高分子材料金属化
金属有机化学14 金属有机高分子
金属有机化合物的反应
配合反应 氧化加成反应和还原消除反应 (Oxidative Addition & Reductive Elimination) 迁移插入和消除反应(Migration Insertion & Elimination)、配体上的反应
金属有机化学在高分子合成中的应用
阴离子聚合反应 (Anionic Polymerization) 配位聚合反应 (Coordination Polymerization) 卡宾配合物和烯烃复分解聚合反应(Olefin Metathesis Polymerization) 交叉偶联反应及相关聚合反应 (Cross Coupling Polymerization) 原子转移自由基聚合反应(Atom Transfer Radical Polymerization) 金属有机高分子化合物(新型功能高分子)
structure of coenzyme VB12 characterized by Hodgkins
Macromolecules Containing Metal
Periodic Table
碱金属和碱土金属 非金属
前过渡 金属
后过渡 金属
前过渡 金属
类金属 稀土金属
Macromolecules Containing Metal
Polymers incorporating metals in their backbones possess a very large variety of structuolecules Containing Metal
1)Metals in the Backbone
Metal-containing polymers exist in wonderful shapes including rods, sheets, and coils
导电高分子
. 氧化
I2
A
阳离子自由基(极化子)
还原
Li
Li+
阴离子自由基(极化子)
p-型导电体 n-型导电体
导电聚合物掺杂的特点
b) 从物理角度看,掺杂是反离子嵌入的过程, 即为了保持电中性,掺杂伴随着阳离子/阴 离子进入高聚物体系,同时,反离子也可以 脱离高聚物链 — 脱掺杂。
c) 掺杂和脱掺杂是一个可逆过程,这在二次电 池的应用上极为重要;
CH
CH
AlEt 3/Ti(OBu) 4 Toluene
CH CH n
电化学聚合:聚吡咯 Poly(Pyrrole)
阳极氧化
自由基偶合
-e N
. N
H
H
脱质子 - H+
H N N H
H N N H
Poly(Pyrrole)
5、研究导电聚合物的意义
a) 理论意义 导电聚乙炔的发现从结构上在高分子与 金属之间架起了一座桥梁。
特点:制备简单、成本较低
4. 导电高分子的特点
石英
金刚烷
导电聚合物
未经掺杂
经掺杂
Pt
PE Si
Ge
Bi Cu
石墨
10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 10 102 104 106
(S/cm)
几种材料电导率的比较
属于分子导电物质(金属导电体:金属晶体导电物质) 通过掺杂,电导率变化范围宽广(10-9~105 S/cm) 具有颗粒或纤维结构的微观形貌。颗粒或纤维本身具 有金属特性,而它被绝缘的空气所隔绝,成为“导电 孤岛” 具有良好的物理、化学特性:较高的室温电导率、可 逆的氧化-还原特性、掺杂时伴随颜色变化、大的三阶 非线性光学系数等。
第七章 力学性质(高分子材料的变形特点与金属材料的变形特点)
力学性质
本章重点内容
1.高分子材料的变形特点与金属材料的变形特点的 比较.
1.1金属材料的变形特点及其微观解释.
1.2高分子材料的变形特点.
2.几个重要概念.
弹性变形 塑性变形 拉伸应力 真 应 力
屈服 真应变
弹性变形:
材料的变形过程中如果应力与应变成比例则称为弹性变形.
塑性变形:
对于大多数金属材料来说,其弹性变形不足其应变的0.005, 当变形超过这一数值,则应力与应变不再服从胡克定律,即发
滑移系来满足各晶粒变形是相互协调的要求。
本章总结
金属应力应变与高分子材料的应力应变特点的比较. 金属材料应力应变的微观解释.(特点并给出解释)
弹性变形的主要特征是:
• (1)理想的弹性变形是可逆变形,加载时变形, 卸载时变形消失并恢复原状。
• (2)金属、陶瓷和部分高分子材料不论是加载或 卸载时,只要在弹性变形范围内,其应力与应变 之间都保持单值线性函数关系,即服从虎克 (Hooke)定律: 在正应力下,s = Ee, 在切应力下,t =Gg, 式中,s,t分别为正应力和切应力;e,g分别 为正应变和切应变;E,G分别为弹性模量(杨氏
真应变:
如果无体积变化的情况下真应变与真应力的关系为: εT=ln(1+ε)
弹性变形的本质
• 弹性变形是指外力去除后能够完全恢复的那部分变形, 可从原子间结合力的角度来了解它的物理本质。
• 原子处于平衡位置时,其原子间距为r0,位能U处于 最低位置,相互作用力为零,这是最稳定的状态。当 原子受力后将偏离其平衡位置,原子间距增大时将产 生引力;原子间距减小时将产生斥力。这样,外力去 除后,原子都会恢复其原来的平衡位置,所产生的变 形便完全消失,这就是弹性变形。
高分子金属络合物的性能及应用进展
本文1998-04-10收到王贤保,男,29岁,讲师,硕士,从事高分子金属络合物研究。
高分子金属络合物的性能及应用进展王贤保 陈正国 程时远(湖北大学化学与材料科学学院,武汉,430062)摘 要 介绍了高分子金属络合物的种类及合成。
综述了高分子金属络合物不同于低分子络合物的催化性能、电学性能、光学性能和磁性,以及高分子金属络合物作为催化剂、光学材料、电学材料等方面的应用进展。
关键词 高分子金属络合物 高分子催化剂 电学性能 光学性能 磁性分类号 O 641.4高分子金属络合物(P olymer Metal C om plexes )(以下简称PMC )是一种含有高分子配体的金属络合物,其中心金属离子被巨大的高分子链所包围。
由于其高分子配位体的特征,与低分子金属络合物相比,PMC 在催化、电学、光学等方面表现出的性能[1~4],具有更广阔的应用前景和价值,对新型复合材料[5,6]的开发具有十分重要的意义,已引起了各国科学家的极大关注[7]。
PMC 的研究是受金属酶的启发而开始的。
