(完整版)六年级奥数比例问题
六年级奥数题比和比1
六年级奥数题比和比1比和比例(一)11、小明和小方各走一段路程,小明走的路程比小方多,小方用的时间比小明 51多。
小明和小方的速度之比是多少? 82、东街小学六年级有学生46人,分成三个课外科技小组。
第一组与第二组人数比是2:3,第一组与第三组的人数比是3:4。
三个组各有多少人?3、一列火车3小时行驶150千米。
从A地到B地有240千米,需要行几小时?如果速度加快20%,要行多少小时?4、有一自助餐厅,规定每次每人用餐费是:先生交30元,女士交20元,儿童交10元。
某一天前来用餐的先生与女士人数之比是2:9,女士与儿童的人数之比是3:7,共收到所交的用餐费9450元。
求这一天用餐的先生、女士和儿童的人数。
125、圆A和圆B一局部重叠,重叠局部的面积是圆A的,也是圆B的,求A、B 515的面积比。
6、某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。
求这天三种车辆通过的数量。
比和比例〔二〕111、小军行走的路程比小红多,而小红行走所用的时间却比小军多,求小军 410和小红的速度比。
2、甲、乙两个正方体棱长的比是1:2,求他们的外表积的比和体积的比。
3、白玉兰学校有运发动108人,分成甲、乙、丙三个队进行训练,甲队与乙队人数之比为2:3,乙队与丙队的人数之比为3:4,求各队的人数。
14、三个运输队,A队有载重3吨的汽车8辆,B队有载重4吨的汽车5辆,C 2队有载重5吨的汽车4辆。
把运输612吨货物的任务按他们的运输能力分配给三个队,各应分配多少吨?5、甲、乙、丙三人共同种树,他们种树棵数的比是3:4:5,丙比甲多种6棵?问三人各种树多少棵?6、海水中水与盐的比是183:17。
现在要使它改变成水与盐之比为19:1,在400千克海水中应掺入多少千克清水?7、一根木材,据成四段,付锯板费8.4元,如果锯成5段,应付锯板费多少元?8、一次爬山活动,路程为18千米,分为上坡、平路和下坡三段,各段路长之比是2:1:3,而走各段路程所用的时间之比为5:4:6。
小学六年级奥数九大问题之比例问题
六年级奥数“九大问题“”四比例问题(二)对应训练1.客货车同时从甲站开往乙站,客车6小时到站,货车速度比客车速度快15,问:货车到站需要多少时间?2.师徒两人各加工480个零件,完成时所用的时间比是2:3,已知师傅比徒弟每小时多加工20个,师傅加工这批零件需要多少小时?3.客车与货车同时从AB 两地相对开出,客车每小时行60千米,货车每小时行全程的115,相遇时客车所行的路程是货车的54,AB 两地的距离是多少千米?4.甲乙两人同时加工一批零件,已知甲乙工作效率的比是4:5,完成任务时,乙比甲多加工了120个零件。
这批零件共有多少?5.客车和货车同时从甲乙两地相向而行,相遇时客货两车所行的路程比是6:5,相遇后,货车比相遇前每小时多走22千米,客车仍按原速前进,结果两车同时到达对方的出发站,已知客车一共行了16小时,甲乙两地相距多少千米?变式训练6.一批零件,甲乙两人单独完成,所需时间比是3:5,现两人合作,完成任务时甲比乙多加工30个,这批零件共有多少个?7.甲乙两车同时从AB 两城相对开出,经过8小时相遇,相遇后甲车继续开到B 城还要4小时,已知甲车每小时比乙车快35千米,AB 两地相距多远?8.货车速度与客车速度的比是3:4,两车同时从甲乙两站相对行驶,在离中点6千米处相遇。
甲乙两地相距多少千米?9.甲乙合作一批零件6小时完成,已知甲乙工作的效率比是7:6。
乙单独做需要多少小时完成?10.师徒二人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?拔高训练11.甲乙丙三人共植树697棵,已知甲植树棵树的12 等于乙植树棵树的25 ,甲植树棵树的13等于丙植树棵树的27,问:甲乙丙三人各植树多少棵?12.小军行走的路程比小红多114 ,而小红行走的时间比小军多116,求小军与小红的速度比。
(完整版)六年级奥数比例解行程问题
_________________个性化辅导讲义年 级:时 间年 月 日课 题比例解行程问题教学目标1.了解物体匀速运动的特点。
2.掌握运用比例知识解决行程问题的方法。
3.培养想像力,增强思维力。
教 学 内 容【知识梳理】我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况:,,v v t ts s 乙乙乙甲甲甲,;;1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
,这里因为时间相同,即,所以由s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙t t t ==乙甲s s t t v v ==甲乙乙甲乙甲,得到,,甲乙在同一段时间t 内的路程之比等于速度比s s t v v ==甲乙乙甲s vs v=甲甲乙乙2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
