最新南京地铁联络通道冻结法施工措施分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京地铁联络通道冻结法施工措施分
南京地铁联络通道冻结法
施工措施分
摘要:对南京地铁一期工程TA4 标联络通道冻结法施工的成功经验进行了总结。指出地铁联络通道冻结法施工中,必须采取必要的施工技术措施,才能保证施工安全、顺利的进行。本工程的成功经验可供其他工程参考。关键词:地铁;联络通道;冻结法1 前言
南京地铁一期工程(南北线)南起小行北至迈皋桥,全长21.7 km ,其中地下部分长14.5 km 。工程于2000 年底开工,计划2003 年底完成车站、区间隧道的土建工程部分。
南京地铁TA4 标盾构法区间隧道,北起钓鱼台工作井北侧,南至三山街车站南端头井,由左线(下行线)和右线(上行线)隧道组成。隧道外径6.2 m,内径5.5 m,每块管片宽为1.2 m,厚为350 mm。联络通道位于两站区间隧道中间,隧道中心埋深13.13 m,联络通道及泵站采取合并建造模式,它既保证上、下行隧道间的联络作用和必要时
乘客安全疏散的功能,又起到地铁运营中两车站之间的集、排水作用。工程结构由两个与隧道相交的喇叭口、通道以及集水井等组成。地铁联络通道一般位于区间隧道的中间,通常与集、排水泵站连在一起,共同起着两隧道连结、集排水和防火等作用。联络通道土体开挖前,必须对其周围土体进行加固,土体加固的方法常用的有深层搅拌法和冻结法。目前冻结法在国内地铁建设中得到了广泛应用[1-3] ,积累了一定的成功经验。南京地铁一期工程TA4 标中,联络通道施工成功引用了冻结施工,并取得了圆满成功。本文对施工中的技术措施进行了总结、分析研究,希望能对以后的联络通道土体冻结法施工提供借鉴和指导。
2 工程地质状况
工程地质资料如表1 所示,另外地下水标高为地下1~2 m ,水位较高。表1 土层物理参数3 冻结设计
从表1 看出,土层平均渗透系数小,透水性差,是冻结施工较为有利的土层。经研究采用隧道内钻孔冻结加固,矿山法暗挖构筑”的施工方案,即:在隧道内利用水平孔和部分倾斜孔冻结加固地层,使联络通道以及集水井外围土体冻结,形成强度高,封闭性好的冻土帷幕。采用矿山法,
进行联络通道及泵站的开挖构筑施工。地层冻结和开挖构筑施工均在区间隧道内进行,其主要施工顺序为:施工准备? 联络通道连通地面的垂直水管施工? 冻结孔钻孔施工(同时安装冻结制冷系统) ? 安装冻结盐水系统和检测系统? 积极冻结? 探孔试挖? 拆钢管片? 联络通道掘进与临时支护? 联络通道永久支护? 泵站开挖与临时支护? 泵站永久支护? 必要时进行土层注浆充填。根据冻结帷幕设计及联络通道的结构,冻结孔的倾角采用上仰、近水平、下俯三种角度布置,开孔间距为0.7 m,冻结孔数58 个。冻结孔的布置见图1 所示。
图1 冻结孔布置(括号内数字为孔深,单位mm 及倾角(o)
4 冻结参数的选择
选用YSLGF300? 型螺杆压缩机组一台套,设计工况制冷量为87 500 kcal/h ,电机功率110 kW 。地层冻结供冷工艺参数和指标为:积极冻结盐水温度为-28 ℃~-30 ℃;冻结孔单孔流量不小于4 m3/h;冻结系统辅助设备:(1) 盐水循环泵选用IS125-100~200 型2 台,流量200
m3/h,电机功率45 kW ,其中一台备用。(2) 冷却水循环选用IS125-100~200 C 型2 台,流量120 m3/h,电机功率30 kW ,其中一台备用。冷却塔选用NBL-100 型一台,补充新鲜水15 m3/h。
5 施工技术措施
5.1 冻结前的施工措施
冻结孔钻进工程中会引起周围地表的沉降,为了控制沉降对周围环境的影响,在联络通道地表进行了布点监测,监测结果如图2 所示(选取最大变形点)。2002 年11 月10 日开钻,21 日结束。从图2 中看出,开钻过程中由于土体的开挖以及钻孔数量的增多,地表的沉降逐渐增大,到11 月21 日即钻孔结束时最大沉降为4 mm,24 日最大沉降达5 mm,并且一直保持到开始冻结前,11 月29 日开始冻结,地表点开始表现为隆起,并随着冻土效果逐渐增大,从12 月30 日到2003 年1 月20 日隆起量在15 mm 处达到平稳,说明冻土发展良好,并且在这一段时间内冻土柱已经交圈,因此,实际土体开挖时间定在了2003 年1 月8 日。由于其它原因,冻土温度进一步降低,冻土圈有所扩大,地表从1 月21 日开始隆起增加到2 月1 日达到19
mm ,一直保持到主体结构完工。
图2 1#测点地表变形与时间的变化关系
5.2 冻结过程中的施工措施
5.2.1 隧道内支撑
冻结过程中隧道受冻土力的作用,会发生隧道横向断面变形,从而影响隧道的椭圆度。为了减少这一变形,因此在冻结前,隧道内安装预应力隧道支架,即在上下行线隧道的联络通道洞口两侧安装两榀预应力钢支架(如图3 所示),每榀支有8 个支点,均匀地支撑在隧道管片上,施工中可根据观测到的隧道变形情况,调整各个支点的预应力大小,控制隧道变形。
图3 预应力钢支架
5.2.2 布置测温孔
为了掌握冻土帷幕的形成过程、形成状况,以及判断冻土柱是否交圈、冻土墙厚度及其温度是否达到设计要求等等,在上、下行线隧道联络通道洞口两侧共布置10 个测温孔,其中在下行隧道中布置了4 个,上行隧道中布置了6 个(开挖是从下行隧道开始的)。每个测温孔内设3 个测点,每个测点间距600 mm,测温孔深为2 m 。测量频度为每天1 次。
5.2.3 布置卸压孔
为了减少冻结过程中,土体冻涨对地表以及隧道的影响,隧道下行线联络通道开挖断面内布置一个卸压孔。另外,通过卸压孔压力的测试,以及对卸压孔内水流观察,可以判断冻土的冻结情况。如本工程卸压孔,在12 月24 日,压力不再升高,说明冻结帷幕内的自由水由于水分迁移的作用,已经基本补给到冻土中,2003 年1 月3 日打开该泄压孔,有少量水和泥浆流出,几分钟后停止。1 月8 日土体开挖时,该孔内没有水流出现象。
5.2.4 钢管片的拆卸