金属酶是一种天然高分子金属络合物,其金属离子被庞大的蛋白质分子所包围,这是一种具有三维结构的蛋白质分子,通过立体配位改变配位方向,使中心离子具有反常的配位结构和氧化态,如质体兰素[8]就是典型例子。
为了认识蛋白质配体的功能,人们对合成PMC 的性能及应用展开了深入的研究,对之研究可以追源于50年代的离子交换树脂和离子交换膜,从60年代末开始全面展开并日益受到国内外学者广泛关注。
我国从70年代才开始此领域的研究。
1 高分子金属络合物种类及合成1.1 高分子配体与金属离子络合这种PMC 是通过金属离子与含有给电子基团(如-NH 2、-C OOH 、-C -、-SH 、氮杂环等)的高分子络合而成的。
1.1.1 侧基络合物高分子配体以侧基与金属离子络合而成,如图示:第9卷 第3期 化 学 研 究 V ol.9 N o.31998年9月 CHE MIC A L RESE ARCHES Sep.1998例如含多授体侧基的聚苯乙烯,被用作金属桥联树脂,能很好地选择吸收金属离子,其行为已有深入研究[9]。
高分子材料改性书中部分思考题参考答案
书中部分思考题参考答案第二章高分子材料共混改性1.什么是相容性,以什么作为判断依据?是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力,其一般以是否能够产生热力学相互溶解为判据。
2.反应性共混体系的概念以及反应机理是什么?是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性高分子材料,在混合过程中(例如挤出过程)与共混高分子材料的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用。
3.高分子材料体系其相态行为有哪几种形式,各自有什么特点,并举例加以说明。
(1)具有上临界混溶温度UCST,超过此温度,体系完全相容,为热力学稳定的均相体系;低于此温度为部分相容,在一定的组成范围内产生相分离。
如:天然橡胶-丁苯橡胶。
(2)具有下临界混溶温度LCST,低于此温度,体系完全相容,高于此温度为部分相容。
如:聚苯乙烯-聚甲基乙烯基醚、聚己内酯-苯乙烯/丙烯腈共聚物。
(3)同时出现上临界混溶温度UCST和下临界混溶温度LCST,如苯乙烯/丙烯腈共聚物-丁腈橡胶等共混体系。
(4)UCST和LCST相互交叠,形成封闭的两相区(5)多重UCST和LCST4.什么是相逆转,它与旋节分离的区别表现在哪些方面?相逆转(高分子材料A或高分子材料B从分散相到连续相的转变称为相逆转)也可产生两相并连续的形态结构。
(1)SD起始于均相的、混溶的体系,经过冷却而进入旋节区而产生相分离,相逆转主要是在不混溶共混物体系中形态结构的变化。
(2)SD可发生于任意浓度,而相逆转仅限于较高的浓度范围(3)SD产生的相畴尺寸微细,而相逆转导致较粗大的相畴,5.相容性的表征方法有哪些,试举例加以说明。
玻璃化转变法、红外光谱法、差热分析(DTA)、差示扫描量热法(DSC) 膨胀计法、介电松弛法、热重分析、热裂解气相色谱等。
玻璃化转变法:若两种高分子材料组分相容,共混物为均相体系就只有一个玻璃化温度,完全不溶,就有两个玻璃化温度,部分相容介于前两者之间。
高分子材料的金属化
电镀 与 环 保
第 3 卷第 6 ( 1 期 总第 12 8 期)
・5 ・
高 分 子 材 料 的 金 属 化
M e a lz to of Po y e a e i l t li a i n l m r M t r a s
谢 菁琛 。 李 丽波 。 杨 秀春 ( 尔滨理 工 大 学 化 学与环 境 工程 学 院 ,黑龙 江 哈 尔滨 1 0 4 ) 哈 5 0 O
a p ia i n f e c r c s r r s n e . B c u e o t i l r c s n t o g a h so ewe n c a i g a d s b t a e p l to s o a h p o e s a e p e e t d c e a s f i smp e p o e s a d s r n d e i n b t e o t n u s r t , s n
接 , 以代 替金 属 制 品 , 低 成 本 ; 可 降 同时 由于 高 分 子
XI i g c e E J n - h n, LILi o YANG u c u - , b Xi- h n ( c o lo e ia n v r n n a n i e r g,Ha b n Un v r iy o ce c S h o fCh m c l d En io me t lE g n e i a n r i i e st fS i n e a d Te h o o y n c n l g ,H a b n 1 0 4 ,Ch n ) r i 5 0 0 i a
c e ia e u t n me h d h s b e r n r o c r e n l b h i s r a i o y rme a l a i n h m c l d c i t o a e n mo e a d mo e c n e n d a d wi e t e man t e m n p l me t l z t . r o l i o Ke r s y wo d : p l me t ras o y r ma e i l ;m ea l a i n h mia e u t n t l z t ;c e c lr d c i i o o
高分子材料本科毕业论文选题
