隐爆岩及其形成模式探讨

隐爆岩及其形成模式探讨
隐爆岩及其形成模式探讨

岩爆发生机理及防治措施

岩爆发生机理与治理措施 摘要:岩爆是深埋长大隧道的主要地质灾害之一,目前基于岩爆发生机理和治理方式国内外专家都提出了不少理论方法,但用于生产实践时都遇到或多或少的问题。内外相关文献资料的基础上,笔者通过两年多来在岩爆洞段的 施工经验,并查阅国对岩爆的发生机理和防治对策进行探讨。 关键词:深埋长隧道断裂型岩爆应力型岩爆水胀式锚杆爆破应力释放孔1、岩爆发生机理 岩爆是高地应力地区岩石地下工程中的一种常见灾害。它常常表现为声响、片状剥落、严重照片帮和岩爆性的坍塌,有的伴的声响及岩片弹射、能量猛烈释放、洞室豁然破坏,往往给人员、机械设备和建筑的安全带画巨大的损失。在地下洞室的修建过程中,由于开挖使地应力重新分布,围岩应力集中,在洞壁平行于最大初始应力σ1的部位,切向应力梯度显著增大,洞壁受压导致垂直洞壁方向产生张应力。这种应力的作用不断增强,首先产生环向的张裂或劈裂,进而发生剪切破坏。一旦岩块被剪断,且又具有较高的剩余能量时,致使岩块发生弹射,完成弹性势能到动能的转换,形成岩爆。岩爆的发生有外部和内部两方面的原因。其外因在于:岩体中蓄存有高地应力,特别是地下洞室的开挖改变了岩体内存的力学环境,其内因是岩石矿物结构密度、坚硬度较高,一般发生岩爆的岩石单轴搞压强度均在120Mpa以上,内因和外因同时成立是即发生岩爆。 2、岩爆的分类 根据对辅助洞1000多米的岩爆洞段的观察分析,可将岩爆划分为应力型岩爆和断裂型岩爆,应力型岩爆主要发生在围岩结构完整,无贯穿性结构面的岩层中,岩石的主应力达到40%岩石单轴抗压强度以上,岩爆表现形式以片状剥落为主,并伴有声响及岩片弹射,一般破坏性不大;断裂型岩爆主要发生在岩石结构完整,并伴有贯穿性结构面或断层的岩体中,岩体的应力主要集中在贯穿性结构面附近,往往岩体内的最大主应力大于或接近岩石单轴抗压强度,主要表现形式为突发性的震动,并伴有强烈的响声,在有相交结构面的围岩中往往还因岩爆震动引起大规模的坍塌,破坏性较大。对辅助洞施工安全造成严重威胁的极强岩爆多属于断裂型岩爆,从本质上讲,岩爆的发生并不是洞周高应力直接作用结果,而是开挖面附近某一范围内存在的断裂构造在高应力作用下发生破坏(如错动),

