图形平移旋转中心对称 (自动保存的)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.
(图4)(图5)(图6)
(1)、当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;
(2)、当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)、当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?
9、一位同学拿了两块 三角尺 , 做了一个探究活动:将 的直角顶点 放在 的斜边 的中点处,设 .
来自百度文库(3)深入探究:
Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.
Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.
3.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;
(2)如图2,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.
1.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
6、如图,正方形ABCD的顶点A、B在直线l上,将正方形ABCD绕着点B顺时针旋转一定的角度,使点A、C到直线l的距离分别是1和2,则正方形的边长是______.
7、如图,边长为1的正方形ABCD绕点A逆时针旋转 到正方形 ,则图中阴影部分面积为______.
8、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
2.如图,A、C、B三点在同一条直线上,△DAC,△EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,求证:(1)AE=BD;(2)CM=CN;(3)△CMN为等边三角形;(4)MN∥BC.(5)△DBC可以看成是由△ABE绕哪一点顺时针旋转而得到的?旋转角是多少度?
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?
12、已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴ ,同理,在Rt△DEF中, ,∴CG=EG;
(2)(1)中结论仍然成立,即EG=CG;
连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,
在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,
∴△AEM≌△ANM∴ME=MN.∴ME=BE+BM=DN+BM.∴DN+BM=MN.
(2)
DN-BM=MN.
理由如下:
如图,在DC上截取DF=BM,连接AF.∵AB=AD,∠ABM=∠ADF=90°,
∴△ABM≌△ADF(SAS)∴AM=AF,∠MAB=∠FAD.∴∠MAB+∠BAF=∠FAD+∠BAF=90°,
图形的平移与旋转
(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。
2)平移的特点:①平移是指整个图形平行移动,包括图形的每一条线段,每一个点。经过平移,图形上的每一个点都沿同一个方向移动相同的距离。②平移不改变图形的形状、大小,方向,只改变图形的位置。
11.已知正方形ABCD中,E为对角线BD的点,过E作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?并说明理由.
(1)BM+DN=MN成立.
如下图,在MB的延长线上,截得BE=DN,连接AE易证:△ABE≌△ADN
∴AE=AN.∴∠EAB=∠NMD.∴∠BAD=90°,∠NAM=45°
∴∠BAM+∠NMD=45°.∴∠EAB+∠BAM=45°.∴∠EAM=∠NAM 又AM为公共边,
4、如右图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长为__________。它们的公共部分的面积等于______.
5、如图所示在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,根据图中标明的数据,其中空白部分的面积为_________________。
12、已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
即∠MAF=∠BAD=90°.又∠MAN=45°,∴∠NAF=∠MAN=45°.
∵AN=AN,∴△MAN≌△FAN.∴MN=FN,即MN=DN-DF=DN-BM;
1.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?
如果把一个图形绕着某一点旋转180°后能与自身重合,那么我们就说,这个图形是中心对称图形。
2.中心对称的性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
【课后训练】
∴AD=BF'∴AB=AD+BD=BF'+AF
Ⅱ、不成立
同理证明△BCF'≌△ACD,△BCD≌△ACF得到BF'=AD,AF=BD
∴AF=BD=AD+AB=BF'+AB∴AB=AF-BF'
5.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE,解决下列问题:①CE=BD;CE和BD的位置关系②△ADC是等腰直角三角形;③∠ADB=∠AEB;
(1)AF=BD∵等边△ABC,∴AC=BC
∵等边△DCF,∴CF=CD∵∠BCD+∠ACD=60°,∠ACD+∠ACF=60°∴∠BCD=∠ACF
∴△BCD≌△ACF∴AF=BD
(2)成立
∵等边△ABC,∴AC=BC∵等边△DCF,∴CF=CD∵角∠BCA=∠DCF=60°∴△BCD≌△ACF
∴AF=BD
10、如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示).
(图1)(图2)(图3)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
中心对称
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
1.中心对称图形
二、旋转变换:
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?并说明理由.
11、已知正方形ABCD中,E为对角线BD的点,过E作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
4.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.
(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?
在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,
在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,
(3)(1)中的结论仍然成立,即EG=CG,其他的结论还有:EG⊥CG。
(1)如图(1),两三角尺的重叠部分为 ,则重叠部分的面积为,周长为.
(2)将图(1)中的 绕点 逆时针旋转 ,得到图(2),此时重叠部分的面积为,周长为.
(3)如果将 绕 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为.
(4)在图(3)情况下,若 ,求出重叠部分图形的周长.
(3)Ⅰ、AF+BF‘=AB∵等边△ABC,∴AC=BC
∵等边△DCF,∴CF=CD∵角∠BCD+∠ACD=60°,∠ACD+∠ACF=60°
∴∠BCD=∠ACF∴△BCD≌△ACF∴AF=BD∵等边△CDF,∴CD=CF'
∵∠BCF'+∠BCD=60°,∠ACD+∠BCD=60°∴∠BCF'=∠ACD∴△BCF'≌△ACD
1.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度为(
2、如下图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3 △ABC与△A1B1C1重叠部分面积为2,则BB1=________。.
3、如上图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为.
(3)平移的基本性质:
经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
3.平移的作图步骤和方法:
(1)分清题目要求,确定平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关健点;(3)沿一定的方向,按一定的距离平移各个关健点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.
