中考数学全真模拟试题(含答案)
江苏省镇江市丹阳市2024届中考数学全真模拟试卷含解析
江苏省镇江市丹阳市2024年中考数学全真模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-62.如图,在平面直角坐标系中,半径为2的圆P 的圆心P 的坐标为(﹣3,0),将圆P 沿x 轴的正方向平移,使得圆P 与y 轴相切,则平移的距离为( )A .1B .3C .5D .1或53.已知函数y =ax 2+bx +c 的图象如图所示,则关于x 的方程ax 2+bx +c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根4.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:35.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年6.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-7.如图,在△ABC 中,AB=AC=3,BC=4,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A .3B .4C .5D .68.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .89.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+ 10.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯二、填空题(共7小题,每小题3分,满分21分)11.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.12.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.13.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .14.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.15.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________16.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.17.欣欣超市为促销,决定对A ,B 两种商品统一进行打8折销售,打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元,打折后,小敏买50件A 商品和40件B 商品仅需________元.三、解答题(共7小题,满分69分)18.(10分)如图,数轴上的点A 、B 、C 、D 、E 表示连续的五个整数,对应数分别为a 、b 、c 、d 、e .(1)若a+e=0,则代数式b+c+d= ;(2)若a 是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M 表示的实数为m (m 与a 、b 、c 、d 、e 不同),且满足MA+MD=3,则m 的范围是 .19.(5分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.20.(8分)先化简,再求值:(12a+-1)÷212aa-+,其中a=31+21.(10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)22.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?23.(12分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?24.(14分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【题目详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【题目点拨】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2、D【解题分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【题目详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【题目点拨】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.3、A【解题分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【题目详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【题目点拨】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4、A【解题分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【题目详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【题目点拨】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.5、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.6、B【解题分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【题目详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×222,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【题目点拨】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.7、C【解题分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【题目详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=12BC=2,又∵D是AB中点,∴BD=12AB=32,∴DE是△ABC的中位线,∴DE=12AC=32,∴△BDE的周长为BD+DE+BE=32+32+2=5,故选C.【题目点拨】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.8、C【解题分析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DE BC EF=, 即123EF=, 解得EF =6,故选C.9、D【解题分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【题目详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【题目点拨】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.10、B【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】210万=2100000,2100000=2.1×106,故选B .【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题(共7小题,每小题3分,满分21分)11、x <﹣2或0<x <2【解题分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【题目详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【题目点拨】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.12、213【解题分析】作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P与Q是关于AB的对称点,当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,F'M为所求长度;过点F'作F'H⊥BC',M是BC中点,则Q是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以3HC'=1,在Rt△MF'H中,即可求得F'M.【题目详解】作梯形ABCD关于AB的轴对称图形,作F关于AB的对称点G,P关于AB的对称点Q,∴PF=GQ,将BC'绕点C'逆时针旋转120°,Q点关于C'G的对应点为F',∴GF'=GQ,设F'M交AB于点E',∵F关于AB的对称点为G,∴GE'=FE',∴当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,∴F'M 为所求长度;过点F'作F'H ⊥BC',∵M 是BC 中点,∴Q 是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴3HC'=1,∴MH=7,在Rt △MF'H 中,F'M ()2222F H MH 37213=+=+=';∴△FEP 的周长最小值为213故答案为:13【题目点拨】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.13、6或2或12【解题分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【题目详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.14、7【解题分析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 15、1【解题分析】 分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a),然后利用三角形面积公式得到12•a•(k a -2k a)=1,最后解方程即可. 详解:设D (a ,k a ), ∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a), ∴E (2a ,2k a ), ∵△BDE 的面积为1, ∴12•a•(k a -2k a)=1,解得k=1. 故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k 的取值.16、3或1【解题分析】由四边形ABCD 是平行四边形得出:AD ∥BC ,AD=BC ,∠ADB=∠CBD ,又由∠FBM=∠CBM ,即可证得FB=FD ,求出AD 的长,得出CE 的长,设当点P 运动t 秒时,点P 、Q 、E 、F 为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵∠FBM=∠CBM ,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【题目点拨】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.17、1【解题分析】设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y 的值,进而求解即可.【题目详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得63=54 {34=32x yx y++,解得x=8 {y=2.所以0.8×(8×50+2×40)=1(元).即打折后,小敏买50件A商品和40件B商品仅需1元.故答案为1.【题目点拨】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.三、解答题(共7小题,满分69分)18、(1)0;(1),;(3) ﹣1<x<1.【解题分析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【题目详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x <1.【题目点拨】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.19、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解题分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【题目详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5; (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5, 张华得分为:90×10%+75×20%+75×30%+80×40%=78.5, ∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【题目点拨】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.20、【解题分析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+-将1a =代入得:原式=()11333131=-=--+ 点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.21、29033cm 【解题分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF .【题目详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用22、1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解题分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可【题目详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y == 答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【题目点拨】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系23、(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解题分析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【题目详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m +75(50﹣m )≤4000,且50﹣m ≥0,解得,5≤m ≤10,利润是30m +20(50﹣m )=1000+10m ,当m 取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【题目点拨】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.24、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22=6,于是得到结论.BE BD【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.。
黑龙江省重点中学2024届中考数学全真模拟试题含解析
黑龙江省重点中学2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米2.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78 910 A .14,9B .9,9C .9,8D .8,93.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年5.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >6.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.410.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种二、填空题(共7小题,每小题3分,满分21分)11.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.12.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.如图,矩形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,点B′和B 分别对应).若AB =2,反比例函数y =kx(k≠0)的图象恰好经过A′,B ,则k 的值为_____.16.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .17.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.三、解答题(共7小题,满分69分)18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(5分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A 与D为对应点.20.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.22.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.23.(12分)如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.24.(14分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】此题考查的是解直角三角形 如图:AC=4,AC ⊥BC ,∵梯子的倾斜角(梯子与地面的夹角)不能>60°. ∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.2、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.3、D【解题分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年, 故选B . 【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键. 5、C 【解题分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【题目详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩, 解得:k<1且k≠1. 故选:C . 【题目点拨】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 6、A 【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【题目详解】∵S 甲2=1.4,S 乙2=2.5, ∴S 甲2<S 乙2,∴甲、乙两名同学成绩更稳定的是甲; 故选A . 【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、C 【解题分析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.8、D【解题分析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4,CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【题目详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 10、B 【解题分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【题目详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题(共7小题,每小题3分,满分21分)11、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.12、4 3【解题分析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.13、(﹣2,4)【解题分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【题目详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14、30°【解题分析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.15 【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=2m ,∴A′(12m ), ∵反比例函数k y x=(k≠0)的图象恰好经过点A′,B ,∴12 ,∴,∴故答案为316、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题(共7小题,满分69分)18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.19、(1)见解析(2)见解析【解题分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF 即为所求.【题目点拨】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20、 (1)π, 2π;(2)(n ﹣2)π.【解题分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【题目详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【题目点拨】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.21、(1)证明见解析;(1)2【解题分析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF =∠AFD ,然后根据对顶角相等可得∠BFE =∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC =90°,∴∠1+∠BEF =∠1+∠AFD =90°,∴∠BEF =∠AFD .∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.22、(1)PD是⊙O的切线.证明见解析.(2)1.【解题分析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.23、(1)证明见解析;(2)15 2【解题分析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC ⊥OA , ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD , ∴∠2+∠5=90°,∵OA=OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.(2)作DF ⊥AB 于F ,连接OE ,∵DB=DE , ∴EF=12BE=3,在 RT △DEF 中,EF=3,DE=BD=5,EF=3 , ∴DF=22534-=∴sin ∠DEF=DF DE = 45 , ∵∠AOE=∠DEF , ∴在RT △AOE 中,sin ∠AOE=45AE AO = , ∵AE=6, ∴AO=152. 【题目点拨】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.24、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤-. 【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴122m ≤≤212m ≤≤-. (3)∵33M ⎛⎫- ⎪ ⎪⎝⎭、N (0,1), ∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°, ∴233QM =. ∵33OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =33OM =, ∴32OQ =∴232Q ⎫⎪⎪⎭. 332n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.。
2024届湖北省武汉市东西湖区中考数学全真模拟试题含解析
2024届湖北省武汉市东西湖区中考数学全真模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.抛物线经过第一、三、四象限,则抛物线的顶点必在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( ) A .8B .9C .10D .123.若x ﹣2y+1=0,则2x ÷4y ×8等于( ) A .1B .4C .8D .﹣164.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 25.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .a 2+a 3=a 5C .(a 2)3=a 6D .a 12÷a 6=a 2 6.下列运算正确的是( ) A .x •x 4=x 5B .x 6÷x 3=x 2 C .3x 2﹣x 2=3D .(2x 2)3=6x 67.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( ) A .28°,30°B .30°,28°C .31°,30°D .30°,30°8.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-9.如图,点A 、B 、C 在圆O 上,若∠OBC=40°,则∠A 的度数为( )A .40°B .45°C .50°D .55°10.主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为( ) A .135×107B .1.35×109C .13.5×108D .1.35×101411.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .12.如图所示的几何体,它的左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.双曲线11y x =、23y x=在第一象限的图像如图,过y 2上的任意一点A ,作x 轴的平行线交y 1于B ,交y 轴于C ,过A 作x 轴的垂线交y 1于D ,交x 轴于E ,连结BD 、CE ,则BDCE=.14.设[x)表示大于x 的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x 的最小值是0;③[x)−x 的最大值是0;④存在实数x ,使[x)−x=0.5成立. 15.如图,点A 在双曲线y =kx的第一象限的那一支上,AB 垂直于y 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为_____.16.已知x 1,x 2是方程x 2+6x+3=0的两实数根,则2112x x x x 的值为_____. 17.如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)18.对于实数a ,b ,我们定义符号max {a ,b }的意义为:当a ≥b 时,max {a ,b }=a ;当a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于x 的函数为y =max {x +3,﹣x +1},则该函数的最小值是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)解方程:x 2-4x -5=020.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A 类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.21.(6分)解不等式组:,并把解集在数轴上表示出来.22.(8分)下表给出A 、B 、C 三种上宽带网的收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min ) A 30 25 0.05 B 50 50 0.05 C120不限时设上网时间为t 小时. (I )根据题意,填写下表: 月费/元 上网时间/h 超时费/(元) 总费用/(元) 方式A 30 40 方式B50100(II )设选择方式A 方案的费用为y 1元,选择方式B 方案的费用为y 2元,分别写出y 1、y 2与t 的数量关系式; (III )当75<t <100时,你认为选用A 、B 、C 哪种计费方式省钱(直接写出结果即可)? 23.(8分)已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.(10分)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB=AD ,∠BFC=∠BAD=2∠DFC . 求证:(1)CD ⊥DF ; (2)BC=2CD .25.(10分)如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.a= ,b= ,点B 的坐标为 ;当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.26.(12分)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP . (2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=1.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A .设点P 的运动时间为t (秒),当DC 的长与△ABD 底边上的高相等时,求t 的值.27.(12分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】根据二次函数图象所在的象限大致画出图形,由此即可得出结论.【题目详解】∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限.故选A.【题目点拨】本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.2、A【解题分析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.3、B【解题分析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【题目详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【题目点拨】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.4、C【解题分析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.5、C【解题分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【题目详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选:C.【题目点拨】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.6、A【解题分析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、x•x4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2﹣x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误.