高分子材料本科毕业论文选题(1) 高分子材料在印花涂料中的应用(2) 体现区域经济特色的高分子材料方向工学硕士的培养(3) 高分子材料与工程:接地气的材料学(4) 新型高分子材料在采空区漏风治理的应用(5) 高分子材料功能助剂的应用现状和发展趋势(6) 天然高分子材料在阻燃技术中的研究进展(7) 高分子材料成型加工技术及应用(8) 地方应用型本科院校高分子材料与工程专业认证体系的构建与实践(9) 《药用高分子材料学》创新型实验教学的探索(10) 浅析高分子材料成型加工技术(11) 高分子材料成型及其控制(12) 高分子材料耐候性试验中的紫外辐射测定方法研究(13) 对高分子材料成型加工技术关键点的分析(14) 《药用高分子材料》课程教学中若干问题探讨(15) 农业院校《药用高分子材料》教学探讨(16) 高分子材料与工程专业生产实习问题调查及对策(17) 高分子材料三防技术研究(18) 高分子材料的老化及防老化研究(19) 浅谈高分子材料成型及其控制技术(20) 高分子材料的发展及应用(21) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(22) 高分子材料合成与应用中的绿色战略(23) 新型高分子材料与应用探析(24) 高分子材料,“罢工”脏器的好替身(25) 试析高分子材料成型加工技术(26) 热致型形状记忆高分子材料研究(27) 生物可降解高分子材料的研究(28) 改善高分子材料课程教学效果的几点措施(29) 高分子材料的金属化(30) “理实一体化”在高分子材料加工原理课程教学中的应用研究(31) 高分子材料与工程专业人才培养模式的探究(32) 导热高分子材料的研究与应用分析(33) 聚乳酸高分子材料的生物安全性评价(34) 浅谈高分子材料抗静电剂ASA(35) 高分子材料加工技术专业“理实一体化”实训室建设的探索(36) 功能高分子材料课程的教学实践与探索(37) 《高分子材料性能测试》课程教学探析(38) 浅析Pro/E软件在高分子材料中的应用(39) 形状记忆高分子材料的研究进展(40) 探讨功能高分子材料的应用(41) 石墨炉原子吸收法快速测定聚醚酮酮特种高分子材料中铝离子残留形状记忆高分子材料在自拆卸构件中的应用进展(42) 浅谈高分子材料与工程专业创新性实验能力的培养(43) CAE技术在高分子材料齿轮箱设计中的应用(44) 浅论高分子材料的发展前景(45) 高分子材料成型加工技术研究(46) 生物降解高分子材料的研究现状及应用前景(47) 耐高温高分子材料的合成与性能分析(48) 基于核辐射高分子材料在电线电缆中的作用分析(49) 浅析高分子材料成型加工技术及其发展(50) 高分子材料分析测试与研究方法教学改革探索(51) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用高分子材料在采油工程中的应用与展望(52) 高分子材料与工程专业人才培养体系改革研究(53) 加强实践教学提高高分子材料与工程专业认识实习质量(54) 有关高分子材料成型加工技术研究(55) 对高分子材料成型加工技术关键点的分析(56) 浅究影响高分子材料老化的因素及应对措施(57) 探析高分子材料成型及其控制技术(58) 《生物医用高分子材料》课程教学探索(59) 智能高分子材料的分类与研究进展(60) 功能高分子材料课程教学的探索与实践(61) 高分子材料专业大学生就业现状及对策研究(62) 《药用高分子材料学》课堂教学探讨—从被动学习到主动学习阻燃性有机硅高分子材料的研究进展(63) 浅析高分子材料成型加工技术(64) 关于高分子材料成型加工技术的探讨(65) 功能高分子材料在多晶硅生产中的应用(66) 高分子材料抗静电技术研究(67) 壳聚糖作为药用高分子材料的综述(68) POSS基高分子材料的合成及热性能(69) 对高分子材料未来研究方向的思考(70) 药用高分子材料》课程教学整体设计(71) 高分子材料与工程专业基础实验教学改革探析(72) 关于废旧高分子材料在建筑行业中的应用(73) 《高分子材料》教学探索与实践(74) 基于高分子材料与工程专业CDIO培养模式初探(75) 高分子材料成型加工实验面向学生实践和创新能力培养的改革与探索探讨热分析技术在高分子材料中的应用研究(76) 医用高分子材料表面改性研究(77) 高分子材料在日常生活中的应用(78) 高分子材料成型加工技术的进展探析(79) 基于导热高分子材料的研究与应用分析(80) 高分子材料专业毕业设计改革创新研究(81) 应用型本科院校《高分子材料科学基础》课程教学改革探讨高分子材料的表面改性技术研究(82) 高分子材料加工工艺教学方法创新研究(83) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(84) 高分子材料成型加工课程教学改革探索(85) 生物可降解高分子材料的应用(86) 废旧高分子材料在建筑材料中的回收应用(87) 填充复合型导电高分子材料及其应用(88) 高分子材料成型加工技术的相关探究(89) 加强高分子材料成型加工课程实践性教学的探讨(90) “功能高分子材料”的化学教学价值(91) 车用高分子材料耐刮擦性能研究与改善(92) 析高分子材料成型加工技术(93) 中学化学教学中的高分子材料(94) 高分子材料的环境行为与老化机理研究进展探讨(95) 基于食品包装产品的高分子材料成分快速鉴别方法研究(96) 对高分子材料未来研究方向的思考(97) 生活中的高分子材料特有现象(98) 基于实践的应用型本科院校“高分子材料成型加工实验”教学模式的探索研究(99) 基于应用型人才培养的建筑高分子材料课程教学改革(100) 《高分子材料进展》课程教学方法探索(101) 高分子材料成型加工实验教学的改革与探索(102) 浅析高分子材料成型加工技术(103) 浅析废旧高分子材料在墙体建筑中的回收与利用(104) 二聚二异氰酸酯LH1410功能高分子材料及其军民两用应用前景(105) 刍议高分子材料应用技术专业教学探索(106) 高分子材料专业英语教学改革初探(107) 高分子材料应用技术专业“技术人文耦合”的校企文化建设研究(108) 高分子材料专业实践教学的改革与研究(109) 高分子材料与工程专业毕业设计改革探索①(110) 具有工程意识的高分子材料专业综合实验改革与实践(111) “高分子材料与纺丝技术”多媒体教学效果分析(112) 面向高分子材料专业的化工原理教改思考(113) 高分子材料在酒类包装中的应用(114) 机械工程材料课程中高分子材料的教学改革与实践(115) 脲醛树脂基高分子材料改性研究(116) 基于Abaqus子程序的高分子材料本构关系实现(117) 合成类生物可降解高分子材料在生物医学中的研究进展(118) 高分子材料在太阳能热水器上的应用(119) 基于废旧高分子材料的回收应用问题探索与研究(120) 高分子材料与工程专业应用型实践教学体系建设(121) 典型高分子材料燃烧性能与火灾危险性研究(122) 增塑剂毒性对于医用高分子材料的风险分析(123) 高分子材料成型加工技术的进展分析(124) 高分子材料与工程专业化工原理教学改革与实践(125) 