(完整版)汽车动力总成悬置系统的优化设计毕业设计

合集下载

《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能逐渐成为影响汽车舒适性和稳定性的关键因素。

本文旨在分析汽车动力总成悬置系统的振动问题,并提出相应的优化设计方案,以提高汽车的驾驶体验和性能。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机、变速器和底盘的重要部分,其主要作用是减少振动和噪声的传递,提高汽车的乘坐舒适性和行驶稳定性。

该系统通常由发动机悬置、变速器悬置和副车架等组成。

三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统的振动主要来源于发动机的运转和道路的不平度。

发动机运转时产生的振动会通过悬置系统传递到车身和底盘,而道路不平度则会导致整个动力总成系统的振动。

2. 振动影响分析动力总成悬置系统的振动会对汽车的乘坐舒适性、行驶稳定性和发动机性能产生不良影响。

长期振动还可能导致悬置系统零部件的疲劳损坏,增加维修成本。

四、汽车动力总成悬置系统优化设计1. 材料选择优化优化材料选择是提高动力总成悬置系统性能的有效途径。

采用高强度、轻量化的材料,如铝合金、复合材料等,可以降低系统质量,提高系统的刚度和减振性能。

2. 结构优化设计结构优化设计是解决动力总成悬置系统振动问题的关键。

通过改进悬置系统的结构布局、增加减振元件和优化阻尼特性等措施,可以有效地减少振动和噪声的传递。

例如,采用多级减振结构,使系统在不同频率下的减振效果更加明显。

3. 智能控制技术应用智能控制技术如主动或半主动悬置系统,可以通过传感器实时监测系统的振动状态,并自动调整控制参数,以实现更好的减振效果。

这种技术可以提高系统的自适应能力和性能稳定性。

五、实例分析以某款汽车的动力总成悬置系统为例,通过对其振动问题进行详细分析,发现主要问题在于发动机运转时产生的振动过大。

针对这一问题,我们采用了上述的优化设计方案,包括采用高强度铝合金材料、优化结构布局和增加减振元件等措施。

《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的飞速发展,消费者对汽车性能的要求日益提高,其中,汽车的舒适性和稳定性成为了重要的考量因素。

汽车动力总成悬置系统作为连接发动机与车身的重要部分,其性能的优劣直接影响到整车的振动特性和乘坐舒适性。

因此,对汽车动力总成悬置系统的振动进行分析及优化设计显得尤为重要。

本文将针对汽车动力总成悬置系统的振动问题进行分析,并提出相应的优化设计方案。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、离合器、变速器、驱动桥等组成,通过悬置装置与车身相连。

其作用是支撑和固定动力总成,减少振动和噪声的传递,保证汽车的平稳运行。

动力总成悬置系统的性能直接影响到整车的乘坐舒适性和行驶稳定性。

三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统振动的主要原因是发动机的运转产生的激励力以及道路的不平度等因素引起的。

这些激励力通过悬置装置传递到车身,导致整车的振动。

此外,动力总成各部件之间的相互作用也会产生振动。

2. 振动影响分析汽车动力总成悬置系统的振动会影响整车的乘坐舒适性和行驶稳定性。

过大的振动会导致乘客感到不适,严重时甚至会影响到驾驶安全。

此外,振动还会导致动力总成各部件的磨损加剧,降低整车的使用寿命。

四、汽车动力总成悬置系统优化设计1. 设计原则在进行汽车动力总成悬置系统的优化设计时,应遵循以下原则:首先,要保证动力总成的稳定性和可靠性;其次,要尽量减少振动和噪声的传递;最后,要考虑到整车的重量和成本等因素。

2. 优化方案针对汽车动力总成悬置系统的振动问题,可以采取以下优化方案:(1)改进悬置装置的设计:通过优化悬置装置的结构和材料,提高其支撑和减振性能。

可以采用橡胶减震垫、液压减震器等减震元件,以减少振动和噪声的传递。

(2)优化动力总成的布局:合理布置发动机、离合器、变速器等部件的位置和角度,以降低各部件之间的相互作用力,减少振动的产生。

《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的飞速发展,消费者对汽车的性能和舒适性要求日益提高。

汽车动力总成悬置系统作为汽车的重要组成部分,其性能的优劣直接影响到整车的振动噪声水平以及乘坐舒适性。

因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,对于提高汽车的整体性能具有重要意义。

本文将针对汽车动力总成悬置系统的振动进行分析,并提出相应的优化设计方案。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统是指将发动机、变速器等动力总成与车身进行连接的装置,其作用是减小动力总成产生的振动和噪声对整车的影响。

该系统主要由橡胶支座、液压支座、金属支座等组成,通过这些支座将动力总成的振动和冲击传递给车身,并起到减振、降噪的作用。

三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统振动的主要原因是发动机工作时产生的激励力,包括往复运动产生的惯性力和旋转运动产生的扭矩。

此外,路面不平、轮胎非线性等因素也会对系统产生一定的振动影响。

2. 振动传递路径动力总成的振动通过悬置系统传递到车身,再传递到车内乘客。

传递路径主要包括橡胶支座、液压支座等部件的弹性变形以及金属支座的刚度传递。

3. 振动分析方法针对汽车动力总成悬置系统的振动分析,可采用实验分析和数值分析两种方法。

实验分析主要通过实车测试和台架试验获取数据;数值分析则通过建立动力学模型,运用有限元等方法进行仿真分析。

四、汽车动力总成悬置系统优化设计1. 设计目标汽车动力总成悬置系统优化设计的目标是在保证动力总成正常工作的前提下,降低整车的振动噪声水平,提高乘坐舒适性。

同时,还需考虑系统的耐久性、可靠性以及制造成本等因素。

2. 优化设计方案(1)材料选择:选用高弹性、高阻尼的材料制作橡胶支座,以提高系统的减振性能。

同时,根据实际需要,可考虑在部分支座中加入液压减振元件,进一步提高减振效果。

(2)结构优化:对悬置系统的结构进行优化设计,如调整支座的布置位置、改变支座的刚度等,以改变振动的传递路径和传递速度,从而达到降低整车振动噪声的目的。

《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对整车舒适性和耐久性的影响日益显著。

汽车动力总成悬置系统作为连接发动机和车身的重要部分,其振动特性的优劣直接关系到整车的运行平稳性和乘坐舒适性。

因此,对汽车动力总成悬置系统的振动进行分析及优化设计,已成为汽车工程领域的研究热点。

本文旨在分析汽车动力总成悬置系统的振动特性,并对其优化设计进行探讨。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、悬置件、支撑结构等组成,其作用是减小发动机振动对整车的影响,保证发动机的正常运行,同时提高整车的乘坐舒适性和耐久性。