故选A.7、D【解题分析】试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.考点:众数;算术平均数.8、D【解题分析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.9、C【解题分析】根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.【题目详解】∵OB=OC,∴∠OBC=∠OCB.又∠OBC=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°-2×40°=100°,∴∠A=∠BOC=50°故选:C.【题目点拨】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.10、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】将1350000000用科学记数法表示为:1350000000=1.35×109,故选B.【题目点拨】本题考查科学记数法的表示方法. 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.11、B【解题分析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B .点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字. 12、A 【解题分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线. 【题目详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线, 故选:A . 【题目点拨】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、23【解题分析】设A 点的横坐标为a ,把x=a 代入23y x =得23y a =,则点A 的坐标为(a ,3a). ∵AC ⊥y 轴,AE ⊥x 轴,∴C 点坐标为(0,3a ),B 点的纵坐标为3a ,E 点坐标为(a ,0),D 点的横坐标为a . ∵B 点、D 点在11y x =上,∴当y=3a 时,x=a 3;当x=a ,y=1a .∴B 点坐标为(a 3,3a ),D 点坐标为(a ,1a ).∴AB=a -3a =2a 3,AC=a ,AD=3a -1a =2a ,AE=3a .∴AB=23AC ,AD=23AE .又∵∠BAD=∠CAD ,∴△BAD ∽△CAD .∴BD AB 2CE AC 3==. 14、④ 【解题分析】根据题意[x)表示大于x 的最小整数,结合各项进行判断即可得出答案.【题目详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【题目点拨】此题考查运算的定义,解题关键在于理解题意的运算法则.15、16 3.【解题分析】由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,kx),从而表示出梯形BOCA的面积关于k的等式,求解即可. 【题目详解】如图,连接DC,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1. ∴△ADC的面积为4.∵点A在双曲线y=kx的第一象限的那一支上,∴设A点坐标为(x,kx ).∵OC=2AB,∴OC=2x.∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.∴梯形BOCA的面积=11(2)3822k kx x xx x+⋅=⋅⋅=,解得16k3=.【题目点拨】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质. 16、1. 【解题分析】试题分析:∵1x ,2x 是方程的两实数根,∴由韦达定理,知126x x +=-,123x x =,∴2112x x x x +=2121212()2x x x x x x +-=2(6)233--⨯=1,即2112x x x x +的值是1.故答案为1. 考点:根与系数的关系. 17、6.2 【解题分析】根据题意和锐角三角函数可以求得BC 的长,从而可以解答本题. 【题目详解】 解:在Rt △ABC 中, ∵∠ACB=90°,∴BC=AB•sin ∠BAC=12×0.515≈6.2(米), 答:大厅两层之间的距离BC 的长约为6.2米. 故答案为:6.2. 【题目点拨】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答. 18、2 【解题分析】试题分析:当x+3≥﹣x+1, 即:x≥﹣1时,y=x+3, ∴当x=﹣1时,y min =2, 当x+3<﹣x+1,即:x <﹣1时,y=﹣x+1, ∵x <﹣1, ∴﹣x >1, ∴﹣x+1>2, ∴y >2,∴y min=2,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、x1 ="-1," x2 =5【解题分析】根据十字相乘法因式分解解方程即可.20、(1)13(2)23.【解题分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122 183 ==.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23.21、无解.【解题分析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.22、(I)见解析;(II)见解析;(III)见解析.【解题分析】(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.【题目详解】(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,填表如下:(II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【题目点拨】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.23、(1)12,32-;(2)证明见解析.【解题分析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=.∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24、(1)详见解析;(2)详见解析. 【解题分析】(1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得∠CDF=90°,则CD ⊥DF ; (2)应先找到BC 的一半,证明BC 的一半和CD 相等即可. 【题目详解】证明:(1)∵AB=AD ,∴弧AB=弧AD ,∠ADB=∠ABD . ∵∠ACB=∠ADB ,∠ACD=∠ABD , ∴∠ACB=∠ADB=∠ABD=∠ACD .∴∠ADB=(180°﹣∠BAD )÷2=90°﹣∠DFC . ∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°, ∴CD ⊥DF .(2)过F 作FG ⊥BC 于点G , ∵∠ACB=∠ADB , 又∵∠BFC=∠BAD ,∴∠FBC=∠ABD=∠ADB=∠ACB . ∴FB=FC .∴FG 平分BC ,G 为BC 中点,12GFC BAD DFC ∠=∠=∠, ∵在△FGC 和△DFC 中,,GFC DFC FC FCACB ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FGC ≌△DFC (ASA ), ∴12CD GC BC ==. ∴BC=2CD .【题目点拨】本题用到的知识点为:同圆中,相等的弧所对的弦相等,所对的圆周角相等,注意把所求角的度数进行合理分割;证两条线段相等,应证这两条线段所在的三角形全等.25、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒. 【解题分析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可. 试题解析:(1)∵a 、b 460.a b --= ∴a −4=0,b −6=0, 解得a =4,b =6, ∴点B 的坐标是(4,6), 故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O −C −B −A −O 的线路移动, ∴2×4=8, ∵OA =4,OC =6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.26、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解题分析】(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据AD⋅BC=AP⋅BP,就可求出t的值.【题目详解】解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴2253-,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值为2秒或2秒.【题目点拨】本题考查圆的综合题.27、(1)4﹣2;﹣52<x≤2,在数轴上表示见解析【解题分析】(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【题目详解】解:(1)原式=4+2×22﹣2×32=4+2﹣62=4﹣52;(2)() 5231131322x xx x⎧+>-⎪⎨-≤-⎪⎩①②,解①得:x>﹣52,解②得:x≤2,不等式组的解集为:﹣52<x≤2,在数轴上表示为:.【题目点拨】此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.。
山东省淄博市博山区2024届中考数学全真模拟试卷含解析
山东省淄博市博山区2024届中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.2B.22C.2 D.432.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.32πB.43πC.4 D.2+32π3.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()A.B.C.D.±4.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°5.如图,在半径为5的⊙O中,弦AB=6,点C是优弧AB上一点(不与A,B重合),则cosC的值为()A.43B.34C.35D.456.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A 与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+1603)C.1603米D.360米7.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.848.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是()A.B.C.D.9.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×10510.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.12.12019的相反数是_____.13.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.14.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.15.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.16.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.17.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.三、解答题(共7小题,满分69分)18.(10分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B 处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).19.(5分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距 千米,慢车速度为 千米/小时.(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y 与x 之间的函数关系式.(4)直接写出两车相距300千米时的x 值.20.(8分)如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B,求证:AC•CD=CP•BP ;若AB=10,BC=12,当PD ∥AB 时,求BP 的长.21.(10分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?22.(10分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P 的坐标满足(m ,m ﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy 中就是一次函数y=x ﹣1的图象.即点P 的轨迹就是直线y=x ﹣1.(1)若m 、n 满足等式mn ﹣m=6,则(m ,n ﹣1)在平面直角坐标系xOy 中的轨迹是 ;(2)若点P (x ,y )到点A (0,1)的距离与到直线y=﹣1的距离相等,求点P 的轨迹;(3)若抛物线y=214x 上有两动点M 、N 满足MN=a (a 为常数,且a≥4),设线段MN 的中点为Q ,求点Q 到x 轴的最短距离.23.(12分)如图,在平面直角坐标系中,一次函数y =﹣x +3的图象与反比例函数y =(x >0,k 是常数)的图象交于A (a ,2),B (4,b )两点.求反比例函数的表达式;点C 是第一象限内一点,连接AC ,BC ,使AC ∥x 轴,BC ∥y 轴,连接OA ,OB .若点P 在y 轴上,且△OPA 的面积与四边形OACB 的面积相等,求点P 的坐标.24.(14分)如图,正方形ABCD 中,E ,F 分别为BC ,CD 上的点,且AE ⊥BF ,垂足为G .(1)求证:AE =BF ;(2)若BE 3,AG =2,求正方形的边长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】连接AC ,交O 于点,F 设,FN a =则2,NC a =(222,DC a =+()224,AC a =根据△AMN 的面积为4,列出方程求出a 的值,再计算半径即可.【题目详解】连接AC ,交O 于点,FO 内切于正方形,ABCD MN 为O 的切线,AC 经过点,,O F FNC 为等腰直角三角形, 2,NC FN = ,CD MN 为O 的切线,,EN NF =设,FN a =则2,NC a =()222,DC a =+()224,AC a =+()223,AF AC CF a ∴=-=+ △AMN 的面积为4, 则14,2MN AF ⋅⋅= 即()122234,2a a ⋅⋅+=解得222,a =- ()()()2121222 2.r EC a ==+=+-= 故选:C.【题目点拨】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.2、B【解题分析】根据题目的条件和图形可以判断点B 分别以C 和A 为圆心CB 和AB 为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【题目详解】如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯.故选B.3、D【解题分析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,求出方程组的解即可.【题目详解】解:设一次函数的解析式为:y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,由①得:,把③代入②得:,解得:.故选:D.【题目点拨】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.4、C【解题分析】试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.考点:平行线的性质.5、D【解题分析】解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD=22106-=8,∴cos D=BDAD=810=45.∵∠C=∠D,∴cos C=45.故选D.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.6、C【解题分析】过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【题目详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×33=403m;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×3=1203m.∴BC=BD+DC=40312031603+=m.故选C.【题目点拨】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.7、B【解题分析】试题解析:该几何体是三棱柱.如图:22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于1.故选B.8、C【解题分析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=bx的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系9、C【解题分析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:1.21万=1.21×104,故选:C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、A【解题分析】设身高GE=h,CF=l,AF=a,当x≤a时,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,OE/OF GE/CF=,∴()y h h ahy x a x y l l h l h=∴=-+----,,∵a 、h 、l 都是固定的常数, ∴自变量x 的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大. 故选A .二、填空题(共7小题,每小题3分,满分21分) 11、23【解题分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得. 【题目详解】解:所有可能的结果如下表:由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种, 所以其概率为挑选的两位教师恰好是一男一女的概率为812=23, 故答案为23. 【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 12、12019-【解题分析】根据只有符号不同的两个数互为相反数,可得答案.【题目详解】1 2019的相反数是−12019.故答案为−1 2019.【题目点拨】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.13、3 5【解题分析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.【题目详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:3 5 .故答案为3 5 .14、13518020 x x=+【解题分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.【题目详解】∵甲平均每分钟打x个字,∴乙平均每分钟打(x+20)个字,根据题意得:13518020x x=+,故答案为13518020x x=+.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15、3-【解题分析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣1,故答案为﹣1.考点:正数和负数16、a+b=1.【解题分析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1. 考点:1角平分线;2平面直角坐标系.17、(32,32)【解题分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【题目详解】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=32,∵四边形ODEF是正方形,∴DE=OD=32.∴E点的坐标为:(32,32).故答案为:(32,32).【题目点拨】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.三、解答题(共7小题,满分69分)18、CE的长为(4+)米【解题分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【题目详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×33=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.532=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题19、(1)10,1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x ﹣10;(4)当x=2小时或x=4小时时,两车相距300千米.【解题分析】(1)由当x=0时y=10可得出甲乙两地间距,再利用速度=两地间距÷慢车行驶的时间,即可求出慢车的速度;(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和×相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;(4)利用待定系数法求出当0≤x≤4时y与x之间的函数关系式,将y=300分别代入0≤x≤4时及4≤x≤203时的函数关系式中求出x值,此题得解.【题目详解】解:(1)∵当x=0时,y=10,∴甲乙两地相距10千米.10÷10=1(千米/小时).故答案为10;1.(2)设快车的速度为a千米/小时,根据题意得:4(1+a)=10,解得:a=2.答:快车速度是2千米/小时.(3)快车到达甲地的时间为10÷2=203(小时),当x=203时,两车之间的距离为1×203=400(千米).设当4≤x≤203时,y与x之间的函数关系式为y=kx+b(k≠0),∵该函数图象经过点(4,0)和(203,400),∴40{204003k bk b+=+=,解得:150{600kb==-,∴从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10.(4)设当0≤x≤4时,y与x之间的函数关系式为y=mx+n(m≠0),∵该函数图象经过点(0,10)和(4,0),∴600{40nm n=+=,解得:150{600mn=-=,∴y与x之间的函数关系式为y=﹣150x+10.当y=300时,有﹣150x+10=300或150x﹣10=300,解得:x=2或x=4.∴当x=2小时或x=4小时时,两车相距300千米.【题目点拨】本题考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距÷慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和×相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值.20、(1)证明见解析;(2)25 3.【解题分析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP=,∴BP=253.“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA 是解决第(2)小题的关键.21、(1)、26%;50;(2)、公交车;(3)、300名.【解题分析】试题分析:(1)、用1减去其它3个的百分比,从而得出m 的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50; 骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名). 答:该校骑自行车上学的学生有300名. 考点:统计图 22、(1)6y x =;(2)y=14x 2;(3)点Q 到x 轴的最短距离为1. 【解题分析】(1)先判断出m (n ﹣1)=6,进而得出结论;(2)先求出点P 到点A 的距离和点P 到直线y=﹣1的距离建立方程即可得出结论;(3)设出点M ,N 的坐标,进而得出点Q 的坐标,利用MN=a ,得出()()2216116k k b ++≥,即可得出结论. 【题目详解】(1)设m=x ,n ﹣1=y , ∵mn ﹣m=6, ∴m (n ﹣1)=6, ∴xy=6, ∴6y x=, ∴(m ,n ﹣1)在平面直角坐标系xOy 中的轨迹是6y x=, 故答案为:6y x=,; (2)∴点P (x ,y )到点A (0,1),∴点P (x ,y )到点A (0,1)的距离的平方为x 2+(y ﹣1)2, ∵点P (x ,y )到直线y=﹣1的距离的平方为(y+1)2,∵点P (x ,y )到点A (0,1)的距离与到直线y=﹣1的距离相等, ∴x 2+(y ﹣1)2=(y+1)2, ∴214y x =; (3)设直线MN 的解析式为y=kx+b ,M (x 1,y 1),N (x 2,y 2), ∴线段MN 的中点为Q 的纵坐标为12.2y y + ∴214x kx b =+, ∴x 2﹣4kx ﹣4b=0, ∴x 1+x 2=4k ,x 1x 2=﹣4b , ∴()()21212121122.222y y kx b kx b k x x b k b +⎡⎤=+++=++=+⎣⎦ ∴()()()()()()2222222121212121211[4]MN x x y y k x x k x x x x =-+-=+-=++-,()()2216116k k b =++≥∴2211k b k +≥+, 222212221111211211y y k k b k k k k +⎛⎫=++≥+=-+-≥-= ⎪++⎝⎭∴点Q 到x 轴的最短距离为1. 【题目点拨】此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出()()2216116k k b ++≥是解本题的关键.23、 (1) 反比例函数的表达式为y =(x >0);(2) 点P 的坐标为(0,4)或(0,﹣4) 【解题分析】(1)根据点A (a ,2),B (4,b )在一次函数y =﹣x +3的图象上求出a 、b 的值,得出A 、B 两点的坐标,再运用待定系数法解答即可;(2)延长CA 交y 轴于点E ,延长CB 交x 轴于点F ,构建矩形OECF ,根据S 四边形OACB =S 矩形OECF ﹣S △OAE ﹣S △OBF ,设点P (0,m ),根据反比例函数的几何意义解答即可. 【题目详解】(1)∵点A (a ,2),B (4,b )在一次函数y =﹣x +3的图象上, ∴﹣a +3=2,b =﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【题目点拨】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.24、(1)见解析;(26.【解题分析】(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;(2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.【题目详解】(1)证明:∵四边形ABCD 是正方形, ∴AB =BC ,∠ABC =∠C =90°, ∴∠BAE+∠AEB =90°, ∵AE ⊥BF ,垂足为G , ∴∠CBF+∠AEB =90°, ∴∠BAE =∠CBF , 在△ABE 与△BCF 中,BAE CBF AB BCABE C 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△ABE ≌△BCF (ASA ), ∴AE =BF ;(2)解:∵四边形ABCD 为正方形, ∴∠ABC =90°, ∵AE ⊥BF ,∴∠BGE =∠ABE =90°, ∵∠BEG =∠AEB , ∴△BGE ∽△ABE , ∴BE AE =EGBE, 即:BE 2=EG•AE ,设EG =x ,则AE =AG+EG =2+x ,)2=x•(2+x ),解得:x 1=1,x 2=﹣3(不合题意舍去), ∴AE =3, ∴AB.【题目点拨】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.。
温州市苍南县2024届中考数学全真模拟试卷含解析
