131215则学生捐款金额的中位数是(D )A.13元B.12元C.10元D.20元例4.变式1.已知一组数据23,27,20,18,x ,12,若它们的中位数是21,那么数据x 是(B )A.23B.22C.21D.20例4.变式2.已知一组数据20,20,x ,15的中位数与平均数相等,那么这组数据的中位数是(D )A.15 B.17.5C.20D.20或17.5例4.变式3.已知数据a ,a ,b ,c ,d ,b ,c ,c ,且a <b <c <d ,则这组数据的中位数、平均数分别为(A )A .223,28b c a b c d++++B .223,28a c a b c d++++C .222,8a b c d c +++D .233,8a b c d a +++(二)众数例5.下列说法中错误的是(C )A.一组数据的平均数、众数和中位数可能是同一个数B.一组数据的众数可能有多个C.数据中的中位数可能不唯一D.众数、中位数和平均数是从不同的角度描述了一组数据的集中趋势例5.变式1.某青年排球队12名队员的年龄情况如下表,则12名队员年龄的(D)年龄(岁)1819202122人数14322A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁例5.变式2.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是(A )A .180度,160度B .160度,180度C .160度,160度D .180度,180度例5.变式3.为了丰富课外活动,班委会准备利用周日组织全班同学去观看一场球类比赛,为了吸引更多的同学参与,事先做了“你最喜欢的球类活动”问卷调查,获得的信息如图所示,假如你是这个班级的体育委员,你会组织观看的比赛是(C)A.足球比赛B.篮球比赛C.排球比赛D.乒乓球比赛(三)平均数、中位数及众数的特征例6.某男子篮球队在10场比赛中,投球所得的分数分别为80,86,95,86,79,65,98,86,90,81,则该球队10场比赛得分数的众数为,中位数为.8686例6.变式1.一名射击运动员连续射靶10次,其中3次射中10环,5次射中9环,1次射中8环,1次射中7环,则平均每次射中环数为环,这次射击中环数的众数为环,这次射击中环数的中位数是环.999例6.变式2.为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20名女生的鞋号组成的一组数据的平均数是,中位数是,众数是,鞋厂最感兴趣的是数.22.5522.523众例6.变式3.下表是食品营养成分表的一部分:(每100克食品中可食部分营养成分的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247在表中提供的碳水化合物的克数所组成的数据中,中位数是克,平均数是克.44(四)平均数、中位数及众数的综合例7.当5个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这5个整数可能的最大的和是(A)A.21B.22C.23D.24例7.变式1.10位学生分别购买如下尺码的鞋子:20,20,21,22,22,22,22,23,23,24(单位:cm),这组数据的平均数、中位数、众数三个指标中鞋店老板最喜欢的是.众数例7.变式2.已知一组数据:-2,-2,3,-2,x,-1.若这组数据的平均数是0.5,则这组数据的中位数是.-1.5例7.变式3.如下图,反映了某校初中三年级甲、乙两班学生的体育中考成绩.(1)不用计算,根据统计图,请判断哪个班级学生的体育成绩好一些.(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?请写出来.(3)如果依次将不及格、及格、中、良好、优秀记为55分,65分,75分,85分,95分,请分别计算甲、乙两班学生体育成绩的平均值.(1)甲班;(2)中,中;(3)()()155+1065+207511858957850555+1065+207510855957550x x ⨯⨯⨯+⨯+⨯==⨯⨯⨯+⨯+⨯==甲乙分分三、从统计图分析数据的集中趋势(一)根据统计图中的数据求平均数、中位数和众数例8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和平均数分别是(C )A.7,7B.8,7.55C.7,7.55D.8,6例8.变式1.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分四个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(C)A.2.25B.2.5C.2.95D.3例8.变式2.如图是我市某景点6月份1-10日每天的最高气温折线统计图,由图中信息可知该景点这10天的最高气温的中位数是℃.26例8.变式3.同学们对戒烟方式进行调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整(3)求以上五种戒烟方式人数的众数.(1)这次调查中同学们调查的总人数为20÷10%=200(人).(2)统计图如图(扇形统计图与条形统计图).(3)以上五种戒烟方式人数的众数是20.四、数据的离散程度(一)极差、方差、标准差例9.数据2,3,3,5,7的极差是(D)A.2B.3C.4D.5 2.例9.变式1.数据90,91,92,93的标准差是.5 2例9.变式2.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是环,方差为.82例9.变式3.甲、乙两台机床同时加工直径为100mm的零件,为了检验产品的质量,从产品中各随机抽出6件进行测量,测得数据(单位:mm)如下:甲机床:99,100,98,100,100,103;乙机床:99,100,102,99,100,100.(1)分别求出上述数据的平均数及方差;甲平均数为100mm,方差为7 3.乙平均数为100mm,方差为1.(2)根据(1)计算结果,说明哪一台机床加工这种零件更符合要求.因为甲乙平均数相同,乙的方差更小,所以乙机床加工这批零件更符合要求.(二)运用平均数、中位数、众数、方差进行综合评价例10.为了从甲、乙、丙三位同学中选一位或两位选手参加数学竞赛,下表是甲、乙、丙三位同学前五次数学测验的成绩(成绩满分100分):测验(次)12345甲(分)70819896100乙(分)6585858798丙(分)6070959798(1)请你填写甲、乙、丙三位同学前五次的数学成绩统计表(下表)平均数中位数方差甲89135.2乙8485丙95251.6平均数:84,中位数:96,方差:113.6.(2)如果只选派一名学生参加数学竞赛,你认为应该派谁?请说明理由;略.提示:根据甲、乙两学生的射击环数的平均数、众数、方差来进行合理评价,只要有道理即可例10.变式1.一次科技知识竞赛,两组学生的成绩如下表所示:已经算得两个组的平均分都是80分,请根据学过的统计知识,进一步判断两个组在这次竞赛中的成绩谁优谁次,并说明理由.解:甲组成绩的众数90分,乙组成的众数为70分,从成绩的众数看,甲组成绩好些.s 2甲=1251013146+++++×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172,s 2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256,因为s 2甲<s 2乙,所以甲组成绩较好.甲、乙两组成绩的中位数、平均分都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,所以从这一角度看,甲组成绩较好.甲组成绩高于90(含90分)的有14+6=20(人),乙组成绩高于90(含90分)的有12+12=24(人),因为乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组成绩较好.例10.变式2.为了从甲、乙两名学生中选择一人参加法律知识竞赛,在相同条件下对他们的法律知识进行了10次测验,成绩如下(单位:分)(1)请填写下表:(2)利用(1)的信息,请你对甲、乙两个同学的成绩进行分析.解:(1)第二行从左到右依次填:84:14.4,第三行从左到右依次填:90;0.5.(2)甲、乙成绩的中位数、平均数都是84.①甲成绩的众数是84,乙成绩的众数是90,从成绩的众数看,乙的成绩好;②甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;③甲成绩85分以上(不含85分)的频率为0.3,乙成绩85分以上(不含85分)的频率为0.5,从85分以上的频率看,乙的成绩好.例10.变式3.随着某市社会经济的发展和交通状况的改善,该市的旅游业得到了高速发展.某旅游公司对该市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的统计表和统计图(如图).组别个人年消费金额x /元频数(人数)A x ≤200018B 2000<x ≤4000aC 4000<x ≤6000bD 6000<x ≤800024E x >800012合计120根据以上信息解答下列问题:(1)a =________,b =________,并将条形统计图补充完整;(2)在这次调查中,个人年消费金额的中位数出现在________组;(3)若这个企业有3000名员工,请你估计个人旅游年消费金额在6000元以上的人数.解:(1)36;30补全条形统计图如图:(2)C (3)因为24120=0.2,12120=0.1,所以估计个人旅游年消费金额在6000以上的人数为3000×(0.2+0.1)=900(人)。