岩石卸荷破坏特征与岩爆效应

山地研究(SHA N DI Y AN JIU)=M O U N T A IN RESEA RCH,1998,16(4):281~285 岩石卸荷破坏特征与岩爆效应 王贤能 黄润秋 (成都理工学院工程地质研究所 成都 610059) 提 要 岩爆是在地下洞室开挖卸荷过程中发生的,岩爆特征与岩石卸荷破坏特征密切 相关.本文设计了模拟洞室开挖过程的三轴卸荷实验,探讨了岩石在不同卸荷速率条件下的 变形破坏特征及其岩爆效应. 关键词 三轴卸荷实验 卸荷速率 岩爆效应 卸荷变形破坏现象在自然界中广泛存在.在岩质边坡中,卸荷将引起临空面附近岩 体内部应力重分布、造成局部应力集中效应,并且在卸荷回弹变形过程中,还会因差异回 弹而在岩体中形成一个被约束的残余应力体系.岩体在卸荷过程中的变形与破坏正是由 这种应力变化引起的.在张应力集中带发展成拉裂面;在平行于临空面的压应力集中带 处发展而成平行于临空面的压致拉裂面或剪切破裂面[1].卸荷回弹同样可以在岩体中形 成残余剪应力,并导致剪切破裂.高地应力区钻进过程中所见到的岩芯饼裂的形成就是 这种机制.我国长江葛洲坝大型机窠开挖过程中所观测到的沿平缓软弱夹层发生的向临 空方向的剪切滑移,就是一种非常典型的差异卸荷回弹现象[1].王兰生教授提出的“浅生 时效构造”,也是一种与卸荷有直接关系的新概念[2].孔德坊教授在研究成都粘土中的裂 隙成因时,认为卸荷作用是产生这种裂隙的根本原因[3]. 处在高地应力地区的地下工程开挖过程中发生的岩爆,也是一种典型的卸荷破坏现象.过去对岩爆的岩石力学试验研究一般都采用加荷试验方式,这与岩爆发生时的应力 过程并不吻合,只有采用卸荷试验方式才符合实际. 由于试验条件限制和工程问题的复杂性,卸荷试验的实现比较困难.近十余年来,随 着岩石力学的深入发展和工程实际的需要,我国逐步开展了岩体卸荷试验研究工作[4]. 本文选取西(安)(安)康铁路秦岭深埋隧道的混合花岗岩、含绿色矿物混合花岗岩、攀枝花 石灰矿的灰岩,探讨了岩石在两种卸荷速率条件下的变形破坏特征以及与岩爆的关系. 1 模拟硐室开挖卸荷过程的三轴试验设计 地下硐室在开挖过程中,围岩应力发生重分布.径向应力( r)随着向自由表面接近 逐渐减小至洞壁处变为零;而切向应力( )的变化有不同的情况,在一些部位越接近自由 表面切向应力越大,并于洞壁处达到最高值(即产生压应力集中现象),在另一些部位,越 接近自由表面切向应力越小,有时在洞壁处甚至出现拉应力(即产生拉应力集中现象). 由此看来,地下硐室的开挖在围岩中引起强烈的应力分异现象,使围岩应力差越接近自由 *国家杰出青年科学基金(编号49525204)和教育部跨世纪优秀人才计划基金资助研究. 收稿日期:1998-03-15,改回日期:1998-03-29.

深部开采岩爆研究现状综述

深部开采岩爆研究现状综述 摘要:岩爆是一种世界性的地质灾害,随着矿山开采深度的增加,岩爆已经成为一种越来越突出的潜在威胁,极大地威胁着矿山施工人员和设备的安全。目前,国内外在岩爆方面做了大量的研究工作,但是,由于岩爆问题极为复杂,还没有成熟的理论和方法。本文针对岩爆定义、岩爆发生机理、岩爆预测预报、岩爆控制的研究现状,进行了归纳分析与评述。 关键词:岩爆,岩爆发生机理,岩爆预测,研究现状 前言 随着浅部资源的逐渐减少和枯竭,地下开采的深度越来越大。近年来,我国一些金属矿相继进入深部开采,如云南会泽铅锌矿采深已超过1000m,铜陵冬瓜山铜矿采深已达1100m,抚顺红透山铜矿已进入900-1100m深度,湘西金矿超过850m,山东玲珑金矿采深己达800m。深井矿山开采,最显著的变化是显现“高应力、高温和高孔隙水压”的“三高”特性,开采环境大大恶化,潜在的重大安全隐患增多。岩爆作为地下工程的一大危害,直接威胁施工人员、设备的安全,影响工程进度,如何有效的减轻岩爆引起的灾害,已成为世界性的地下工程难题之一,并受到世界各国相关学者的广泛关注。岩爆发生地点具有“随机性”、孕育过程具有“缓慢性”、发生过程具有“突发性”,对生产安全和工程可靠性的危害极大,已经严重影响了矿山的正常生产。目前,国内外在岩爆方面做了大量的研究工作,但是,由于岩爆问题极为复杂,还没有成熟的理论和方法。 1、岩爆定义及分类 1.1岩爆的定义 时至今日还没有一个统一公认的岩爆定义。在谈到岩爆时,人们通常会说岩爆就是高强度脆性岩石的猛烈破坏,或者说是储存在岩体内的弹性应变能突然释放。国内普遍认为岩爆是地下工程或采矿过程中岩体破坏的一种形式。它是处于高地应力或极限平衡状态的岩体或地质结构体,在开挖活动的扰动下,其内部储