温州市苍南县2024届中考数学全真模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.若等式(-5)□5=–1成立,则□内的运算符号为()A.+ B.–C.×D.÷2.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为A.75 B.89 C.103 D.1393.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )A.①②B.②③C.②④D.①③④4.下列图形中,可以看作是中心对称图形的是()A.B.C.D.5.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=kx(k≠0)的图象恰好经过点C和点D,则k的值为()A .81325B .81316C .8135D .81346.若分式有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x≠3 D .x=37.下列各数:1.414,2,﹣13,0,其中是无理数的为( ) A .1.414 B . 2 C .﹣13 D .08.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论的个数是A .5个B .4个C .3个D .2个9.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠C .1903∠=+∠D .以上都不对10.在同一平面直角坐标系中,函数y =x +k 与k y x=(k 为常数,k ≠0)的图象大致是( ) A . B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为.12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.13.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.14.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)15.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.16.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是_________.三、解答题(共8题,共72分)17.(8分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.18.(8分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?19.(8分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.20.(8分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.21.(8分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F . (1)求反比例函数的解析式;(2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.22.(10分)如图,在△ABC 中,AB =AC =4,∠A =36°.在AC 边上确定点D ,使得△ABD 与△BCD 都是等腰三角形,并求BC 的长(要求:尺规作图,保留作图痕迹,不写作法)23.(12分)计算:4sin30°+(12)0﹣|﹣2|+(12)﹣2 24.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表: 售价x/(元/千克)50 60 70 销售量y/千克 100 80 60(1)求y 与x 之间的函数表达式;设商品每天的总利润为W(元),求W 与x 之间的函数表达式(利润=收入-成本);试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】根据有理数的除法可以解答本题.【题目详解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选D.【题目点拨】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.2、A【解题分析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.3、C【解题分析】试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b 的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.4、A【解题分析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5、A【解题分析】试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.设BD=a,则OC=3a.∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=32a,CE=22OC OE-=332a,∴点C(32a,332a).同理,可求出点D的坐标为(1﹣12a,32a).∵反比例函数kyx=(k≠0)的图象恰好经过点C和点D,∴k=32a×332a=(1﹣12a)×32a,∴a=65,k=81325.故选A.6、C【解题分析】试题分析:∵分式13x-有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.7、B【解题分析】试题分析:根据无理数的定义可得是无理数.故答案选B. 考点:无理数的定义.8、B【解题分析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴bx2a=-,x>3.∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.9、C【解题分析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【题目详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C.【题目点拨】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.10、B【解题分析】选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、-1.【解题分析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【题目详解】∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1•x1=1,解得x1=-1.故答案为-1.12、1.【解题分析】∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为113、1【解题分析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:1445180π⨯=4π;这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.14、2.9【解题分析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.15、1.【解题分析】根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.【题目详解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案为:1.【题目点拨】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.16、136°.【解题分析】由圆周角定理得,∠A=12∠BOD=44°,由圆内接四边形的性质得,∠BCD=180°-∠A=136°【题目点拨】本题考查了1.圆周角定理;2. 圆内接四边形的性质.三、解答题(共8题,共72分)17、(1)333+;(2)353+;(2)小贝的说法正确,理由见解析,11055153+. 【解题分析】(1)连接AC ,BD ,由OE 垂直平分DC 可得DH 长,易知OH 、HE 长,相加即可;(2)补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,由勾股定理可得AO 长,易求AP 长;(1)小贝的说法正确,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,在Rt △ANO 中,设AO =r ,由勾股定理可求出r ,在Rt △OEB 中,由勾股定理可得BO 长,易知BP 长.【题目详解】解:(1)如图1,连接AC ,BD ,对角线交点为O ,连接OE 交CD 于H ,则OD =OC .∵△DCE 为等边三角形,∴ED =EC ,∵OD =OC∴OE 垂直平分DC ,∴DH 12=DC =1. ∵四边形ABCD 为正方形,∴△OHD 为等腰直角三角形,∴OH =DH =1,在Rt △DHE 中,HE 3=3,∴OE =HE +OH 31;(2)如图2,补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,AD =6,DO =1,∴AO 22AD DO =+=15,3OP DO ==∴AP =AO +OP =15+1;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===,∴AN 12=AD =1.6,ON ⊥AD , 在Rt △ANO 中,设AO =r ,则ON =r ﹣1.2.∵AN 2+ON 2=AO 2,∴1.62+(r ﹣1.2)2=r 2,解得:r 53=, ∴AE =ON 53=-1.2715=, 在Rt △OEB 中,OE =AN =1.6,BE =AB ﹣AE 2315=,∴BO==,∴BP=BO+PO53 =+,∴门角B到门窗弓形弧AD的最大距离为5 153+.【题目点拨】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.18、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【解题分析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.【题目详解】解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,经检验:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴当x=5时,y取得最大值为2250元.答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【题目点拨】本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式.19、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解题分析】(1)根据利润y=(A 售价﹣A 进价)x+(B 售价﹣B 进价)×(100﹣x )列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x 的正整数值即可;(3)利用y 与x 的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【题目详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x )=140x+6000.由700x+100(100﹣x )≤40000得x≤50.∴y 与x 之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:(3)∵140>0,∴y 随x 的增大而增大.∴x=50时y 取得最大值.又∵140×50+6000=13000, ∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【题目点拨】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.20、见解析【解题分析】根据CE ∥DF ,可得∠ECA=∠FDB ,再利用SAS 证明△ACE ≌△FDB ,得出对应边相等即可.【题目详解】解:∵CE ∥DF∴∠ECA=∠FDB ,在△ECA 和△FDB 中EC BD ECA FAC FD ⎧⎪∠∠⎨⎪⎩===∴△ECA ≌△FDB ,∴AE=FB .【题目点拨】本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.21、(1)y=6x ;(2)454;(3)32<x <1. 【解题分析】(1)先利用矩形的性质确定C 点坐标(1,4),再确定A 点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k 1=1,即反比例函数解析式为y=6x ;(2)利用反比例函数解析式确定F 点的坐标为(1,1),E 点坐标为(32,4),然后根据△OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF 进行计算;(3)观察函数图象得到当32<x <1时,一次函数图象都在反比例函数图象上方,即k 2x+b >1k x . 【题目详解】(1)∵四边形DOBC 是矩形,且点C 的坐标为(1,4),∴OB=1,OD=4,∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k 1=3×2=1,∴反比例函数解析式为y=6x ; (2)把x=1代入y=6x得y=1,则F 点的坐标为(1,1); 把y=4代入y=6x 得x=32,则E 点坐标为(32,4), △OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF=4×1﹣12×4×32﹣12×1×1﹣12×(1﹣32)×(4﹣1) =454; (3)由图象得:不等式不等式k 2x+b >1k x 的解集为32<x <1. 【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.22、25-+【解题分析】作BD 平分∠ABC 交AC 于D ,则△ABD 、△BCD 、△ABC 均为等腰三角形,依据相似三角形的性质即可得出BC 的长.【题目详解】如图所示,作BD 平分∠ABC 交AC 于D ,则△ABD 、△BCD 、△ABC 均为等腰三角形,∵∠A =∠CBD =36°,∠C =∠C ,∴△ABC ∽△BDC ,∴DC BC BC AC=, 设BC =BD =AD =x ,则CD =4﹣x ,∵BC 2=AC ×CD , ∴x 2=4×(4﹣x ),解得x 1=25-+x 2=25-,∴BC 的长25-+【题目点拨】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23、1.【解题分析】按照实数的运算顺序进行运算即可.【题目详解】原式14124,2=⨯+-+ =1.【题目点拨】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.24、 (1)y =-2x +200(4080)x ≤≤ (2)W =-2x 2+280x -8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.【解题分析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【题目详解】解:(1)设y kx b =+,由题意,得501006080k b k b +=⎧⎨+=⎩,解得2200k b =-⎧⎨=⎩,∴所求函数表达式为2200y x =-+. (2)2(40)(2200)22808000W x x x x =--+=-+-.(3)22228080002(70)1800W x x x =-+-=--+,其中4080x ≤≤,∵20-<, ∴当时,随的增大而增大,当7080x <≤时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.。
浙江省金华市四校2024届中考数学全真模拟试题含解析
浙江省金华市四校2024学年中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .2 cmB .32cmC .42cmD .4cm2.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .3.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=- 4.下列计算,结果等于a 4的是( )A .a+3aB .a 5﹣aC .(a 2)2D .a 8÷a 2 5.一个几何体的三视图如图所示,则该几何体的表面积是( )A .24+2πB .16+4πC .16+8πD .16+12π6.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( )A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣37.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-的值为()A .7-B .3-C .7D .38.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .49.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )A .14.4×103B .144×102C .1.44×104D .1.44×10﹣410.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A .能中奖一次B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 12.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.14.如图,在菱形ABCD中,AB=3,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC 于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________________.16.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.17.若一个棱柱有7个面,则它是______棱柱.18.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=13BD,若四边形AECF为正方形,则tan∠ABE=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积. (2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.20.(6分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.21.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22.(8分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.23.(8分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.24.(10分)如图所示,在▱ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=12 CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.25.(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C 测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)26.(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.27.(12分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D,AC,BC,若四边形ABCD 是以A为等距点的等距四边形,求∠BCD的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【题目详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),226242-cm).故选C.【题目点拨】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.2、C【解题分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【题目详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【题目点拨】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.3、D【解题分析】试题分析:方程22311xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.4、C【解题分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【题目详解】A.a+3a=4a,错误;B.a5和a不是同类项,不能合并,故此选项错误;C.(a2)2=a4,正确;D.a8÷a2=a6,错误.故选C.【题目点拨】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.5、D【解题分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【题目详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16, 故选:D .【题目点拨】 本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.6、A【解题分析】方程变形后,配方得到结果,即可做出判断.【题目详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【题目点拨】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.7、D【解题分析】由根与系数的关系得出x 1+x 2=5,x 1•x 2=2,将其代入x 1+x 2−x 1•x 2中即可得出结论.【题目详解】解:∵方程x 2−5x +2=0的两个解分别为x 1,x 2,∴x 1+x 2=5,x 1•x 2=2,∴x 1+x 2−x 1•x 2=5−2=1.故选D .【题目点拨】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x 1+x 2=5,x 1•x 2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.8、A【解题分析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质9、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【题目详解】14400=1.44×1.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【解题分析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.11、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()①,为不可能事件;=P A0()=②为必然事件;P A1()③<<为随机事件.0P A112、D【解题分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【题目详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【题目点拨】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、a<﹣1【解题分析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.14、1或33 【解题分析】 由四边形ABCD 是菱形,得到BC ∥AD ,由于EF ∥AB ,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF ∥AB ,于是得到EF=AB=3,当△EFG 为等腰三角形时,①EF=GE=3时,于是得到DE=DG=12AD÷32=1,②GE=GF 时,根据勾股定理得到DE=33. 【题目详解】 解:∵四边形ABCD 是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC ∥AD ,∵EF ∥AB ,∴四边形ABFE 是平行四边形,∴EF ∥AB ,∴EF=AB=3,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG ,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG 为等腰三角形时,当EF=EG 时,EG=3,如图1,过点D 作DH ⊥EG 于H ,∴EH=12EG=32, 在Rt △DEH 中,DE=0cos30HE =1,GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=123Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=12EG=12,同①的方法得,3当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为13【题目点拨】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.15、4【解题分析】∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4,故答案为4.16、13【解题分析】根据同时同地物高与影长成比列式计算即可得解.【题目详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【题目点拨】本题考查投影,解题的关键是应用相似三角形.17、5【解题分析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.18、1 3【解题分析】利用正方形对角线相等且互相平分,得出EO=AO=12BE,进而得出答案.【题目详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE 是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1)3;(2)①2,②3【解题分析】分析:(1)重合部分是等边三角形,计算出边长即可.()2①证明:在图3中,取AB 中点E,证明OEE '≌OBF ,即可得到,EE BF '=2BE BF BE EE BE +=+=''=', ②由①知,在旋转过程60°中始终有OEE '≌,OBF 四边形OE BF '的面积等于OEB S=3.详解:(1)∵四边形为菱形,120,ADC ∠=︒∴60,ADO ∠=︒∴ABD △为等边三角形∴30,60,DAO ABO ∠=︒∠=︒∵AD //,A O '∴60,A OB ∠=︒'∴EOB △为等边三角形,边长2,OB = ∴重合部分的面积:23234⨯= ()2①证明:在图3中,取AB 中点E,由上题知,60,60,EOB E OF ∠=︒∠=︒'∴,EOE BOF ∠=∠'又∵2,60,EO OB OEE OBF '==∠=∠=︒∴OEE '≌OBF ,∴,EE BF '=∴2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE '≌,OBF∴四边形OE BF '的面积等于OEB S 点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.20、(1)y=60x ;(2)300【解题分析】(1)由题图可知,甲组的y 是x 的正比例函数.设甲组加工的零件数量y 与时间x 的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍. 所以a-100100=24.8-2.82⨯,解得a=300. 21、(1)y 1=(120-a )x (1≤x≤125,x 为正整数),y 2=100x-0.5x 2(1≤x≤120,x 为正整数);(2)110-125a (万元),10(万元);(3)当40<a <80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a <100时,选择方案二.【解题分析】(1)根据题意直接得出y 1与y 2与x 的函数关系式即可;(2)根据a 的取值范围可知y 1随x 的增大而增大,可求出y 1的最大值.又因为﹣0.5<0,可求出y 2的最大值; (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a >1以及2000﹣200a <1.【题目详解】解:(1)由题意得:y 1=(120﹣a )x (1≤x≤125,x 为正整数),y 2=100x ﹣0.5x 2(1≤x≤120,x 为正整数);(2)①∵40<a <100,∴120﹣a >0,即y 1随x 的增大而增大,∴当x=125时,y 1最大值=(120﹣a )×125=110﹣125a (万元)②y 2=﹣0.5(x ﹣100)2+10,∵a=﹣0.5<0,∴x=100时,y 2最大值=10(万元);(3)∵由110﹣125a >10,∴a <80,∴当40<a <80时,选择方案一;由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可;由110﹣125a <10,得a >80,∴当80<a <100时,选择方案二.考点:二次函数的应用.22、-1≤x<4,在数轴上表示见解析.【解题分析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:23、(1)BC=BD+CE ,(2)10(3)32【解题分析】(1)证明△ADB ≌△EAC ,根据全等三角形的性质得到BD=AC ,EC=AB ,即可得到BC 、BD 、CE 之间的数量关系;(2)过D 作DE ⊥AB ,交BA 的延长线于E ,证明△ABC ≌△DEA ,得到DE=AB=2,AE=BC=4,Rt △BDE 中,BE=6,根据勾股定理即可得到BD 的长;(3)过D 作DE ⊥BC 于E ,作DF ⊥AB 于F ,证明△CED ≌△AFD ,根据全等三角形的性质得到CE=AF ,ED=DF ,设AF=x ,DF=y ,根据CB=4,AB=2,列出方程组,求出,x y 的值,根据勾股定理即可求出BD 的长.【题目详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:2262210BD=+=;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则42x yx y+=⎧⎨+=⎩,解得:13,xy=⎧⎨=⎩∴BF=2+1=3,DF=3,由勾股定理得:223332BD=+=.【题目点拨】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.24、(1)见解析;(2)16【解题分析】试题分析:(1)要证△ABF ∽△CEB ,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB ∥CD ,可得一对内错角相等,则可证.(2)由于△DEF ∽△EBC ,可根据两三角形的相似比,求出△EBC 的面积,也就求出了四边形BCDF 的面积.同理可根据△DEF ∽△AFB ,求出△AFB 的面积.由此可求出▱ABCD 的面积.试题解析:(1)证明:∵四边形ABCD 是平行四边形∴∠A=∠C ,AB ∥CD∴∠ABF=∠CEB∴△ABF ∽△CEB(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC ,AB 平行且等于CD∴△DEF ∽△CEB ,△DEF ∽△ABF∵DE=12CD ∴21()9DEF CEB SDE S EC ==, 21()4DEF ABF SDE S AB == ∵S △DEF =2S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE -S △DEF =16∴S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=1.考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.25、52【解题分析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【题目详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则29411636520.7533AF xCF xtan+=≈=+︒',在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴41165633x x+=+,解得:x=52,答:该铁塔的高AE为52米.【题目点拨】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.26、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解题分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【题目详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.27、(1)是;(2)见解析;(3)150°.【解题分析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS 证明△AEC ≌△BED ,得出AC=BD ,由等距四边形的定义得出AD=AB=AC ,证出AD=AB=BD ,△ABD 是等边三角形,得出∠DAB=60°,由SSS 证明△AED ≌△AEC ,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD 的度数,即可得出答案.【题目详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:CD ==在图3中,由勾股定理得:CD ==(3)解:连接BD .如图1所示:∵△ABE 与△CDE 都是等腰直角三角形,∴DE=EC ,AE=EB ,∠DEC+∠BEC=∠AEB+∠BEC ,即∠AEC=∠DEB ,在△AEC 和△BED 中,,DE CE AEC BED AE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BED (SAS ),∴AC=BD ,∵四边形ABCD 是以A 为等距点的等距四边形,∴AD=AB=AC ,∴AD=AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB ﹣∠EAB=60°﹣45°=15°,在△AED 和△AEC 中,,AD AC DE CE AE AE =⎧⎪=⎨⎪=⎩∴△AED ≌△AEC (SSS ),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,∵AB=AC ,AC=AD ,∴180301803075,75,22ACB ACD--∠==∠==∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【题目点拨】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