,这里因为路程相同,即,由s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙s s s ==乙甲s v t s v t =⨯=⨯乙乙乙甲甲甲,得,,甲乙在同一段路程s 上的时间之比等于速度比的反比。
s v t v t =⨯=⨯乙乙甲甲v tv t =甲乙乙甲比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
【例题精讲】例题1 甲、乙两人同时地出发,在、两地之间匀速往返行走,甲的速度大于乙的速度,A A B甲每次到达地、地或遇到乙都会调头往回走,除此以外,两人在之间行走方向不会改变,A B AB已知两人第一次相遇的地点距离地米,第三次的相遇点距离地米,那么第二次相遇B1800B800的地点距离地。
六年级奥数比和比例.doc
六年级奥数比和比例六年奥数综合练习题十二答案(比和比例关系)比和比例,是小学数学中的最后一个内容,也是学习更多数学知识的重要基础.有了“比”这个概念和表达方式,处理倍数、分数等问题,要方便灵活得多.我们希望,小学同学学完这一讲,对“除法、分数、比例实质上是一回事,但各有用处”有所理解. 这一讲分三个内容一、比和比的分配;二、倍数的变化;三、有比例关系的其他问题.一、比和比的分配最基本的比例问题是求比或比值.从已知一些比或者其他数量关系,求出新的比. 例1 甲、乙两个长方形,它们的周长相等.甲的长与宽之比是3∶2,乙的长与宽之比是7∶5.求甲与乙的面积之比. 解设甲的周长是2. 甲与乙的面积之比是答甲与乙的面积之比是864∶875. 作为答数,求出的比最好都写成整数. 例2 如右图,ABCD是一个梯形,E是AD的中点,直线CE把梯形分成甲、乙两部分,它们的面积之比是10∶7. 求上底AB与下底CD的长度之比. 解因为E是中点,三角形CDE与三角形CEA面积相等. 三角形ADC与三角形ABC高相等,它们的底边的比AB∶CD三角形ABC的面积∶三角形ADC的面积(10-7)∶(72)3∶14. 答AB∶CD3∶14. 两数之比,可以看作一个分数,处理时与分数计算几乎一样.三数之比,却与分数不一样,因此是这一节讲述的重点. 例3 大、中、小三种杯子,2大杯相当于5中杯,3中杯相当于4小杯.如果记号表示2大杯、3中杯、4小杯容量之和,求与之比. 解大杯与中杯容量之比是5∶210∶4,中杯与小杯容量之比是4∶3,大杯、中杯与小杯容量之比是10∶4∶3. ∶(1024334)∶(1054433)44∶75. 答两者容量之比是44∶75. 把5∶2与4∶3这两个比合在一起,成为三样东西之比10∶4∶3,称为连比.例3中已告诉你连比的方法,再举一个更一般的例子. 甲∶乙3∶5,乙∶丙7∶4,3∶537∶5721∶35,7∶475∶4535∶20,甲∶乙∶丙21∶35∶20. 花了多少钱解根据比例与乘法的关系,连比后是甲∶乙∶丙216∶316∶32 32∶48∶63. 答甲、乙、丙三人共花了429元. 例5 有甲、乙、丙三枚长短不相同的钉子,甲与乙,而它们留在墙外的部分一样长.问甲、乙、丙的长度之比是多少解设甲的长度是6份. ∶x5∶4. 乙与丙的长度之比是而甲与乙的长度之比是6∶530∶25. 甲∶乙∶丙30∶25∶26. 答甲、乙、丙的长度之比是30∶25∶26. 于利用已知条件6∶5,使大部分计算都整数化.这是解比例和分数问题的常用手段. 例 6 甲、乙、丙三种糖果每千克价分别是22元、30元、33元.某人买这三种糖果,在每种糖果上所花钱数一样多,问他买的这些糖果每千克的平均价是多少元解一设每种糖果所花钱数为1,因此平均价是答这些糖果每千克平均价是27.5元. 上面解法中,算式很容易列出,但计算却使人感到不易.最好的计算方法是,用22,30,33的最小公倍数330,乘这个繁分数的分子与分母,就有事实上,有稍简捷的解题思路. 解二先求出这三种糖果所买数量之比. 不妨设,所花钱数是330,立即可求出,所买数量之比是甲∶乙∶丙15∶11∶10. 平均数是(151110)÷312. 单价33元的可买10份,要买12份,单价是下面我们转向求比的另一问题,即“比的分配”问题,当一个数量被分成若干个数量,如果知道这些数量之比,我们就能求出这些数量. 例7 一个分数,分子与分母之和是100.如果分子加23,分母加32,解新的分数,分子与分母之和是(102332),而分子与分母之比2∶3.因此例8 加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个所需时间是多少解三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量. 三人工作效率之比是他们分别需要完成的工作量是所需时间是70032100分钟)35小时. 答甲、乙、丙分别完成700个,600个,525个零件,需要35小时. 这是三个数量按比例分配的典型例题. 