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测题(有答案解析)

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测题(有答案解析)

一、选择题1.反映一组数据变化范围的是( ) A .极差B .方差C .众数D .平均数2.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃B .6.5℃C .7℃D .7.5℃3.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲 乙 丙 丁 平均数(环) 9.14 9.15 9.14 9.15 方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁4.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数5.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”6.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16B .10,6C .3,2D .8,87.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是( )A .这组数据的众数是14B .这组数据的中位数是31C .这组数据的标准差是4D .这组是数据的极差是98.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

已知某同学从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a,b的值,下列选项正确的是( )A.a=15 B.a=16 C.b=24 D.b=359.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B.全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C.这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D.这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩10.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐11.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.812.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大二、填空题13.某中学篮球队12名队员的年龄情况如下:年龄(单位:1415161718岁)人数14322则这个队队员年龄的众数和中位数分别是_____岁、_____岁.14.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示: 应聘者 网页制作 语言 甲 80 70 乙7080该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 15.若一组数据1,2,a ,3,5的平均数是3,则这组数据的标准差是______. 16.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.17.一组数2、a 、4、6、8的平均数是5,这组数的中位数是______.18.为迎接2018年的体育中考,甲、乙两位同学参加排球训练,体育老师根据训练成绩算出他们成绩的方差分别为S 甲2=1.6,S 乙2=2.8,则_____(填“甲”或“乙”)成绩较稳定. 19.已知一组数据的方差s 2=14[(x 1﹣6)2+(x 2﹣6)2+(x 3﹣6)2+(x 4﹣6)2],那么这组数据的总和为_____.20.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为________.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?22.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目(每个项目按百分制计分).若按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李颖和张明两位同学的各项成绩如表所示:项目形象知识面普通话选手李颖708088张明8075x(2)若张明同学要在总成绩上超过李颖同学,求x的范围.23.甲、乙两人在相同条件下各立定跳远5次,距离如下(单位:cm):甲:225,230,240,230,225;乙:220,235,225,240,230.(1)计算这两组数据的方差;(2)谁的跳远技术较稳定?为什么?24.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.25.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?26.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分).甲9582888193798478乙8375808090859295(1)请你计算这两组数据的平均数、中位数.(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.B解析:B【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【详解】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8, 中位数为:6+72=6.5, 故选B . 【点睛】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B .5.C解析:C 【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论. 【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确, 所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A 不正确; 因为B 中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3, 所以选项B 说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定, 所以甲组数据比乙组数据稳定,故选项C 说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D 说法不正确. 故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.6.A解析:A 【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变. 【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=. 故选:A 【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.7.D解析:D 【解析】 【分析】根据中位数,众数、极差、标准差的定义即可判断. 【详解】解:七个整点时数据为:22,22,23,26,28,30,31 所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+= ;极差是31-22=9,标准差是:故D 正确, 故选:D 【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据8.A解析:A 【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案. 【详解】解:∵甲箱98−49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49−1)÷2=24(颗),∴甲箱中小于40的球有39−24=15(颗),大于40的有49−15=34(颗),即a=15,b=34.故选:A【点睛】本题考查了中位数,正确进行分析,掌握中位数的概念是解题的关键.9.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.10.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键11.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B.【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.12.D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题13.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a语言的权重为b则甲的分数为80a+70b乙的分数为70a+80b而甲的分数高所以80a+70b>70a+80b解得a>b则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a,语言的权重为b,则甲的分数为80a+70b,乙的分数为70a+80b,而甲的分数高,所以80a+70b>70a+80b,解得a>b,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.15.【分析】根据题意可得×(1+3+2+5+a)=3解这个方程就可以求出a的值;根据标准差的计算公式即可求出样本标准差【详解】根据题意由平均数的定义得×(1+3+2+5+a)=3解得a=4所以方差为:S【分析】根据题意可得15×(1+3+2+5+a)=3,解这个方程就可以求出a的值;根据标准差的计算公式即可求出样本标准差.【详解】根据题意由平均数的定义得15×(1+3+2+5+a)=3,解得,a=4.所以方差为:S 2=()()()()()2222213-1+3-3+3-2+3-5+3-4=5⎡⎤⨯⎣⎦2,.【点睛】此题考查平均数的概念,解题关键在于掌握计算公式.16.乙【分析】根据方差的定义方差越小数据越稳定即可得出答案【详解】该月份白菜价格最稳定的是乙市场;故答案为乙【点睛】本题考查了方差的意义方差是用来衡量一组数据波动大小的量方差越大表明这组数据偏离平均数越 解析:乙【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,222S S S ∴>>甲乙丙,∴该月份白菜价格最稳定的是乙市场;故答案为乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.5【解析】【分析】由平均数可求解a 的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5【解析】【分析】由平均数可求解a 的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.18.甲【分析】根据方差的意义即方差越小波动越小方差越大波动越大解答【详解】∵<∴甲稳定【点睛】本题考查的知识点是方差解题的关键是熟练的掌握方差解析:甲【分析】根据方差的意义,即方差越小波动越小,方差越大波动越大解答.【详解】∵2S甲<2S乙,∴甲稳定.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.19.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].20.3【分析】首先根据这组数据的总和等于各个数据之和或等于这组数据的平均数乘以这组数据的个数列出方程得出x的值再根据众数的概念这组数据中出现次数最多的是3从而得出答案【详解】解:1+3+2+7+x+2+解析:3【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案.【详解】解: 1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为3.点睛: 本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.三、解答题21.(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=36 40⨯︒︒;(3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元),答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.(1)83;(2)90<x≤100【分析】(1)按照各项目所占比求得总成绩;(2)各项目所占比求得总成绩大于83分即可,列出不等式求解.【详解】(1)70×10%+80×40%+88×50%=83(分);(2)80×10%+75×40%+50%•x>83,∴x >90.∵每个项目按百分制计分∴90<x≤100∴李颖同学的总成绩是83分,张明同学要在总成绩上超过李颖同学,则他的普通话成绩应90<x≤100.【点睛】本题综合考查平均数的运用.解题的关键是正确理解题目的含义.23.(1)30;50(2)甲稳定;见解析.【分析】(1)根据平均数的计算公式先求出甲和乙的平均数,再代入方差公式()()()2221221=.....n S x x x x x x n ⎡⎤-+-++-⎢⎥⎣⎦,进行计算即可得出答案; (2)根据方差的意义,方差越小数据越稳定,即可得出答案.【详解】 解:(1)甲的平均数是:()1225+230+240+230+225=2305cm ⨯, 乙的平均数是:()1220+235+240+230+225=2305cm ⨯, 甲的方差是:()()()()()22222221=225230230230240230230230225230305S cm ⎡⎤⨯-+-+-+-+-=⎣⎦, 乙的方差是:()()()()()22222221=220230235230240230230230225230505S cm ⎡⎤⨯-+-+-+-+-=⎣⎦;(2)由(1)知,S 甲2<S 乙2,∴甲的跳远技术较稳定.【点睛】本题主要考查平均数与方差,熟练掌握方差及平均数的运算公式是解题的关键.24.(1)30元;(2)50元;(3)250.【分析】(1)根据众数的定义即可判判断;(2)根据中位数的定义即可判断;(3)先计算出样本中计划购买课外书花费50元的学生所占的比例,然后在乘以总人数即可;【详解】(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人. 25.(1)a =10,b =8,c =8.6;(2)推荐丙班级为网上教学先进班级.【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断.【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、88分出现次数最多,∴乙班的众数是:8分;∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a =10,b =8,c =8.6.(2) 甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.26.(1)甲、乙两组数据的平均数都是85分,中位数分别为83分、84分;(2)派乙参赛更合适.理由见解析.【分析】(1)根据平均数、中位数的计算方法分别计算即可;(2)从平均数、中位数、方差以及数据的变化趋势分析.【详解】()1()19582888193798478858x =+++++++=甲(分),()18375808090859295858x =+++++++=乙 将甲工人的测试成绩从小到大排序,处在第45、位的平均数为()8284283+÷=(分), 因此甲工人测试成绩的中位数是83分,将乙工人的测试成绩从小到大排序,处在第45、位的平均数为()8385284+÷=(分), 因此乙工人测试成绩的中位数是84分,答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.()2(答案不唯一,合理即可) ()()()2222195858285...788535.58S =-+-+⎤⎣⎦=⎡+-甲(分2)()()()2222183857585...9585418S =-+-+-⎡⎤⎣⎦+=乙(分2) ①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为22S S <甲乙,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次, 故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以派乙参赛更合适.【点睛】考查平均数、中位数、方差的意义及计算方法,从多角度分析数据的发展趋势是一项基本的能力.。