2024届天津市津南区中考数学全真模拟试卷含解析
2024届天津市津南区中考数学全真模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定2.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣33.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.4.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A.13B.23C.12D.255.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O 逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.3π2B.πC.2πD.3π6.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为()A .B .C .D .7.如图,直立于地面上的电线杆 AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得 BC =6 米,CD =4 米,∠BCD =150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )A .2+23B .4+23C .2+32D .4+328.下列函数是二次函数的是( )A .y x =B .1y x =C .22y x x =-+D .21y x= 9.如图,一次函数y =x ﹣1的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC =BC ,则点C 的坐标为( )A .(0,1)B .(0,2)C .50,2⎛⎫ ⎪⎝⎭D .(0,3)10.已知点()2,4P -,与点P 关于y 轴对称的点的坐标是( )A .()2,4--B .()2,4-C .()2,4D .()4,2-11.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩12.如图,在Rt △ABC 中,∠B =90º,AB =6,BC =8,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 的最小值是( )A .4B .6C .8D .10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy 中,位于第一象限内的点A (1,2)在x 轴上的正投影为点A′,则cos ∠AOA′=__.14.已知方程2390x x m -+=的一个根为1,则m 的值为__________.15.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)16.因式分解:4ax 2﹣4ay 2=_____.17.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k 的取值范围是_____________.18.分解因式:(x 2﹣2x)2﹣(2x ﹣x 2)=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,抛物线y=-x 2+bx+c 与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,线段BC 与抛物线的对称轴交于点E 、P 为线段BC 上的一点(不与点B 、C 重合),过点P 作PF ∥y 轴交抛物线于点F ,连结DF .设点P 的横坐标为m .(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.20.(6分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?21.(6分)如图,在平行四边形ABCD中,AB<BC.利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= .22.(8分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?23.(8分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?24.(10分)如图,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长.25.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.26.(12分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:AB=DE27.(12分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.2、A【解题分析】方程变形后,配方得到结果,即可做出判断.【题目详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【题目点拨】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.3、A【解题分析】利用平行线的性质以及相似三角形的性质一一判断即可.【题目详解】解:∵AB ⊥BD ,CD ⊥BD ,EF ⊥BD ,∴AB ∥CD ∥EF∴△ABE ∽△DCE , ∴,故选项B 正确,∵EF ∥AB , ∴, ∴,故选项C ,D 正确,故选:A .【题目点拨】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、B【解题分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【题目详解】 ①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112 333 +=.【题目点拨】掌握分类讨论的方法是本题解题的关键.5、A【解题分析】根据旋转的性质和弧长公式解答即可.【题目详解】解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长=903180π⨯=3π2,故选:A.【题目点拨】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.6、C【解题分析】先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.【题目详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C.【题目点拨】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.7、B【解题分析】延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,22CD DF -3由题意得∠E=30°,∴EF=23tan DF E= , ∴3∴AB=BE×tanE=(3)×33(3)米, 即电线杆的高度为(3)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.8、C【解题分析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解.【题目详解】A. y=x 是一次函数,故本选项错误;B. y=1x是反比例函数,故本选项错误; C.y=x-2+x 2是二次函数,故本选项正确; D.y=21x 右边不是整式,不是二次函数,故本选项错误. 故答案选C.【题目点拨】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.9、B【解题分析】根据方程组求出点A 坐标,设C (0,m ),根据AC=BC ,列出方程即可解决问题.【题目详解】 由1{2y x y x=-=,解得21x y =⎧⎨=⎩ 或12x y =-⎧⎨=-⎩, ∴A (2,1),B (1,0),设C (0,m ),∵BC=AC ,∴AC 2=BC 2,即4+(m-1)2=1+m 2,∴m=2,故答案为(0,2).【题目点拨】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.10、C【解题分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【题目详解】解:点()2,4P -,与点P 关于y 轴对称的点的坐标是()2,4,故选:C .【题目点拨】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11、D【解题分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【题目详解】由解集在数轴上的表示可知,该不等式组为23x x ≤⎧⎨-⎩,故选D.【题目点拨】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.12、B【解题分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【题目详解】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
2024届重庆市九龙坡区中考数学全真模拟试题含解析
2024届重庆市九龙坡区中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元C .225元D .259.2元3.在函数y =1xx 中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠14.如图所示的几何体的左视图是( )A .B .C .D .5.若矩形的长和宽是方程x 2-7x+12=0的两根,则矩形的对角线长度为( ) A .5B .7C .8D .106.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A :篮球,B :排球,C :足球,D :羽毛球,E :乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A .选科目E 的有5人B .选科目A 的扇形圆心角是120°C .选科目D 的人数占体育社团人数的15D .据此估计全校1000名八年级同学,选择科目B 的有140人 7.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >08.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .99.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π- B .2233π-C .233π- D .233π-10.若关于x 的分式方程的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3B .1,2C .1,3D .2,3二、填空题(本大题共6个小题,每小题3分,共18分)11.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表: 价格/(元/kg )12 10 8 合计/kg 小菲购买的数量/kg2 2 2 6 小琳购买的数量/kg1236从平均价格看,谁买得比较划算?( )A .一样划算B .小菲划算C .小琳划算D .无法比较12.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= .13.已知一组数据4,x ,5,y ,7,9的平均数为6,众数为5,则这组数据的中位数是_____.14.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。
上海市杨浦区名校2024届中考数学全真模拟试卷含解析
上海市杨浦区名校2024届中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数2.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶33.已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形4.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个5.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.6.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A.0.2 B.0.25 C.0.4 D.0.57.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是()A.70°B.50°C.40°D.35°8.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x9.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=4x2D.(a+b)2=a2+b210.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4二、填空题(共7小题,每小题3分,满分21分)11.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.12.解不等式组11 21xx x-+-⎧⎨≥-⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.13.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.14.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .15.函数12x y x +=-中,自变量x 的取值范围是 . 16.分解因式:mx 2﹣4m =_____.17.分解因式:24xy x -=____三、解答题(共7小题,满分69分)18.(10分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段 A50.5~60.5 B60.5~70.5 C70.5~80.5 D80.5~90.5 E 90.5~100.5请你根据上面的信息,解答下列问题.(1)若A 组的频数比B 组小24,求频数直方图中的a ,b 的值;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?19.(5分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.20.(8分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点()11,1P ,()20,2P ,322,22P ⎛⎫- ⎪ ⎪⎝⎭中,直线m 的平行点是______; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.21.(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式 共享单车 步行 公交车 的士 私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.22.(10分)计算:8﹣4cos45°+(12)﹣1+|﹣2|.23.(12分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.24.(14分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B根据一次函数的定义,可得答案.【题目详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【题目点拨】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.2、A【解题分析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C,EC=cos∠C×DC=12 DC,又∵DC+BD=BC=AC=32 DC,∴332332DCDEAC DC==,∴△DEF与△ABC的面积之比等于:2231:33DEAC⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.3、D【解题分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【题目详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【题目点拨】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4、A【解题分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【题目详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.【题目点拨】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.5、C【解题分析】直接利用反比例函数的性质分别分析得出答案.【题目详解】A、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【题目点拨】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.6、B【解题分析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【题目详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是10.25 4=;故选:B.【题目点拨】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.7、B分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数. 详解:∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=12∠BOC=12×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC.8、C【解题分析】试题解析:11(1)1 1111x x xx x x x----===-----.故选C.考点:分式的加减法.9、C【解题分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【题目详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,故选C.【题目点拨】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键10、A【解题分析】先将抛物线解析式化为顶点式,左加右减的原则即可.,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A .【题目点拨】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;二、填空题(共7小题,每小题3分,满分21分)11、2【解题分析】试题分析:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得, 2πr=0208161π⨯,解得r=2cm . 考点:圆锥侧面展开扇形与底面圆之间的关系.12、详见解析.【解题分析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【题目详解】(Ⅰ)解不等式①,得:x <1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x <1,故答案为:x <1、x≥﹣1、﹣1≤x <1.【题目点拨】本题考查了解一元一次不等式组的概念.13、6【解题分析】过A 作AM ⊥CD 于M ,过A 作AN ⊥BC 于N ,先根据“AAS”证明△DAM ≌△BAN ,再证明四边形AMCN 为正方形,可求得AC =6,从而当BD ⊥AC 时BD 最小,且最小值为6.【题目详解】如下图,过A 作AM ⊥CD 于M ,过A 作AN ⊥BC 于N ,则∠MAN =90°, ∠DAM +∠BAM =90°,∠BAM +∠BAN =90°, ∴∠DAM =∠BAN .∵∠DMA =∠N =90°,AB =AD ,∴△DAM ≌△BAN ,∴AM =AN ,∴四边形AMCN 为正方形,∴S 四边形ABCD =S 四边形AMCN =12AC 2, ∴AC =6,∴BD ⊥AC 时BD 最小,且最小值为6.故答案为:6.【题目点拨】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.14、4n ﹣1.【解题分析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n 个就有阴影小三角形1+4(n ﹣1)=4n ﹣1个.15、x 1≥-且x 2≠.【解题分析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为01x +在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠. 考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.16、m (x+2)(x ﹣2)【解题分析】提取公因式法和公式法相结合因式分解即可.【题目详解】原式()24,m x =- ()()22.m x x =+-故答案为()()22.m x x +-【题目点拨】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.17、x(y+2)(y-2)【解题分析】原式提取x ,再利用平方差公式分解即可.【题目详解】原式=x (y 2-4)=x (y+2)(y-2),故答案为x (y+2)(y-2).【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题(共7小题,满分69分)18、(1)40(2)126°,1(3)940名【解题分析】(1)根据若A 组的频数比B 组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a 、b 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【题目详解】(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40; (2)n=360×70200=126°. C 组的人数是:200×25%=1.;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19、解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=.【解题分析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.20、(1)①2P ,3P ;②()2,22,()22,2--,()22,2,()2,22--;(2)434333n -≤≤. 【解题分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为3y x =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【题目详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P ,故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°.所以2OB =.直线AB 与⊙O 的交点即为满足条件的点Q .连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ =在1Rt OHQ ∆中,可求13HQ =.所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB ==. 所以22ON =. 所以点1Q 的坐标为()2,22. 同理可求点2Q 的坐标为()22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为()22,2点4Q 的坐标为()2,22--,综上所述,点Q 的坐标为()2,22,()22,2--,()22,2,()2,22--. (2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD =1时,在Rt △COD 中,∠COD =60°,∴23sin 60CD OC ==︒, 设⊙A 与直线BC 相切于点F ,在Rt△ACE中,同法可得233 AC=,∴433 OA=,∴433n=,根据对称性可知,当⊙A在y轴左侧时,433n=-,观察图象可知满足条件的N的值为:434333n-≤≤.【题目点拨】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.21、(1)800,240;(2)补图见解析;(3)9.6万人.【解题分析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图22、4【解题分析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=42242⨯++=.点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1ppaa-=(0a p≠,为正整数)”是正确解答本题的关键.23、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣)、M2(﹣2,﹣、M3(﹣2,、M4(2,).【解题分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【题目详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣23);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣23);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,23);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【题目点拨】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.24、证明见解析.【解题分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【题目详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【题目点拨】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.。
湖南省长沙市长郡集团2024届中考数学全真模拟试题含解析