例9 某团体有100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多.各组男会员与女会员人数之比是甲12∶13,乙5∶3,丙2∶1,那么丙有多少名男会员解甲组的人数是100÷250(人). 乙、丙两组男会员人数是56-2432 (人). 答丙组有12名男会员. 上面解题的最后一段,实质上与“鸡兔同笼”解法一致,可以设想,“兔例10 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1∶2∶3.小龙走各段路程所用时间之比依次是4∶5∶6.已知他上坡时速度为每小时3千米,路程全长50千米.问小龙走完全程用了多少时间解一通常我们要求出小龙走平路与下坡的速度,先求出走各段路程的速度比. 上坡、平路、下坡的速度之比是走完全程所用时间答小龙走完全程用了10小时25分. 上面是通常思路下解题.1∶2∶3计算中用了两次,似乎重复计算,最后算式也颇费事.事实上,灵活运用比例有简捷解法. 解二全程长是上坡这一段长的(123)6(倍).如果上坡用的时设小龙走完全程用x小时.可列出比例式二、比的变化已知两个数量的比,当这两个数量发生增减变化后,当然比也发生变化.通过变化的描述,如何求出原来的两个数量呢这就是这一节的内容. 例11 甲、乙两同学的分数比是5∶4.如果甲少得22.5分,乙多得22.5分,则他们的分数比是5∶7.甲、乙原来各得多少分解一甲、乙两人的分数之和没有变化.原来要分成549份,变化后要分成5712份.如何把这两种分法统一起来这是解题的关键.9与12的最小公倍数是36,我们让变化前后都按36份来算. 5∶4(54)∶(44)20∶16. 5∶7(53)∶(73)15∶21. 甲少得22.5分,乙多得22.5分,相当于20-155份.因此原来甲得22.5÷52090(分),乙得22.5÷51672(分). 答原来甲得90分,乙得72分. 我们再介绍一种能解本节所有问题的解法,也就是通过比例式来列方程. 解二设原先甲的得分是5x,那么乙的得分是4x.根据得分变化,可列出比例式. (5x-22.5)∶(4x22.5)5∶7 即5(4x22.5)7(5x-22.5)15x1222.5 x18. 甲原先得分18590(分),乙得18472(分). 解其他球的数量没有改变. 增加8个红球后,红球与其他球数量之比是5∶(14-5)5∶9. 在没有球增加时,红球与其他球数量之比是1∶(3-1)1∶24.5∶9. 因此8个红球是5-4.50.5(份). 现在总球数是答现在共有球224个. 本题的特点是两个数量中,有一个数量没有变.把1∶2写成4.5∶9,就是充分利用这一特点.本题也可以列出如下方程求解(x8)∶2x5∶9. 例13 张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元解一我们采用“假设”方法求解. 如果他们开支的钱数之比也是8∶5,那么结余的钱数之比也应是8∶5.张家结余240元,李家应结余x元.有240∶x8∶5,x150(元). 实际上李家结余270元,比150元多120元.这就是8∶5中5份与8∶3中3份的差,每份是120÷(5-3)60.(元).因此可求出答张家收入720元,李家收入450元. 解二设张家收入是8份,李家收入是5份.张家开支的3倍与李家开支的8倍的钱一样多. 我们画出一个示意图张家开支的3倍是(8份-240)3. 李家开支的8倍是(5份-270)8. 从图上可以看出58-8316份,相当于2708-24031440(元). 因此每份是1440÷1690(元). 张家收入是908720(元),李家收入是905450(元). 本题也可以列出比例式(8x-240)∶(5x-270)8∶3. 然后求出x.事实上,解方程求x的计算,与解二中图解所示是同一回事,图解有算术味道,而且一些数量关系也直观些. 例14 A和B两个数的比是8∶5,每一数都减少34后,A是B的2倍,求这两个数. 解减少相同的数34,因此未减时,与减了以后,A与B两数之差并没有变,解题时要充分利用这一点. 8∶5,就是8份与5份,两者相差3份.减去34后,A是B的2倍,就是2∶1,两者相差1.将前项与后项都乘以3,即2∶16∶3,使两者也相差3份.现在就知道34是8-62(份)或5-32(份).因此,每份是34∶217. A数是178136,B数是17585. 答A,B两数分别是136与85. 本题也可以用例13解一“假设”方法求解,不过要把减少后的2∶1,改写成8∶4. 例15 小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸解一充分利用已知数据的特殊性. 437,527,15-87.原来总数分成7份,变化后总数仍分成7份,总数多了7张,因此,新的1份原来1份1 原来4份,新的5份,5-41,因此新的1份有15-1411(张). 小明原有图画纸115-1540(张),小强原有图画纸112830(张). 