初二数学数据分析练习试题(含答案)(K12教育文档)

初二数学数据分析练习试题(含答案)(K12教育文档)

(完整版)初二数学数据分析练习试题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)初二数学数据分析练习试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)初二数学数据分析练习试题(含答案)(word版可编辑修改)的全部内容。

初二 数据分析测试题一、相信你的选择1、若数据8,4,,2x 的平均数是4,则这组数据的中位数和众数是( )A 、3和2B 、2和3C 、2和2D 、2和42、数学老师对小明在参加高考前5次数学模拟考试的成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A 、平均数或中位数 B 、方差或频率 C 、频数或众数 D 、方差或极差3、已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的( ) A 、平均数但不是中位数 B 、平均数也是中位数 C 、众数 D 、中位数但不是平均数4、小亮所在学习小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷奶奶们学习英语日常用语,他们记录的各社区参加其中一次活动的人数如下:32,26,28,31,32,32,33,那么这组数据的众数和中位数分别是( ) A 、31,32 B 、32,32 C 、31,3 D 、32,35、若54321,,,,x x x x x 的平均数为-x ,方差为2s ,则3,3,3,3,354321+++++x x x x x 的平均数和方差分别是 ( )A 、2+-x ,32+s B 、3+-x ,2sC 、-x ,32+s D 、-x ,2s6、已知一组数据1,2,,0,1--x 的平均数是0,那么这组数据的标准差( ) A 、2 B 、2 C 、4 D 、2-7、一组数据n x x x x ,,,,321 的极差是8,另一组数据12,,12,12,12321++++n x x x x 的极差是( )A 、8B 、9C 、16D 、178、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是2452=甲s ,1902=乙s ,那么成绩比较整齐的是( )A 、甲班B 、乙班C 、两班一样整齐D 、无法确定 二、试试你的身手1、根据天气预报可知,我国某城市一年中的最高气温为C ︒37,最低气温是C ︒-8,那么这个城市一年中温度的极差为2、航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除了甲以外的5名同学的平均分是 分。

初中数学数据分析经典测试题含解析

初中数学数据分析经典测试题含解析

初中数学数据分析经典测试题含解析一、选择题1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.2.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.3.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.4.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对【答案】B【解析】【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.5.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.6.某青年排球队12名队员的年龄情况如下:年龄(单位:岁)1819202122人数14322则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.7.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.8.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65【答案】A【解析】【分析】9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:12345小乙4563555260小丁5153585657设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( ) A .5,5 B .6,6C .5,6D .6,5【答案】D 【解析】 【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6; 5出现了6次,出现的次数最多,则众数是5. 故选D . 【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.13.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变 C .增大 D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.14.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .22,x x S S =<乙丁乙丁B .22,x x S S =>乙丁乙丁 C .22,x x S S >>乙丁乙丁D .22,x x S S <<乙丁乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】x 乙45635552605++++==55,则215S =⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁51535856575++++==55,则215S =⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22S S >乙丁,故选:B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A .平均数是58B .中位数是58C .极差是40D .众数是60【答案】A 【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .16.一组数据-2,3,0,2,3的中位数和众数分别是( ) A .0,3 B .2,2C .3,3D .2,3【答案】D 【解析】 【分析】根据中位数和众数的定义解答即可. 【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2; 在这一组数据中3是出现次数最多的,故众数是3. 故选D . 【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.17.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s =B .1x x =,221s s >C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.18.若数据 4,x ,2,8 ,的平均数是 4,则这组数据的中位数和众数是( ) A .3 和 2 B .2 和 3C .2 和 2D .2 和4【答案】A 【解析】 【分析】根据平均数的计算公式先求出x 的值,再根据中位数和众数的概念进行求解即可. 【详解】∵数据2,x ,4,8的平均数是4,∴这组数的平均数为2484x +++=4,解得:x =2; 所以这组数据是:2,2,4,8,则中位数是242+=3. ∵2在这组数据中出现2次,出现的次数最多,∴众数是2. 故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x 的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.。