湖南省长沙市长郡集团2024届中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列命题中,真命题是()A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②244b aca->;③ac-b+1=0;④OA·OB=ca-.其中正确结论的个数是()A.4 B.3 C.2 D.13.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C4.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-25.如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )A .18B .22C .24D .466.已知二次函数y =ax 2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c <1;②a ﹣b+c <1;③b+2a <1;④abc >1.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③7.下列各数中比﹣1小的数是( ) A .﹣2B .﹣1C .0D .18.若关于x 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( ) A .1-B .1C .22-或D .31-或9.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( ) A .B .C .D .10.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同11.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元12.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.因式分解:x 2﹣10x+24=_____.14.写出一个比2大且比5小的有理数:______.15.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____. 16.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________.17.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是____.18.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.20.(6分)已知:如图,在△ABC 中,AB =13,AC =8,cos ∠BAC =513,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1)求∠EAD 的余切值; (2)求BFCF的值.21.(6分)如图,矩形OABC 摆放在平面直角坐标系xOy 中,点A 在x 轴上,点C 在y 轴上,8 ,6OA OC ==.(1)求直线AC 的表达式;(2)若直线y x b =+与矩形OABC 有公共点,求b 的取值范围;(3)直线: 10l y kx =+与矩形OABC 没有公共点,直接写出k 的取值范围.22.(8分)(1)解方程:11322xx x--=---. (2)解不等式组:312215(1)x x x x -⎧<-⎪⎨⎪+≥-⎩ 23.(8分)在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q 到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.(1)已知点A 的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A 的同族点的是 ;②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为 ; (2)直线l :y=x ﹣3,与x 轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x=n 上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0)2为半径的圆上存在点N ,使得M ,N 两点为同族点,直接写出m 的取值范围.24.(10分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE .求证:△BDE ≌△BCE ;试判断四边形ABED 的形状,并说明理由.25.(10分)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值. 26.(12分)计算:|2﹣1|﹣2sin45°+38﹣21()227.(12分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ; (2)写出y A 与x 之间的函数关系式; (3)选择哪种方式上网学习合算,为什么.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D 【解题分析】根据两圆的位置关系、直线和圆的位置关系判断即可.【题目详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;故选:D.【题目点拨】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.2、B【解题分析】试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选B.考点:二次函数图象与系数的关系.3、A【解题分析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.4、D【解题分析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.【题目详解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x ﹣1,即:y=﹣x1+1x﹣1.故选D.【题目点拨】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.5、B【解题分析】连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE 的面积.【题目详解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴AFBC=AEEC=13,∵△AEF与△EFC高相等,∴S△EFC=3S△AEF,∵点F是□ABCD的边AD上的三等分点,∴S△FCD=2S△AFC,∵△AEF的面积为2,∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.故选B.【题目点拨】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.6、C【解题分析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.7、A【解题分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【题目详解】解:A、﹣2<﹣1,故A正确;B、﹣1=﹣1,故B错误;C、0>﹣1,故C错误;D、1>﹣1,故D错误;故选:A.【题目点拨】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.8、A【解题分析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【题目详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【题目点拨】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9、D【解题分析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可. 试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.故选D.考点:列表法与树状法.10、B【解题分析】直接利用已知几何体分别得出三视图进而分析得出答案.【题目详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【题目点拨】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.11、C【解题分析】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=1.∴该商品的进价为1元/件.故选C.12、C【解题分析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(x﹣4)(x﹣6)【解题分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【题目详解】x2﹣10x+24= x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【题目点拨】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.14、2.【题目详解】2(答案不唯一),故答案为:2(答案不唯一).【题目点拨】此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.15、2【解题分析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【题目详解】设母线长为x ,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【题目点拨】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.16、0<x<4【解题分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【题目详解】由表可知,二次函数的对称轴为直线x =2,所以,x =4时,y =5,所以,y <5时,x 的取值范围为0<x <4.故答案为0<x <4.【题目点拨】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握. 17、1a b- 【解题分析】原式=()()()()1·b a b a b a b a b a b a b a b a b b a b +-+÷==+-++-- ,故答案为1a b.18、3 5【解题分析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.【题目详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:3 5 .故答案为3 5 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、小王在这两年春节收到的年平均增长率是【解题分析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【题目详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【题目点拨】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.20、(1)∠EAD的余切值为56;(2)BFCF=58.【解题分析】(1)在Rt△ADB中,根据AB=13,cos∠BAC=513,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;(2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=5 13,∴AD=5,由勾股定理得:BD=12,∵E是BD的中点,∴ED=6,∴∠EAD的余切==56;(2)过D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=35,设CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==5 8 .【题目点拨】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.21、(1)364y x=-+;(2)86b-≤≤;(3)12k>-【解题分析】(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.解:(1) 8 , 6OA OC ==()()8,0 , 0,6A C ∴,设直线AC 表达式为y kx b =+,806k b b +=⎧∴⎨=⎩,解得346k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 表达式为364y x =-+; (2) 直线 y x b =+可以看到是由直线y x =平移得到,∴当直线 y x b =+过A C 、时,直线与矩形OABC 有一个公共点,如图1,当过点A 时,代入可得08b =+,解得8b =-.当过点C 时,可得6b =∴直线 y x b =+与矩形OABC 有公共点时,b 的取值范围为86b -≤≤;(3) 10y kx =+,∴直线l 过()0, 10D ,且()8, 6B ,如图2,直线l 绕点D 旋转,当直线过点B 时,与矩形OABC 有一个公共点,逆时针旋转到与y 轴重合时与矩形OABC 有公共点,当过点B 时,代入可得6810k =+,解得12k =- ∴直线l :10y kx =+与矩形OABC 没有公共点时k 的取值范围为12k >-【题目点拨】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC 有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.22、(1)无解;(1)﹣1<x≤1.【解题分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【题目详解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,经检验x=1是增根,分式方程无解;(1)()3122151x x x x -⎧<-⎪⎨⎪+≥-⎩①②,由①得:x >﹣1,由②得:x≤1,则不等式组的解集为﹣1<x≤1.【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23、(1)①R ,S ;②(4-,0)或(4,0);(2)①33n -≤≤;②m ≤1-或m ≥1.【解题分析】(1)∵点A 的坐标为(−2,1),∴2+1=4,点R (0,4),S (2,2),T (2,−2)中,0+4=4,2+2=4,2+2=5,∴点A 的同族点的是R ,S ;故答案为R ,S ;②∵点B 在x 轴上,∴点B 的纵坐标为0,设B (x ,0),则|x |=4,∴x =±4,∴B (−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线3y x =-与x 轴交于C (2,0),与y 轴交于D (0,3-).点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为2.即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线xn =上,②如图,设P(m,0)为圆心, 2为半径的圆与直线y=x−2相切,2,45PN PCN CPN︒=∠=∠=∴PC=2,∴OP=1,观察图形可知,当m≥1时,若以(m,0)为圆心,2为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤1-也满足条件,∴满足条件的m的范围:m≤1-或m≥124、证明见解析.【解题分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【题目详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED= AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.25、1【解题分析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【题目详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代数式a3b+2a2b2+ab3的值是1.26、﹣1【解题分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【题目详解】+2﹣4原式=﹣1)﹣2×21﹣4=﹣1.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.27、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习【解题分析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【题目详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.【题目点拨】本题考查一次函数的应用.。
2024届浙江省金华市兰溪市中考数学全真模拟试题含解析
2024届浙江省金华市兰溪市中考数学全真模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC2.将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是().A.B.C.D.x的取值范围是()32xA.x>0 B.x≥0C.x≠0D.任意实数4.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为()A.1 B.﹣1 C.±1 D.05.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1 B.0 C.1或﹣1 D.2或06.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣77.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定8.如图,在△ABC 中,AB=AC=5,BC=8,D 是线段BC 上的动点(不含端点B ,C).若线段AD 长为正整数,则点D 的个数共有( )A .5个B .4个C .3个D .2个9.如图,矩形OABC 有两边在坐标轴上,点D 、E 分别为AB 、BC 的中点,反比例函数y =kx(x <0)的图象经过点D 、E .若△BDE 的面积为1,则k 的值是( )A .﹣8B .﹣4C .4D .810.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( ) A .28×109B .2.8×108C .2.8×109D .2.8×1010二、填空题(共7小题,每小题3分,满分21分)11.ABCD 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向D 移动,P 、Q 两点从出发开始到__________秒时,点P 和点Q 的距离是10 cm.12.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .13.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 .14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____. 15.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.16.如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.如图,在每个小正方形边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上,D 为AC 边上的一点.线段AC 的值为______________;在如图所示的网格中,AM 是ABC △的角平分线,在AM 上求一点P ,使CP DP +的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置是如何找到的(不要求证明)___________. 三、解答题(共7小题,满分69分)18.(10分)计算:01113(π3)3tan30()2----+-.19.(5分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.20.(8分)如图,半圆O 的直径AB =5cm ,点M 在AB 上且AM =1cm ,点P 是半圆O 上的动点,过点B 作BQ ⊥PM 交PM (或PM 的延长线)于点Q .设PM =xcm ,BQ =ycm .(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: x /cm 1 1.5 2 2.5 3 3.5 4 y /cm3.7______3.83.32.5______(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60°时,PM 的长度约为______cm .21.(10分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A 种型号的文具进价为10元/只,售价为12元,B 种型号的文具进价为15元1只,售价为23元/只. (1)小张如何进货,使进货款恰好为1300元? (2)如果购进A 型文具的数量不少于B 型文具数量的910倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?22.(10分)如图,⊙O 的半径为4,B 为⊙O 外一点,连结OB ,且OB =6.过点B 作⊙O 的切线BD ,切点为点D ,延长BO 交⊙O 于点A ,过点A 作切线BD 的垂线,垂足为点C . (1)求证:AD 平分∠BAC ; (2)求AC 的长.23.(12分)小马虎做一道数学题,“已知两个多项式24A x x =-,2234B x x =+-,试求2A B +.”其中多项式A 的二次项系数印刷不清楚.小马虎看答案以后知道2228A B x x +=+-,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式A 正确求出,老师又给出了一个多项式C ,要求小马虎求出A C -的结果.小马虎在求解时,误把“A C -”看成“A C +”,结果求出的答案为262x x --.请你替小马虎求出“A C -”的正确答案.24.(14分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【题目点拨】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.2、D【解题分析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【题目详解】由题意得,a=-.设旋转180°以后的顶点为(x′,y′),则x′=2×0-(-2)=2,y′=2×3-5=1,∴旋转180°以后的顶点为(2,1),∴旋转180°以后所得图象的解析式为:.故选D.【题目点拨】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.3、C【解题分析】根据分式和二次根式有意义的条件进行解答.【题目详解】解:依题意得:x2≥1且x≠1.解得x≠1.故选C.【题目点拨】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.4、B【解题分析】根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【题目详解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故选:B.本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.5、A【解题分析】把x=﹣1代入方程计算即可求出k的值.【题目详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【题目点拨】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6、B【解题分析】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B.7、B【解题分析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.8、C【解题分析】试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.考点:等腰三角形的性质;勾股定理.9、B根据反比例函数的图象和性质结合矩形和三角形面积解答. 【题目详解】解:作EH OA H 于⊥,连接AE .22ABE BDEBD AD S S=∴==∵四边形AHEB ,四边形ECOH 都是矩形,BE =EC , ∴ABEH ECOH S S 矩形矩形==24ABE S ∆=||4,04k k k ∴=<∴=- 故选B . 【题目点拨】此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键. 10、D 【解题分析】根据科学计数法的定义来表示数字,选出正确答案. 【题目详解】解:把一个数表示成a (1≤a<10,n 为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D. 【题目点拨】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.二、填空题(共7小题,每小题3分,满分21分) 11、85或245作PH ⊥CD ,垂足为H ,设运动时间为t 秒,用t 表示线段长,用勾股定理列方程求解. 【题目详解】设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm , 作PH ⊥CD ,垂足为H , 则PH =AD =6,PQ =10, ∵DH =PA =3t ,CQ =2t , ∴HQ =CD −DH −CQ =|16−5t |, 由勾股定理,得222(165)610t -+=, 解得124.8, 1.6.t t ==即P ,Q 两点从出发经过1.6或4.8秒时,点P ,Q 间的距离是10cm . 故答案为85或245. 【题目点拨】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ =CD −DH −CQ =|16−5t |是解题的关键. 12、10.5 【解题分析】先证△AEB ∽△ABC ,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE ⊥AC ,DC ⊥AC ∵BE //DC , ∴△AEB ∽△ADC , ∴BE AB CD AC=, 即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.13、3.55×1.【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【题目详解】3550000=3.55×1,故答案是:3.55×1.【题目点拨】考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.14、1【解题分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【题目详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【题目点拨】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15、(﹣1,﹣1)【解题分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【题目详解】x=-422=-1,把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【题目点拨】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.16、6.2【解题分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【题目详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【题目点拨】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.17、(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P.【解题分析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM 是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于+的值最小.点P,此时CP DP【题目详解】(Ⅰ)根据勾股定理得5=;故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【题目点拨】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.三、解答题(共7小题,满分69分)18、234.【解题分析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【题目详解】解:原式3 31132 -+=234.故答案为234.【题目点拨】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.19、576名【解题分析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.试题解析:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×64200=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名.20、(1)4,1;(2)见解析;(3)1.1或3.2【解题分析】(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.(2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;【题目详解】(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.故答案为4,1.(2)函数图象如图所示:(3)如图,在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,∴∠BMQ =31°,∴BQ =12BM =2, 观察图象可知y =2时,对应的x 的值为1.1或3.2.故答案为1.1或3.2.【题目点拨】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.21、(1)A 种文具进货40只,B 种文具进货60只;(2)一共有三种购货方案,购买A 型文具48只,购买B 型文具52只使销售文具所获利润最大.【解题分析】(1)设可以购进A 种型号的文具x 只,则可以购进B 种型号的文具(100)x -只,根据总价=单价×数量结合A 、B 两种文具的进价及总价,即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x 的取值范围,再根据一次函数的性质,即可解决最值问题.【题目详解】(1)设A 种文具进货x 只,B 种文具进货(100)x -只,由题意得:1015(100)1300x x +-=,解得:x =40,10060x -=,答:A 种文具进货40只,B 种文具进货60只;(2)设购进A 型文具a 只,则有9(100)10a a ≥-,且28(100)500a a +-≥; 解得:9005019a ≤≤, ∵a 为整数,∴a =48、49、50,一共有三种购货方案;利润28(100)6800wa a a +--+==, ∵60k -<=,w 随a 增大而减小,当a =48时W 最大,即购买A 型文具48只,购买B 型文具52只使销售文具所获利润最大.【题目点拨】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.22、(1)证明见解析;(2)AC=. 【解题分析】(1)证明:连接OD .∵BD 是⊙O 的切线,∴OD ⊥BD .∵AC ⊥BD ,∴OD ∥AC ,∴∠2=∠1.∵OA =OD .∴∠1=∠1,∴∠1=∠2,即AD 平分∠BAC .(2)解:∵OD ∥AC ,∴△BOD ∽△BAC , ∴OD BO AC BA =,即4610AC =. 解得203AC =.23、(1)-3; (2)“A -C”的正确答案为-7x 2-2x+2.【解题分析】(1)根据整式加减法则可求出二次项系数;(2)表示出多项式A ,然后根据A C +的结果求出多项式C ,计算A C -即可求出答案.【题目详解】(1)由题意得2:4A x x =-,2234B x x =+-, ∴A+2B=(4+)2x +2x -8, 2228A B x x +=+-, ∴4+=1,=-3,即系数为-3. (2)A+C=262x x --,且A=234x x --,∴C=4222x x --,∴A -C=2722x x --+ 【题目点拨】本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.24、(1)详见解析;(2)OF =254. 【解题分析】(1)连接OC ,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC ∽△ABD ,利用相似比得到AD=252,然后证明OF 为△ABD 的中位线,从而根据三角形中位线性质求出OF 的长.【题目详解】(1)证明:连接OC ,如图,∵CF 为切线,∴OC ⊥CF ,∴∠1+∠3=90°,∵BM ⊥AB ,∴∠2+∠4=90°,∵OC =OB ,∴∠1=∠2,∴∠3=∠4,∵AB 为直径,∴∠ACB =90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴AB ACAD AB=,即10810AD=,∴AD=252,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=12AD=254.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.。
2024届山东省菏泽市东明县中考数学全真模拟试卷含解析