该系统的性能直接影响整车的动力性、经济性、舒适性和安全性。

三、汽车动力总成悬置系统振动分析1. 振动来源分析汽车动力总成悬置系统的振动主要来源于发动机的运转和外部环境的干扰。

发动机的运转会产生周期性振动和非周期性振动,而外部环境如道路不平度、风力等也会对系统产生振动影响。

2. 振动传递路径分析汽车动力总成悬置系统的振动通过悬置件传递到车身,进而影响整车的振动特性。

在传递过程中,悬置件的刚度和阻尼对振动的传递具有重要影响。

3. 振动特性分析通过对汽车动力总成悬置系统进行模态分析和响应分析,可以了解系统的振动特性。

模态分析可以获得系统的固有频率和振型,而响应分析则可以了解系统在不同工况下的振动响应情况。

四、汽车动力总成悬置系统优化设计1. 设计目标汽车动力总成悬置系统的优化设计旨在提高整车的乘坐舒适性和耐久性,降低发动机的振动和噪声对整车的影响。

2. 优化方案(1)改进悬置件的设计:通过优化悬置件的刚度和阻尼,减小发动机的振动传递到车身的幅度。

(2)优化支撑结构:通过改进支撑结构的布局和刚度,提高系统的整体刚度和稳定性。

(3)采用先进的控制技术:如主动悬置技术、半主动悬置技术等,通过控制算法对发动机的振动进行主动控制。

3. 优化设计方法(1)理论分析:通过建立数学模型和仿真分析,了解系统的振动特性和优化目标。

《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言汽车作为现代社会出行的重要工具,其舒适性和安全性已成为消费者选购车辆的重要考量因素。

动力总成悬置系统作为汽车的重要组成部分,其性能直接影响到整车的振动噪声水平及乘坐舒适性。

因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,对于提升汽车性能具有重要意义。

本文将就汽车动力总成悬置系统的振动分析及优化设计进行探讨。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速箱、传动系统等组成,其作用是将发动机产生的动力传递至车轮,同时起到减震、降噪、提高乘坐舒适性的作用。

该系统的性能直接影响到整车的运行平稳性和乘坐舒适性。

三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统的振动主要来源于发动机的燃烧、气缸内的工作过程、燃油的喷入以及各种力的相互作用等因素。

此外,路面不平、车身结构等因素也会对系统产生一定的振动影响。

2. 振动分析方法针对汽车动力总成悬置系统的振动分析,可采用理论分析、仿真分析和实车测试等方法。

理论分析主要依据动力学原理和弹性力学原理对系统进行建模和分析;仿真分析则通过建立系统的有限元模型,对系统进行动力学仿真分析;实车测试则是通过在真实环境下对车辆进行测试,获取系统的振动数据。

四、汽车动力总成悬置系统优化设计1. 设计目标汽车动力总成悬置系统的优化设计目标主要包括降低系统振动、提高乘坐舒适性、减少噪声等。

通过对系统进行优化设计,可提高整车的性能和品质。

2. 优化设计方法(1)材料选择:选用高强度、轻量化的材料,如铝合金、复合材料等,以降低系统重量,提高刚度和减震性能。

(2)结构优化:通过优化结构布局和刚度分配,使系统在受到外界力时能够快速恢复稳定状态,减少振动。

(3)主动控制技术:采用主动控制技术,如主动悬挂系统、电磁减震器等,对系统进行实时控制,以降低振动和噪声。

(4)仿真分析:利用仿真软件对系统进行动力学仿真分析,预测系统的振动性能,为优化设计提供依据。

《汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言汽车动力总成悬置系统作为车辆动力传递与振动控制的关键部分,其性能的优劣直接关系到整车的驾驶舒适性和行驶稳定性。

因此,对汽车动力总成悬置系统的振动进行分析,并进行相应的优化设计,是汽车工程领域研究的重要课题。

本文将深入探讨汽车动力总成悬置系统的振动问题,分析其成因,并针对现有问题提出优化设计方案。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速器、离合器等组成,通过悬置装置与车架相连。

其作用是支撑和固定动力总成,同时减少振动和噪声的传递,保证驾驶的舒适性和行驶的稳定性。

三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统振动的主要原因是发动机运转时产生的激励力,包括燃烧力、惯性力和摩擦力等。

此外,道路不平、车辆行驶中的颠簸等也会对悬置系统产生振动。

2. 振动影响分析振动不仅会影响驾驶的舒适性,还会对车辆的行驶稳定性、零部件的寿命和车辆的噪音产生影响。

长期受到振动的零部件容易出现松动、磨损等问题,影响车辆的正常运行。

四、汽车动力总成悬置系统优化设计针对汽车动力总成悬置系统的振动问题,本文提出以下优化设计方案:1. 材料选择优化选用高强度、轻量化的材料,如铝合金、高强度塑料等,以降低系统质量,提高其刚度和减振性能。