答原来小明有40张,小强有30张图画纸. 解二我们也可采用例13解一的“假设”方法.先要将两个比中的前项化成同一个数(实际上就是通分)4∶320∶15 5∶220∶8. 但现在是20∶8,因此这个比的每一份是当然,也可以采用实质上与解方程完全相同的图解法. 解三设原来小明有4“份”,小强有3“份”图画纸. 把小明现有的图画纸张数乘2,小强现有的图画纸张数乘5,所得到的两个结果相等.我们可以画出如下示意图从图上可以看出,35-427(份)相当于图画纸1528570(张). 因此每份是10张,原来小明有40张,小强有30张. 例11至15这五个例题是同一类型的问题.用比例式的方程求解没有多大差别.用算术方法,却可以充分利用已知数据的特殊性,找到较简捷的解法,也启示一些随机应变的解题思路.另外,解方程的代数运算,对小学生说来是超前的,不容易熟练掌握.例13的解一,也是一种通用的方法.“假设”这一思路是很有用的,希望读者能很好掌握,灵活运用.从课外的角度,我们更应启发小同学善于思考,去找灵巧的解法,这就要充分利用数据的特殊性.因此我们总是先讲述灵巧的解法,利于心算,促进思维. 例16 粗蜡烛和细蜡烛长短一样.粗蜡烛可以点5小时,细蜡烛可以点4小时.同时点燃这两支蜡烛,点了一段时间后,粗蜡烛长是细蜡烛长的2倍.问这两支蜡烛点了多少时间我们把问题改变一下设细蜡烛长度是2,每小时点等需要时间是答这两支蜡烛点了3小时20分. 把细蜡烛的长度和每小时烧掉的长度都乘以2,使原来要考虑的“2倍”变成“相等”,思考就简捷了.解这类问题这是常用的技巧.再请看一个稍复杂的例子. 例17 箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱子里取出7只白球,15只红球,经过若干次后,箱子里剩下3只白球,53只红球,那么,箱子里原来红球数比白球数多多少只解因为红球是白球的3倍多2只,每次取15只,最后剩下53只,所以对3倍的白球,每次取15只,最后应剩51只. 因为白球每次取7只,最后剩下3只,所以对3倍的白球,每次取73=21只,最后应剩33=9只.因此.共取了(51- 33)÷(73-15)=7(次). 红球有157+53=158(只). 白球有77+3=52(只). 原来红球比白球多158-52=106(只). 答箱子里原有红球数比白球数多106只.三、比例的其他问题,这里必须用分数来说,而不能用比.实际上它还是隐含着比例关系(甲-7)∶乙2∶3. 因此,有些分数问题,就是比例问题. 加33张,他们两人取的画片一样多.问这些画片有多少张答这些画片有261张. 解设最初的水量是1,因此最后剩下的水是样重,就有因此原有水的重量是答容器中原来有8.4千克水. 例18和例19,通常在小学数学中,叫做分数应用题.“比”有前项和后项,当两项合在一起写成一个分数后,才便于与其他数进行加、减运算.这就是把比(或除法)写成分数的好处.下面一个例题却是要把分数写成比,计算就方便些. 例20 有两堆棋子,A堆有黑子350个和白子500个,B堆有黑子堆中拿到A堆黑子、白子各多少个子100个,使余下黑子与白子之比是(40-100)∶100=3∶1.再要从B堆拿出黑子与白子到A堆,拿出的黑子与白子数目也要保持3∶1的比. 现在A堆已有黑子350+100=450个),与已有白子500个,相差从B堆再拿出黑子与白子,要相差50个,又要符合3∶1这个比,要拿出白子数是50÷(3-1)=25(个). 再要拿出黑子数是253=75(个). 答从B堆拿出黑子175个,白子25个. 人,问高、初中毕业生共有多少人解一先画出如下示意图6-5=1,相当于图中相差17-12=5(份),初中总人数是56=30份,因此,每份人数是520÷(30-17)40(人). 因此,高、初中毕业生共有40(17+12)=1160(人). 答高、初中毕业生共1160人. 计算出每份是例21与例14是完全一样的问题,解一与例14的解法也是一样的.(你是否发现)解二是通常分数应用题的解法,显然计算不如解一简便. 例18,19,20,21四个例题说明分数与比例各有好处,你是否从中有所心得当然关键还是在于灵活运用. 下的钱共有多少元解设钢笔的价格是 1. 这样就可以求出,钢笔价格是张剩下的钱数是李剩下的钱数答张、李两人剩下的钱共28元. 题中有三个分数,但它们比的基准是不一样的.为了统一计算单位,设定钢笔的价格为 1.每个人原有的钱和剩下的钱都可以通过“1”统一地折算.解分数应用题中,设定统一的计算单位是常用的解题技巧. 作为这一讲最后的内容,我们通过两个例题,介绍一下“混合比”. 用100个银币买了100头牲畜,问猪、山羊、绵羊各几头这是十八世纪瑞士大数学家欧拉(1707~1783)提出的问题. 们设1头猪和5头绵羊为A 组,3头山羊和2头羊绵为B组.A表示A组的数,B表示B 组的数,要使(1+5)A+(3+2)B=100,或简写成6A+5B=100. 就恰好符合均价是 1. 