独立学院高分子材料专业特色培养模式(126) 浅谈生活中的高分子材料(127) 高分子材料与工程专业英语多媒体教学方法探讨(128) 探析高分子材料成型及其控制技术(129) 阻燃高分子材料及其阻燃剂研究进展(130) 高分子材料成型加工技术初探(131) 高分子材料合成与应用中的绿色战略(132) 高分子材料在建筑保温材料中的应用(133) 高分子材料成型加工技术的探索(134) 关于高分子材料成型技术的探讨(135) 高分子材料与工程专业人才培养探索(136) 试论高分子材料的阻燃技术(137) 新型功能高分子材料发展动向及应用研究(138) 浅谈高分子材料成型加工技术(139) 可降解高分子材料循环利用探讨(140) 生物质高分子材料应用及发展探讨(141) 天然高分子材料在微胶囊制备中的应用(142) 高分子材料与工程专业创新型人才培养模式的研究与实践高分子材料与工程专业“卓越工程师”培养方案改革与实践高分子材料与现实生活(143) 新型高分子材料与应用(144) 关于高分子材料成型加工技术的探讨(145) 高分子材料的环境行为与老化机理研究进展(146) 智能高分子材料在智能给药系统中的应用(147) 为构建具有航空特色的高分子材料与工程专业人才培养方案高分子材料成型加工技术研究(148) 关于新型功能高分子材料的研究(149) 高分子材料实验室老化试验技术详解(150) 高分子材料性能与结构测试课程项目化教学改革探索(151) 形状记忆高分子材料及其在军事方面的应用前景(152) 高职院校高分子材料应用技术专业生产性校内实训基地建设的探讨基于“工学结合”的高分子材料专业人才培养方案(153) 形状记忆功能高分子材料的研究现状和进展(154) 高分子材料与工程专业生产实习困境与对策(155) 光致形变液晶高分子材料研究进展(156) 浅谈高职高专高分子材料加工专业教改探究(157) 利用固相力化学反应制备高分子材料实践分析(158) 键合型稀土荧光高分子材料的研究进展(159) 浅谈高分子材料与工程专业生产实习基地建设(160) 对高分子材料成型技术的思考(161) 生物质高分子材料PHA的加工改性探究(162) 高分子材料流变学双语教材建设的必要性及建设原则(163) 功能高分子材料的应用现状及研究进展(164) “高分子材料学”课程教学模式思考与探索(165) 可降解高分子材料的研究进展(166) 浅谈高分子材料抗静电技术(167) 自助式高分子材料挤出共混实验教学实践(168) 德威新材:线缆用高分子材料行业龙头(169) 智能高分子材料在智能给药系统中的应用探析(170) 浅谈高分子材料成型加工技术(171) 功能高分子材料的制备及研究进展(172) 论可降解高分子材料的应用研究(173) 导电高分子材料及其应用(174) 德威新材领先的线缆用高分子材料供应商(175) 新型高分子材料的研究(176) 生物可降解高分子材料的应用(177) 应用型高分子材料与工程专业人才培养模式探讨(178) 新型高分子材料杜仲胶的应用研究(179) 高分子材料老化机理及防治方法(180) 高分子材料与工程专业热分析仪器教学的改革与实践(181) 高分子材料PVT特性在线测试技术及其在注射成形CAE仿真中的应用浅谈高分子材料在汽车领域的应用及发展(182) 浅谈生物可降解高分子材料(183) 导电高分子材料的研究与应用探究(184) 浅谈几种生物医用高分子材料的应用(185) 导电高分子材料的研究与应用探究(186) 有形状记忆功能的高分子材料(187) 高分子材料与工程专业实验室建设与管理(188) ISO管理体系在高分子材料专业实习中的辅助作用(189) 高分子材料专业实验教学研究(190) 生物降解高分子材料的分类及应用(191) 一个学“高分子材料”的记者对“基层”的独特感悟(192) 《高分子材料流变学》的课程特点与教学体会(193) 《高分子材料分析测试》教学项目设计分析与探讨(194) 《药用高分子材料学》理论教学中的几点体会(195) 高分子材料1111修补剂修补轴颈技术(196) 有关高分子材料老化性能的思考(197) 于高分子材料的分类及燃烧特点与危害的探讨(198) 高分子材料的现状与发展刍议(199) 液晶高分子材料的发展与应用(200) 基于“卓越工程师”培养的高分子材料工程专业培养方案改革(201) 染料敏化太阳能电池中的高分子材料(202) 高分子材料专业英语教学方法研究(203) 吹响几种新型有机高分子材料的“集结号”(204) 生物可降解高分子材料现阶段的开发及应用情况综述(205) 脲醛树脂基高分子材料改性研究(206) 医用高分子材料的研究现状(207) 高分子材料加工(塑料成型工艺方向)专业教学改革的探讨(209) 不同相组分对高分子材料改性研究的探讨(210) 药用高分子材料学教学的几点思考及其对策探讨(211) 高分子材料与工程专业英语长句翻译探讨(212) 浅析高分子材料成型(213) 高分子材料与工程专业毕业设计存在的问题及对策(214) 浅谈高分子材料在室内设计中的应用(215) 高分子材料与工程专业高分子化学实验教学体系的构建与成效(216) 高分子材料名词(217) 高分子材料相关研究(218) 高分子材料应用技术专业“学习领域与学习情境”开发模式探索“高分子材料基础”课程教学模式新探(219) 导电高分子材料的研究与应用现状(220) 高分子材料专业涂料课程教学探讨(221) 高分子材料类校内生产性实训基地建设与运行的探索(222) 基于工作过程构建高职高分子材料应用技术专业课程体系(223) 对人教版选修5“功能高分子材料”中科学探究活动的商榷(224) 浅谈高分子材料的特性(225) 材料大类专业《高分子材料研究方法》课程教学的探索与思考(226) 填充高分子材料泡沫铝的研究现状及展望(227) 荧光高分子材料的分类和应用(228) 强者之路——瑞安高分子材料产业(230) 高分子材料抗静电技术探析(231) 《高分子材料改性与测试实训》课程的校内工学结合教学改革实践浅谈高分子材料学中的分形(232) 药用高分子材料学教学内容与课程体系改革设想(233) 华南理工大学:产学研合作推动高分子材料新型成型装备产业化(234) 高分子材料工程专业英语教学研究(235) 专题教学在《高分子材料改性》教学中的应用(236) RGD高分子材料用于周围神经修复的生物学评价(237) 