同时,采用阻尼材料,如橡胶等,以吸收振动能量,减少振动传递。

2. 结构优化设计对悬置系统的结构进行优化设计,如增加支撑点、改变支撑方式等,以提高系统的稳定性和减振性能。

同时,采用多级减振设计,使系统在不同频率下的减振效果更加明显。

3. 控制系统优化通过引入先进的控制系统,如液压控制系统、电子控制系统等,对悬置系统的振动进行实时监测和控制。

通过调整控制参数,使系统在不同工况下都能保持良好的减振性能。

五、结论通过对汽车动力总成悬置系统的振动分析,我们发现其产生的主要原因包括发动机运转产生的激励力和道路、行驶中的颠簸等外部因素。

上海众力动力总成悬置系统最优化设计与匹配

上海众力动力总成悬置系统最优化设计与匹配

一、悬置系统的基本理论及典型结构
(5.2)液压悬置:为实现悬置低频高阻尼高刚度、高频(30250Hz,0.05-0.1mm)低阻尼低刚度以及解决橡胶悬置的高频硬化现 象而诞生。典型结构:
搅拌式
节流孔式
惯性流道式
惯性流道解耦盘(膜)式
液阻衬套式
SHANGHAI ZHONGLI AUTOMOBILE PARTS CO., LTD. WUHU ZHONGLI PARTS CO., LTD.
三、悬置系统对汽车N&V特性的影响
动力总成的 振动
悬置
车身的 振动
对车内噪声 产生影响
隔 振
较大的振动
衰减后较小 的振动 车内振动影 响车内噪声
SHANGHAI ZHONGLI AUTOMOBILE PARTS CO., LTD. WUHU ZHONGLI PARTS CO., LTD.
三、悬置系统对汽车N&V特性的影响
5.悬置的结构:通过近百年的发展,悬置的结构型式日趋复杂。主要 表现为:橡胶悬置、液压悬置、半主动/主动悬置。
(5.1)橡胶悬置:结构简单,成型容易、成本低廉;被大量的使用在 各型车辆。缺点:存在高频硬化现象。
常见的结构:压缩式
剪切式
复合式
SHANGHAI ZHONGLI AUTOMOBILE PARTS CO., LTD. WUHU ZHONGLI PARTS CO., LTD.
悬置元件最主要的两个作用: 1、支撑动力总成,约束动力总成的位移。 2、隔离动力总成的振动向车身的传递,提高整车的N&V水平。 悬置的刚度越高有利于支撑动力总成,对整车的N&V不利。 悬置的刚度越低对整车的N&V有利,不利于动力总成的支撑。

《汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能逐渐成为影响汽车舒适性和稳定性的关键因素。

本文将重点对汽车动力总成悬置系统的振动特性进行分析,并提出相应的优化设计方案,以期为提高汽车性能提供有益的参考。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机、变速器等动力总成部件与车身的重要装置,其主要作用是减少振动、降低噪音、提高汽车的乘坐舒适性。

该系统通常由橡胶支座、金属支架、减震器等组成,其性能直接影响着汽车的行驶稳定性和乘坐舒适性。

三、汽车动力总成悬置系统振动分析1. 振动来源:汽车动力总成悬置系统的振动主要来源于发动机的运转、变速器的换挡以及路面不平度等因素。

这些因素产生的振动会通过悬置系统传递到车身,影响汽车的行驶性能。

2. 振动特性:汽车动力总成悬置系统的振动具有高频、低频及复杂性的特点。

其中,高频振动主要与发动机运转有关,低频振动则与路面不平度等因素有关。

此外,由于汽车行驶环境的复杂性,悬置系统还可能受到多种因素的耦合作用,导致振动更加复杂。

四、汽车动力总成悬置系统优化设计针对汽车动力总成悬置系统的振动问题,本文提出以下优化设计方案:1. 材料选择:选用高弹性、高阻尼性能的材料制作橡胶支座,以提高悬置系统的减震性能。

同时,采用轻质材料制作金属支架,以降低系统重量,提高整体性能。

2. 结构优化:对悬置系统的结构进行优化设计,如增加减震器数量、改变支座布置方式等,以更好地吸收和分散振动能量。

此外,还可以采用柔性连接方式,使悬置系统在受到外界冲击时能够产生一定的变形,从而减少振动传递。

3. 控制系统设计:引入现代控制技术,如主动悬挂控制系统等,对汽车动力总成悬置系统的振动进行实时监测和控制。

通过调整减震器的刚度和阻尼等参数,实现对振动的主动控制,提高汽车的行驶稳定性和乘坐舒适性。

五、结论通过对汽车动力总成悬置系统的振动分析及优化设计,可以有效提高汽车的行驶稳定性和乘坐舒适性。

《汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的飞速发展,消费者对汽车的性能和舒适性要求越来越高。

其中,汽车动力总成悬置系统的振动问题直接影响着汽车的乘坐舒适性和驾驶稳定性。

因此,对汽车动力总成悬置系统的振动进行分析及优化设计显得尤为重要。

本文将重点探讨汽车动力总成悬置系统的振动分析方法及优化设计策略,以期为相关研究和应用提供参考。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机、变速器等动力总成部件与车身的重要装置,其主要作用是减少振动传递,提高乘坐舒适性和驾驶稳定性。

该系统通常由发动机悬置、变速器悬置、支撑架等组成。

三、汽车动力总成悬置系统振动分析1. 振动来源及传递路径汽车动力总成悬置系统的振动主要来源于发动机的运转、路面不平引起的车身振动等。

这些振动通过发动机悬置、变速器悬置等传递到车身,进而影响乘坐舒适性和驾驶稳定性。

2. 振动分析方法(1)理论分析:通过建立动力学模型,分析系统在不同工况下的振动特性。

(2)实验分析:利用传感器、数据采集系统等设备,对实际车辆进行振动测试,获取振动数据。

(3)仿真分析:运用计算机仿真技术,对系统进行仿真分析,预测振动特性。

四、汽车动力总成悬置系统优化设计1. 设计目标优化设计的目标是在保证动力总成部件安全性的前提下,降低振动传递,提高乘坐舒适性和驾驶稳定性。

2. 优化策略(1)材料选择:选用高强度、轻质材料,降低系统质量,提高系统刚度。

(2)结构优化:通过优化悬置结构、支撑架结构等,降低振动传递。

例如,采用多级减震设计、橡胶减震垫等措施。

(3)动力学性能优化:通过理论分析和仿真分析,对系统动力学性能进行优化,提高乘坐舒适性和驾驶稳定性。

3. 优化设计流程(1)需求分析:明确设计目标,了解用户需求。

(2)方案设计:根据需求分析,提出多种设计方案。

(3)理论分析:运用动力学理论,对各方案进行理论分析。

(4)仿真分析:运用计算机仿真技术,对各方案进行仿真分析,预测振动特性。

《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能已成为决定汽车乘坐舒适性和驾驶稳定性的关键因素之一。