类似于第三讲鸡兔同笼中例17,很明显,A必定是5的整数倍.A=5,B=4,65+54=50,50是100的约数,符合要求. A=5,猪5头,绵羊25头,B4,山羊12头,绵羊8头. 猪∶山羊∶绵羊5∶12∶(25+8). 现在已把1∶5和3∶2两种比,组合在一起通常称为混合比. 要注意,这样的问题常常有多种解答. A 5,B=14或A=15,B=2才能产生解答,相应的猪、山羊、绵羊混合比是5∶42∶53或15∶6∶79. 答有三组解答.买猪、山羊、绵羊的头数是10,24,66;或者5,42,53;或者15,6,79. 求混合比是一种很实用的方法,对数学有兴趣的小学同学,学会这种方法是有好处的,会增加灵活运用比例的技巧. 通常求混合比可列下表下面例题与例23是同一类型,但由于题目的条件,解法上稍有变化. 例24 某商品76件,出售给33位顾客,每位顾客最多买三件,买1件按定价,买2件降价10%,买3件降价20%.最后结算,平均每件恰好按原定价的85%出售,那么买3件的顾客有多少人解题目已给出平均数85%,可作比较的基准. 1人买3件少5%3;1人买2件多5%2;1人买1件多15%1. 1人买3件与1人买1件成A组,即按1∶1比例,2人买3件与3人买2件成B组,即按2∶3的比例. A组是2人买4件,每人平均买2件. B组是5人买12件,每人平均买2.4件. 现在已建立了一个鸡兔同笼型问题总脚数76,总头数33,兔脚数2.4,鸡脚数2. B组人数是(76-233)÷(24-2)=25(人),A组人数是33-25=8(人),其中买3件4人,买1件4人. 10+4=14(人). 答买3件的顾客有14位. 建立两种比的A组和B组,与例23的解题思路完全一致,只是后面解法稍有不同.因为对A组和B组,不仅要从人数考虑满足2A5B=33,还要从买的件数考虑满足4A+12B=76.这已完全确定了A组和B组的数,不必再求混合比.。
(完整版)六年级奥数比和比例
例题1 有三盒珠子,每盒的珠子的数量互不相同。
小王从第一个盒子内取出该盒珠子数量的31,又从第二个盒子内取出该盒珠子数量的41,再从第三个盒子内取出该盒珠子数量51。
最后,这三个盒子内剩下的珠子的数量都相等。
请问小王从这三个盒子内所取出的珠子数量之总和的最小可能的值是什么? 分析 依据题意有32A=43B=54C,则A:B:C=18:16:15例题2 甲、乙两校原有图书的比是7:5,如果甲校给乙校650本,甲、乙两校的图书本数的比就是3:4,原来甲校友图书多少本?随堂练习(1)有一个长方体,长和宽的比是2:1,宽与高的比是3:2。
已知这个长方体的全部棱长之和是220cm ,求这个长方体的体积。
(2)小明和小方各走一段路,小明走的路程比小方多51,小方用的时间比小明多81。
小明和小方的速度之比是多少?(3)甲、乙两仓库存货吨数比为4:3,如果由甲库中提取8吨放到乙库中,则甲、乙两仓库存货吨数比为4:5。
两仓库原存货总吨数是多少吨?例题3 如图(见黑板),正方形ABCD 的边AB 与正方形MNPQ 的边PQ 平行且相等。
试求阴影部分的面积与正方形ABCD 的面积之比。
例题4 如图,三个同心圆,他们的半径之比是3:4:5,如果大圆的面积是100平方厘米,那么中圆和小圆之间的圆环面积是多少?练习(1)如图在四边形ABCD中,AC和BD相交于O点。
三个小三角形的面积分别是20、16、32。
那么阴影三角形BOC 的面积是多少?D(2)如图所示梯形ABCD的上底AD长12厘米,高BD长18厘米,BE=2DE,则下底BC长多少厘米?B C1、六年级一班的男、女生比例是3:2,又来了4名女生后,全班共有44人,求现在的男、女生人数之比。
2、师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。
完成任务时,师傅比徒弟多加工多少个零件?3、甲、乙两人的钱数之比是3:1,如果甲给乙0.6元,则两人的钱数之比变为2:1.两人共有多少钱?4、一条路全长是60千米,分成上坡、平路、下坡三段,各段路程的长度之比是1:2:3,某人走各段路程所用的时间之比是3:4:5。
小学六年级比例奥数题及答案
小学六年级比例奥数题及答案
比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快
答案:甲收8元,乙收2元。
解:
“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以
甲还可以收回18-10=8元
乙还可以收回12-10=2元
刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
答案22/25
最好画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。
增加的成本2份刚好是下降利润的2份。
售价都是25份。
所以,今年的成本占售价的22/25。
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?