2024届山东省菏泽市东明县中考数学全真模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.13的负倒数是( ) A .13 B .-13C .3D .﹣32.若()292m m --=1,则符合条件的m 有( )A .1个B .2个C .3个D .4个3.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A (2,y 1),B (2,y 2),C (﹣5,y 3),则y 1、y 2、y 3的大小关系为( ) A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 14.计算-5x 2-3x 2的结果是( ) A .2x 2B .3x 2C .-8x 2D .8x 25.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >06.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x-= D .72072054848x-=+ 7.某城市几条道路的位置关系如图所示,已知AB ∥CD ,AE 与AB 的夹角为48°,若CF 与EF 的长度相等,则∠C 的度数为( )A .48°B .40°C .30°D .24°8.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°9.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE =2,则EF的长为()A.4 B..5 C.6 D.810.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根二、填空题(本大题共6个小题,每小题3分,共18分)11.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.12.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.13.已知代数式2x﹣y的值是12,则代数式﹣6x+3y﹣1的值是_____.14.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.15.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.16.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA =3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.三、解答题(共8题,共72分)17.(8分)画出二次函数y =(x ﹣1)2的图象.18.(8分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.19.(8分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整: 建立函数模型:设矩形小花园的一边长为x 米,篱笆长为y 米.则y 关于x 的函数表达式为________;列表(相关数据保留一位小数): 根据函数的表达式,得到了x 与y 的几组值,如下表: x 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y17108.38.28.79.310.811.6描点、画函数图象:如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象; 观察分析、得出结论:根据以上信息可得,当x =________时,y 有最小值. 由此,小强确定篱笆长至少为________米.20.(8分)解方程组:222232()x y x y x y ⎧-=⎨-=+⎩. 21.(8分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作∠ABD=∠ADE ,交AC 于点E .(1)求证:DE 为⊙O 的切线. (2)若⊙O 的半径为256,AD=203,求CE 的长.22.(10分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°. 操作发现如图1,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在BC 边上时,填空:线段DE 与AC 的位置关系是 ; ②设△BDC 的面积为S 1,△AEC 的面积为S 1.则S 1与S 1的数量关系是 .猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 1的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=4,OE ∥AB 交BC 于点E (如图4),若在射线BA 上存在点F ,使S △DCF =S △BDC ,请直接写出相应的BF 的长23.(12分)对于平面直角坐标系xOy 中的任意两点M ()11 ,x y ,N ()22 ,x y ,给出如下定义:点M 与点N 的“折线距离”为:(),d M N =12x x -+12y y -.例如:若点M(-1,1),点N(2,-2),则点M 与点N 的“折线距离”为:()(),1212336d M N =--+--=+=.根据以上定义,解决下列问题:已知点P(3,-2). ①若点A(-2,-1),则d(P ,A)= ;②若点B(b ,2),且d(P ,B)=5,则b= ;③已知点C (m,n )是直线y x =-上的一个动点,且d(P ,C)<3,求m 的取值范围.⊙F 的半径为1,圆心F 的坐标为(0,t),若⊙F 上存在点E ,使d(E ,O)=2,直接写出t 的取值范围.24.(定义)如图1,A ,B 为直线l 同侧的两点,过点A 作直线1的对称点A′,连接A′B 交直线l 于点P ,连接AP ,则称点P 为点A ,B 关于直线l 的“等角点”.(运用)如图2,在平面直坐标系xOy 中,已知A (2,),B (﹣2,﹣)两点.(1)C (4,),D (4,),E (4,)三点中,点 是点A ,B 关于直线x=4的等角点;(2)若直线l 垂直于x 轴,点P (m ,n )是点A ,B 关于直线l 的等角点,其中m >2,∠APB=α,求证:tan =; (3)若点P 是点A ,B 关于直线y=ax+b (a≠0)的等角点,且点P 位于直线AB 的右下方,当∠APB=60°时,求b 的取值范围(直接写出结果).参考答案一、选择题(共10小题,每小题3分,共30分) 1、D 【解题分析】根据倒数的定义,互为倒数的两数乘积为1,2×13=1.再求出2的相反数即可解答. 【题目详解】根据倒数的定义得:2×13=1. 因此13的负倒数是-2. 故选D . 【题目点拨】本题考查了倒数,解题的关键是掌握倒数的概念. 2、C 【解题分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m 的等式,即可得出. 【题目详解】()292m m --=1∴m 2-9=0或m-2= ±1 即m= ±3或m=3,m=1 ∴m 有3个值 故答案选C. 【题目点拨】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法. 3、D 【解题分析】试题分析:根据二次函数的解析式y =3(x -1)2+k ,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y 3>y 2>y 1. 故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证. 4、C 【解题分析】利用合并同类项法则直接合并得出即可. 【题目详解】解:222538.x x x --=- 故选C. 【题目点拨】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键. 5、D 【解题分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【题目详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【题目点拨】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 6、D 【解题分析】因客户的要求每天的工作效率应该为:(48+x )件,所用的时间为:72048x+, 根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.7、D【解题分析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8、D【解题分析】已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=12(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.9、C【解题分析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.10、A【解题分析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【题目详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【题目点拨】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(本大题共6个小题,每小题3分,共18分)11、m≤1.【解题分析】试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.考点:根的判别式.12、10,273,413.【解题分析】解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=413;如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC=22616+=273.故答案为10,273,413.13、5 2 -【解题分析】由题意可知:2x-y=12,然后等式两边同时乘以-3得到-6x+3y=-32,然后代入计算即可.【题目详解】∵2x-y=12,∴-6x+3y=-32.∴原式=-32-1=-52.故答案为-52.【题目点拨】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-32是解题的关键.14、AC⊥BD【解题分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【题目详解】∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC ⊥BD .【题目点拨】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.15、10π【解题分析】解:根据圆锥的侧面积公式可得这个圆锥的侧面积=12•1π•4•5=10π(cm 1). 故答案为:10π【题目点拨】本题考查圆锥的计算.16、 (1,0)【解题分析】分析:由于C 、D 是定点,则CD 是定值,如果CDE △的周长最小,即DE CE 有最小值.为此,作点D 关于x 轴的对称点D ′,当点E 在线段CD ′上时CDE △的周长最小.详解:如图,作点D 关于x 轴的对称点D ′,连接CD ′与x 轴交于点E ,连接DE .若在边OA 上任取点E ′与点E 不重合,连接CE ′、DE ′、D ′E ′由DE ′+CE ′=D ′E ′+CE ′>CD ′=D ′E +CE =DE +CE ,可知△CDE 的周长最小,∵在矩形OACB中,OA=3,OB=4,D为OB的中点,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有OE D O BC D B'=',∴OE=1,∴点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.三、解答题(共8题,共72分)17、见解析【解题分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【题目详解】列表得:x …﹣1 0 1 2 3 …y … 4 1 0 1 4 …如图:.【题目点拨】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.18、开口方向:向上;点坐标:(-1,-3);称轴:直线1x=-.【解题分析】将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【题目详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.【题目点拨】熟练掌握将一般式化为顶点式是解题关键.19、见解析【解题分析】 根据题意:一边为x 米,面积为4,则另一边为4x米,篱笆长为y =2(x 4x +)=2x 8x +,由x 4x +═)2+4可得当x =2,y 有最小值,则可求篱笆长.【题目详解】根据题意:一边为x 米,面积为4,则另一边为4x米,篱笆长为y =2(x 4x +)=2x 8x + ∵x 4x +=)2+2=)2+4,∴x 4x +≥4,∴2x 8x+≥1,∴当x =2时,y 有最小值为1,由此小强确定篱笆长至少为1米.故答案为:y =2x 8x+,2,1. 【题目点拨】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式. 20、111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解题分析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩(Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.21、 (1)证明见解析;(2)CE=1.【解题分析】(1)求出∠ADO+∠ADE=90°,推DE ⊥OD ,根据切线的判定推出即可;(2)求出CD ,AC 的长,证△CDE ∽△CAD ,得出比例式,求出结果即可.【题目详解】(1)连接OD ,∵AB 是直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD ,∴∠BDO=∠ABD ,∵∠ABD=∠ADE ,∴∠ADO+∠ADE=90°,即,OD ⊥DE ,∵OD 为半径,∴DE 为⊙O 的切线;(2)∵⊙O 的半径为, ∴AB=2OA==AC ,∵∠ADB=90°,∴∠ADC=90°,在Rt △ADC 中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE ,∴∠EDC=∠ADO ,∵OA=OD ,∴∠ADO=∠OAD ,∵AB=AC ,AD ⊥BC ,∴∠OAD=∠CAD ,∴∠EDC=∠CAD ,∵∠C=∠C ,∴△CDE ∽△CAD , ∴=, ∴=,解得:CE=1.【题目点拨】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定.22、解:(1)①DE ∥AC .②12S S =.(1)12S S =仍然成立,证明见解析;(3)3或2.【解题分析】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC 是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM .∴CF=EM .∵∠C=90°,∠B =30°∴AB=1AC .又∵AD=AC∴BD=AC . ∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(1)如图,过点D 作DM ⊥BC 于M ,过点A 作AN ⊥CE 交EC 的延长线于N , ∵△DEC 是由△ABC 绕点C 旋转得到,∴BC=CE ,AC=CD ,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM ,∵在△ACN 和△DCM 中,ACN DCM CMD N AC CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ACN ≌△DCM (AAS ),∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 1;(3)如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,所以BE=DF 1,且BE 、DF 1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 1⊥BD ,∵∠ABC=20°,F 1D ∥BE ,∴∠F 1F 1D=∠ABC=20°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 1DB=90°, ∴∠F 1DF 1=∠ABC=20°,∴△DF 1F 1是等边三角形,∴DF 1=DF 1,过点D 作DG ⊥BC 于G ,∵BD=CD ,∠ABC=20°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×20°=30°,BG=12BC=92, ∴∴∠CDF 1=180°-∠BCD=180°-30°=150°,∠CDF 1=320°-150°-20°=150°,∴∠CDF 1=∠CDF 1,∵在△CDF 1和△CDF 1中,1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===,∴△CDF 1≌△CDF 1(SAS ),∴点F 1也是所求的点,∵∠ABC=20°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC=∠BDE=∠ABD=12×20°=30°, 又∵∴BE=12×÷cos30°=3, ∴BF 1=3,BF 1=BF 1+F 1F 1=3+3=2,故BF 的长为3或2.23、(1)① 6,② 2或4,③ 1<m <4;(2)223t -≤≤或322t -≤≤-. 【解题分析】 (1)①根据“折线距离”的定义直接列式计算; ②根据“折线距离”的定义列出方程,求解即可; ③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知2x y +=,根据图像易得t 的取值范围.【题目详解】解:(1) ①d(P, A)=|3-(-2)|+|(-2)-(-1)|=6② (,)3(2)2345d P B b b =-+--=-+=∴ 31b -=∴ b=2或4③ (,)3(2)32323d P C m n m m m m =-+--=-+-+=-+-<,即数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m <4(2)设E (x,y ),则2x y +=,如图,若点E 在⊙F 上,则223322t t -≤≤-≤≤-或.【题目点拨】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.24、(1)C(2)(3)b<﹣且b≠﹣2或b>【解题分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【题目详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又∵y=ax+b(a≠0),且点P位于AB右下方,∴b<﹣且b≠﹣2或b>.【题目点拨】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.。
四川省师大一中学2024届中考数学全真模拟试卷含解析
四川省师大一中学2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A.B.C.D.2.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.2.5 C.2 D.53.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和294.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC 的度数是()A.44°B.53°C.72°D.54°5.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A.2.8×105B.2.8×106C.28×105D.0.28×1076.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠17.若kb<0,则一次函数y kx b=+的图象一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限8.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .255B .55C .2D .129.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°10.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( )A .m <1B .m >﹣1C .m >1D .m <﹣1二、填空题(共7小题,每小题3分,满分21分)11.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.12.在△ABC 中,AB=1,BC=2,以AC 为边作等边三角形ACD ,连接BD ,则线段BD 的最大值为_____. 13.在△ABC 中,∠C =90°,sin A =25,BC =4,则AB 值是_____. 14.将多项式xy 2﹣4xy+4y 因式分解:_____. 15.点(a -1,y 1)、(a +1,y 2)在反比例函数y =k x (k >0)的图象上,若y 1<y 2,则a 的范围是________. 162(2)-17.在平面直角坐标系xOy 中,位于第一象限内的点A (1,2)在x 轴上的正投影为点A′,则cos ∠AOA′=__.三、解答题(共7小题,满分69分)18.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.19.(5分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.20.(8分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为t 分钟),将调查统计的结果分为四个等级:Ⅰ级(020)t ≤≤、Ⅱ级(2040)t ≤≤、Ⅲ级(4060)t ≤≤、Ⅳ级(60)y >.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)请补全上面的条形图.(2)所抽查学生“诵读经典”时间的中位数落在__________级.(3)如果该校共有1200名学生,请你估计该校平均每天“诵读经典”的时间不低于40分钟的学生约有多少人?21.(10分)如图,点A ,B 在O 上,直线AC 是O 的切线,OC OB .连接AB 交OC 于D .(1)求证:AC DC =AC ,O的半径为5,求OD的长.(2)若222.(10分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.年龄组7 8 9 10 11 12 13 14 15 16 17x男生平均身高115.2 118.3 122.2 126.5 129.6 135.6 140.4 146.1 154.8 162.9 168.2 y(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?23.(12分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.24.(14分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,3≈1.73)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可. 【题目详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【题目点拨】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.2、A【解题分析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.【题目详解】解:设售价为x元时,每星期盈利为6120元,由题意得(x-40)[300+20(60-x)]=6120,解得:x1=57,x2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.∴每件商品应降价60-57=3元.故选:A.【题目点拨】本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.3、D【解题分析】【分析】根据中位数和众数的定义进行求解即可得答案.【题目详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【题目点拨】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.4、D【解题分析】根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.【题目详解】根据直径所对的圆周角为直角可得∠BAE=90°,根据∠E=36°可得∠B=54°,根据平行四边形的性质可得∠ADC=∠B=54°.故选D【题目点拨】本题考查了平行四边形的性质、圆的基本性质.5、B【解题分析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:280万这个数用科学记数法可以表示为62.810,⨯ 故选B.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.6、C【解题分析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k >12且k≠1. 故选C【题目点拨】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac ,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7、D【解题分析】根据k ,b 的取值范围确定图象在坐标平面内的位置关系,从而求解.【题目详解】∵kb<0,∴k 、b 异号。
安徽省阜阳市十校联考2024届中考数学全真模拟试题含解析
安徽省阜阳市十校联考2024届中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm2.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是()A.12B.13C.29D.163.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm4.在Rt△ABC中,∠C=90°,那么sin∠B等于()A.ACABB.BCABC.ACBCD.BCAC5.若反比例函数kyx=的图像经过点1(,2)2A-,则一次函数y kx k=-+与kyx=在同一平面直角坐标系中的大致图像是()A.B.C.D.6.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.117.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个8.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.359.下列运算中,正确的是()A.(a3)2=a5B.(﹣x)2÷x=﹣x C.a3(﹣a)2=﹣a5D.(﹣2x2)3=﹣8x610.如图,在△ABC中,EF∥BC,AE1EB2,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)12.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.14.如图,已知矩形ABCD中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE,垂足为F.则下列结论:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=23.其中正确的结论是_____.(把正确结论的序号都填上)15.如图,反比例函数3yx=(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为.16.如图,在平面直角坐标系中,已知C(1,2),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.17.若式子2xx+有意义,则x的取值范围是_____.18.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售 精加工后销售 每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工? (2)如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?20.(6分)先化简,再求值:()()()2111x x xx +-+-,其中2x =-.21.(6分)计算:2sin60°+|3﹣3|+(π﹣2)0﹣(12)﹣122.(8分)计算:+()﹣2﹣|1﹣|﹣(π+1)0.23.(8分)解不等式组()22113x x x x ⎧-≥-⎪⎨≤+⎪⎩,并把它的解集表示在数轴上.24.(10分)某超市对今年“元旦”期间销售A 、B 、C 三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售 个绿色鸡蛋,A 品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度; (2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B 种品牌的绿色鸡蛋的个数?25.(10分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)26.(12分)如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:△ACE ≌△BCD ;若AD =5,BD =12,求DE 的长.27.(12分)如图1,在圆O 中,OC 垂直于AB 弦,C 为垂足,作BAD BOC ∠=∠,AD 与OB 的延长线交于D . (1)求证:AD 是圆O 的切线;(2)如图2,延长BO ,交圆O 于点E ,点P 是劣弧AE 的中点,5AB =,132OB =,求PB 的长 .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解题分析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【题目详解】∵原正方形的周长为acm ,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm , 故选B .【题目点拨】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 2、B 【解题分析】解:将两把不同的锁分别用A 与B 表示,三把钥匙分别用A ,B 与C 表示,且A 钥匙能打开A 锁,B 钥匙能打开B 锁,画树状图得:∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:13.故选B . 点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 3、D 【解题分析】【分析】先求AC,再根据点D 是线段AC 的中点,求出CD ,再求BD. 【题目详解】因为,AB=10cm ,BC=4cm , 所以,AC=AB-BC=10-4=6(cm ) 因为,点D 是线段AC 的中点, 所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm ) 故选D【题目点拨】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.4、A【解题分析】根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.【题目详解】根据在△ABC中,∠C=90°,那么sinB=B∠的对边斜边=ACAB,故答案选A.【题目点拨】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.5、D【解题分析】甶待定系数法可求出函数的解析式为:1yx=-,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象. 【题目详解】解:由于函数kyx=的图像经过点1,22A⎛⎫-⎪⎝⎭,则有1k,=-∴图象过第二、四象限,∵k=-1,∴一次函数y=x-1,∴图象经过第一、三、四象限,故选:D.【题目点拨】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;6、B【解题分析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=12BC=2,DF∥BC,EF=12AB=32,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+32)=1.