新初中数学数据分析经典测试题含解析

新初中数学数据分析经典测试题含解析

新初中数学数据分析经典测试题含解析一、选择题1.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温(℃)36.136.236.336.436.536.6人数(人)48810x2A.这些体温的众数是8 B.这些体温的中位数是36.35C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.2.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对【答案】B【解析】【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.3.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数5.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.6.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.7.回忆位中数和众数的概念;8.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.9.一组数据3、2、1、2、2的众数,中位数,方差分别是:()A.2,1,2 B.3,2,0.2 C.2,1,0.4 D.2,2,0.4【答案】D【解析】【分析】根据众数,中位数,方差的定义计算即可.【详解】将这组数据重新由小到大排列为:12223、、、、平均数为:1222325++++=2出现的次数最多,众数为:2方差为:()()()()()22222212222222320.45s-+-+-+-=+-=故选:D【点睛】本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.10.在去年的体育中考中,某校6名学生的体育成绩统计如下表:则下列关于这组数据的说法错误的是()A.众数是18 B.中位数是18 C.平均数是18 D.方差是2【答案】D【解析】【分析】根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可.【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:16[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选D.【点睛】本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有数据的和除以数据总数;一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].11.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.12.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.13.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.15.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,15【答案】D 【解析】 【分析】 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .16.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C 不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2] =15×(0.01+0+0.01+0+0) =15×0.02 =0.004∴这组数据的方差是0.004, ∴选项D 不符合题意.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.17.某中学篮球队12名队员的年龄如表:关于这12名队员年龄的数据,下列说法正确的是()A.中位数是14.5 B.年龄小于15岁的频率是5 12C.众数是5 D.平均数是14.8【答案】A【解析】【分析】根据表中数据,求出这组数据的众数、频率、中位数和平均数即可.【详解】解:A、中位数为第6、7个数的平均数,为14152+=14.5,此选项正确;B、年龄小于15岁的频率是151122+=,此选项错误;C、14岁出现次数最多,即众数为14,此选项错误;D、平均数为:131145154162175=1212⨯+⨯+⨯+⨯,此选项错误;【点睛】本题考查了众数、中位数、平均数与频率的计算问题,是基础题.解题的关键是掌握众数、中位数、平均数与频率的定义进行解题.18.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C.【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.19.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.20.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6【答案】A【解析】【分析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.。