浅析高分子材料成型加工技术(238) 浅析高分子材料抗静电技术的研究和应用(239) 高分子材料专业综合性、设计性实验教学探索(240) “高分子材料基础”课程教学改革与实践(241) 高职院高分子材料加工专业项目教学的特征与内容(242) 新宇阳:打造功能性高分子材料新商机(243) 高分子材料难题(244) 纳米技术在高分子材料中的应用(245) 高分子材料的发展历程(246) 生物降解高分子材料研究(247) 高分子材料(248) 对生物可降解高分子材料的研究(249) 新型有机高分子材料学习指要(250) 高分子材料选区激光烧结力学性能的研究(251) 基于水溶性导电高分子材料的高灵敏度生物传感器(252) 湿度与时间因素对高分子材料力学性能影响的研究(253) 可降解高分子材料在心血管领域的研究与展望(254) 高分子材料科学研究动向及发展展望(255) 高职高分子材料加工技术专业《高分子材料化学基础》教学内容的改革探讨导电性高分子材料:用途广泛的高分子材料(256) 刍议国内化学高分子材料应用前景(257) 知识点串讲法在《高分子材料研究方法》授课中的应用(258) 《高分子材料加工助剂》教学方法研究(259) 高分子材料在印花涂料中的应用(260) 体现区域经济特色的高分子材料方向工学硕士的培养(261) 高分子材料与工程:接地气的材料学(262) 新型高分子材料在采空区漏风治理的应用(263) 高分子材料功能助剂的应用现状和发展趋势(264) 天然高分子材料在阻燃技术中的研究进展(265) 高分子材料成型加工技术及应用(266) 地方应用型本科院校高分子材料与工程专业认证体系的构建与实践《药用高分子材料学》创新型实验教学的探索(267) 浅析高分子材料成型加工技术(268) 高分子材料成型及其控制(269) 高分子材料耐候性试验中的紫外辐射测定方法研究(270) 对高分子材料成型加工技术关键点的分析(271) 《药用高分子材料》课程教学中若干问题探讨(272) 农业院校《药用高分子材料》教学探讨(273) 高分子材料与工程专业生产实习问题调查及对策(274) 高分子材料三防技术研究(275) 高分子材料的老化及防老化研究(276) 浅谈高分子材料成型及其控制技术(277) 高分子材料的发展及应用(278) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(279) 高分子材料合成与应用中的绿色战略(280) 新型高分子材料与应用探析(281) 高分子材料,“罢工”脏器的好替身(282) 试析高分子材料成型加工技术(283) 热致型形状记忆高分子材料研究(284) 生物可降解高分子材料的研究(285) 改善高分子材料课程教学效果的几点措施(286) 高分子材料的金属化(287) “理实一体化”在高分子材料加工原理课程教学中的应用研究(288) 高分子材料与工程专业人才培养模式的探究(289) 导热高分子材料的研究与应用分析。
第八章表面改性和功能材料精品文档
第二节 表面层压改性
表面层压
表面层压有湿式层压和干式层压,又分为: 挤出层压 热熔层压 共挤出层压 热压粘结层压
1、湿式和挤出层压
(1)湿式层压
以液体胶粘剂将两片膜压合的一种技术。
所使用的胶粘剂有:聚乙烯醇水溶液和聚醋酸乙烯乳液。
(3)容易剥离的涂层
为保护塑料制品表面不受污染和伤害而涂布的体层,不需要 时即可剥离。如印刷电路版制作或平版印刷。
第四节 表面非电解镀改性
通过化学的氧化还原反应,使用还原剂将金属离子变成 金属原子并在坯料上析出而形成镀层,称为非电解镀。
一般,离子化倾向小的金属(金,银,铜)等用还原能力 弱的葡萄糖、甲醛等进行化学镀。比铜难析出的Ni,Co等 离子,要使用还原能力强的次亚磷酸(HPO2H2)、氢化硼 等作还原剂进行化学镀。
4、界面活性剂处理
外部处理:将塑料浸渍在界面活性剂溶液中,形成界面活性剂层。
添加处理:在不改变塑料本性特性的条件下,添加界面活性剂。
5、表面接枝处理
(1)接枝反应
光、高能射线或低温等离子体可引发表面接枝反应。如用 Γ射线照射Al2O3表面,可产生自由基,它能使苯乙烯在 表面聚合,以致改变Al2O3的表面性质。 辐射接枝法有:直接接枝法;预辐射接枝法;和过氧化物接枝法。 A:直接接枝法:
(2)挤出层压
又称挤出涂布或多层重叠结构层压。将聚乙烯、聚丙烯、 乙烯-醋酸乙烯共聚体、离子型聚合物等从挤出机模具内 挤出。利用其所形成的膜呈熔融状态与基材压合粘接, 冷却后为层压制品。
2、共挤出层压
将一种或不同种类的树脂进行加热,使之成为熔融状态, 并在模内部的开口部位挤合而制取多层薄膜的一种方法。
高分子材料的表面改性
注入样品剂量:2×1016 ions/cm2
图3 氮离子注入后PTFE表面的EDX谱
1.2 离子注入改性的机理
图2表明,氮离子注入后PTFE表面有新键产生 (678cm-1),图3表明,氮离子注入后的样品,表现 出脱氟和氧化现象。 (4)离子注入不只产生断链和交联,而且产生导致 新化学键形成的微合金。X射线衍射分析表明,离子 束合金导致化学交联,未饱和的强共价结合和随机 分布类金刚石四方结合,导致产生坚固表面的三维 刚性梯状结构。
2.1 等离子体作用原理
反应气氛 反应气体 非反应气体
氧气、氮气
Ar、He
a.与原子氧反应:
2.1 等离子体作用原理
b.与分子氧反应:
c.与过氧化自由基反应:
可见,等离子体表面氧化反应是自由基连锁反应, 反应不仅引入了大量的含氧基团,如羰基及羟基, 而且对材料表面有刻蚀作用。
2.1 等离子体作用原理
化学健的键
C=O 8.0
2.1 等离子体作用原理
等离子体对高分子材料表面的作用有许多理论 解释,如表面分子链降解理论、氧化理论、氢键理 论、交联理论、臭氧化理论以及表面介电体理论等, 但其对聚合物表面发生反应机理可概括为三步。
自由基 表层形成致密的交联层
高压电场
高动能
空气中电子
加速 撞击分子
激态分子
1.1
离子注入的特点
(6)离子注入功率消耗低,以表面合金代替整体合金, 节约大量稀缺金属和贵重金属,而且没有毒性,利 于环保。 (7)离子注入工艺的缺点是设备一次性投资大,注入 时间长、注入深度浅、视线加工等缺点,不适合复 杂形态构件改性。
食品包装高分子材料技术进步与升级