故选B.7、C【解题分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【题目详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【题目点拨】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.8、A【解题分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【题目详解】列表如下:∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.9、D【解题分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【题目详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【题目点拨】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.10、A【解题分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【题目详解】∵AE1 EB2=,∴AE AE11==AB AE+EB1+23=.又∵EF∥BC,∴△AEF∽△ABC.∴2AEFABCS11=S39∆∆⎛⎫= ⎪⎝⎭.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.11、A【解题分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【题目详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【题目点拨】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.12、B【解题分析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C 在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.14、①②【解题分析】只要证明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解决问题.【题目详解】∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,22AE BE5∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,5不妨设DF平分∠ADC,则△ADF是等腰直角三角形,这个显然不可能,故③错误,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=53,故④错误,故答案为①②.【题目点拨】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、9 4【解题分析】试题分析:如图,连接OB.∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=32×1=32.∵AE=BE,∴S△BOE=S△AOE=32,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣32=32.∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣32﹣32﹣32×32=.16、510)【解题分析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【题目详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC5∴点F的坐标为(1×52×5510),故答案为:(5,10).【题目点拨】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .17、x≥﹣2且x≠1. 【解题分析】由2x +知20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.18、π【解题分析】试题分析:∵,∴S 阴影=1ABB S 扇形=250360AB π⋅=54π.故答案为54π. 考点:旋转的性质;扇形面积的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)应安排4天进行精加工,8天进行粗加工(2)①20001000(140)W m m =+-=1000140000m +②安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元【解题分析】解:(1)设应安排x 天进行精加工,y 天进行粗加工,根据题意得12{515140.x y x y +=+=, 解得4{8.x y ==,答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m +②要求在不超过10天的时间内将所有蔬菜加工完, 14010515m m -∴+≤ 解得5m ≤ 05m ∴<≤ 又在一次函数1000140000W m =+中,10000k =>, W ∴随m 的增大而增大,∴当5m =时,10005140000145000.W =⨯+=最大∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.20、3x -1, -9.【解题分析】先去括号,再合并同类项;最后把x=-2代入即可.【题目详解】原式=323211x x x x --=-+,当x=-2时,原式=-8-1=-9.【题目点拨】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值. 21、1【解题分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【题目详解】原式=1×32+3﹣3+1﹣1=1. 【题目点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.22、【解题分析】先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【题目详解】解:原式【题目点拨】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.23、不等式组的解是x≥3;图见解析【解题分析】先求出每个不等式的解集,再求出不等式组的解集即可.【题目详解】解:()22113x xxx⎧-≥-⎪⎨≤+⎪⎩①②∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式组的解是x≥3,在数轴上表示为:.【题目点拨】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.24、(1)2400,60;(2)见解析;(3)500【解题分析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:4002400×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B 种品牌的绿色鸡蛋为:8002400×1500=500个. 25、 (1)AB ≈1395 米;(2)没有超速.【解题分析】 (1)先根据tan ∠ADC =2求出AC ,再根据∠ABC =35°结合正弦值求解即可(2)根据速度的计算公式求解即可.【题目详解】解:(1)∵AC ⊥BC ,∴∠C =90°,∵tan ∠ADC =AC CD =2, ∵CD =400,∴AC =800,在Rt △ABC 中,∵∠ABC =35°,AC =800,∴AB =sin 35AC =8000.57358≈1395 米; (2)∵AB =1395, ∴该车的速度=139590=55.8km /h <60千米/时, 故没有超速.【题目点拨】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.26、(1)证明见解析(2)13【解题分析】(1)先根据同角的余角相等得到∠ACE=∠BCD ,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD ,∠EAC=∠B=45°,即可证得△AED 是直角三角形,再利用勾股定理即可求出DE 的长.【题目详解】(1)∵△ACB 和△ECD 都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形2222∴=+=+=DE AE AD12513【题目点拨】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.PB=27、(1)详见解析;(2)313【解题分析】(1)连接OA,利用切线的判定证明即可;(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.【题目详解】解:(1)如图,连结OA,∵OA=OB,OC⊥AB,∴∠AOC=∠BOC,又∠BAD=∠BOC,∴∠BAD=∠AOC∵∠AOC+∠OAC=90°,∴∠BAD+∠OAC=90°,∴OA⊥AD,即:直线AD是⊙O的切线;(2)分别连结OP、PE、AE,OP交AE于F点,∵BE是直径,∴∠EAB=90°,∴OC∥AE,∵OB=132,∴BE=13∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=132-52=4在直角△PEF中,FP=4,EF=6,PE2=16+36=52,在直角△PEB中,BE=13,PB2=BE2-PE2,【题目点拨】本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.。
山东省菏泽市2024届中考数学全真模拟试卷含解析
山东省菏泽市2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹2.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A.2233π-B.2233π-C.233π-D.233π-3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q5.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC ,求证:ADE ∽DBF .证明:①又DF//AC ,DE //BC ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴∽DBF .A .③②④①B .②④①③C .③①④②D .②③④①6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .7.下列图形中,周长不是32 m 的图形是( )A .B .C .D .8.下列多边形中,内角和是一个三角形内角和的4倍的是( )A .四边形B .五边形C .六边形D .八边形9.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n )个图形中面积为1的正方形的个数为( )A .()12n n +B .()22n n + C .()32n n + D .()42n n +10.如图,在平面直角坐标系xOy 中,A (2,0),B (0,2),⊙C 的圆心为点C (﹣1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最小值是( )A .2B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.12.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .13.已知圆锥的底面半径为3cm ,侧面积为15πcm 2,则这个圆锥的侧面展开图的圆心角 °.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .15.计算:(2+1)(2﹣1)= .16.已知点P (a ,b )在反比例函数y=2x的图象上,则ab=_____. 三、解答题(共8题,共72分)17.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).18.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.19.(8分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).20.(8分)(1)计算:|﹣2|﹣(π﹣2015)0+(12)﹣2﹣2sin60°12;(2)先化简,再求值:221aa a--÷(2+21aa+),其中2.21.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数. 22.(10分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3米,AB ⊥BC ,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.(12分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.24.如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【题目详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【题目点拨】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.2、B【解题分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【题目详解】由旋转可知AD=BD ,∵∠ACB=90°∴CD=BD ,∵CB=CD ,∴△BCD 是等边三角形,∴∠BCD=∠CBD=60°,∴BC=23π3AC=2,∴阴影部分的面积2602360π⨯23π. 故答案选:B.【题目点拨】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算. 3、B【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】解:A 、是轴对称图形,也是中心对称图形,故错误;B 、是中心对称图形,不是轴对称图形,故正确;C 、是轴对称图形,也是中心对称图形,故错误;D 、是轴对称图形,也是中心对称图形,故错误.故选B .【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【解题分析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.5、B【解题分析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【题目详解】证明:DE //BC ②,ADE B ∠∠∴=④,①又DF//AC ,A BDF ∠∠∴=③,ADE ∴∽DBF .故选B .【题目点拨】本题考查了相似三角形的判定与性质;关键是证明三角形相似.6、B【解题分析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.7、B【解题分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【题目详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【题目点拨】此题考查多边形的周长,解题在于掌握计算公式.8、C【解题分析】利用多边形的内角和公式列方程求解即可【题目详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【题目点拨】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.9、C【解题分析】由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=()32n n+.【题目详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=()32n n+个.【题目点拨】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.10、C【解题分析】当⊙C与AD相切时,△ABE面积最大,连接CD ,则∠CDA=90°,∵A (2,0),B (0,2),⊙C 的圆心为点C (-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD==2,∵∠AOE=∠ADC=90°,∠EAO=∠CAD ,∴△AOE ∽△ADC , ∴即,∴OE=,∴BE=OB+OE=2+∴S △ABE = BE?OA=×(2+)×2=2+故答案为C.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解题分析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.12、-6【解题分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【题目详解】请在此输入详解!13、1【解题分析】试题分析:根据圆锥的侧面积公式S=πrl 得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.解:∵侧面积为15πcm 2,∴圆锥侧面积公式为:S=πrl=π×3×l=15π, 解得:l=5, ∴扇形面积为15π=,解得:n=1,∴侧面展开图的圆心角是1度. 故答案为1. 考点:圆锥的计算. 14、2 【解题分析】试题分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x =;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2. 考点:反比例函数系数k 的几何意义. 15、1. 【解题分析】根据平方差公式计算即可. 【题目详解】 原式=(22-12 =18-1 =1故答案为1. 【题目点拨】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键. 16、2 【解题分析】【分析】接把点P (a ,b )代入反比例函数y=2x即可得出结论.【题目详解】∵点P(a,b)在反比例函数y=2x的图象上,∴b=2a,∴ab=2,故答案为:2.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(共8题,共72分)17、(1)23;(2)这两个数字之和是3的倍数的概率为13.【解题分析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.【题目详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23,故答案为23;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为39=13.【题目点拨】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.18、(1)13;(2)13【解题分析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【题目详解】解:(1)由于共有A、B、W三个座位,∴甲选择座位W的概率为13,故答案为:13;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)=26=13.【题目点拨】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.19、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解题分析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN 中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.20、(1)3(22-1【解题分析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=2﹣1+4﹣2×33﹣1+4333(2)原式=()()()()()()()22 111121·111a a a aa a aa a a a a a+-+-++÷=--+=11a+,当a=2时,原式=121+=2-1.21、(1)100;(2)作图见解析;(3)1.【解题分析】试题分析:(1)根据百分比=所占人数总人数计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.22、13.1.【解题分析】试题分析:如图,作CM∥AB交AD于M,MN⊥AB于N,根据=,可求得CM的长,在RT△AMN中利用三角函数求得AN的长,再由MN∥BC,AB∥CM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长.试题解析:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN ∥BC ,AB ∥CM , ∴四边形MNBC 是平行四边形, ∴BN=CM=, ∴AB=AN+BN=13.1米.考点:解直角三角形的应用. 23、(1)见解析;(2)6013DE =. 【解题分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE. 【题目详解】解:(1)证明:∵AB AC =, ∴B C ∠=∠.又∵AD 为BC 边上的中线, ∴AD BC ⊥. ∵DE AB ⊥,∴90BED CDA ︒∠=∠=, ∴BDE CAD ∆∆∽. (2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得2212AD AB BD =-=.由(1)得BDE CAD ∆∆∽,∴BD DECA AD=, 即51312DE =, ∴6013DE =.【题目点拨】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理. 24、证明见解析. 【解题分析】【分析】利用AAS 先证明∆ABH ≌∆DCG ,根据全等三角形的性质可得AH=DG ,再根据AH =AG +GH ,DG =DH +GH 即可证得AG =HD.【题目详解】∵AB ∥CD ,∴∠A =∠D ,∵CE ∥BF ,∴∠AHB =∠DGC , 在∆ABH 和∆DCG 中,A D AHB DGC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴∆ABH ≌∆DCG(AAS),∴AH =DG ,∵AH =AG +GH ,DG =DH +GH ,∴AG =HD.【题目点拨】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.。
2024年中考数学模拟考试试卷(含有答案)
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是
∴
∴
∴
故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4
∴
∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径
∴
∵
∴
又∵
∴
∴பைடு நூலகம்是等边三角形
∴
∵
∴
∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
广东省东莞市重点学校2024届中考数学全真模拟试卷含解析
广东省东莞市重点学校2024年中考数学全真模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知圆心在原点O ,半径为5的⊙O ,则点P (-3,4)与⊙O 的位置关系是( ) A .在⊙O 内 B .在⊙O 上 C .在⊙O 外 D .不能确定2.如果将直线l 1:y =2x ﹣2平移后得到直线l 2:y =2x ,那么下列平移过程正确的是( ) A .将l 1向左平移2个单位 B .将l 1向右平移2个单位 C .将l 1向上平移2个单位D .将l 1向下平移2个单位3.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( ) A .1颗B .2颗C .3颗D .4颗4.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--5.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下: 选手 1 2 3 4 5 6 7 8 9 10 时间(min)129136140145146148154158165175由此所得的以下推断不正确...的是( ) A .这组样本数据的平均数超过130 B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好6.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( ) A .0.21×108B .21×106C .2.1×107D .2.1×1067.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .8.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人.数据“5657万”用科学记数法表示为()A .4565710⨯B .656.5710⨯C .75.65710⨯D .85.65710⨯9.下列各式正确的是( ) A .0.360.6±=± B .93=± C .33(3)3-=D .2(2)2-=-10.13的负倒数是( ) A .13 B .-13C .3D .﹣311.如图,⊙O 的直径AB 的长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 长为( )A .7B .72C .82D .912.计算(2017﹣π)0﹣(﹣13)﹣1+3tan30°的结果是( ) A .5B .﹣2C .2D .﹣1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点 A 、B 、C 在⊙O 上,⊙O 半径为 1cm ,∠ACB=30°,则AB 的长是________.14.如图,点C 在以AB 为直径的半圆上,AB =8,∠CBA =30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F .下列结论:①CE =CF ;②线段EF 的最小值为23;③当AD =2时,EF 与半圆相切;④若点F 恰好落在BC 上,则AD =25;⑤当点D 从点A 运动到点B 时,线段EF 扫过的面积是163.其中正确结论的序号是 .15.反比例函数ky x=的图象经过点()1,6和(),3m -,则m = ______ . 16.抛物线y=ax 2+bx+c 的顶点为D (-1,2),与x 轴的一个交点A 在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b 2-4ac <1;②当x >-1时y 随x 增大而减小;③a+b+c <1;④若方程ax 2+bx+c-m=1没有实数根,则m >2; ⑤3a+c <1.其中,正确结论的序号是________________.17.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .18.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk=<的图象经过点C ,则k 的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知抛物线y=a (x+3)(x ﹣1)(a≠0),与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线y=﹣x+b 与抛物线的另一个交点为D .(1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P ,使得以A 、B 、P 为顶点的三角形与△ABC 相似,求点P 的坐标;(3)在(1)的条件下,设点E 是线段AD 上的一点(不含端点),连接BE .一动点Q 从点B 出发,沿线段BE 以每秒1个单位的速度运动到点E ,再沿线段ED 以每秒个单位的速度运动到点D 后停止,问当点E 的坐标是多少时,点Q 在整个运动过程中所用时间最少?20.(6分)先化简,再求值:(1+211x -)÷2221x x x ++,其中x=2+1.21.(6分)x 取哪些整数值时,不等式5x +2>3(x -1)与12x≤2-32x 都成立? 22.(8分)如图,点D 在O 的直径AB 的延长线上,点C 在O 上,且AC=CD ,∠ACD=120°.求证:CD 是O的切线;若O 的半径为2,求图中阴影部分的面积.23.(8分)如图,已知A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC=BC ,AC=12OB .求证:AB 是⊙O 的切线;若∠ACD=45°,OC=2,求弦CD 的长.24.(10分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a =2n +1,b =2n 2+2n ,c =2n 2+2n +1(n 为正整数)是一组勾股数,请证明满足以上公式的a 、b 、c 的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a =12(m 2﹣n 2),b =mn ,c =12(m 2+n 2)(m 、n 为正整数,m >n 时,a 、b 、c 构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n =5,求该直角三角形另两边的长.25.(10分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒3个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;(3)设△APQ的面积为S,求S与t的函数关系式;(4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.26.(12分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.27.(12分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
浙江省杭州余杭区2024届中考数学全真模拟试卷含解析
浙江省杭州余杭区2024届中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.60050x-=450xB.60050x+=450xC.600x=45050x+D.600x=45050x-3.计算(﹣12)﹣1的结果是()A.﹣12B.12C.2 D.﹣24.数据”1,2,1,3,1”的众数是( )A.1 B.1.5 C.1.6 D.35.下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6D.a6÷a3=a26.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF 的长为()A.95B.185C.165D.1257.若10,则实数a在数轴上对应的点的大致位置是()A .点EB .点FC .点GD .点H8.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .310B .15C .12D .710 9.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC ′的位置,此时露在水面上的鱼线B 'C '长度是( )A .3mB .33 mC .23 mD .4m10.关于的一元二次方程有两个不相等的实数根,则的取值范围为( ) A . B . C . D .二、填空题(本大题共6个小题,每小题3分,共18分)11.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.12.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边AB=5,则它的周长等于_____.132(2)-14.若代数式5x x +有意义,则实数x 的取值范围是____. 15.一个几何体的三视图如左图所示,则这个几何体是( )A.B.C.D.16.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=1.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为P n (n为正整数),则点P2016与点P2017之间的距离为_________.三、解答题(共8题,共72分)17.(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?18.(8分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m 的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。