然而,由于动力总成系统在运行过程中产生的振动和噪音,严重影响了汽车的性能和使用寿命。

因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,具有重要的理论价值和实践意义。

本文将重点对汽车动力总成悬置系统的振动进行分析,并探讨其优化设计的方法和措施。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速器、离合器等组成,是汽车的核心部件之一。

其作用是支撑和固定动力总成,减少振动和噪音的传递,保证汽车行驶的平稳性和舒适性。

然而,由于动力总成系统的复杂性和运行环境的多样性,使得其振动问题较为突出。

三、汽车动力总成悬置系统振动分析(一)振动产生的原因汽车动力总成悬置系统振动产生的原因主要包括发动机的燃烧过程、变速器的齿轮啮合、离合器的接合与分离等。

此外,道路不平度、车辆行驶速度等因素也会对系统振动产生影响。

(二)振动分析的方法目前,常用的汽车动力总成悬置系统振动分析方法包括实验分析和仿真分析。

实验分析主要通过在真实环境下对系统进行测试,获取其振动数据;仿真分析则通过建立系统的数学模型,利用计算机软件进行模拟分析。

(三)振动的影响汽车动力总成悬置系统的振动会直接影响汽车的乘坐舒适性和驾驶稳定性。

同时,长时间的振动还会导致系统零部件的磨损和损坏,影响汽车的使用寿命。

四、汽车动力总成悬置系统优化设计(一)优化设计的目标汽车动力总成悬置系统优化设计的目标主要包括提高汽车的乘坐舒适性和驾驶稳定性,延长汽车的使用寿命,降低噪音和振动等。