人教版初中数学数据分析经典测试题及解析

人教版初中数学数据分析经典测试题及解析

人教版初中数学数据剖析经典测试题及分析一、选择题1.在昨年的体育中考取,某校 6 名学生的体育成 以下表:成 17 18 20 人数231以下对于 数据的 法 的是( )A .众数是 18B .中位数是 18C .均匀数是 18D .方差是 2【答案】 D 【分析】 【剖析】依据众数、中位数的定 和均匀数、方差的 算公式分 行解答即可. 【 解】A 、 数据中18 出 了 3 次,次数最多, 数据的众数是18.故本 法正确;B 、把 数据从小到大摆列,最中 两个数的均匀数是( 18+18) ÷2= 18, 中位数是18.故本 法正确; C 、 数据的均匀数是:( 17× 2+18 × 3+20)÷6=18.故本 法正确;1 D 、 数据的方差是: 6[2 ×( 17 18) 2+3×( 18 18) 2+( 2018)2 ]=1.故本法 . 故 D .【点睛】本 考 了众数、中位数、均匀数和方差,众数是一 数据中出 次数最多的数;中位数 是将一 数据从小到大(或从大到小)从头摆列后,最中 的那个数(或最中 两个数的 均匀数);均匀数是全部数据的和除以数据 数;一般地 n 个数据, x 1, x 2, ⋯x n 的均匀数 x , 方差S 2= 1[( x 1- x ) 2+( x 2- x ) 2+⋯+( x n - x ) 2].n2.甲、乙、丙三个不一样品种的苹果 在同一地域 行 比 ,从每个品种的苹果 中随机各抽取 10 棵, 它 的 量 行 , 制 表以下:品种甲 乙 丙均匀 量 /( 千克 /棵 ) 90 90方差10.224.88.5若从这三个品种中选择一个在该地域推行,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【分析】【剖析】依据均匀数、方差等数据的进行判断即可.【详解】依据均匀数、方差等数据的比较能够得出甲品种更适在该地域推行.应选: A【点睛】本题考察了均匀数、方差,掌握均匀数、方差的定义是解题的重点.3.已知一组数据a、 b、 c 的均匀数为5,方差为 4 ,那么数据a+2、b+2 、c+2 的均匀数和方差分别为()A.7, 6B. 7,4C.5,4D.以上都不对【答案】【分析】【剖析】B依据数据a, b, c 的均匀数为 5 可知 a+b+c=5×3,据此可得出1(-2+b-2+c-2)的值;再由3方差为 4 可得出数据a-2, b-2, c-2 的方差.【详解】解:∵数据a, b, c 的均匀数为5,∴ a+b+c=5×3=15,∴1( a-2+b-2+c-2) =3,3∴数据 a-2, b-2, c-2 的均匀数是3;∵数据 a, b, c 的方差为4,∴1[(a-5)2+(b-5)2+( c-5)2 ]=4,3∴a-2, b-2,c-2 的方差 = 1[( a-2-3)2+( b-2-3)2+( c--2-3)2 ] 31=[ ( a-5)2+( b-5)2 +( c-5)2]=4,3应选 B.【点睛】本题考察了均匀数、方差,娴熟掌握均匀数以及方差的计算公式是解题的重点.4.某校四个绿化小组一天植树的棵数以下: 10, x,10, 8,已知这组数据的众数与均匀数相等,则这组数据的中位数是 ( )A.8B. 9C. 10D. 12【答案】 C【分析】【剖析】依据这组数据的众数与均匀数相等,可知这组数据的众数(因10 出现了 2 次)与均匀数都是 10;再依据均匀数是 10,可求出这四个数的和是 40,从而求出 x 的数值;而后把这四个数据依据从大到小的次序摆列,因为是偶数个数据,则中间两个数的均匀数就是中位数.【详解】当 x=8 时,有两个众数,而均匀数只有一个,不合题意舍去.当众数为 10,依据题意得( 10+10+x+8)÷4=10,解得 x=12,将这组数据按从小到大的次序摆列为 8,10, 10, 12,处于中间地点的是 10,10,所以这组数据的中位数是( 10+10)÷2=10.应选 C.【点睛】本题为统计题,考察均匀数、众数与中位数的意义,解题时需要理解题意,分类议论.5.对于一组统计数据:1, 1, 4, 1, 3,以下说法中错误的选项是()A.中位数是1B.众数是1C.均匀数是 1.5D.方差是 1.6【答案】 C【分析】【剖析】将数据从小到大摆列,再依据中位数、众数、均匀数及方差的定义挨次计算可得答案.【详解】解:将数据从头摆列为:1、 1、1、 3、 4,则这组数据的中位数1, A 选项正确;众数是 1, B 选项正确;均匀数为1 11 3 4=2, C选项错误;5方差为1×[(1﹣2)2× 3+( 3﹣ 2)2 +(4﹣ 2)2]= 1.6,D 选项正确;5应选: C.【点睛】本题主要考察中位数、众数、均匀数及方差,解题的重点是掌握中位数、众数、均匀数及方差的定义与计算公式.6.以下说法:①一组对边平行,另一组对边相等的四边形是平行四边形;② 经过有交通信号灯的路口,碰到红灯是必定事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1 ,则甲数据比乙组数据稳固;④圆内接正六边形的边长等于这个圆的半径,此中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】 A【分析】【剖析】依据平行四边形的判断去判断① ;依据必定事件的定义去判断② ;依据方差的意义去判断③ ;依据圆内接正多边形的有关角度去计算④ .【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,① 错误;必定事件是必定会发生的事件,碰到红灯是随机事件,② 错误;方差越大越不稳固,越小越稳固,乙比甲更稳固,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④ 结论正确.所以正确 1 个,答案选A.【点睛】本题波及的知识点许多,要熟习平行四边形的常有判断;随机事件、必定事件、不行能事件等的划分;掌握方差的意义;会计算圆内接正多边形有关.7.某校九年级模拟考试中, 1 班的六名学生的数学成绩以下:96, 108, 102, 110, 108,82.以下对于这组数据的描绘不正确的选项是()A.众数是108B.中位数是105C.均匀数是101D.方差是93【答案】D【分析】【剖析】把六名学生的数学成绩从小到大摆列为:82, 96, 102, 108, 108, 110,求出众数、中位数、均匀数和方差,即可得出结论.【详解】解:把六名学生的数学成绩从小到大摆列为:82, 96, 102, 108, 108, 110,∴众数是 108,中位数为102108105,均匀数为282961021081081106101,方差为182296101210210122108211026101108101101101 94.3 93 ;应选:D.【点睛】查核知识点:众数、中位数、均匀数和方差;理解定义,记着公式是重点.8.在一次中学生田径运动会上,参加男子跳高的 15 名运动员的成绩如表所示:成绩 /米 1.50 1.60 1.65 1.70 1.75 1.80 人数232341则这 15 运动员的成绩的众数和中位数分别为()A .1.75, 1.70B . 1.75, 1.65C . 1.80, 1.70D . 1.80, 1.65【答案】 A【分析】【剖析】9.一组数据3、 2、 1、 2、 2 的众数,中位数,方差分别是:()A .2, 1, 2B . 3,2, 0.2C . 2, 1, 0.4D . 2, 2, 0.4【答案】 D【分析】【剖析】依据众数,中位数,方差的定义计算即可 .【详解】将这组数据从头由小到大摆列为: 1、2、2、2、3均匀数为:12 2 23 252 出现的次数最多,众数为: 2中位数为: 22 2 2 2 2方差为: s21 22 22 2 2 23 20.45应选: D【点睛】本题考察了确立数据众数,中位数,方差的能力,解题的重点是熟习它们的定义和计算方 法.10. 下边的统计图表示某体校射击队甲、乙两名队员射击竞赛的成绩,依据统计图中的信息,以下结论正确的选项是( )A.甲队员成绩的均匀数比乙队员的大B.乙队员成绩的均匀数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】 D【分析】【剖析】依据均匀数、中位数和方差的计算公式分别对每一项进行剖析,即可得出答案.【详解】甲队员 10 次射击的成绩分别为6,7, 7, 7, 8, 8, 9, 9,9,10,则中位数88=8,2甲 10 次射击成绩的均匀数 =( 6+3×7+2×8+3×9+10)÷10=8(环),乙队员 10 次射击的成绩分别为 6 ,7, 7, 8, 8, 8, 8, 9,9 ,10,则中位数是8,乙 10 次射击成绩的均匀数 =( 6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差= 1×[(6-8)2+3×( 7-8)2 +2×( 8-8)3+3×( 9-8)2+( 10-8)2]=1.4;10乙队员成绩的方差= 1×[(6-8)2+2×( 7-8)2 +4×( 8-8)3+2×( 9-8)2+( 10-8)2]=1.2,10综上可知甲、乙的中位数同样,均匀数同样,甲的方差大于乙的方差,应选 D.【点睛】本题考察了均匀数、中位数和方差的定义和公式,娴熟掌握均匀数、中位数、方差的计算是解题的重点 .11.某鞋店一天卖出运动鞋12 双,此中各样尺码的鞋的销售量以下表:则这12 双鞋的尺码构成的一组数据中,众数和中位数分别是()码( cm)23.52424.52525.5销售量(双)12252A.25, 25B. 24.5, 25C. 25, 24.5D. 24.5, 24.5【答案】 A【分析】试题剖析:依据众数和中位数的定义求解可得.解:由表可知25 出现次数最多,故众数为25;25 2512 个数据的中位数为第6、 7 个数据的均匀数,故中位数为=25,2应选: A.12.如图是依据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22B.中位数是22,众数是31C.中位数是26,众数是22D.中位数是22,众数是26【答案】 C【分析】【剖析】依据中位数,众数的定义即可判断.【详解】七个整点时数据为:22, 22, 23, 26, 28, 30, 31所以中位数为26,众数为22应选: C.【点睛】本题考察中位数,众数的定义,解题重点在于看懂图中数据13.某中学为了认识同学们均匀每个月阅读课外书本的状况,在某年级随机抽查了20 名同学,结果以下表所示:均匀每个月阅读本数45678人数26543这些同学均匀每个月阅读课外书本本数的中位数和众数为( )A.5, 5B. 6,6C. 5, 6D. 6, 5【答案】 D【分析】【剖析】依据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大摆列中间的两个数都是6,则这组数据的中位数是6;5 出现了6 次,出现的次数最多,则众数是 5 .应选 D.【点睛】本题考察了中位数和众数,将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(或最中间两个数的均匀数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.14.某校男子足球队的年纪散布以下图,则依据图中信息可知这些队员年纪的均匀数,中位数分别是()A.15.5, 15.5B. 15.5, 15C. 15, 15.5D. 15, 15【答案】 D【分析】【剖析】【详解】依据图中信息可知这些队员年纪的均匀数为:13 2 14 6 15 8 16 3 17 2 181=15 岁,2 6 83 21该足球队共有队员2+6+8+3+2+1=22 人,则第 11 名和第 12名的均匀年纪即为年纪的中位数,即中位数为15 岁,应选 D.15. 5、 2.4、 2.4、 2.4、 2.3 的中位数是2.4,选项 C 不切合题意.1×[(2.3﹣ 2.4)2+( 2.4﹣2.4)2+( 2.5﹣ 2.4)2+(2.4﹣ 2.4)2+( 2.4﹣2.4)2]5=1×(0.01+0+0.01+0+0 )5=1× 0.02 5=0.004∴这组数据的方差是0.004,∴选项 D 不切合题意.应选 B.【点睛】本题主要考察了中位数、众数、算术均匀数、方差的含义和求法,要娴熟掌握.16.在一次中学生田径运动会上,参加男子跳高的15 名运动员的成绩以下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70, 1.75B. 1.70, 1.70C. 1.65, 1.75D. 1.65, 1.70【答案】 A【分析】剖析:找中位数要把数据按从小到大的次序摆列,位于最中间的一个数或两个数的均匀数为中位数;众数是一组数据中出现次数最多的数据,注意众数能够不只一个.详解:共 15 名学生,中位数落在第8 名学生处,第8 名学生的跳高成绩为 1.70m ,故中位数为 1.70;跳高成绩为 1.75m 的人数最多,故跳高成绩的众数为 1.75;应选A.点睛:本题为统计题,考察众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数.17.某中学篮球队12 名队员的年纪如表:年纪(岁)13141516人数1542对于这 12 名队员年纪的数据,以下说法正确的选项是()5A.中位数是14.5B.年纪小于15 岁的频次是12C.众数是5D.均匀数是14.8【答案】A【分析】【剖析】依据表中数据,求出这组数据的众数、频次、中位数和均匀数即可.【详解】解: A 、中位数为第 6、7 个数的均匀数,为14 15= 14.5,此选项正确;21 51 B 、年纪小于 15 岁的频次是,此选项错误;122C 、 14 岁出现次数最多,即众数为 14 ,此选项错误;D 、均匀数为:131145 15 416 2 =175,此选项错误;1212【点睛】本题考察了众数、中位数、均匀数与频次的计算问题,是基础题.解题的重点是掌握众数、中位数、均匀数与频次的定义进行解题.18. 一组数据-2, 3, 0,2, 3 的中位数和众数分别是()A .0, 3B . 2,2C .3,3D .2,3【答案】 D【分析】【剖析】依据中位数和众数的定义解答即可.【详解】将这组数据从小到大的次序摆列为:﹣ 2, 0, 2, 3,3,最中间的数是 2,则中位数是 2;在这一组数据中 3 是出现次数最多的,故众数是 3.应选 D .【点睛】本题考察了众数与中位数的意义.将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(或最中间两个数的均匀数)叫做这组数据的中位数;假如中位数的观点掌握得不好,不把数据按要求从头摆列,就会犯错.19. 据统计,某住所楼 30 户居民五月份最后一周每日推行垃圾分类的户数挨次是: 27,30, 29, 25, 26, 28, 29,那么这组数据的中位数和众数分别是( )A .25 和 30B .25 和 29C .28 和 30D .28 和29【答案】 D【分析】【剖析】依据中位数和众数的定义进行求解即可得答案 .【详解】对这组数据从头摆列次序得,25, 26, 27, 28, 29,29 ,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中, 29 出现的次数最多,∴这组数据的众数是29,人教版初中数学数据分析经典测试题及解析应选 D.【点睛】本题考察了中位数和众数的观点,娴熟掌握众数和中位数的观点是解题的重点.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的均匀数)是这组数据的中位数.20.某班有 40 人,一次体能测试后,老师对测试成绩进行了统计.因为小亮没有参加本次集体测试,所以计算其余39 人的均匀分为90 分,方差s239 .以后小亮进行了补测,成绩为 90 分,对于该班A.均匀分不变,方差变大C.均匀分和方差都不变40 人的测试成绩,以下说法正确的选项是()B.均匀分不变,方差变小D.均匀分和方差都改变【答案】 B【分析】【剖析】依据均匀数,方差的定义计算即可.【详解】解:∵小亮的成绩和其余39 人的均匀数同样,都是90 分,∴该班 40 人的测试成绩的均匀分为90 分,方差变小,应选: B.【点睛】本题考察方差,算术均匀数等知识,解题的重点是理解题意,灵巧运用所学知识解决问题,属于中考常考题型.。