解:
原来甲.乙的速度比是5:4
现在的甲:5×(1-20%)=4
现在的乙:4×(1+20%)4.8
甲到B后,乙离A还有:5-4.8=0.2
总路程:10÷0.2×(4+5)=450千米。
(完整word版)六年级奥数比例应用题
六年级奥数 比例应用题【指点迷津】比例解题是小学数学综合能力的一个重要方面,这里的比例题主要包括正比例和反比例的应用 。
它常常同分数应用题、工程问题、行程问题等交织在一起,使数量关系变得复杂。
解题的关键在于找出与问题有关的几种相关联的量,并判断它们的关系。
【经典例题】1、小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18 ,小明和小方的速度之比是多少?【思路导航】根据题意,小明和小方路程之比为6 : 5,小明和小方所用的时间的比是8:9,我们把这两个比看作最简整数比,利用路程与时间的关系, 可求出小明和小方的速度之比。
解: 68 : 59 =27:20答:小明和小方的速度之比是27: 20。
【举一反三】1、1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16 ,李师傅用的时间比张师傅多18 ; ,张师傅和李师傅每小时加工的个数之比是多少?2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38,李刚和张亮的速度之比是多少?【经典例题】2、甲、乙两仓库存货吨数比为4 : 3,如果由甲库中取出8吨放到乙库中,则甲、乙两仓库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨?【思路导航】甲库中原来存货占甲、乙两库总数的44+3 =47 ,取出8吨后,那么甲库余下的吨数是甲、乙两库总吨数的 49 ,所以取出的8 吨是占甲、乙两库总数的47 — 49解:8÷(47 — 49 )= 63(吨)答:两仓库原存货总吨数是63吨。
【举一反三】2、1、甲、乙两厂的人数比是7: 6,从甲厂调360人到乙厂后,甲、乙两厂人数的比是2:3, 甲、乙两厂原来一共有多少人?2 甲、乙两工程队的人数比是6: 5,从甲队调50人到乙队后,甲、乙两队人数的比是4 5,甲、乙两队原来一共有 多少人?【经典例题】3、A、B两地相距360 米,前一半时间小华用速度A行走,后一半时间用速度B走完全程,又知A: B =5:4,前一半路程所用时间与后一半路程所用时间的比是多少?【思路导航】全程的一半是360 ÷ 2 = 180(米)第一种速度行:360×55+4=200(米) ,多于一半20米第二种速度行:360×45+4= 160(米) ,少于一半20米第一种速度行的后20米应属于后一半的路程了。
(完整版)六年级奥数题:比和比例一
比例问题一、 填空题1.4:( )=2016=( )÷10=( )% 2.在3:5里,如果前项加上6,要使比值不变,后项应加 .3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是 毫米.4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、茄子面积的比是25:1:21,三种蔬菜各种了 亩.5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了 支.6.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .7.自然数A 、B 满足182111=-B A ,且A :B =7:13.那么,A +B = . 8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生 人.9.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺 吨.黄砂多 吨.10.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A 、B 两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要 小时.11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?14.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?练习题1 有一个长方体,长与宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和是220cm。
人教版六年级数学上册-第四单元-比--奥数题(附答案)【可编辑全文】
可编辑修改精选全文完整版第四单元 比 奥数题例题1.(比的问题转化为分数问题)(1)小明读一本书,已读的页数和未读的页数之比是5:4.如果再读27页,已读的页数和未读的页数之比是2:1.求这本书有多少页?(2)甲、乙两袋糖果的质量比是3:2,如果从甲袋糖果中拿出5千克放入乙袋,这时甲、乙两袋糖果的质量比是1:1.两袋糖果一共重多少千克?练习1.(1)六(1)班男生人数与女生人数的比是5:4,已知女生比男生少3人,全班共有多少人?(2)甲、乙两袋糖果的质量比是4:3,如果从甲袋糖果中拿出3千克放入乙袋,这时甲、乙两袋糖果的质量比是1:1.两袋糖果一共重多少千克?例题2.下图中阴影部分的面积占圆面积的31,占长方形面积的72,圆的面积与长方形面积的比是多少?练习2.下图中阴影甲占平行四边形面积的75,阴影乙占三角形面积的32,平行四边形面积与三角形面面积的比是多少?例题3.(按比分配)(1)一条路全长120千米,分成上坡、平路、下坡三段,三段路程之比是1:2:3,小明走完三段路程所用的时间之比是4:5:6,已知他上坡的速度是每小时5千米,小明走完全程用了多长时间?(2)甲、乙、丙三人合作加工一批零件,加工一个零件甲需要6分钟,乙需要5分钟,丙需要4.5分钟,三人完成加工任务后共得工钱1590元。
按照加工零件的数量分工钱,甲、乙、丙各分得工钱多少元?(3)学校组织体检,收费标准如下:老师每人3元,学生每人2元。
已知老师和学生人数比为2:9,共收得体检费3120元,那么老师、学生各有多少人?(4)徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋。
现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋。
如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?(5)甲、乙、丙三人合买一台电视机,甲所付钱数的21等于乙所付钱数的31,等于丙所付钱数的73。
已知丙比甲多付了120元,那么这台电视机多少钱?(6)张、王、李、赵4人联合为灾区捐款,张捐的钱数是王,李,赵总和的41,王捐的钱是张,李,赵总和的237,李捐的钱是张,王,赵总和的114,赵捐了9元钱。
小学六年级数学比和比例(难题)
比和比例(1)
2、某校合唱队与舞蹈队人数之比为3 :2,如果将合唱队的队员调10名到舞蹈队,
那么这时的人数比为7 :8,原合唱队有人
3、甲、乙、丙三人外出参观。
午餐时,甲带有4包点心,乙带有3包点心,丙带有
7元钱却没有买到食物,他们决定把甲、乙二人的点心平均分成三份食用,由丙把7元钱还给甲和乙,那么,甲应分得元
@
4、三个容积相同的瓶子装满酒精溶液,酒精与水的比分别是3 :2, 3 :1, 4 :1,
当把三瓶酒精溶液混合时,酒精与水的比是
5、有甲、乙、丙三个长方体,它们的长之比是2 :2 :3,宽之比是3 :5 :6,高之比是6 :2 :5,如果丙的体积是90立方厘米,那么甲、乙两个长方体的体积之和是
立方厘米。
比和比例(2)
3.4.
5.6.