(二)优化设计的措施1. 改进材料:采用高强度、轻量化的材料,提高系统的刚度和减振性能。

2. 优化结构:通过改变系统的结构形式和参数,如增加橡胶减振器、调整悬置点的位置等,提高系统的减振效果。

3. 智能控制:利用现代控制技术,如主动悬挂系统、半主动悬挂系统等,实现对系统振动的主动控制。

汽车悬挂系统动力学性能优化设计

汽车悬挂系统动力学性能优化设计

汽车悬挂系统动力学性能优化设计为了提高汽车行驶的舒适性和稳定性,悬挂系统在汽车设计中起着至关重要的作用。

汽车悬挂系统的动力学性能优化设计是一个复杂的工程问题,这篇文章将探讨一些方法和原则来优化汽车悬挂系统的动力学性能。

一、悬挂系统的基本原理在开始讨论优化设计之前,我们首先需要了解汽车悬挂系统的基本原理。

悬挂系统主要由弹性元件和减振器组成,它们共同工作来减少汽车行驶过程中对车身的振动和冲击。

弹性元件通常采用弹簧,它可以吸收路面不平坦所带来的振动。

而减振器则可以有效地减少车身的弹性回弹,并且确保车辆的稳定性。

悬挂系统的设计目标是在保证舒适性的前提下,尽量减少车身姿态的变化,提高悬挂系统对路面的适应能力。

二、优化设计的方法和原则1. 车辆模型的建立和验证:在优化设计之前,需要建立一个准确的车辆模型来模拟车辆在不同路况下的行驶动力学行为。

这个模型应该包括车身、悬挂系统和轮胎等关键组件,并且要进行实验验证以确保其准确性。

2. 车身姿态控制:车辆在行驶过程中容易产生俯仰、横摇和滚动等姿态变化。

为了提高行驶的稳定性,悬挂系统的设计应该尽量减少车身的姿态变化。

可以通过调整悬挂系统的刚度和阻尼等参数来实现车身姿态的控制。

3. 舒适性和操控性的平衡:悬挂系统的优化设计需要在舒适性和操控性之间找到一个平衡点。

过硬的悬挂系统会减少车身的姿态变化,提高操控性,但却会牺牲一定的舒适性。

因此,在进行优化设计时,需要综合考虑舒适性和操控性的需求。

4. 考虑动态路况:汽车行驶过程中会遇到各种不同的路况,包括起伏不平、弯道、减速带等。

优化设计的悬挂系统需要能够适应不同的路况,并提供稳定的行驶性能。

可以通过采用自适应悬挂系统或者悬挂系统参数可调节的设计来实现对动态路况的适应。

5. 辅助控制系统的设计:除了悬挂系统本身的设计,辅助控制系统也对悬挂系统的动力学性能起着重要作用。

例如,采用主动悬挂系统、电子稳定控制系统等可以进一步提高车辆的行驶稳定性和安全性。

汽车悬架系统设计毕业设计跟分析解析文档

汽车悬架系统设计毕业设计跟分析解析文档

目录轿车动力总成悬置系统优化设计研究摘要随着社会的日益进步和科学技术的不断发展,人们对汽车舒适性的要求也越来越高,良好的平顺性和低噪声是现代汽车的一个重要标志。

NVH已经成为衡量汽车质量水平的重要指标之一。

而动力总成是汽车最重要的振源之一。

如何合理设计动力总成悬置系统能明显降低汽车动力总成和车体的振动已经成为一个重要的课题。

本课题研究的目的是在现有动力总成悬置系统的基础上,优化动力总成悬置系统参数,达到提高整车平顺性和降低噪声的目的。

对动力总成悬置系统进行优化仿真,通过比较优化前的性能可知,优化后悬置系统隔振性能明显改善。

关键词:动力总成;悬置系统;优化Investigation on Optimization Design of Plant MountingSystem of a Passenger CarAbstractWith the increasing social progress and the continuous development of science and technology, people on the requirements of automotive comfort become more sophisticated and good ride comfort and low noise is an important sign of the modern automobile. NVH levels have become an important measure of vehicle quality indicator. The vehicle powertrain is one of the most important vibration source. How to design mounting system can significantly reduce the vehicle powertrain and body vibration has become an important issue.This study is aimed at existing powertrain mounting system, based on parameters optimization of powertrain mounting system, to improve vehicle ride comfort and reduce noise.On the optimization of powertrain mounting system simulation, the performance by comparing the known before the optimization, the optimized mounting system significantly improved.Key words: Powertrain;Mounting system;Optimization1绪论1.1选题依据汽车是日常生活中被广泛应用的交通工具,其本身可以被看作是一个具有质量、弹性和阻尼的振动系统。

《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对于整车舒适性和稳定性越来越重要。

汽车动力总成悬置系统作为连接发动机和车身的重要部件,其振动特性直接影响到汽车的乘坐体验和行驶安全。

因此,对汽车动力总成悬置系统的振动进行分析,以及进行优化设计,已经成为汽车研发过程中的重要课题。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、悬置支架、橡胶支座等组成。

其主要功能是减少发动机振动对车身的影响,同时通过合理的布局和设计,提高整车的乘坐舒适性和行驶稳定性。

在汽车行驶过程中,由于发动机的工作特性和路面条件等因素的影响,动力总成悬置系统容易产生振动和噪声。

因此,如何对这种振动进行分析并对其进行优化设计是本研究的重点。

三、汽车动力总成悬置系统振动分析1. 动力学模型建立为了更好地了解动力总成悬置系统的振动特性,需要建立其动力学模型。

该模型应包括发动机的振动特性、悬置支架的结构特性以及橡胶支座的动态特性等。

通过建立模型,可以模拟出汽车在不同路况下的振动情况,为后续的振动分析和优化设计提供依据。

2. 振动特性分析通过动力学模型的分析,可以得出动力总成悬置系统的振动特性。

主要包括系统的固有频率、振型和阻尼比等参数。

这些参数对于理解系统的振动特性和进行优化设计具有重要意义。

四、汽车动力总成悬置系统优化设计1. 设计目标与约束条件在进行优化设计时,需要明确设计目标。

一般来说,优化设计的目标包括提高乘坐舒适性、降低噪声和减少振动等。

同时,还需要考虑一些约束条件,如发动机的安装空间、悬置支架的结构强度等。

2. 优化方法与步骤针对上述设计目标和约束条件,可以采用多种优化方法进行设计。

如多目标优化算法、有限元分析等。

在优化过程中,需要逐步调整系统的参数,如橡胶支座的刚度、阻尼等,以达到最优的振动性能。

五、实例分析以某款汽车的动力总成悬置系统为例,通过建立其动力学模型,对其振动特性进行分析。

《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对于整车舒适性和稳定性越来越重要。

动力总成悬置系统的主要功能是支撑和固定发动机、变速器等重要部件,同时通过减震和隔振技术来降低系统振动对整车的影响。

本文旨在分析汽车动力总成悬置系统的振动问题,并提出相应的优化设计方案。

二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机悬置、变速器悬置等组成,其结构形式和性能直接影响整车的舒适性和稳定性。

在汽车行驶过程中,由于道路不平、发动机运转等因素,动力总成会产生振动和噪声,这些振动和噪声会通过悬置系统传递到车身,影响整车的舒适性和稳定性。

三、汽车动力总成悬置系统振动分析(一)振动来源及传递路径汽车动力总成的振动主要来源于发动机运转、道路不平等因素。

这些振动会通过发动机悬置、变速器悬置等传递到车身,进而影响整车的舒适性和稳定性。

(二)振动问题分析在汽车动力总成悬置系统中,由于设计、制造和装配等因素,可能会产生以下振动问题:1. 悬置系统刚度不足,导致系统在受到外力作用时产生过大变形;2. 悬置系统阻尼不足,导致振动衰减缓慢,影响整车的舒适性;3. 悬置系统与发动机、变速器等部件的连接不紧密,导致振动传递到车身。