[必刷题]2024七年级数学上册数据分析专项专题训练(含答案)

[必刷题]2024七年级数学上册数据分析专项专题训练(含答案)

[必刷题]2024七年级数学上册数据分析专项专题训练(含答案)试题部分一、选择题:1. 下列数据中,众数是8的是()A. 2, 3, 5, 7, 8, 8, 9B. 1, 2, 3, 4, 5, 6, 7C. 6, 7, 8, 9, 10, 11, 12D. 4, 5, 6, 8, 8, 9, 102. 下列哪个统计量能够反映一组数据的平均水平()A. 众数B. 平均数C. 中位数D. 方差3. 一组数据的方差越小,说明这组数据的()A. 波动越大B. 波动越小C. 平均数越大D. 平均数越小4. 下列关于平均数、中位数、众数的关系,正确的是()A. 平均数总是大于中位数B. 中位数总是大于众数C. 平均数总是大于众数D. 三者之间的大小关系不确定5. 一个样本的数据为2, 3, 5, 7, 11,则这组数据的中位数是()A. 3B. 5C. 7D. 116. 下列哪个统计量不能反映数据的波动情况()A. 平均数B. 中位数C. 众数D. 方差7. 一组数据的方差为0,则这组数据()A. 平均数为0B. 所有数据都相等C. 中位数为0D. 众数为08. 下列关于众数的说法,错误的是()A. 众数是一组数据中出现次数最多的数B. 一组数据可以没有众数C. 一组数据可以有多个众数D. 众数必须小于平均数9. 要表示一组数据的波动情况,应选用()A. 平均数B. 中位数C. 众数D. 方差10. 一组数据的平均数为10,方差为4,则这组数据()A. 波动较大B. 波动较小C. 数据都相等D. 数据都大于10二、判断题:1. 一组数据的众数只有一个。