岩爆隧道

第五章岩爆隧道 岩爆隧道是指施工过程中有岩爆现象发生的隧道。在高应力坚硬的岩体内开挖坑道时,常常会有岩片从开挖壁面突然弹射出来,把这种现象称为岩爆。岩爆会破坏已建成的隧道结构和机械设备,直接威胁施工人员的生命安全。岩爆现象在矿山出现较早。例如加拿大的一些深埋硬岩矿山经常发生岩爆,对矿山的安全与生产构成很大威胁,因此,加拿大Laurentian 大学的岩石力学研究中心对岩爆巷道的支护设计进行了为期五年的专题研究[1]。根据岩爆产生的机理,试验出了有效设防措施,并编制了加拿大岩爆支护手册。20世纪50年代美国纽约的引水隧洞施工时曾发生岩片弹射现象。60年代挪威赫古拉公路隧道和瑞典的维斯塔引水隧洞也曾发生过岩爆;成昆铁路线上的关村坝隧道是我国隧道建设中发生岩爆较早的隧道;之后,在二郎山隧道、穿越秦岭的数座隧道施工中也都不同程度的发生过岩爆。岩爆对隧道工程的最大威胁源于岩爆的突发性。目前,关于隧道岩爆的形成机理还在研究之中,对隧道岩爆的认识有待进一步深化。本章通过分析几座隧道的岩爆现象,归纳隧道岩爆的特点,探讨隧道岩爆机理、讨论岩爆隧道设计理论和施工方法,最后介绍岩爆隧道工程实例——二郎山隧道,借以说明隧道岩爆的具体工程防范措施。 第一节隧道岩爆特点与形成机理 岩爆是岩体受到开挖影响和扰动后发生猛烈破坏的一种工程现象,是岩体本身力学性质(内在因素)和外界影响因素(诱发因素)某种组合的结果。为了研究影响岩爆发生的各种因素,首先需要了解在国内外岩爆隧道内观察到的现象。 一、隧道岩爆现象 就空间形态和施工过程而言,水工隧洞与交通隧道几近相同。20世纪60年代掘进的挪威赫古拉公路隧道和瑞典的维斯塔引水隧洞是发生隧道岩爆的典型代表,在两工程中,岩爆以小块岩石弹射为主,大多数弹射岩块很小;岩爆发生时测得的隧道周边切向应力远小于岩石单轴抗压强度,开始弹射时的周边应力为岩石单轴抗压强度的37%;发生岩爆的隧洞轴线与测量的原岩最大主应力方向垂直或成大角度相交;岩爆发生部位相对于隧洞中心轴对称;岩爆前可听到脆性岩石的破裂声,最强烈岩爆发出的声音如200kg隧洞掘进爆破。 国内的川藏公路二郎山隧道在施工中出现了较为严重的岩爆现象[2,3]。为了掌握岩爆与地应力规律,用钻孔应力解除法和岩石声发射(AE)Kaiser效应对地应力进行了现场测试,最大主应力为353MPa。二郎山隧道的岩爆特点是:(1)发生岩爆的围岩属Ⅳ、Ⅴ类围岩;(2)岩爆多发生在掌子面及距其1~3倍洞径范围内;(3)岩爆既发生在围岩表面,也发生在围岩内部;(4)岩爆形式有劈裂和剪切两种;(5)岩爆爆坑多呈锅底形,坑边沿多为阶梯形;(6)断层带两侧的硬岩中容易发生岩爆;(7)干燥无水区段容易发生岩爆;(8)相邻洞室的开挖对主洞岩爆似无影响等。 西康铁路秦岭隧道在施工中也出现了严重的岩爆现象[4,5]。秦岭隧道Ⅱ号线的岩爆特点有:(1)受构造应力影响,岩爆先发生在右侧壁,然后到拱肩、拱顶,最后发展到左侧壁;(2)岩爆多发生在断层带两侧完整的上下两盘;(3)岩爆主要发生在质地坚硬、强度较高、干燥无水的混合片麻岩中;(4)发生在距掌子面9~100米范围内的岩爆较为频繁剧烈;(5)强烈岩爆的爆坑多呈A字形,一般岩爆的爆坑多呈锅底形等。 综合大量资料,可以发现隧道岩爆的发生有如下规律:

岩爆发生机理及防治措施讲解学习

岩爆发生机理及防治 措施

岩爆发生机理与治理措施 摘要:岩爆是深埋长大隧道的主要地质灾害之一,目前基于岩爆发生机理和治理方式国内外专家都提出了不少理论方法,但用于生产实践时都遇到或多或少的问题。内外相关文献资料的基础上,笔者通过两年多来在岩爆洞段的施工经验,并查阅国对岩爆的发生机理和防治对策进行探讨。 关键词:深埋长隧道断裂型岩爆应力型岩爆水胀式锚杆爆破应力释放孔1、岩爆发生机理 岩爆是高地应力地区岩石地下工程中的一种常见灾害。它常常表现为声响、片状剥落、严重照片帮和岩爆性的坍塌,有的伴的声响及岩片弹射、能量猛烈释放、洞室豁然破坏,往往给人员、机械设备和建筑的安全带画巨大的损失。在地下洞室的修建过程中,由于开挖使地应力重新分布,围岩应力集中,在洞壁平行于最大初始应力σ1的部位,切向应力梯度显著增大,洞壁受压导致垂直洞壁方向产生张应力。这种应力的作用不断增强,首先产生环向的张裂或劈裂,进而发生剪切破坏。一旦岩块被剪断,且又具有较高的剩余能量时,致使岩块发生弹射,完成弹性势能到动能的转换,形成岩爆。岩爆的发生有外部和内部两方面的原因。其外因在于:岩体中蓄存有高地应力,特别是地下洞室的开挖改变了岩体内存的力学环境,其内因是岩石矿物结构密度、坚硬度较高,一般发生岩爆的岩石单轴搞压强度均在120Mpa以上,内因和外因同时成立是即发生岩爆。 2、岩爆的分类 根据对辅助洞1000多米的岩爆洞段的观察分析,可将岩爆划分为应力型岩爆和断裂型岩爆,应力型岩爆主要发生在围岩结构完整,无贯穿性结构面的岩

层中,岩石的主应力达到40%岩石单轴抗压强度以上,岩爆表现形式以片状剥落为主,并伴有声响及岩片弹射,一般破坏性不大;断裂型岩爆主要发生在岩石结构完整,并伴有贯穿性结构面或断层的岩体中,岩体的应力主要集中在贯穿性结构面附近,往往岩体内的最大主应力大于或接近岩石单轴抗压强度,主要表现形式为突发性的震动,并伴有强烈的响声,在有相交结构面的围岩中往往还因岩爆震动引起大规模的坍塌,破坏性较大。对辅助洞施工安全造成严重威胁的极强岩爆多属于断裂型岩爆,从本质上讲,岩爆的发生并不是洞周高应力直接作用结果,而是开挖面附近某一范围内存在的断裂构造在高应力作用下发生破坏(如错动),导致能量突然释放,对围岩造成强烈冲击作用的结果。断裂破坏过程中伴随着不同程度的震动,岩爆是开挖面附近围岩在震动冲击荷载下发生破坏的结果。因此,震动是诱发岩爆的内在原因,岩爆是破坏的表现方式。现场出现的大范围坍塌破坏,并不都是岩爆,很大程度是岩爆震动导致岩体破裂,开挖后出现坍塌破坏的结果。实际上,震动可导致岩爆,也可以导致岩体坍塌。在绝大多数情况下,前者说明破坏岩体受到了很大的冲击,后者倾向于岩体比较破碎,自身稳定性差。 3、岩爆的预测 岩爆的预测是工程施工容易忽略的重要问题,目前国内外尚无一套有效的预测方法。在辅助洞施工中,结合生产实践,主要采取了以下预测措施:1)宏观上,对已经开挖洞段地质构造,岩石特性进行分析,或对平行的另一洞段地质情况进行横向延伸,可大致判断出前方未开挖洞段的地质情况。