食品包装高分子材料技术进步与升级摘要:分析了常用的包装高分子材料性能及优缺点,结合新型的加工方法和材料领域最新进展,分别讨论了双向拉伸聚乙烯、流延聚乙烯、聚丙烯薄膜、LISIM 法双向拉伸聚酰胺薄膜和聚酯薄膜等包装材料;综述了多层复合包装材料的研究现状,对未来食品包装技术的发展趋势进行了展望,认为包装材料将向高阻隔、低重量和绿色化方向发展,而采用复合技术和先进加工技术能够实现高性能包装材料的制备。
关键词:食品包装;高分子材料;高阻隔;减重化;易回收0 前言随着食品行业的发展和生活水平的提高,人们的消费理念升级换代,对食品包装材料不断提出新的要求。
材料的性能需要能同时满足力学性能、热封性能、阻隔性、防潮性、耐热性、保香性、印刷性等多种要求[1],材料的功能也向无菌化、智能化、个性化等方向发展。
传统的食品包装主要涉及聚乙烯(PE)、聚丙烯(PP)和聚酯(PET)等高分子材料,有高阻隔要求的情况下还需要使用聚酰胺(PA)、乙烯-乙烯醇共聚物(EVOH)和聚偏氯乙烯(PVDC)等材料[2]。
近年来还出现了聚乳酸(PLA)、聚乙烯醇(PVA)、淀粉基材料等可降解高分子材料包装。
本文从材料和加工方法的角度对不同食品包装材料的性能和用途进行了分析,并对食品包装高分子材料技术的未来发展趋势进行了展望。
1 常用的包装高分子材料性能及优缺点1.1 PE薄膜PE是目前生鲜包装中用量最大的高分子材料,PE有很强的阻湿性能,有助于食品的水分保持。
PE 薄膜的传统加工方法一般有流延法、管膜法和单向拉伸法3种[3]。
近年来,随着加工技术和原料制备技术的进步,出现了双向拉伸聚乙烯(BOPE)薄膜。
普通的PE原料无法适应高速高倍率的双向拉伸过程,会出现铸片翘曲、破膜、鱼皮纹等问题[4],为了解决BOPE 原料和薄膜的制备问题,日本三井公司[5]和美国DOW 公司[6]相继开发出了BOPE 专用树脂。
国内由中石化北京化工研究院通过高分子凝聚态研究和分子结构设计,首次开发出了非茂催化剂BOPE 树脂[7-8],进一步提高了BOPE原料的加工性能。
高分子材料的表面处理技术考核试卷
9. AB
10. ABCD
11. ABC
12. ABC
13. ABCD
14. ABC
15. ABCD
16. ABC
17. ABC
18. ABCD
19. ABC
20. ABC
三、填空题
1.化学镀、电镀
2.亲水性、附着力
3.提高亲水性、提高附着力
4.清洁、粗化
5.医疗器械、电子器件
6.化学处理、物理处理
A.处理方法
B.处理工艺
C.处理设备
D.材料的密度
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
1.高分子材料表面处理可以改善的性能包括哪些?()
A.耐磨性
B.亲水性
C.导电性
D.疏水性
2.常用的高分子材料表面处理方法有哪些?()
A.化学处理
7.处理时间、处理温度
8.化学镀、电镀
9.紫外线照射、激光处理
10.导电性、耐磨性
四、判断题
1. ×
2. √
3. ×
4. ×
5. √
6. √
7. ×
8. ×
9. ×
10. ×
五、主观题(参考)
1.高分子材料表面处理技术能够改善材料的表面性能,提高其与其他材料的结合力,广泛应用于电子产品、医疗器械、汽车部件等领域。
A.提高亲水性
B.提高附着力
C.改善耐磨性
D.增强耐腐蚀性
6.以下哪些方法可以用于高分子材料表面的金属化处理?()
A.化学镀
B.电镀
C.磁控溅射
D.热镀
7.高分子材料表面处理中,哪些因素会影响处理效果?()
一种被高分子材料包裹的金属粉末及其制备方法和应用
一种被高分子材料包裹的金属粉末及其制备方法和应用随着科技的不断发展,金属粉末的应用范围也越来越广泛,但是由于其特殊的性质,使得其在应用过程中容易出现氧化、粘连等问题,从而影响其性能和使用寿命。
为了解决这个问题,研究人员提出了一种被高分子材料包裹的金属粉末,这种新型材料具有优异的抗氧化、抗粘附等特性,可以在多个领域得到广泛应用。
一、制备方法1.材料准备首先需要准备金属粉末和高分子材料。
金属粉末的选择可以根据需要进行调整,常见的有铁、铜、铝等。
高分子材料可以选择聚乙烯、聚丙烯、聚苯乙烯等。
2.混合将金属粉末和高分子材料按照一定比例混合,可以采用机械混合或溶液混合的方式。
机械混合需要使用特殊设备,溶液混合则需要将高分子材料溶解在溶剂中,然后将金属粉末加入其中,搅拌均匀。
3.包裹将混合后的材料放入真空包装袋中,通过真空吸气的方式将包装袋内的氧气、水分等杂质去除,然后密封包装袋。
4.加热将密封包装袋放入高温炉中,进行加热处理。
加热温度和时间可以根据具体情况进行调整,一般在300℃-500℃之间,加热时间为1-2小时。
5.冷却加热处理后,将密封包装袋从高温炉中取出,放置在常温下自然冷却,即可得到被高分子材料包裹的金属粉末。
二、应用1.电子领域被高分子材料包裹的金属粉末可以用于制备导电墨水,用于印刷电路板。
由于其抗氧化、抗粘附等特性,可以有效延长电路板的使用寿命。
2.汽车领域汽车零部件中常用到铁、铝等金属材料,但是由于长期受到高温、高压等环境的影响,容易出现氧化、腐蚀等问题。
使用被高分子材料包裹的金属粉末可以有效解决这些问题,提高汽车零部件的使用寿命。
3.医疗领域被高分子材料包裹的金属粉末可以用于制备人工关节等医疗器械。
由于其具有抗氧化、抗粘附等特性,可以有效延长医疗器械的使用寿命,减少二次手术风险。
三、总结被高分子材料包裹的金属粉末具有优异的抗氧化、抗粘附等特性,可以在多个领域得到广泛应用。
制备方法简单,成本低廉,具有良好的发展前景。
高分子材料
• 4.热学性能: • 基本热学性能:热膨胀、比热容、热导率
• 高聚物热学性能受温度影响比金属、无机材料大。 • 低耐热性 • 低导热性 • 高膨胀性
第聚合是指聚合反应
活性中心为自由基的链式
• 聚合物的相对分子质量或聚合度达到某一数值后才能显示 出有实用价值的机械强度,称为临界聚合度
• (2)高分子链的构象及 柔顺性
• 高分子链的构象:单件 内旋转(图)引起的原 子在空间占据不同位置 所构成的分子链的各种 形象。
• 高分子链的柔顺性:高 分子由于构象变化获得 不同卷曲程度的特性。
• 高分子链的柔顺性与单键内 旋转难易程度有关。
第三节高分子材料的性能
• 高分子材料与小分子材料区别: • 1、相对分子质量明显不同 • 2、高分子化合物的相对分子质量和分子链尺寸存在多分
散性。 • 3、分子间作用力明显不同。 • 4、高分子化合物具有线链状和交联结构