()2. 平均数、中位数、众数都是反映数据集中趋势的统计量。

()3. 方差越大,说明数据的波动越小。

()4. 一组数据的中位数等于这组数据排序后中间位置的数。

()5. 如果一组数据中有多个众数,那么这组数据的平均数等于众数。

()三、计算题:1. 已知一组数据:2, 3, 5, 5, 7, 8, 9,求这组数据的平均数。

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测题(答案解析)(1)

最新人教版初中数学八年级数学下册第五单元《数据的分析》检测题(答案解析)(1)

一、选择题1.反映一组数据变化范围的是( ) A .极差 B .方差C .众数D .平均数2.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或63.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( ) A .10,12B .12,11C .11,12D .12,124.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是( ) A .70分,80分 B .80分,80分 C .90分,80分 D .80分,90分 5.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .06.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 7.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( )A .平均数改变,方差不变B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变8.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分 B .中位数C .极差D .平均数9.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个 B .2个 C .3个 D .4个 10.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x ( ) A .2B .3C .5D .711.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)3915126A .15B .20C .21D .2512.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题13.北京市 7月某日 10 个区县的最高气温如表(单位:C ):34343234323431333234区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温则这 10 个区县该日最高气温的众数是__________,中位数是__________.14.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.15.已知一组数据:3,3,x ,5,5的平均数是4,则这组数据的方差是___________. 16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.17.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.18.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____.19.某组数据按从小到大的顺序如下:2、4、8、x 、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.20.已知5个数据的平均数是7,另外还有3个数据的平均数是k , 则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:第1次 第2次 第3次 第4次 第5次 甲成绩 80 40 70 50 60 乙成绩705070a70= ,甲同学成绩的极差为 ;(2)小颖计算了甲同学的成绩平均数为60,方差是S 甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差; (3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下: 学部 平均数 中位数最高分 众数 初一 88 a98 98初二8886100ba =(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?23.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.24.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100; 乙组:50,60,60,60,70,70,70,70,80,90. (1)以上成绩统计分析表如表:则表中a = ,b = ,c = .(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.25.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照04x ≤<,48x ≤<,…,2832x ≤<分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.26.甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次第2次第3次第4次第5次甲1089108乙109a b9()1若甲、乙射击平均成绩一样,求+a b的值;()2在()1条件下,若,a b是两个连续整数,试问谁发挥的更稳定?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.3.C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.4.B解析:B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.5.A解析:A【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x的方差比数据5791113,,,,的方差大,∴这组数据可能是x(x<0),2,4,6,8或2,4,6,8,x(x>10),观察只有A选项符合,6.B解析:B 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.8.B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B .9.B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确; ④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°,∴三角形的这个内角为180°÷2=90°则这个三角形是直角三角形,故正确.综上:正确的有2个故选B.【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.10.C解析:C【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x,它们的众数为5,∴5出现的次数最多,故5x=,故选C.【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.11.C解析:C【分析】根据加权平均数公式列出算式求解即可.【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C.【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键12.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题13.34335【分析】找中位数要把数据按从小到大的顺序排列位于最中间的一个数或两个数的平均数为中位数众数是一组数据中出现次数最多的数据注意众数可以不止一个【详解】解:将10个区的气温数据进行从小到大重排解析:34 33.5 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:将10个区的气温数据进行从小到大重排: 31,32,32,32,33,34,34,34,34,34,则中位数为:333433.52+=, 众数为:34,故答案为:34,33.5. 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,按要求将重新排列,是找中位数的关键.14.82【分析】设第三次考试成绩为x 根据三次考试的平均成绩不少于80分列不等式求出x 的取值范围即可得答案【详解】设第三次考试成绩为x ∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少得82分解析:82 【分析】设第三次考试成绩为x ,根据三次考试的平均成绩不少于80分列不等式,求出x 的取值范围即可得答案. 【详解】设第三次考试成绩为x ,∵三次考试的平均成绩不少于80分,∴7286803x++≥, 解得:82x ≥,∴他第三次数学考试至少得82分, 故答案为:82本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.15.【分析】先由平均数的定义求得x 的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0 解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差. 【详解】 根据题意得: 3+3+x+5+5=4×5, 解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8. 【点睛】考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 16.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙 【分析】通过图示波动的幅度即可推出. 【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙 【点睛】考查数据统计的知识点17.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x解析:30 【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. 【详解】解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据,∴x 1+x 2+x 3+…+x 10=10×3=30.故答案为30.【点睛】 本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.18.2【分析】先用平均数是3可得x 的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)210=2故解析:2【分析】先用平均数是3可得x 的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x +5),解得:x =4, ∴方差是S 215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2. 故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大. 19.10【解析】分析:根据中位数为9可求出x 的值继而可判断出众数详解:由题意得:(8+x )÷2=9解得:x=10则这组数据中出现次数最多的是10故众数为10故答案为10点睛:本题考查了中位数及众数的知识解析:10【解析】分析:根据中位数为9,可求出x 的值,继而可判断出众数.详解:由题意得:(8+x )÷2=9,解得:x =10,则这组数据中出现次数最多的是10,故众数为10.故答案为10.点睛:本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键. 20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k,因此这8个数的和为35+3k,因此其平均数为(35+3k)÷8,即35+3 8k.故答案为:35+3 8k.三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析.【分析】(1)由“他们5次考试的总成绩相同”可求得a的值,利用极差的定义求解可得;(2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论.【详解】解:(1)a=(80+40+70+50+60)﹣(70+50+70+70)=40,甲同学成绩的极差为:80﹣40=40,故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S甲2>S乙2,所以乙同学的成绩更稳定.【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人.【分析】(1)根据条形图排序中位数在C组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可;(2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可.【详解】解:(1)A与B组共有6个,D组有6个为此中位数落在C组,而C组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上,第8个数据为85,中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100, 100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=,答:此次测试成绩达到90分及以上的学生约有320人.【点睛】 本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.23.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可;(2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可.【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278, 排序后位于中间位置的数为180,故中位数180,数据90出现了4次,出现次数最多,故众数为90;(2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.24.(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a 、c 的值,根据平均数的定义计算出b 的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a =60; 乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68; 乙组学生成绩的中位数为70702+=70,即b =68,c =70; 故填:60,68,70;(2)选择乙组.理由如下: 乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116, 因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.25.(1)100,14.72;(2)不合理,见解析【分析】(1)先确定a 的值,然后求这些数据的加权平均数即可;(2)由14.72在1216x ≤<内,然后确定小于16t 的户数,再求出小于16t 的户数占样本的百分比,最后用这个百分比和70%相比即可说明.【详解】解:(1)依题意得a=(1000-40-180-280-220-60-20)÷2=100.这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ∴估计这1000户家庭月均用水量的平均数是14.72.(2)不合理.理由如下:由(1)可得14.72在1216x ≤<内,∴这1000户家庭中月均用水量小于16t 的户数有40100180280600+++=(户),∴这1000户家庭中月均用水量小于16t 的家庭所占的百分比是600100%60%1000⨯=, ∴月均用水量不超过14.72t 的户数小于60%.∵该市政府希望70%的家庭的月均用水量不超过标准m ,而60%70%<,∴用14.72作为标准m 不合理.【点睛】本题考查了频数分布直方图、用样本估计总体、加权平均数,正确求得加权平均数是解答本题的关键.26.(1)17a b +=;(2)乙更稳定【分析】(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出+a b 的值;(2)根据题意令8,9a b ==,分别计算甲、乙的方差,方差越小.成绩越稳定.【详解】解:(1) 108910895x ++++==甲(环) 109995a b x ++++==乙(环) 17a b ∴+=(2)17a b +=且,a b 为连续的整数∴令8,9a b ==()()()()()22222211098999109890.85S ⎡⎤=-+-+-+-+-=⎣⎦甲, ()()()()()2222221109999989990.45S ⎡⎤=-+-+-+-+-=⎣⎦乙, 22S S >甲乙∴乙更稳定【点睛】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.。