冲击地压发生的机理

1 冲击地压发生的机理 界上几乎所有国家都不同程度地受到冲击地压的威胁。1783年英国在世界上首先报导了煤矿中所发生的冲击地压现象。以后在前苏联、南非、德国、美国、加拿大、印度、英国等几十个国家和地区,冲击地压现象时有发生。 在我国,冲击地压最早于1933年发生在抚顺胜利煤矿。以后,随着开采深度的增加和开采范围的不断扩大,北京、抚顺、枣庄、开滦、大同、北票、南桐等矿区的许多矿井,都先后有冲击地压现象发生。随着开采深度的不断增加,冲击地压的危害将更加突出。 一、冲击地压发生的机理 冲击地压又称岩爆,是指井巷或工作面周围岩体,由于弹性变形能的瞬时释放而产生突然剧烈破坏的动力现象,常伴有煤岩体抛出、巨响及气浪等现象。它具有很大的破坏性,是煤矿重大灾害之一。 1992年以前,我国有50余个煤矿发生了冲击地压。比较突出的有北京矿务局门头沟煤矿、抚顺矿务局龙风煤矿、枣庄矿务局陶庄煤矿、大同矿务局忻州窑煤矿、四川省天池煤矿和新汶矿务局华丰煤矿等。 (一)我国煤矿冲击地压显现具有如下特征: 1、突发性。发生前一般无明显前兆,冲击过程短暂,持续时间为几秒到几十秒。 2、一般表现为煤爆(煤壁爆裂、小块抛射)。浅部冲击(发生在煤壁2m~6m范围内,破坏性大)和深部冲击(发生在煤体深处,声如闷雷,破坏程度不同)。最常见的是煤层冲击,也有顶板冲击和底板冲击,少数矿井发生了岩爆。在煤层冲击中,多数表现为煤块抛出,少数为数十平方米煤体整体移动,并伴有巨大声响、岩体震动和冲击波。 3、具有破坏性。往往造成煤壁片帮、顶板下沉、底鼓、支架折损、巷道堵塞、人员伤亡。 4、具有复杂性。在自然地质条件上,除褐煤以外的各煤种,采深从200m~1000m,地质构造从简单到复杂,煤层厚度从薄层到特厚层,倾角从水平到急斜,顶板包括砂岩、灰岩、油母页岩等,都发生过冲击地压;在采煤方法和采煤工艺等技术条件方面,不论水采、炮采、普采或是综采,采空区处理采用全部垮落法或是水力充填法,是长壁、短壁、房柱式开采或是柱式开采,都发生过冲击地压。只是无煤柱长壁开采法冲击次数较少。 (二)冲击地压的分类 冲击地压可根据应力状态、显现强度和发生的不同地点和位置进行分类。1、根据原岩(煤)体的应力状态分类 (1)重力应力型冲击地压。主要受重力作用,没有或只有极小构造应力影响的条件下引起的冲击地压。如枣庄、抚顺、开滦等矿区发生的冲击地压。 (2)构造应力型冲击地压。主要受构造应力(构造应力远远超过岩层自重应力)的作用引起的冲击地压,如北票矿务局和天池煤矿发生的冲击地压。 (3)中间型或重力~构造型冲击地压。主要受重力和构造应力的共同作用引起的冲击地压。 2、根据冲击的显现强度分类 (1)弹射。一些单个碎块从处于高应力状态下的煤或岩体上射落,并伴有强烈声响,属于微冲击现象。 (2)矿震。它是煤、岩内部的冲击地压,即深部的煤或岩体发生破坏,煤、岩并不向已采空间抛出,只有片带或塌落现象,但煤或岩体产生明显震动,伴有巨大声响,有时产生煤尘。较弱的矿震称为微震,也称为煤炮。