哈尔滨市重点中学2024届中考数学全真模拟试题含解析
哈尔滨市重点中学2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个2.下列图标中,是中心对称图形的是( )A .B .C .D .3.若()292m m --=1,则符合条件的m 有( ) A .1个 B .2个 C .3个 D .4个4.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .3D .35.在平面直角坐标系xOy 中,若点P (3,4)在⊙O 内,则⊙O 的半径r 的取值范围是( )A .0<r <3B .r >4C .0<r <5D .r >56.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( )A .方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定7.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20 B.30和25 C.30和22.5 D.30和17.58.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b29.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.410.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.11.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A .0.96a 元B .0.972a 元C .1.08a 元D .a 元12.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .352D .354二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE=_____ °.14.如图,点A 1的坐标为(2,0),过点A 1作x 轴的垂线交直线l :y=3x 于点B 1,以原点O 为圆心,OB 1的长为半径画弧交x 轴正半轴于点A 2;再过点A 2作x 轴的垂线交直线l 于点B 2,以原点O 为圆心,以OB 2的长为半径画弧交x 轴正半轴于点A 3;….按此作法进行下去,则20192018A B 的长是_____.15.分式方程231x x =+的解为x=_____. 16.如果x +y =5,那么代数式221y x x y x y⎛⎫+÷ ⎪--⎝⎭的值是______. 17.如图,点1A 、2A 、3A ⋯在直线y x =上,点1C ,2C ,3C ⋯在直线y 2x =上,以它们为顶点依次构造第一个正方形1121A C A B ,第二个正方形2232A C A B ⋯,若2A 的横坐标是1,则3B 的坐标是______,第n 个正方形的面积是______.18.竖直上抛的小球离地面的高度h(米)与时间t(秒)的函数关系式为h=﹣2t2+mt+258,若小球经过74秒落地,则小球在上抛的过程中,第____秒时离地面最高.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.20.(6分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.(1)求证:BD=CD;(2)求证:DC2=C E•AC;(3)当AC=5,BC=6时,求DF的长.21.(6分)如图,在△ABC中,AB>AC,点D在边AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC=5,点D是AC的中点,求DE的长.22.(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x (元),每日销售量y (件)每日的利润w (元).在试销过程中,每日销售量y (件)、每日的利润w (元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示: (元)19 20 21 30 (件) 62 60 58 40(1)根据表中数据的规律,分别写出毎日销售量y (件),每日的利润w (元)关于销售单价x (元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?23.(8分)如图,AB 为⊙O 的直径,直线BM ⊥AB 于点B ,点C 在⊙O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D ,CF 为⊙O 的切线交BM 于点F .(1)求证:CF =DF ;(2)连接OF ,若AB =10,BC =6,求线段OF 的长.24.(10分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与y 轴交于点()B 0,1,与反比例函数m y x= 的图象交于点()A 3,2-. ()1求反比例函数的表达式和一次函数表达式;()2若点C 是y 轴上一点,且BC BA =,直接写出点C 的坐标.25.(10分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.26.(12分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,2,则BC=.27.(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.2、B根据中心对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【题目点拨】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、C【解题分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【题目详解】()29-=12mm-∴m2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m有3个值故答案选C.【题目点拨】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.4、D【解题分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【题目详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:=故选:D.此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.5、D【解题分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【题目详解】∵点P的坐标为(3,4),∴OP22=+=1.34∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【题目点拨】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6、B【解题分析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.7、C【解题分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【题目详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选:C.【题目点拨】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、B【解题分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【题目详解】A选项:4x3•1x1=8x5,故原题计算正确;B选项:a4和a3不是同类项,不能合并,故原题计算错误;C选项:(-x1)5=-x10,故原题计算正确;D选项:(a-b)1=a1-1ab+b1,故原题计算正确;故选:B.【题目点拨】考查了整式的乘法,关键是掌握整式的乘法各计算法则.9、D【解题分析】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•A32D=34AC•AD.∴S△DAC:S△ABC13AC AD?AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.10、A【解题分析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A 、上面小下面大,侧面是曲面,故本选项正确;B 、上面大下面小,侧面是曲面,故本选项错误;C 、是一个圆台,故本选项错误;D 、下面小上面大侧面是曲面,故本选项错误;故选A .点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.11、B【解题分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【题目详解】第一次降价后的价格为a×(1-10%)=0.9a 元,第二次降价后的价格为0.9a×(1-10%)=0.81a 元,∴提价20%的价格为0.81a×(1+20%)=0.972a 元,故选B .【题目点拨】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.12、B【解题分析】试题解析:在菱形ABCD 中,6AC =,8BD =,所以4OA =,3OD =,在Rt AOD △中,5AD =, 因为11641222ABD S BD OA =⋅⋅=⨯⨯=,所以1122ABD S AB DH =⋅⋅=,则245DH =,在Rt BHD 中,由勾股定理得,185BH ===,由DOG DHB ∽可得,OG OD BH DH =,即3182455OG =,所以94OG =.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】根据△ABC 中DE 垂直平分AC ,可求出AE=CE ,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.【题目详解】∵DE 垂直平分AC ,∠A=30°,∴AE=CE ,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案为:1.14、201923π 【解题分析】【分析】先根据一次函数方程式求出B 1点的坐标,再根据B 1点的坐标求出A 2点的坐标,得出B 2的坐标,以此类推总结规律便可求出点A 2019的坐标,再根据弧长公式计算即可求解,.【题目详解】直线3,点A 1坐标为(2,0),过点A 1作x 轴的垂线交直线于点B 1可知B 1点的坐标为(2,3,以原O 为圆心,OB 1长为半径画弧x 轴于点A 2,OA 2=OB 1,OA 2()22223+,点A 2的坐标为(4,0),这种方法可求得B 2的坐标为(4,3),故点A 3的坐标为(8,0),B 3(8,3)以此类推便可求出点A 2019的坐标为(22019,0), 则20192018A B 的长是2019201960221803ππ⨯⨯=,故答案为:201923π. 【题目点拨】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.15、2【解题分析】根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x ,解得x=2,检验可知x=2是原分式方程的解. 故答案为2.16、1【解题分析】先将分式化简,然后将x+y=1代入即可求出答案【题目详解】当x +y =1时, 原式()()x y y x x y x y x y x y ⎛⎫-=+÷ ⎪--+-⎝⎭ ()()x y x y x x y x+-=⋅- =x +y =1,故答案为:1.【题目点拨】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.17、 (4,2), 242n -【解题分析】由2A 的横坐标是1,可得()2A 1,1,利用两个函数解析式求出点1C 、1A 的坐标,得出11A C 的长度以及第1个正方形的面积,求出1B 的坐标;然后再求出2C 的坐标,得出第2个正方形的面积,求出2B 的坐标;再求出3B 、3C 的坐标,得出第3个正方形的面积;从而得出规律即可得到第n 个正方形的面积.【题目详解】 解:点1A 、2A 、3A ⋯在直线y x =上,2A 的横坐标是1,()2A 1,1∴,点1C ,2C ,3C ⋯在直线y 2x =上,11C ,12⎛⎫∴ ⎪⎝⎭,111A ,22⎛⎫ ⎪⎝⎭, 1111A C 122∴=-=,11B 1,2⎛⎫ ⎪⎝⎭, ∴第1个正方形的面积为:21()2; ()2C 1,2,22A C 211∴=-=,()2B 2,1,()3A 2,2,∴第2个正方形的面积为:21;()3C 2,4,33A C 422∴=-=,()3B 4,2,∴第3个正方形的面积为:22;⋯,∴第n 个正方形的面积为:n 222n 4(2)2--=.故答案为()4,2,2n 42-.【题目点拨】本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律.本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.18、37. 【解题分析】 首先根据题意得出m 的值,进而求出t =﹣2b a 的值即可求得答案. 【题目详解】∵竖直上抛的小球离地面的高度 h (米)与时间 t (秒)的函数关系式为 h =﹣2t 2+mt +258,小球经过74秒落地, ∴t =74时,h =0,则0=﹣2×(74)2+74m +258, 解得:m =127, 当t =﹣2b a =﹣()1237227=⨯-时,h 最大, 故答案为:37. 【题目点拨】本题考查了二次函数的应用,正确得出m 的值是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)6105【解题分析】(1)连接BD ,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD ,根据已知条件求得AD 、DF 的长,再证明△AFD ∽△EFB ,然后根据相似三角形的对应边成比例即可求得.【题目详解】(1)连接BD ,∵AB 为⊙O 的直径,∴BD ⊥AC ,∵D 是AC 的中点,∴BC=AB ,∴∠C=∠A =45°,∴∠ABC=90°,∴BC 是⊙O 的切线;(2)连接OD ,由(1)可得∠AOD=90°,∵⊙O 的半径为2, F 为OA 的中点,∴OF=1, BF=3,22AD 2222=+=∴2222DF OF OD125 =+=+=,∵BD BD=,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴DF BFAD BE=,即53BE22=,∴6BE105=.【题目点拨】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.20、(1)详见解析;(2)详见解析;(3)DF=607.【解题分析】(1)先判断出AD⊥BC,即可得出结论;(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出DF ODEF AE=,即可得出结论.【题目详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)连接OD,∵DE是⊙O的切线,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴CD CE AC CD=,∴CD2=CE•AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=12AB=52,由(1)知,CD=12BC=3,由(2)知,CD2=CE•AC,∵AC=5,∴CE=295 CDAC=,∴AE=AC-CE=5-95=165,在Rt△CDE中,根据勾股定理得,12 5 =,由(2)知,OD∥AC,∴DF OD EF AE=,∴52121655 DFDF+=,∴DF=607.【题目点拨】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.21、(1)作图见解析;(2)5 2【解题分析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.【题目详解】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵点D是AC的中点,∴DE为△ABC的中位线,∴DE=12BC=52.22、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解题分析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【题目详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【题目点拨】此题主要考查了二次函数的应用,根据已知得出函数关系式.23、(1)详见解析;(2)OF=254.【解题分析】(1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=252,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【题目详解】(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC =OB ,∴∠1=∠2,∴∠3=∠4,∵AB 为直径,∴∠ACB =90°,∴∠3+∠5=90°,∠4+∠BDC =90°,∴∠BDC =∠5,∴CF =DF ;(2)在Rt △ABC 中,AC =8,∵∠BAC =∠DAB ,∴△ABC ∽△ABD , ∴AB AC AD AB =,即10810AD =, ∴AD =252, ∵∠3=∠4,∴FC =FB ,而FC =FD ,∴FD =FB ,而BO =AO ,∴OF 为△ABD 的中位线,∴OF =12AD =254. 【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.24、(1)y=6x-,y=-x+1;(2)C(0,+1 )或C(0,). 【解题分析】 (1)依据一次函数y kx b =+的图象与y 轴交于点(0,1)B ,与反比例函数m y x =的图象交于点(3,2)A -,即可得到反比例函数的表达式和一次函数表达式;(2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=,即可得到32BC =,再根据1BO =,可得321CO =+或321-,即可得出点C 的坐标.【题目详解】(1)∵双曲线m y x =过(3,2)A -,将(3,2)A -代入m y x=,解得:6m =-. ∴所求反比例函数表达式为:6y x =-. ∵点(3,2)A -,点(0,1)B 在直线y kx b =+上,∴23k b -=+,1b =,∴1k =-,∴所求一次函数表达式为1y x =-+. (2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=,∴32BC =.又∵1BO =,∴321CO =+或321-,∴(0C ,321+)或(0C ,132).【题目点拨】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.25、(1)36 , 40, 1;(2)12. 【解题分析】(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.(2)画出树状图,根据概率公式求解即可.【题目详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;该班共有学生(2+1+7+4+1+1)÷10%=40人; 训练后篮球定时定点投篮平均每个人的进球数是324557647820⨯+⨯+⨯+⨯++=1, 故答案为:36,40,1.(2)三名男生分别用A 1,A 2,A 3表示,一名女生用B 表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M )的结果有6种,∴P (M )=612=12.26、(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为BE ;(3)【解题分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG CE =、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得;(3)证AHG ∽CHA 得AG GH AH AC AH CH ==,设BC CD AD a ===,知AC =,由AG GH AC AH =得2AH a 3=、1DH a 3=、CH =,由AG AH AC CH =可得a 的值. 【题目详解】(1)①∵四边形ABCD 是正方形,∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°,∴EG=EC ,∴四边形CEGF 是正方形;②由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CG CE=,GE ∥AB ,∴AG CG BE CE ==;(2)连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG 2CB CA 2, ∴CG CE =2CA CB= ∴△ACG ∽△BCE , ∴2AG CA BE CB == ∴线段AG 与BE 之间的数量关系为2BE ;(3)∵∠CEF=45°,点B 、E 、F 三点共线,∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG ,∴△AHG ∽△CHA , ∴AG GH AH AC AH CH==, 设BC=CD=AD=a ,则AC=2a , 则由AG GH AC AH =222a=, ∴AH=23a , 则DH=AD ﹣AH=13a ,22CD DH +10a ,∴由AG AHAC CH=得2a=解得:故答案为【题目点拨】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.27、(1)122y x=+;(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解题分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=32S△BOC,即可得出|x+4|=1,解之即可得出结论.【题目详解】(1)∵点A(m,3),B(-6,n)在双曲线y=6x上,∴m=1,n=-1,∴A(1,3),B(-6,-1).将(1,3),B(-6,-1)带入y=kx+b,得:3216k bk b+⎧⎨--+⎩==,解得,122kb==⎧⎪⎨⎪⎩.∴直线的解析式为y=12x+1.(1)由函数图像可知,当kx+b>6x时,-6<x<0或1<x;(3)当y=12x+1=0时,x=-4,∴点C(-4,0).设点P的坐标为(x,0),如图,∵S△ACP=32S△BOC,A(1,3),B(-6,-1),∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴点P的坐标为(-6,0)或(-1,0).【题目点拨】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=32S△BOC,得出|x+4|=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学全真模拟试题
一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项) 1.-5的相反数是( )
A. -5
B. 5
C.
1
5 D. 1
5-
2.下列所给图形中,既是中心对称图形又是轴对称图形的是( )
3.如图,桌面上有一个一次性纸杯,它的俯视图是( )
A .
B .
C .
D .
4.要使分式
3
2x x
--有意义,则x 的取值应满足( ) A .x 3≠ B .x 2≠ C .2x < D .x>2
5.某校7名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为( )
A .6,7
B .8,6
C . 5,7
D . 8,7
6.下列运算正确的是( )
A. 632a a a =⨯
B.222)(b a b a +=+
C. 236
()a a -=- D. 235
a a a +=
7.将二次函数3)2(2
---=x y 的图象先向右平移2个单位,再向上平移2单位后,所得图象的函数表达式是( )
A .2y 1x =--
B .2y 5x =--
C .()2
y x 41=--- D .()2
y x 45=---
8AB O C D D=20BAC ∠∠o e 、如图,是直径,,是圆上的点,若,则的值是( ) A .20o B .60o C .70o D .80o
9.某校组织1080名学生去外地参观,现有A 、B 两种不同型号的客车可供选择。
在每辆车刚好满座的前提下,每辆
B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租12辆,设A 型客车每辆坐x 人,
(第3题图)
主视方向
第8题
A
根据题意列方程为( ) A 、
108010801215x x =+- B 、10801080
1215
x x =-- C 、
108010801215x x =++ D 、10801080
1215
x x =-+ ()
6
y S S A 10.OAD BCD A AO x B AB ABC C AC x D =V V V 点在反比例函数=
在第一象限的图象上,连结并延长交另一分支于点,以为斜边作等腰直角,顶点在第四象限,与轴交于点。
若,则点的横 坐标为
A .2
B .
C D .1
二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式: 2484x x -+=_____________.
12.在一个不透明的盒子中装有1个白球和2个黄球,它们除颜色不同外,其余均相同,则从中随机摸出两个球是一
白一黄的概率是_________ .
13.抛物线2y ax bx c =++的对称轴为直线x=1,与x 轴的一个交点的坐标为(﹣3,0),则与x 轴另一个交点坐标
为_______.
14.关于x 的一元二次方程210mx x -+=总有实数根,则m 应满足的条件是__________.
15.如图用两个完全相同的1cm ×4cm 长方形纸片,其中心用细铁丝串起来,使纸片交叉叠合,旋转纸片,保持重叠
部分形状为菱形,则菱形的最大面积是_______2
cm .
''''''''
ABCD BC AD E F CE AF DE BF CDE ABF C DE A BF 3
EC A B G FA C D H tan 4
A G=6C G=4BC= .
=∆∆∆∆∠16.将一张矩形纸片,按如图进行折叠:分别在,两边上取两点,,使,分别以,为对称轴将与翻折得到与,
且边的延长线与交于点,边的延长线与交于一点,已知EBG=,
,,则线段
三、解答题(本题有8小题,共80分)
17.(本题10分)计算:(1)
2
0 1
2sin
3020174
2
π
-
⎛⎫
--︒++-
⎪
⎝⎭
(2)()()
21
214
2
x x
++=-
先化简,再求值:-x,其中x
18.(本题8分)随着人们法制意识的加强,“开车不喝酒,喝酒不开车”的观念逐步深入人心.某记者随机选取了我县几个停车场对开车司机进行了相关调查,这次调查结果有四种情况:A.醉酒后仍开车;B.喝酒后不开车或请专业代驾;C.不开车的时候会喝酒,喝酒的时候不开车;D.从不喝酒.将这次调查情况绘制了如下尚不完整的统计图1和图2,请根据相关信息,解答下列问题:
第16题
(1)该记者本次一共调查了 名司机; (2)图1中情况D 所在扇形的圆心角为 °; (3)补全图2;
(4)若我县约有司机20万人,其中35岁以下占40﹪,则35岁以下的司机朋友中不违反“酒驾”禁令的人数为多少万人?
19. (本题8分)图1,图2是两张形状、大小完全相同的6×6方格纸,方格纸中的每个小正方形的边长均为1,所求作的图形各顶点也在格点上,
(1) 在图1中画一个以点A ,B 为顶点的菱形(不是正方形),并求菱形周长;
(2) 在图2中画一个以点A 为所画的平行四边形对角线交点,且面积为6,求此平行四边形周长。
周长 周长
20.(本题8分)如图,ABCD 中,E 、F 是BC 、AB 的中点,DE 、DF 分别交AB 、CB 的延长线于H 、G ; (1)求证:BH=AB ;
(2)若ABCD 为菱形,判断∠G 与∠H 的大小,并证明你的结论.
(第18题图1)
(第18题图2)
H
G
F
E D
B
C
B
A
A
21.(本题10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销售量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y 元; (1) 当150x ≤<时,求出y 与x 的函数关系式;
(2) 问销售该商品第几天时,销售利润最大,最大利润是多少?
22. (本题10分) 如图,已知AB 是⊙O 的直径,C 是⊙O 上的点,且OE ⊥AC 于点E ,过点C 作⊙O 的切线,交OE 的延长线于点D ,交AB 的延长线于点F ,连接AD. (1)求证:AD 是⊙O 的切线; (2)若tan ∠F=1
2
,⊙O 半径为1,求线段AD 的长.
E
B
F
D
O
A
C
23. (本题12分)如图,抛物线2
a y x bx c =++ 过点A (3,0),B (-1,0),与y 轴交于点C (0,3),CE//AB,,点E 是二次函数上的点,连接BE ,过点B 作射线BF 交二次函数的图象于点F ,BA .EBF ∠使得平分 (1)求抛物线的函数解析式; (2)求点F 的坐标;
()____________________
3S S x BC S ()
ECH EBC EBF =
V V V D 为抛物线的顶点,直线CD 交轴
于点G ,交直线EF 于H ,连,则::直接写出答案
24、(本题14分)如图,点C 和动点E 在射线AT 上,以AC 为边作Rt △ABC ,使∠BCA= 90o ,且BC=8,AB=10,边BC 上有一动点P ,使BP=CE ;边AB 上有一动点Q ,
使AQ=2CE ,连结PQ ,EQ ,以PQ ,EQ 为邻边作EQPF ,设CE=m(m<5), (1)当E 在线段AC 上运动时, ①若5
m 2
=
,求PQ 的值; ②当FQ ∥AC 时,求m 的值;
(2)在点E 的整个运动过程中,当m 取何值时,EQPF 的面积恰好被线段BC 或射线AT 分成1:3的两部分,求出所有符合条件的m 的值;
(3)如图2,以EQ 为直径作⊙O ,⊙O 与射线AT 相交于点E ,G ,与直线BC 相交于点M ,N ,若MN=EG ,则
y
x
H F
E
G
D
C A
B O
M O
Q P
B
m= (直接写出m 的值)
数学答题卷
一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项)
图1
二、填空题(本题有6小题,每小题5分,共30分)
11. ; 12. ; 13. ; 14. ; 15. ; 16. . 三、解答题(本题有8小题,共80分) 17.(本题10分)
(1)计算:(1)2
012sin 30201742π-⎛⎫--︒++- ⎪⎝⎭
(2)()()2
12142
x x ++=-
先化简,再求值: -x ,其中x
18.(本题8分)
(1)该记者本次一共调查了 名司机; (2)图1中情况D 所在扇形的圆心角为 °; (3)补全图2; (4)
19. (本题8分)
周长 周长 20.(本题8分) (1)
(2)
(第18题图1)
(第18题图2)
B
A
A
21.(本题10分)
(1)
(2)
22.(本题10分)(1)
(2)
E
B
F
D
A
C
23. (本题12分) (1)
(2)
(3) ____________________
S S S ECH EBC EBF
V V V ::
24.(本题14分)(1)①
②
(2)
图1
备用图
2备用图1
(3) m=。