学完物理心得体会

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学完物理心得体会

篇一:物理实验心得体会

物理实验心得体会

刘嘉蕾

“纸上得来终觉浅,绝知此事要躬行”。

物理作为一门实验学科,理论源于实验,学习理论知识的同时,更要注重回归实验。通过基础物理实验的学习实践,我们增长了理论知识,提高了操作技能,避免了理论与实践的脱节,将从课本上学到的抽象的理论知识同实验操作的具体时间相结合,使理论得到落实和检验,也使实验现象得到升华成为理论。

物理实验是一门说难也难,说易也易的学科。其实,“难者不会,会者不难”。要想做好物理实验,个人认为在实验过程中有很多值得注意的地方,就拿这个“分光仪”实验来说:对于这个之前没有接触过的实验内容和实验仪器,必须得在实验前真正的预习好实验,把握好实验重点,弄清楚实验的原理,搞清楚实验的具体操作步骤。实验中要用到的光学仪器分光仪构件还是比较复杂的,大大小小有30多个部件,实验中要调节的有一半以上,必须是在实验前,了解此仪器的构造、原理和调节方法,不要等到试验时手足无措。实验前熟练掌握分光仪的调节步骤和注意事项对实验而言,

可以说是事半功倍的。

光学仪器第一步基本都是粗调,本实验粗调结果要求达到光轴与主轴垂直,平台平面与主轴垂直。调节望远镜调焦于无穷远时,必须达到’绿十字’与叉丝无视差,否则的话,实验可能不会出现象,或者后面测量时的数据误差会非常大。

除了具体操作外,实验过程中,还要遵守仪器操作规则,爱护实验仪器,精密仪器要轻拿轻放,光学仪器切记用手碰触光学表面。做完实验之后一定要整理好实验器材,本实验的钠光灯要及时关掉,电源也应该在走之前断开插座。这既是对实验的善始善终,也是对实验室负责,对后来做本实验同学的负责,同时也是自身素质的体现。

试验后的报告撰写也是一个重要的环节,一定要独立完成。辛辛苦苦做的实验,一定要进行个人的总结,否则的话,实验的收获可能不是那么的充分。报告撰写中要注意回忆做实验时的场景、操作,将书面的报告立体化,在脑海中重复进行一次实验,这样的话,一次实验就达到了两次的效果。同时,这种联想式回忆,可能得到意想不到的结果,对实验的检验,对实验的改进,也许就有了思路。

事实上,实验中需要注意的细节还有很多很多,虽然都是不起眼的小动作,但是这些细枝末节有时候却关乎实验的成败。这让我们体会到,物理实验需要充分的准备,缜密的

思考,精确的操作,灵活地进行数据的处理,全方位的进行误差分析,想方设法进行试验的改进。从实验中来,到实验中去。我们要将浅显的实验结论与实际生产、生活相联系,使实验结论得到升华,以求创新。

“德才兼备,知行合一。”重视理论,立足实践,将理论与实践相结合,或许就能迸发出创新的思维火花。

篇二:学习物理学概论的心得体会

学习物理学概论的心得体会

还记得刚进入大学开始学习时,我对物理学感到很迷茫,我不知道自己将要学的是什么。但是通过高老师详细的讲解之后,我发现原来物理学对我们的生活很重要,原来物理学是这样慢慢壮大的,原来是有那么多先辈的伟大付出的,原来有那么多充满乐趣的故事。那种对未知的探索,那种对科学的执着,那种探索的乐趣,一切都深深的吸引了我。

物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。物理学可以分为经典力学、电磁学、热力学和统计力学、相对论和量子力学。

其中经典力学是研究宏观物质做低速机械运动的现象和规律的学科。而牛顿则是经典力学的主要创作者,他深入研究了伽利略的现象行理论以及行星绕日运动的经验规律,

发现了宏观低速机械运动的基本规律。

热学是研究热的产生和传导,研究物质处于热状态下的性质及其转化的科学。对于热现象的研究逐步澄清了关于热的一些模糊概念,并在此基础上开始探索热现象的本质和普遍规律。而关于热现象的普遍规律的研究就称为热力学。到19世纪,热力学已趋于成熟。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律。在卡诺研究结果的基础上克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。

经典电磁学是研究宏观电磁现象和客观物体的电磁性质的学科。在18世纪,人们早已发现电荷有两种,而在18世纪末发现电荷能够流动,这就是电流。在19世纪前期,奥斯特发现电流可以使小磁针偏转,而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生了电流。在电和磁的联系被发现以后,法拉第引进力线的概念并产生了电磁场的概念。19世纪下半叶,麦克斯韦总结了宏观电磁学的规律并引进了位移电流的概念,在此基础上他提出了一组偏微风方程来表达电磁现象的基本规律,并预言了存在以光速传播的电磁波。而后,赫

兹用实验证明了麦克斯韦预言的电磁波具有光速和反射、折射、干涉、衍射、偏振等一切光波的性质。从而完成了电磁学和光学的综合。

19世纪末期经典物理学已经发展到很完美的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在除夕夜的新年祝词中说:“物理大厦已经落成······现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻尔的能量均分理论”而恰恰是这两个基本问题和开尔文所忽略的放射性孕育了20世纪的物理革命。

1905年,爱因斯坦为了解决电动力学应用于动体的不对称创建了狭义相对论,即适用于一切惯性参考系的相对论,推出了同时的相对性和动系中的尺缩、钟慢的结论,完美地解释了洛伦兹变换公式,从而完成了动力学和电动力学的综合,并彻底否认以太的存在。1915年,爱因斯坦又创造了广义相对论。把相对论推广到非惯性系。广义相对论解释了用牛顿引力理论不能解释的一些天文现象。

另一方面,普朗克提出了黑体辐射公式,并用能量量子化假设从理论上导出,首次提出物理量的不连续性。1905年,爱因斯坦以光的波粒二象性解释了光电

效应。1913年,玻尔发表玻尔氢原子理论,并预言氢原子存在其他线光谱。后获证实。1918年玻尔又提出对应原理,

相关文档
最新文档