岩爆的形成机制分析

岩爆的形成机制分析 岩爆的形成机制十分复杂,搞清岩爆的形成机制,对隧道设计、施工、预测和防治至关重要。 4.6.2.1岩爆的形成机制 岩爆的形成机制,一般可从以下几个方面进行研究: 1、现场岩爆的详细观测及观测结果的分析,找出其规律性。 2、岩体及岩石性质试验分析,其中包括单轴抗压强度、抗拉强度、弹性模量、泊松比、点荷载强度、岩石弹性能量指数、岩石蠕变特性、岩石应力—应变全过程曲线、多轴应力下的强度等。 3、岩爆的室内模拟实验、应力及应变状态的分析等。 4.6.2.2岩爆的形成条件及影响因素 1、地层岩性条件 从地层岩性上看,并不是所有岩石都会产生岩爆,根据大量的现场调查发现,岩爆都是发生在新鲜完整、质地坚硬、性脆、抗压强度较高、没有或很少有裂隙的岩层中,如花岗岩、片麻岩、混合片麻岩等。那些结构松散、弹性模量小、抗压强度低、含水量高的岩石是不易发生岩爆的。 从能量观点出发,上述岩石具有良好的储能条件。这是通过分析岩石的全过程应力—应变关系解释这一现象的,并用岩石弹性能量指数W ET作为衡量岩爆产生的岩性条件,W ET

越大,岩爆的可能性越大。 所谓弹性能量指数是指岩石加载过程岩石积蓄的弹性应变能与岩石破坏时耗散的弹性应变能之比值。 2、地应力条件 从地形图可以看出,南吉顶沟高程900米,线路前进方向右侧高程1500米,左侧高程1200米,假设将隧道放大至左侧坡面切线方向,则隧道左侧荷载为零,右侧承受一偏压荷载P。从力学上分析,隧道偏压存在剪切应力,最大剪切应力发生在右侧拱顶至拱脚位置,隧道开挖后造成应力重分布,在围岩应力重分布调整过程中形成岩爆。现场岩爆发生位置恰在拱脚至拱顶位置,证明了地应力是岩爆发生的主要因素之一。 岩爆发生区段 3、岩爆与围岩应力的关系 从现场实际调查研究发现,隧道开挖后的应力状态与岩爆密切相关。洞室开挖后在掌子面和洞壁附近的围岩容易产生应力集中,最大环向应力σθ出现在距掌子面1倍洞径附