二、高分子材料的性能
•
1、力学性能 1.低强度 2.高弹性和低弹性模量 3.粘弹性 蠕变、应力松弛、内耗 粘弹性:高聚物在外力作用下同时发 生高弹性变形和粘性流动,其变形与 时间有关 4.高耐磨性
分子质量逐步增长,反应基本特征:大分子之间可以互相反 应生成更大的分子。
以二元酸与二元酸线型缩聚为例的反应机理:
六、加成缩合聚合
• 定义:由加成和缩合交 替进行的逐步聚合反应。
• 像酚醛树脂、三聚氰胺 甲醛树脂、脲醛树脂、 醇酸树脂都是如此制得
• 酚醛树脂反应过程:
七、氧化偶联聚合
• 定义:每一步反应都是加成反应,且无小分子生成的逐步 聚合反应称为。简称聚加成反应。
论文资料:导电高分子材料及其应用
导电高分子材料及其应用学生姓名:指导老师:1.前言长期以来,高分子材料由于具有良好的机械性能,作为结构材料得到了广泛的应用。
关于电性能,人们一直只利用高分子材料的介电性,将其作为电绝缘材料使用,而它的导电性的发现,研究及开发则比较晚,直到1977年才发现了第一个导电有机聚合物———掺杂型聚乙炔(用电子受体掺杂) ,电导率可提高约12个数量级,最高可接近103S/cm,达到金属Bi的电导率。
导电高分子材料以其易于成型加工、耐腐蚀、质量轻等优点,越来越受到重视。
2.导电高分子材料的分类及性能80年代以来,作为高分子材料发展的一个新领域,导电高分子材料的研究与开发已成为功能材料研究的一个重要方面。
按导电本质的不同,导电高分子材料分复合型和结构型两种。
前者是利用向高分子材料中加入各种导电填料来实现其导电能力,而后者是从改变高分子结构来实现其导电能力。
2.1 复合型导电高分子材料复合型导电高分子材料是指经物理改性后具有导电性的材料。
一般是指将导电性填料经改性后掺混于树脂中制成的。
根据导电填料的不同,又可分为碳黑填充型及金属填充型。
复合型材料是目前用途最广用量最大的一种复合型导电材料。
2.1.1 碳黑填充型碳黑填充型导电材料是目前复合型导电材料中应用最广泛的一种。
一是因为碳黑价格低廉、实用性强。
二是因为碳黑能根据不同的导电要求有较大的选择余地。
聚合物碳黑体系电阻率可在10~108W之间调整,不仅可以消除和防止静电,还可以用作面装发热体,电磁波屏蔽以及高导体电极材料等。
三是导电持久稳定。
其缺点是产品颜色只能是黑色而影响外观。
碳黑填充型导电机理可用导电能带、隧道效应和场致发射发射来解释。
2.1.2 金属填充型导电材料金属填充型导电高分子材料起始于70 年代初期,开始仅限于金属粉末填充用于消除静电的场合或用于金、铁、铜粉配制导电粘合剂。
目前已使用的方法有表面金属化和填充金属型两种。
表面金属化即采用电镀、喷涂、粘贴等方法使塑料制品表面形成一层高导电金属。
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类由大量重复单元组成的大分子化合物,具有较高的分子量和多样的物理、化学性质。
自20世纪初以来,高分子材料在各个领域中得到广泛应用,并在科学技术的推动下不断发展。
本文将介绍高分子材料的发展历程以及未来发展的趋势。
一、早期发展阶段1.1 天然高分子材料的发现- 人们早在古代就开始使用天然高分子材料,如皮革、天然橡胶等。
- 1839年,美国化学家查尔斯·戴克斯特尔发现了天然橡胶的弹性,并将其命名为“弹性体”。
1.2 合成高分子材料的诞生- 1907年,美国化学家莱昂纳德·巴斯德成功合成了世界上第一个合成高分子材料——酚醛树脂。
- 1920年代,德国化学家赫尔曼·斯托德尔合成了聚氯乙烯(PVC)。
1.3 高分子材料的应用拓展- 1930年代,高分子材料开始应用于塑料制品、橡胶制品等领域。
- 1940年代,高分子材料在航空、航天等高科技领域得到广泛应用。
二、中期发展阶段2.1 高分子材料的改性与合金化- 1950年代,人们开始将高分子材料进行改性,以改善其性能。
- 1960年代,高分子材料与其他材料进行合金化,形成了高分子合金材料。
2.2 高分子材料的新型结构与功能- 1970年代,人们开始研究高分子材料的新型结构,如共聚物、交联聚合物等。
- 1980年代,高分子材料开始展现出多种新的功能,如导电、光学、生物相容性等。
2.3 高分子材料的环保与可持续发展- 1990年代,人们开始关注高分子材料的环境影响,并提出了环保的研究方向。
- 21世纪初,高分子材料的可持续发展成为研究的热点,如生物可降解材料的研究与应用。
三、近期发展阶段3.1 高分子材料的纳米化与智能化- 近年来,人们将高分子材料进行纳米化处理,以获得更好的性能。
- 同时,高分子材料的智能化也成为研究的重点,如自修复材料、自感应材料等。
3.2 高分子材料的多功能与多场耦合- 近期,高分子材料的多功能化与多场耦合成为研究的热点,如光电、磁电、压电等多种功能的结合。
高分子材料的等离子体表面处理
高分子材料的等离子体表面处理摘要阐述了等离子体表面改性技术的作用原理, 总结论述了等离子体对高聚物表面作用的几种理论, 经低温等离子体处理的高分子材料表面发生多种物理和化学变化,重点介绍了低温等离子体在医用高分子材料、合成纤维材料、薄膜材料中的研究概况和进展。
关键词: 等离子体; 表面改性; 高分子材料;0 引言高分子聚合物材料同金属材料相比具有许多优点, 如密度小、比强度和比模量低、耐蚀性能好、成型工艺简单、成本低廉、优异的化学稳定性、热稳定性好、卓越的介电性能、极低的摩擦系数、良好的润滑作用及优异的耐候性等, 因此广泛应用于包装、印刷、农业、轻工、电子、仪表、航天航空、医用器械、复合材料等行业[1]。
但其应用范围和使用效益往往会受到表面性能的制约,因此常常需按使用目的改善或变换其表面性能,如材料或部件的粘着性,高分子膜的印刷性、透过性等。
1 高分子材料的表面改性高分子材料的各种表面性能的获得取决于材料的表面结构和相关的界面特性,所以高分子材料的界面物性控制是非常必要的。
图1 界面物控技术内容及应用领域图1所示为界面物性控制技术的内容和相关的应用领域。
为了使高分子材料适合各种应用需要,大体上有两类作法。
一类是利用各种表面改性技术产生一个新的表面活性层,从而改变表面、界面的基本特性。
另一类作法是借助功能性薄膜或表面层形成技术在原表面上敷膜。
这两种作法的目的都是为了使材料具有或同时具有几种表面性能。
为此,人们研究开发了许多种可供利用的表面处理技术。
