中考数学易错题专题训练-反比例函数练习题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.

(1)求k的值;

(2)求经过A、C两点的直线的解析式;

(3)连接OA、OC,求△OAC的面积.

【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,

∴A的坐标是(2,3),

代入y= 得3= ,

解得:k=6

(2)解:OD=2+2=4,

在y= 中令x=4,解得y= .

则C的坐标是(4,).

设AC的解析式是y=mx+n,

根据题意得:,

解得:,

则直线AC的解析式是y=﹣ x+

(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;

直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.

在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•B D= (3+ )×2= .

则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=

【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.

2.已知反比例函数y= 的图象经过点A(﹣,1).

(1)试确定此反比例函数的解析式;

(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;

(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴

的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.

【答案】(1)解:由题意得1= ,解得k=﹣,

∴反比例函数的解析式为y=﹣

(2)解:过点A作x轴的垂线交x轴于点C.

在Rt△AOC中,OC= ,AC=1,

∴OA= =2,∠AOC=30°,

∵将线段OA绕O点顺时针旋转30°得到线段OB,

∴∠AOB=30°,OB=OA=2,

∴∠BOC=60°.

过点B作x轴的垂线交x轴于点D.

在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,

∴B点坐标为(﹣1,),

将x=﹣1代入y=﹣中,得y= ,

∴点B(﹣1,)在反比例函数y=﹣的图象上

(3)解:由y=﹣得xy=﹣,

∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,

∴m( m+6)=﹣,

∴m2+2 m+1=0,

∵PQ⊥x轴,∴Q点的坐标为(m,n).

∵△OQM的面积是,

∴OM•QM= ,

∵m<0,∴mn=﹣1,

∴m2n2+2 mn2+n2=0,

∴n2﹣2 n=﹣1,

∴n2﹣2 n+9=8.

【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由

△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.

3.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).

(1)求反比例函数和一次函数的解析式;

(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.

【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,

∴k=﹣2×3=﹣6,

∴反比例函数的解析式为y=﹣,

∵点B在反比例函数y=﹣的图形上,

∴﹣2m=﹣6,

∴m=3,

∴B(3,﹣2),

∵点A,B在直线y=ax+b的图象上,

∴,

∴,

∴一次函数的解析式为y=﹣x+1

(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,

∴AB=PQ,AB∥PQ,

设直线PQ的解析式为y=﹣x+c,

设点Q(n,﹣),

∴﹣ =﹣n+c,

∴c=n﹣,

∴直线PQ的解析式为y=﹣x+n﹣,

∴P(1,n﹣﹣1),

∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,

∵A(﹣2,3).B(3,﹣2),

∴AB2=50,

∵AB=PQ,

∴50=2(n﹣1)2,

∴n=﹣4或6,

∴Q(﹣4. )或(6,﹣1)

【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.

4.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).

(1)点C的坐标________;

(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;

(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,

使得S△PEF= S△CEF,求点P的坐标.

【答案】(1)(3,0)

(2)解:∵AB=CD=3,OB=1,

∴A的坐标为(1,3),又C(3,0),

设直线AC的解析式为y=ax+b,

则,解得:,

∴直线AC的解析式为y=﹣ x+ .

∵点E(2,m)在直线AC上,

相关文档
最新文档