岩爆研究进展及未来趋势

岩爆研究进展及未来趋势 (武汉理工大学,湖北武汉430000) 摘要:从岩爆形成机理、岩爆判据、岩爆预测和岩爆防治措施4方面阐述了国内外岩爆研究的现状及进展,指出了目前岩爆研究存在的几个问题以及发展趋势。 关键词:岩爆机理;岩爆判据;岩爆预测;岩爆防治 中图分类号:O 38;TU 45 文献标识码:B 文章编号:1671-4431 (2014) xx-xxxx-xx The Research Progress and Future Trend of Rockburst (Wuhan University of Technology,Wuhan 430000,China) Abstract:The article elaborates the domestic and foreign present situation and progress of rockburst from the four aspects including mechanism,criteria,prediction and prevention and controlled measures of rockburst,pointing out several problems of the rockburst research and development trend. Key words:rockburst mechanism;rockburst criteria;rockburst prediction;rockburst control 1 引言 岩爆是高地应力条件下地下岩体工程开挖过程中,由于开挖卸荷引起围岩内应力场重新分布,导致储存于硬脆性围岩中的弹性应变能突然释放,并产生爆裂、松脱、剥离、弹射甚至抛掷等破坏现象的一种动力失稳地质灾害,它直接威胁施工人员、设备的安全,影响工程进度,已成为世界性的地下工程难题之一。 2 岩爆机理研究 2.1强度理论 早期的强度理论着眼于岩体的破坏原因。认为地下井巷和采场周围产生应力集中,当应力集中的程度达到矿岩强度极限时,岩层发生突然破坏,发生岩爆。近代强度理论认为:导致岩体承受的应力σ与其强度σ'的比值,即σ/σ'≥1时,导致岩爆发生。 2.2能量理论 20世纪60年代中期,库克等人在总结南非金矿岩爆研究成果的基础上提出了能量理论。他们指出:随着采掘范围的不断扩大,岩爆是由于岩体-围岩系统在其力学平衡状态破坏时,系统释放的能量大于岩体本身破坏所消耗的能量而引起的。这种理论较好地解释了地震和岩石抛出等动力现象。 2.3刚度理论 20世纪60年代中期,Cook和Hodgei发现,用普通压力机进行单轴压缩实验时猛烈破坏的岩石试件,若改用刚性试验机试验,则破坏平稳发生而不猛烈,并且有可能得到应力-应变全过程曲线。他们认为,试件产生猛烈破坏的原因是试件的刚度大于试验机(即加载系统)的刚度。20世纪70年代Black将刚度理论用于分析美国爱达荷加利纳矿区的岩爆问题。认为矿山结构(矿体)的刚度大于矿山负荷(围岩)的刚度是产生岩爆的必要条件。佩图霍夫认为,岩爆发生是因为岩体破坏时实现了柔性加载条件。在他的研究中也引入了刚度条件,并且明确认为矿山结构的刚度是峰值后载荷-变形曲线下降段的刚度。 2.4岩爆倾向理论 岩石本身的力学性质是发生岩爆的内因条件。用一个或一组与岩石本身性质有关的指标衡量矿岩的岩爆倾向强弱,这类理论就是所谓的岩爆倾向理论。 2.5失稳理论 失稳理论是将围岩看成一个力学系统,将岩爆当作围岩组成的力学系统的动力失稳过

冲击地压的机理及其防治

冲击地压的机理及其防治 摘要:冲击地压时一种特殊的矿山压力显现形式,现在已成为煤矿开采特别时深部矿井开采的主要灾害,严重威胁到煤矿的安全生产。目前,我国北京、辽源、大同、阜新、开滦、徐州、抚顺、大屯等不少煤矿都发生过冲击地压。且冲击矿压发生条件极为复杂,除褐煤以外的其他各种煤层均发生过冲击地压。采深从200~1000 m,地质构造从简单到复杂,煤层由薄到特厚,倾角由水平到急斜,顶板包括砂岩、灰岩、油母岩等,都发生过冲击矿压;在生产技术条件上,不论水采、炮采、普采或是综采,全部垮落法或水力充填等各种采煤工艺,还是长壁、短壁,巷柱、倾斜分层、水平分层、倒台阶、房式等各种采煤方法都出现过冲击地压。因此,研究冲击地压发生条件与防止技术,具有十分重要的任务。 关键词:冲击地压、形成机理、防治措施、影响条件