(图4)(图5)(图6)
(1)、当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;
(2)、当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)、当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?
9、一位同学拿了两块 三角尺 , 做了一个探究活动:将 的直角顶点 放在 的斜边 的中点处,设 .
来自百度文库(3)深入探究:
Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.
Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.
3.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;
(2)如图2,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.
1.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
6、如图,正方形ABCD的顶点A、B在直线l上,将正方形ABCD绕着点B顺时针旋转一定的角度,使点A、C到直线l的距离分别是1和2,则正方形的边长是______.
7、如图,边长为1的正方形ABCD绕点A逆时针旋转 到正方形 ,则图中阴影部分面积为______.
8、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
2.如图,A、C、B三点在同一条直线上,△DAC,△EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,求证:(1)AE=BD;(2)CM=CN;(3)△CMN为等边三角形;(4)MN∥BC.(5)△DBC可以看成是由△ABE绕哪一点顺时针旋转而得到的?旋转角是多少度?
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?
12、已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴ ,同理,在Rt△DEF中, ,∴CG=EG;
(2)(1)中结论仍然成立,即EG=CG;
连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,
在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,
∴△AEM≌△ANM∴ME=MN.∴ME=BE+BM=DN+BM.∴DN+BM=MN.
(2)
DN-BM=MN.
理由如下:
如图,在DC上截取DF=BM,连接AF.∵AB=AD,∠ABM=∠ADF=90°,
∴△ABM≌△ADF(SAS)∴AM=AF,∠MAB=∠FAD.∴∠MAB+∠BAF=∠FAD+∠BAF=90°,
图形的平移与旋转
(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。
2)平移的特点:①平移是指整个图形平行移动,包括图形的每一条线段,每一个点。经过平移,图形上的每一个点都沿同一个方向移动相同的距离。②平移不改变图形的形状、大小,方向,只改变图形的位置。
11.已知正方形ABCD中,E为对角线BD的点,过E作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?并说明理由.
(1)BM+DN=MN成立.
如下图,在MB的延长线上,截得BE=DN,连接AE易证:△ABE≌△ADN
∴AE=AN.∴∠EAB=∠NMD.∴∠BAD=90°,∠NAM=45°
∴∠BAM+∠NMD=45°.∴∠EAB+∠BAM=45°.∴∠EAM=∠NAM 又AM为公共边,
4、如右图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长为__________。它们的公共部分的面积等于______.
5、如图所示在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,根据图中标明的数据,其中空白部分的面积为_________________。
12、已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
即∠MAF=∠BAD=90°.又∠MAN=45°,∴∠NAF=∠MAN=45°.
∵AN=AN,∴△MAN≌△FAN.∴MN=FN,即MN=DN-DF=DN-BM;
1.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?
如果把一个图形绕着某一点旋转180°后能与自身重合,那么我们就说,这个图形是中心对称图形。
2.中心对称的性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
【课后训练】
∴AD=BF'∴AB=AD+BD=BF'+AF
Ⅱ、不成立
同理证明△BCF'≌△ACD,△BCD≌△ACF得到BF'=AD,AF=BD
∴AF=BD=AD+AB=BF'+AB∴AB=AF-BF'
5.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE,解决下列问题:①CE=BD;CE和BD的位置关系②△ADC是等腰直角三角形;③∠ADB=∠AEB;
(1)AF=BD∵等边△ABC,∴AC=BC
∵等边△DCF,∴CF=CD∵∠BCD+∠ACD=60°,∠ACD+∠ACF=60°∴∠BCD=∠ACF
∴△BCD≌△ACF∴AF=BD
(2)成立
∵等边△ABC,∴AC=BC∵等边△DCF,∴CF=CD∵角∠BCA=∠DCF=60°∴△BCD≌△ACF
∴AF=BD
10、如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示).
(图1)(图2)(图3)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
中心对称
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
1.中心对称图形
二、旋转变换:
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?并说明理由.
11、已知正方形ABCD中,E为对角线BD的点,过E作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
4.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.
(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?
在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,
在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,
(3)(1)中的结论仍然成立,即EG=CG,其他的结论还有:EG⊥CG。
(1)如图(1),两三角尺的重叠部分为 ,则重叠部分的面积为,周长为.
(2)将图(1)中的 绕点 逆时针旋转 ,得到图(2),此时重叠部分的面积为,周长为.
(3)如果将 绕 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为.
(4)在图(3)情况下,若 ,求出重叠部分图形的周长.
(3)Ⅰ、AF+BF‘=AB∵等边△ABC,∴AC=BC
∵等边△DCF,∴CF=CD∵角∠BCD+∠ACD=60°,∠ACD+∠ACF=60°
∴∠BCD=∠ACF∴△BCD≌△ACF∴AF=BD∵等边△CDF,∴CD=CF'
∵∠BCF'+∠BCD=60°,∠ACD+∠BCD=60°∴∠BCF'=∠ACD∴△BCF'≌△ACD
1.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度为(
2、如下图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3 △ABC与△A1B1C1重叠部分面积为2,则BB1=________。.
3、如上图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为.
(3)平移的基本性质:
经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
3.平移的作图步骤和方法:
(1)分清题目要求,确定平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关健点;(3)沿一定的方向,按一定的距离平移各个关健点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。