四、优化设计方案(一)提高悬置系统刚度为了提高悬置系统的刚度,可以采用高强度材料制作悬置元件,同时优化悬置系统的结构形式,使其能够更好地承受外力作用。

此外,还可以通过增加悬置系统的支撑点数量来提高其整体刚度。

(二)增加悬置系统阻尼为了增加悬置系统的阻尼,可以在系统中加入液压减震器等装置。

这些装置能够有效地吸收和消耗振动能量,从而降低整车的振动和噪声。

(三)优化连接方式为了确保悬置系统与发动机、变速器等部件的连接紧密可靠,可以采用先进的连接方式和技术。

例如,可以采用高强度螺栓、焊接等方式来确保连接部位的牢固性和密封性。

此外,还可以在连接部位设置减震垫等装置,以降低振动传递到车身的幅度。

(仅供参考)柴油轿车动力总成悬置系统优化设计

(仅供参考)柴油轿车动力总成悬置系统优化设计
柴油轿车动力总成悬置系统优化设计
1. 动力总成悬置系统的设计原则及流程
动力总成悬置系统的主要作用为隔离动力总成振动向车身及车厢内部的传递,尤其是控制 发动机怠速工况下的低频抖动,并隔离发动机的高速运转时引起的车室内部的高频噪声;支承发 动机的重量,控制动力总成的相对运动和位移,克服和平衡因最大扭矩输出或紧急制动产生的 反作用力和惯性力;避免与整车其他部件发生干涉,保证动力总成工作安全可靠等。悬置系统完 整的设计方案如图 1 所示。动力总成悬置系统在设计上受到了许多约束条件的限制和制约,在 设计时应结合具体实际情况。综合考虑,既要满足自身的性能和功能要求,也要满足整车性能 对动力总成悬置系统设计提出的要求。
2. 动力总成悬置系统优化设计
2.1 项目介绍 先进柴油轿车开发项目,轿车使用广西玉林柴油机厂生产的 1.8L 型号为 YC4W110-40 的
直列四缸水冷四冲程柴油机,发动机与车架之间通过悬置支承连接。由于是由汽油机改为柴油 机,质量和转动惯量发生了改变,针对悬置而言,在不改变其安装位置和安装角度的情况下, 原始悬置系统导致该轿车振动过大,影响舒适性,同时易造成发动机与其它机械构件发生较大 运动干涉而失效,为改善乘坐舒适性,有必要对悬置系统进行重新匹配优化设计。 2.2 动力总成悬置系统的频率布置
3)振动传递率和支承处动反力最小 悬置系统应该尽量降低振动传递率的大小,这样才能彻底或最大限度地隔离发动机的振 动。在发动机的整个工作频率区内,都应将振动传递率保持在一个很低的水平。因为振动传递 率的大小反映了整个系统的隔振水平。考虑到作用在悬置的力与悬置元件的使用寿命有关,因 此,还应减少悬置处动反力的大小。 除此之外,在设计动力总成悬置系统时还得考虑发动机的运动空间、车架结构、最小离地 间隙等因素。 1.2 设计流程 一般的悬置设计包括以下过程:

汽车悬架系统毕业设计

汽车悬架系统毕业设计

目录第1章绪论1.1 悬挂系统概述........................................1.2 设计要求.........................................第2章悬挂系统总体参数设计与计算2.1主要技术参数2.2悬架性能参数确定2.3悬架静挠度2.4悬架动挠度2.5悬架弹性特性曲线第3章弹性元件的设计计算3.1前悬架弹3.2后悬架弹第4章悬架导向机构的设计4.1导向机构设计要求4.2麦弗逊独立悬架示意图4.3导向机构受力分析4.4横臂轴线布置方式4.5导向机构的布置参数第5章减振器主要参数设计5.1减振器概述5.2减振器分类5.3减振器参数选取5.4减振器阻尼系数5.5最大卸荷力5.6筒式减振器主要尺寸第6章横向稳定杆设计6.1横向稳定杆参数确定第7章结论参考文献致谢附录Ⅰ附录II第一章悬挂系统概述(1)概述汽车悬架系统是底盘平台的重要组成部分,直接影响到汽车行驶的操作稳定性,乘坐的舒适性和安全性,往往被编入技术规格表,作为评价汽车性能品质的标准之一。

汽车悬架是安装在车桥和车轮之间用来吸收汽车在高低不平的路面上行驶所产生的颠簸力。

因此,汽车悬架系统对汽车的操作稳定性、乘坐舒适性都有很大的影响。

由于悬架系统的结构得到不断改进,其性能及其控制技术也得到了迅速提高。

尽管一百多年来汽车悬架从结构形式到作用原理一直在不断地演进,但从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。

在有些情况下,某一零部件兼起两种或三种作用,比如钢板弹簧兼起弹性元件和导向机构的作用,麦克弗逊悬架中的减振器柱兼起减振器及部分导向机构的作用,有些主动悬架中的作动器则具有弹性元件、减振器和部分导向机构的功能。

(2)总体设计方案1. 完成悬挂系统总体参数设计:2. 完成弹性元件设计计算3. 完成减震器主要参数选择4. 完成悬架导向机构及横拉杆设计5. 完成设计相关的图纸6. 编写设计说明书第2章悬挂系统总体参数设计与计算2.1主要技术参数整车的基本参数见表前悬非簧载质量为50kg 后悬非簧载质量为80kg簧载质量(满载)前簧载质量=满载轴荷质量—非簧载质量770—50=720kg后簧载质量=满载轴荷质量—非簧载质量860-80=780kg非簧载质量:前悬非簧载质量为50kg 后悬非簧载质量为80kg 3.2悬架性能参数确定(1)自振频率(固有频率)选取根据国家规定对发动机排量在1.6L以下的乘用车,前悬架满载偏频要求在1.00――1.45Hz,后悬架要求在1.17――1.58Hz。

(完整版)动力总成悬置系统布置设计研究

(完整版)动力总成悬置系统布置设计研究

动力总成悬置系统布置设计研究1 影响悬置系统布置设计的因素1.1 发动机汽缸数的影响不同缸数的发动机对动力总成的振动激励型式和激励频率不同。

对于四缸四冲程发动机,在低频区的激振成分主要是第二阶不平衡往复惯性力;对于六缸四冲程发动机,其激振成分主要是第三、六阶转矩谐量。

根据隔振理论,动力总成刚体振动模态频率应比主要激振频率的0.707倍要小。

考虑怠速隔振的情况,当发动机的怠速转速相同时,四缸发动机动力总成的刚体振动临界频率上限需低于六缸机。

对于四缸机,应特别注意其二阶不平衡往复惯性力。

1.2 发动机布置方式的影响FF(发动机前置前轮驱动)式汽车的发动机可以横置或纵置,而横置发动机和纵置发动机的倾覆力矩对车身的低阶弯曲、扭转振动模态的相互耦合、匹配关系也完全不同。

虽然动力总成的转动惯量几一般比几要大得多(3一倍左右),但动力总成的俯仰振动模态频率一般低于侧倾振动模态频率,动力总成的俯仰振动幅值往往小于侧倾振动幅值。

在发动机怠速工况下,动力总成的侧倾振动较大,为了避免动力总成的振动引起车身的低阶弯曲、扭转模态共振,在动力总成悬置系统设计过程中需要合理匹配车身弯曲或扭转振动模态与动力总成刚体侧倾振动模态的频率,同时对动力总成悬置安装点与车身固有振型节线的相对位置关系进行合理匹配。