初中数学数据分析练习题和答案

初中数学数据分析练习题和答案

初中数学数据分析练习题和答案1. 某班级共有40名学生,他们参加了一次数学考试。

以下是每个学生的得分情况(满分100分):75, 83, 92, 68, 77, 85, 90, 73, 89, 78, 82, 87, 95, 62, 80, 84, 91, 79, 72, 88, 76, 81, 86, 94, 70,69, 74, 93, 71, 67, 75, 83, 92, 68, 77, 85, 90, 73, 89, 78, 82请根据以上数据回答以下问题:解答:1) 求全班学生的平均分数。

解析:要求全班学生的平均分数,需要将每个学生的得分相加,再除以学生总数。

75 + 83 + 92 + 68 + 77 + 85 + 90 + 73 + 89 + 78 + 82 + 87 + 95 + 62 + 80 + 84 + 91 + 79 + 72 + 88 + 76 + 81 + 86 + 94 + 70 +69 + 74 + 93 + 71 + 67 + 75 + 83 + 92 + 68 + 77 + 85 + 90 + 73 + 89 + 78 + 82 = 3024全班学生的平均分数为:3024 / 40 = 75.6分2) 求全班学生中的最高分和最低分。

解析:要求全班学生中的最高分和最低分,需要找出最大值和最小值。

最高分为:95分最低分为:62分3) 求全班学生中得分在80分以上的人数。

解析:要求得分在80分以上的人数,需要统计得分大于等于80分的学生人数。

得分大于等于80分的学生有:83, 92, 85, 90, 89, 82, 87, 95, 80, 84, 91, 88, 81, 86, 94, 83, 92, 85, 90, 89, 82。

得分在80分以上的人数为:21人4) 绘制全班学生成绩的频率分布直方图。

解析:为更好地展示全班学生成绩的分布情况,可以通过绘制频率分布直方图来呈现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学数据分析经典测试题及解析一、选择题1.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是( ) A .这些运动员成绩的众数是 5 B .这些运动员成绩的中位数是 2.30 C .这些运动员的平均成绩是 2.25 D .这些运动员成绩的方差是 0.0725 【答案】B 【解析】 【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【详解】由表格中数据可得:A 、这些运动员成绩的众数是2.35,错误;B 、这些运动员成绩的中位数是2.30,正确;C 、这些运动员的平均成绩是 2.30,错误;D 、这些运动员成绩的方差不是0.0725,错误; 故选B . 【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.2.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A.①③B.①④C.②③D.②④【答案】C【解析】【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案.【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,x甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,x乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,乙的方差S乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45,∴S2甲<S2乙,∴甲的射击成绩比乙稳定;故选:C.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒ ,所以构成等边三角形,④结论正确.所以正确1个,答案选A . 【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.4.2018年国务院机构改革不再保留国家卫生和计划生育委员会,组建国家卫生健康委员会,在修正人口普查数据中的低龄人口漏登后,我们估计了1982-2030年育龄妇女情况.1982年中国15-49岁育龄妇女规模为2.5亿,到2011年达3.8亿人的峰值,2017年降至3.5亿,预计到2030年将降至3.0亿.则数据2.5亿、3.8亿、3.5亿、3.0亿的中位数、平均数、方差分别是( ) A .3.25亿、3.2亿、0.245 B .3.65亿、3.2亿、0.98 C .3.25亿、3.2亿、0.98 D .3.65亿、3亿、0.245【答案】A 【解析】 【分析】根据中位数、平均数的定义和方差公式分别进行解答即可. 【详解】把数据2.5亿、3.8亿、3.5亿、3.0亿按从小到大的顺序排列为:2.5亿,3.亿,3.5亿,3.8亿,最中间的两个数是3.0亿和3.5亿,所以,这组数据的中位数为:3.0+3.5=3.252亿 平均数为:2.5+3.8+3.5+3.0=3.24亿;方差为:S 2=14×[(2.5-3.2)2+(3.8-3.2)2+(3.5-3.2)2+(3.0-3.2)2]= 14×(0.49+0.36+0.09+0.04)=0.245 故选A. 【点睛】本题考查了中位数、平均数和方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦.5.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65【答案】A【解析】【分析】7.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量12251(双)则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.8.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.10.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( )A.5,5 B.6,6 C.5,6 D.6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.11.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8. 平均成绩一样,小明的方差小,成绩稳定, 故选A . 【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题. 错因分析 容易题.失分原因是方差的意义掌握不牢.13.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.14.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .100【答案】A 【解析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.15.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.6 D.3【答案】A【解析】【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.某中学篮球队12名队员的年龄如表:关于这12名队员年龄的数据,下列说法正确的是()A.中位数是14.5 B.年龄小于15岁的频率是5 12C.众数是5 D.平均数是14.8【答案】A【解析】【分析】根据表中数据,求出这组数据的众数、频率、中位数和平均数即可.【详解】解:A、中位数为第6、7个数的平均数,为14152+=14.5,此选项正确;B、年龄小于15岁的频率是151122+=,此选项错误;C、14岁出现次数最多,即众数为14,此选项错误;D、平均数为:131145154162175=1212⨯+⨯+⨯+⨯,此选项错误;【点睛】本题考查了众数、中位数、平均数与频率的计算问题,是基础题.解题的关键是掌握众数、中位数、平均数与频率的定义进行解题.17.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.18.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.。

相关文档
最新文档