冲击地压是矿山压力的一种特殊显现形式,可以定义为:矿山井巷和采场周围煤岩体,由于变形能的释放而产生的突然、急剧、猛烈的破坏为特征的动力现象。简单的讲,冲击地压就是煤(岩)体得突然破坏现象。 实例表明,冲击地压是最危险的矿山动力现象。它一般无明显宏观前兆而突然发生,冲击过程急剧而短暂,伴随巨大声响和强烈震动,对矿工安全有很大威胁,给生产往往造成严重破坏。一些矿井在开采边角煤、保护煤柱的条件下,甚至在设计不合理的工作面开采中或巷道掘进中都容易发生冲击矿压,造成严重的自然灾害。 一、冲击地压成因的机理 所谓冲击地压发生机理,就是指冲击地压发生的原因、条件、机制和物理过程,冲击地压的发生机理就其主要方面来讲,就是在一定的地质因数和开采条件下,煤(岩)受外力引起变形,发生突然破坏的力学过程。 对冲击地压成因和机理的解释主要有强度理论、刚度理论、能量理论、冲击倾向性理论和失稳理论。 1、强度理论 该理论认为,冲击地压发生的条件是矿山压力大于煤体—围岩力学系统的综合强度。较坚硬的顶底板可将煤体夹紧,阻碍了深部煤体自身或煤体—围岩交界处的变形。由于平行于层面的摩擦阻力和侧向阻力阻碍了煤体沿层面的移动,使煤体更加压实,承受更高的压力,积蓄较多的弹性能。从极限平衡和弹性能释放的意义上来看,夹持起了闭锁作用。在煤体夹持带内,压力高、并储存有相当高的弹性能,高压带和弹性能积聚区可位于煤壁附近。一旦高应力突然加大或系统阻力突然减小时,煤体可产生突然破坏和运动,抛向已采空间,形成冲击地压。

岩爆发生的机理及预测

岩爆定义 时至今日还没有一个统一公认的岩爆定义。在谈到岩爆时,人们通常会说岩爆就是高强度脆性岩石的猛烈破坏,或者说是储存在岩体内的弹性应变能突然释放。南非的W.D.Ortlepp这样定义岩爆:岩爆就是给土木工程和地下巷道﹙包括采场工作面、井巷工程和硐室﹚造成猛烈严重破坏的岩体震动事件,所谓震动事件是指由于岩体内应变能的突然释放导致的岩体瞬间运动。必须指出,这里所说的震动不应包括生产爆破产生的震动,也就是不含人们为了生产用炸药爆破或其他生产工具破碎岩石产生的震动。中国学者郭然建议采用如下岩爆定义:岩爆是岩体破坏的一种形式。它是处于高应力或极限平衡状态的岩体或地质结构体,在开挖活动的扰动下,其内部储存的应变能瞬间释放,造成开挖空间周围部分岩石从母岩体中急剧、猛烈地突出或弹射出来的一种动态力学现象。岩爆的发生常伴随着岩体震动,等等。 岩爆机理 E.Hoek等认为,岩爆是高地应力区洞室围岩剪切破坏作用的产物。Zoback 教授在解释钻孔崩落现象成因时,也认为类似―岩爆‖的孔壁崩落破坏属剪切破坏。然而Mastin(1984)和Haimson(1972,1985)则通过打有圆孔的砂岩岩板进行 的单向压缩物理模拟试验,在实验室真实地再现了孔壁崩落现象;他们得出这一现象是由于孔壁应力集中部位的局部破坏所引起的,系张性破裂的产物。 我国杨淑清教授等通过天生桥二级水电站引水隧洞相似材料岩爆机制物理 模拟试验,总结出岩爆造成围岩劈裂破坏和剪切的二种机制,并且认为它们是二种应力水平的产物,即劈裂破坏属脆性断裂,而剪切破坏是岩石应力达到峰值强度状态时的破坏;前者形成的破裂面与洞口边界平行,而后者则与洞口边界斜交,呈对数螺旋形状。谭以安博士则认为,岩爆系一渐时破坏过程,其形成过程可分为―劈裂成板→剪断成块→块片弹射‖三个阶段。以王兰生教授为首的―川藏公路 二郎山隧道高地应力与围岩稳定性课题组‖将岩爆作用与岩石在三向应力条件下 的压缩变形破坏全过程(Lane,Bieniawski等,1970年)加以对照,认为岩爆力 学机制可以归纳为压致拉裂、压致剪切拉裂、弯曲鼓折三种基本形式,也可以多种组合方式出现。 发生岩爆的岩体虽然在宏观上是完整的,但在微观上其内部存在着许多随机

相关文档
最新文档