例如,对于横置式发动机,动力总成的前后悬置不宜跨置于车身弯曲振型节线的两侧。

1.3 动力传动系统型式的影响对于发动机前置—前轮驱动的FF式汽车动力传动系,其动力总成还包括驱动桥主减速器,使得作用在动力总成上的驱动反力矩比FR式汽车大大增加,就要求提高悬置的静刚度。

同时,FF式汽车动力总成与FR式相比,其扭矩轴与曲轴的夹角明显增大,当其悬置系统采用V型布置方案时,往往由于布置空间和布置位置的限制,难以使得悬置组在布置达到使悬置组的弹性中心落在扭矩轴上的目标。

因此,有必要在整车总布置初期预留必要的空间。

1.4 整车隔振性能要求对动力总成悬置系统设计的影响为了抑制路面激起的整车振动,可适当配置动力总成悬置系统的垂向振动模态频率,使其起到控制整车振动的动力吸振器的作用,由动力总成吸收经过悬架传递上来的振动,从而减小车身的振动。

汽车前置前驱动力总成悬置系统设计优化

汽车前置前驱动力总成悬置系统设计优化

汽车前置前驱动力总成悬置系统设计优化摘要:在汽车的发展史上,依据发动机和驱动轮所在的位置出现了前置前驱(FF)前置后驱(FR)两种模式的汽车。

这两种模式的汽车占据了汽车界的主要市场,但究竟哪一种模式更加便利我们的使用,这个问题一直处于激烈的讨论中。

本文采用模拟类比法通过对同一款式、相同配置的汽车在FF模式和FR模式下呈现特点的分析,从而为购车者提供一些基本参考。

关键词:前置前驱;后置后驱引言近几年,用户对汽车舒适性的要求越来越高,希望无论什么档次的汽车都能够安静、平稳。

因此,驱动系统的噪音问题直接关系到汽车产品的质量,这个问题处理的好坏是商品是否具有竞争力的一个决定性因素。

驱动系统的噪音问题涉及到很多方面,其中,变速箱的喀哒喀哒声特别刺耳,因此要求,在开发初期阶段就专门做好充分的对策。

喀哒喀哒声是由变速器内部空转齿轮的撞击、发动机的转速变化及驱动系统的布置构造等因素引起的。

从问题发生到整车更换试验件进行试验,需要很长时间。

为在初期就解决这一问题、并采取有效的对策方法,模拟分析是很有力的手段,在这里对这方法加以说明。

前置前驱动汽车在行驶时,以发动机转速变化为起振力的变速器内部空转齿轮的撞击声是引起的异常声音的主要问题。

1动力总成参数获取悬置系统设计需要获取相关的动力总成参数作为设计的基础,主要的动力参数如下:发动机缸数、最大功率及最大扭矩,怠速的转速,变速器的各挡速比及主速比,动力总成的质量、质心及转动惯量,动力总成质心坐标与整车坐标夹角。

从总布置报告中可以获取动力总成的安装姿态,转动惯量及动力总成的质量可以用三线摆设备进行测试,从动机、变速箱标定处可以获得怠速转速及最大扭矩、变速箱速比等参数。

2汽车前置前驱动力总成悬置系统设计优化2.1车室空间在车室空间容积大小方面,甲车的容积会略大于有乙车。

乙车车室的地盘构造会极大地影响了乘坐舒适性。

乙车采取前置后驱模式,车辆头部的发动机与尾部的驱动轮之间存在一根纵贯车身的驱动轴,驱动轴需要传递发动机的巨大转矩,通常情况下驱动轴制造得相对较粗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成人高等教育毕业设计(论文)题目汽车动力总成悬置系统的优化设计学生指导教师评阅人_________________________________函授站安徽工程大学专业完成日期2015.5.20附件2:成人高等教育毕业设计(论文)任务书2015年 5 月20 日附件3:成人高等教育毕业设计(论文)审查意见表成人高等教育毕业设计(论文)评阅意见书成人高等教育毕业设计(论文)答辩结果表摘要本文在总结国内外大量文献的基础上,通过试验和理论相结合,对某集团的L41AB重卡是一款牵引商务车动力总成悬置系统进行了优化分析研究,有效的减少了动力总成传递到车架上的振动,提高了汽车的乘坐舒适性和平顺性。