比和比例(3)
比和比例(4)。
(完整版)六年级比和比例奥数题
3.已知 a:b=c:d,现将 a 扩大 2 倍,b 缩小到原来的 1 ,c 不变,d 应 2
( )才能使比例式仍成立。
4.在 1、2、3、4、6、8、12、16 这八个数中,哪些数能组成比例。(答案有多 组,至少写出其中的两组,即 8 个比例式。)
7
11.(☆☆)甲乙两个图书架所放图书册数的比是 2:3,现从乙书架拿出 42 册图 书放到甲书架,甲、乙两个书架图书的比是 5:4,甲书架原有图书多少册?
12.(☆☆)六⑵班上学期男女生人数比为 5:7,这学期转入 2 名男生,转出 2 名 女生后,男女生人数比为 11:13。这学期六⑵班有女生多少人?
4.(☆)压路机的滚筒长 1.5 米,底面半径 0.6 米,以每分钟滚动 15 周计算,把 面积为 25434 平方米的地基压一遍,需多少小时?
5.(☆)一个圆柱体侧面展开后是一个正方形,已知圆柱体底面半径是 5 厘米, 它的表面积、体积各是多少平方厘米?
6.(☆)一个圆柱形水桶的容积是 32 升,底面积是 24 平方分米,装了 1 桶水, 4
)与(
)的乘积。
1.一根圆柱形木材,底面直径 20 厘米。 ⑴把它切成相等的两个小圆柱,表面积增加了多少平方厘米?
⑵沿着它的直径切成相等的两块,切面是正方形,表面积增加了多少平方 米?
9
⑶如果圆柱形木材长 1 米。把它的底面平均分成若干个扇形,沿高切开后拼成 一个近似的长方体。表面积增加了多少平方米?
14.(☆☆☆)一个圆柱的底面半径为 2 厘米,如果把它的底面分成许多个相等的 小扇形,然后垂直切开,拼成一个与它等底等高的近似的长方体,这时长 方体的表面积比原来圆柱体的表面积增加了 24 平方厘米。求圆柱体的体 积。
六年级奥数-比值四则混合运算
六年级奥数-比值四则混合运算
介绍
六年级奥数比值四则混合运算是针对六年级学生的一个数学练题类型。
这个练题类型主要涉及四则混合运算和比值的运算。
通过解决这类题目,学生可以锻炼他们的运算能力和数学思维。
题目示例
以下是一些六年级奥数-比值四则混合运算的题目示例:
1. 甲园里有苹果和梨树两种果树,苹果树的数量是梨树数量的3倍,甲园里一共有16棵果树,问有多少棵苹果树和梨树?
2. 一所学校有400名学生,其中男生和女生的比例是3:5,问男生和女生各有多少人?
3. 一桶混合果汁中,橙汁和苹果汁的比例是2:5,这桶果汁一共有40升,问其中橙汁和苹果汁各有多少升?
解题方法
解决六年级奥数-比值四则混合运算题目的方法可以分为以下
几个步骤:
1. 读懂题目,理解题目中的比值关系和运算需求。
2. 根据题目中的比值关系,设置变量表示未知数,建立方程或
比例等式。
3. 进行四则混合运算,求解未知数。
4. 检查答案,确认计算结果是否符合题目要求。
总结
六年级奥数-比值四则混合运算是一个需要运用四则混合运算
和比值概念的数学练习题类型。
通过解决这类题目,学生可以提高
他们的数学能力和思维能力。
解题的关键在于理解题目要求,建立
合适的方程或比例等式,并进行准确的计算。
通过多练习这类题目,学生可以不断提升他们的解题能力。
六年级比例奥数题及答案
六年级比例奥数题及答案六年级比例奥数题及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级比例奥数题及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
六年级奥数题比和比例【三篇】
六年级奥数题比和比例【三篇】
导读:本文六年级奥数题比和比例【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】习题:
政府为建设新农村修了新路,这条路全长有60千米,分成上坡、平路、下坡三段,各段路程长的比例是1:2:3,小刚回家走各段路程所用时间之比是4:5:6,已知他上坡的速度是每小时3千米,问小刚走完全程用了多少时间?解析:
分析:要求小刚走完全程用了多少时间,必须先求出他走上坡路用了多少时间,必须知道走上坡路的速度和上坡路的路程,已知全程60千米,又知道上坡、平破、下坡三段路程比是1:2:3,就可以求出上坡路的路程。
【第二篇】习题:水果店里西瓜个数与白兰瓜个数的比为7:5。
如果每天卖白兰瓜40个,西瓜50个,若干天后,白兰瓜正好卖完,西瓜还剩36个。
水果店里原有西瓜多少个?
解析:设各运来7X和5X个
(7X-36)/50=5X/40
4(7X-36)=5*5X
28X-156=25X
3X=156
X=52
西瓜:52*7=364个
【第三篇】习题:有两袋大米共重440千克,甲袋米吃了三分之一,乙袋米吃了二分之一,这时甲袋米与乙袋米重量之比为8:5,甲袋米与乙袋米各重多少千克?