根据三线摆法和振动法的测量原理,准确的获得了L41AB重卡动力总成的相关参数,建立了动力总成悬置系统的运动仿真模型。

本文在合理的配置固有频率的基础上,经过刚度解耦设计得出了理论优化数据。

运用ADAMS软件进行了动力总成悬置系统的模型仿真验证,通过振动模态分析的方法研究了优化前后悬置系统的隔振性能。

在模型仿真分析中,将前/后支承、后支承梁、后连接梁等作为柔体考虑,更真实的模拟了动力总成悬置系统工作时的振动情况。

关键词:动力总成悬置振动解耦仿真柔体ABSTRACTThis article in summary on the basis of a large number of domestic and foreign literature, through a combination of experimental and theoretical, of a group L41AB heavy truck is a traction commercial vehicle power assembly mounting system optimization analysis, effectively reducing the power assembly to the frame vibration transmission and improve the vehicle ride comfort peaceful compliance.According to the three line put the measuring principle of the method and vibration method and accurate access to the L41AB heavy duty truck Powertrain Parameters, the establishment of the powertrain mounting system motion simulation model. Based on the natural frequency of reasonable configuration, the theoretical optimized data is obtained bythe decoupling design.. The model simulation of the powertrain mountingsystem is carried out by using ADAMS software. The vibration isolation performance of the suspension system is studied by means of the vibrationmode analysis.. In the model simulation, the vibration of the total suspension system is simulated, and the former / rear supports, the rearbearing beam and the rear connecting beam are considered as the flexiblebody.Key Word: power assembly, mount, vibration, decoupling, simulation,flexibility目录摘要...................................................................................................................................................... ABSTRACT ..........................................................................................................................................摘要................................................................................................................................................. ABSTRACT....................................................................................................................................第一章绪论 (1)1.1 选题的意义和背景 (1)1.2国内外发展现状概述 (1)1.3本课题研究的内容和方法 (1)第二章汽车动力总成悬置系统的设计理论 (1)2.1 汽车动力总成悬置系统的作用 (1)2.2 汽车动力总成悬置系统的设计原则及布置形式 (1)2.2.1 悬置系统弹性支承常用的布置方式 (1)2.2.2支承点的数目及其位置 (2)2.3动力总成悬置系统的振源分析 (2)2.4 动力总成悬置系统的优化设计方法 (2)2.4.1动力总成悬置系统的解耦设计 (2)2.4.2打击中心及机身一阶弯曲振动问题 (2)2.4.3振动系统固有频率的配置 (2)2.4.4系统振动传递率或支承处响应力最小 (2)2.5动力总成悬置系统的建模及求解 (2)2.5.1 系统的动力学模型 (2)2.5.2微分方程的建立 (2)2.5.3系统的动能及质量矩阵 (2)2.5.4系统的势能和刚度矩阵 (2)2.5.5微分方程 (2)2.5.6固有频率的求解 (3)第三章集瑞某重卡动力总成悬置系统的优化设计 (3)3.1 悬置系统设计的目标 (3)3.2 悬置系统设计的主要内容 (3)3.3 悬置系统的隔振机理 (3)3.4 悬置系统设计参数的确定 (3)3.4.1发动机+变速箱总成的湿重 (3)3.4.2坐标系 (3)3.4.3其它有关的发动机参数 (3)3.4.4发动机—变速箱总成的前后左右悬置支承点的位置 (3)3.5 发动机悬置支承点的布置 (3)3.6 悬置点的受力分析 (3)3.6.1垂直上跳 (3)3.6.2垂直下跳 (3)第四章总结 (3)致谢 (4)参考文献 (4)第一章绪论1.1 选题的意义和背景随着整个社会汽车工业的发展以及中国成功的加入WTO,人们对汽车的乘坐舒适性提出了越来越高的要求,中国的汽车工业也将受到前所未有的冲击。

近年来,汽车设计向着轻型化、经济型化方向发展,但是少缸、大功率发动机往往可能使发动机的振动激励增大,而轻型化的车身又使其刚度变低,从而导致由发动机动力总成传递至车身的振动加剧,使车内的振动和噪声特性恶化。

特别是采用平衡性较差的四缸四行程发动机的汽车。

动力总成振动对汽车乘坐舒适性的影响越来越突出。

为了更好地解决这些矛盾,必须有效地降低车身振动和车内噪声。

这就要求很好地设计和布置动力总成悬置系统,悬置系统的优化也就到了迫在眉睫的时刻。

良好的操作稳定性、平顺性和低振动、低噪声是现代车辆的重要标志。

振动对整车舒适性的影响越来越受到国内外汽车界的重视。

动力总成悬置系统是汽车振动系统的一个重要子系统,它是指动力总成与车架之间的弹性连接系统,其性能的好坏不仅影响乘坐舒适性,而且影响着车辆的使用寿命。

合理的设计发动机悬置系统,可以降低动力总成和车辆的振动水平,减少动力总成传递到车身的激振力,降低由此激发的车身和底盘相关零件的振动和噪声,从而明显提高车辆的耐久性和乘坐舒适性。

悬置系统设计的好坏主要取决于支承的结构形式、悬置元件的几何位置及刚度。

悬置系统的设计是一个较为复杂的任务,需要满足一系列的静态和动态性能的要求,同时又要受到整车布置的限制。

对动力总成悬置系统进行解耦设计,以悬置元件的支承方位和刚度为参数合理分配发动机的各向振动固有频率,并将悬置系统和车架本身作为一个整体考虑可以进一步改进和优化悬置系统,从而降低振动,提高汽车的性能。

产品技术定位与要求:(1)产品开发原则:1) 技术领先国内主要竞争对手,并保证推出后技术储备在5年以上不落后;2) 产品系列化开发、模块化设计,可向6×2、4×2系列扩展;3) 应用新材料、新技术,实施整车轻量化设计,提高承载能力;4) 主要总成件选用国内主流成熟配套资源;5) 从设计到生产严格控制成本,零部件有较大通用性。

(2)关键技术:1) 符合国家排放标准且掌握知识产权的高性能发动机;2) 联合国际设计公司全新开发的全系列驾驶室;3) 以Benz Actros底盘技术为基础,引鉴欧洲重卡先进技术;4) 电子远程车辆管理系统。

1.2国内外发展现状概述国外许多专家对发动机悬置系统隔振做出了许多有益的研究和探讨。

早在1939年,Illife就提出了悬置系统设计的一些基本原则,但是较为熟悉的六自由度解耦理论和计算方法是在20世纪50 年代由Horison和Horovitz完成的。

1979年,Johson首次用数学的优化手段,进行悬置系统的设计,他以合理配置系统的固有频率和实现各自由度之间的振动解耦为目标函数,以悬置刚度和悬置坐标为设计变量进行优化计算,取得比较令人满意的优化成果。

近二十多年,随着计算机技术的高速发展和更有效的振动分析方法的应用,为悬置系统的设计和研究提供了十分有效的手段,使悬置系统优化设计和仿真分析得以开展和研究。

这段时期中,应用优化理论进行的动力总成悬置系统的研究方法,大多是将悬置系统的力学模型简化,以车架为刚性基础建立六自由度的刚体阻尼弹簧模型,来最终实现合理配置系统的固有频率和各自由度之间的解耦。

相关文档
最新文档