解析:设甲袋米重X千克,乙袋米重Y千克,就可以列出X+Y=440,[(2/3)X]/[(1/2)Y]=8/5,可以解出X=240千克,Y=200千克。
六年级奥数题目(比例问题)
六年级奥数题目(比例问题)题目一小明有20个石头,小亮有40个石头。
他们想要按比例分石头,使得小明分到的石头数是小亮的一半。
应该如何分配这些石头呢?题目二一个餐馆制作了30个汉堡,其中10个是鸡肉汉堡,20个是牛肉汉堡。
如果要按照这个比例制作75个汉堡,各类汉堡的数量应该是多少?题目三某公司团队共有30人,其中男性20人,女性10人。
如果要按照这个比例招募50人,预计男性和女性各占多少位?题目四某田径队有60名运动员,其中男队员占总人数的40%。
如果要招募更多的运动员,使得男队员和女队员的比例仍然是2:3,需要招募多少名女队员?题目五小红的体重为40公斤,小明的体重是小红的两倍。
如果要按照这个比例制作一个健康食谱,小红需要摄入多少卡路里才能符合她的比例?题目六某手机厂商在过去两个月中销售了1000台手机,其中200台是红色的,800台是其他颜色的。
如果要按照这个比例销售2000台手机,红色手机的数量应该是多少?题目七一份食谱需要用到250克的面粉和500克的糖。
如果你想制作一份只有一半份量的食谱,你需要准备多少克的面粉和糖?题目八某电视台正在播出一部50集的连续剧,目前已经播出了15集。
如果想知道目前播出了连续剧的百分之多少,你需要进行哪种计算?题目九一个果园有20棵苹果树和30棵梨树。
苹果树和梨树的比例是4:6。
如果想在果园中增加10棵梨树,你需要增加多少棵苹果树?题目十一个化学实验用到100毫升的酒精和200毫升的水。
如果你想制作一半份量的实验液,你需要准备多少毫升的酒精和水?这些比例问题的解答需要根据给出的比例进行计算。
希望以上题目能够帮助你提升比例问题的解答能力。
六年级《比例解应用题》奥数课件
三个年级共植树: 42×(2+3+4)=378(棵)
答:这次任务三个年级共植树378棵。
学校买来一批树苗,按2:3:4分配给四、五、六年级种 植。已知四年级比六年级少分配16棵,问三个年级共种树 苗多少棵?
四年级比六年级少4-2=2份 每一份:16÷2=8(棵)
总价比 =12:20:6 =6:10:3 每份有:152÷(6+10+3)=8(元) 第一批:8×6=48(元) 第二批:8×10=80(元) 第三批:8×3=24(元)
答:这三批商品分别价值48元,80元,24元。
都二
能分
运浇
用灌
好,
“八
二分
八等
定待
律;
”二
,分
我管
们教
一,
起八
,分
静放
待手
花;
开二
每份有:280÷(8+12+15)=8(人) 甲组:8×8=64(人) 乙组:8×12=96(人) 丙组:8×15=120(人)
答:这三个小组各有64人,96人,120人。
有一个长方体,长是30厘米,它的长与宽的比是2:1, 宽与高的比是3:2,这个长方体的体积是多少?
长:宽=2:1 宽:高=3:2
某生产队由15个队员收割一块双季稻,8小时能割完,但割了 3小时以后,由于天气突然发生变化,增加了10个社员进行抢收, 问还需多少小时才能割完这块双季稻?
工作总量是一定的,所以工作时间与工作效率成反比。 解:设还需要x小时才能割完这块双季稻。
(15+10)x=15×(8-3) 25x=75 x=3
小袋面粉的重量:
六年级奥数专题 比例百分数应用题(学生版)
比例百分数应用题分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。
在解答分数应用题时,要注意以下几点:1. 题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。
2. 目题中数量发生变化的,一般要选择不变量为单位“1”。
3. 应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。
找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。
4. 题中有明显的等量关系,也可以用方程的方法去解。
5. 赋值解比例问题【试题来源】【题目】六年级男生有50人,女生有40人,(1)女生人数是男生人数的几分之几?(2)男生人数比女生人数多百分之几?(3)女生人数比男生人数少百分之几?(4)女生比男生少的人数是全班人数的百分之几?【试题来源】【题目】圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【试题来源】【题目】古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一。
再过了五年,他幸福地得到了一个儿子。
可这孩子光辉灿烂的寿命只有他父亲的一半。
儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?
答案:甲收8元,乙收2元。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
答案22/25
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?
5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。
橘子正好占总数的13分之2。
一共运来水果多少吨?
6.甲、乙两个建筑队原有水泥重量的比是4:3,当甲队给乙队54吨水泥后,甲、乙两队水泥的重量比变为3:4,原来甲队有水泥多少吨?
7. 张明比王红的存款少40元。
已知张明存款的5分之2和王红存款数的35%相等,问两人各有
存款多少元?
8. 王欣读一本书,已读和未读的页数之比是1:5,如果再读30页,则已读与未读的页数比是3:5,这本书共有多少页?
9. 有一座闹钟,每小时慢3分钟,早上8点整对准了标准时间,当闹钟是中午12点时,标准时间是多少?
10. 甲、乙两个工地上原来水泥袋数的比是2:1,甲地用去125袋后,甲、乙两工地水泥袋数的比为3:4,甲、乙两工地原有水泥多少袋?。