诸如化学湿法处理,利用电子束或紫外线的干式处理,利用表面活性剂的添加剂处理以及采用真空蒸渡的金属化处理等。
本论文主要介绍的等离子体表面处理是利用低压气体辉光放电的干式处理技术。
既能改变表面结构,控制界面物性,也可以按需求进行表面敷膜。
在塑料、天然纤维、功能性高分子膜的表面处理方面有着巨大的应用潜力。
2 等离子体表面改性近年来,随着等离子体技术的不断发展,利用等离子体进行表面改性已成为研究的热点[2 ]。
高分子材料改性综述
高分子材料改性综述在当今的社会中, 材料是人类赖以生存和发展的重要物质, 是现代工业和高科技发展的基础和关键。
由于材料单体的种类有限, 而且材料单体的单一的某的些性能比较差, 不符合人们所求, 所以要对其材料经行改性。
所谓的改性是通过物理, 机械和化学等作用使搞分子材料原有的性能得到改善。
高分子材料的改性即可能是物理变化也可能是化学变化在终多的改性方法中, 共混改性是最简单的也是最直接的方法。
他可以在各种加工设备中完成, 通过共混改性可以使高分子材料得到比较好的性能上的提升。
并且是现在应用最广的改性方法之一。
化学改性可以赋予高分子材料更好的物理化学和力学性能, 现在常用的有无轨共聚, 交替共聚, 嵌段共聚, 接枝共聚, 交联和互穿聚合物网络等技术, 化学改性能得更高的性能比物理改性, 但化学改性比物理改性的成本一般会更高, 而且工艺过程更复杂, 设备的要求更高。
还有填充与纤维增强改性, 表面改性, 共挤出复合改性, 对于公挤出复合改性一般用于管材等应用会比较多一高分子的共混改性高分子共混改性的目的和作用有: 1可以从各高分子组分的性能中取长补短, 获得更优越的性能的材料, 2还可以改善其高分子的加工性能。
3或者还可以制备新型的高分子材料, 聚烯烃与壳聚糖共混可以获得抗菌功能的材料。
4还可以使一些材料原本比较贵, 通过改性在不降低其原有的材料性能上可以使材料的成本更低。
在高分子的改性中遇到的一个难题就是两种或者多种不同的材料共混时他们的相容性, , 两种高分子能否相容就取决他们共混工程的自由能的变化, △Gm=△Hm-T△Sm≤0由于高分子的相对分子质量很大, 共混的过程熵变化很小, 如果高分子之间不存在特殊的相互作用, 共混过程通常是吸热过程, 也就是△Hm>0,因此绝大多的高分子共混时不能达到分子水平的共混,因此要他们自由相容是很困难的,这样我们就要借助其他方法来使他们相容,如增容剂.增溶剂是能使不相容的两种高分子结合在一起,从而形成稳定的共混物.增容剂大体可以分为反应型和非反应型的.反应型指共混时伴随化学反应与共混组分生成化学键,而非反应型只是起到乳化剂的分散作用,可以降低其相界面的张力,从而达到增容的目的.非反应型的有A-X-B,A-C.D-B.C-D等其中A-X-B具有A,B两种链段的嵌物, A-X-B型可以对多种共聚物增容.对于非反应型的增容剂: 1嵌段共聚物比接枝共聚物更有效2,二嵌段共聚物优于三段的.3接枝共聚物增容效果优于星型和三嵌段.4当共聚物的链段的相对分子质量大于或等于其均聚物的相对分子质量,效果比较好,反应型增容剂,有高分子和低分子两种,对于所有的低分子都是反应型,而高分子有反应型和非反应型增容剂.反应型增容剂主要是有一些可以与共混组分反应的官能团的共聚物,他们适合相容性差的又带有反应官能团的高分子之间的增容.反应增容剂对于他们参加反应的类型不同可以分为, 1反应性曾容剂与共混高分子组分反应而增容, 2使共混高分子先有官能团在凭借他们相互反应而增容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着高分子材料技术的发展,塑料代替金属在很多领域的应用,不能替代的是金属让人喜爱的质感。
如何让塑料拥有金属材料的外观,替代金属材料,将两者优点结合起来,这一直是高分子研究的课题。
到目前为止,研究人员已经能够设法在塑料的表面镀敷一层金属来改善塑料的性能,产生了一些展现金属质感外观的塑料制品,这都归功于塑料表面金属化工艺。
什么是高分子材料金属化?
高分子材料金属化是利用物理或化学手段在高分子材料表面镀上一层金属,使其表面呈现出金属的某些性质,如导电性、磁性、导热性等。
金属化后的高分子材料具有金属外观,镀层硬度高,便于焊接,可以代替金属制品,降低成本;同时由于高分子材料一般具有高韧性,耐热性,耐蚀性等,使得金属化的高分子材料比普通金属材料性能更好。
随着技术的发展,现在在塑料树脂中添加金属粉等,同样能够制备出金属化材料。
塑料金属化工艺有哪些?
塑料金属化基本分为两大类,一是塑料表面金属化,另一个是塑料整体金属化。
前者又分为干法和湿法等。
干法主要包括物理气相沉积和化学气相沉积等;湿法主要包括化学镀、电镀以及化学还原等。
一、干法镀膜
1、真空蒸发法
是指在真空环境下加热镀膜材料,使其在极短时间内蒸发,沉积在塑料表面上形成镀层。
优点:此法成膜速率快、效率高,但薄膜与基体结合较差。
为此,人们将等离子刻蚀和真空蒸发法结合起来以提高结合力(离子镀)。
缺点:只能蒸发像铝这种低熔点的金属。
应用:镀铝膜,复合材料包装制品
2、磁控溅射法
是用高能离子轰击靶材,使靶材表面原子获得足够能量脱离母材,并按相应的溅射方向飞跃出来,沉积在塑料表面的方法。
优点:与真空蒸发法相比,磁控溅射法不需要预处理,结合力较强,且能沉积多种金属。
应用:汽车隔热防爆膜,其中金属隔热层由在PET膜上通过真空蒸镀或真空磁控溅射金属铝、银、镍等而成。
3、化学气相沉积(CVD)
指把含有沉积元素的反应气体引入反应室,在基体表面发生化学反应,并把固体产物沉积到基体表面的过程。
有研究者用此方法在PTFE上成功沉积了铜。
优点:化学气相沉积膜层致密,结合力强,厚度比较均匀,膜层质量稳定。
缺点:影响膜的组成和结构的因素很多( 如气体运动速率、压力分布、温度等),必须严格控制才能得到理想的膜。
同时,传统的化学气相沉积法反应温度通常很高( 900~ 2000 ℃),容易导致基体变形和组织变化。
应用:ABS表面镀铜
二、湿法镀膜
由于化学镀、电镀以及化学还原等方法都要在溶液中进行,所以被称为湿法镀膜。
1、化学镀
是目前使用最广泛的一种塑料金属化加工方法,依据氧化还原反应原理,利用强还原剂在含有金属离子的溶液中,将金属离子还原成金属而沉积在各种材料表面形成致密镀层的方法。
优点:
1)镀覆过程不需外电源驱动,设备简单;
2)均镀能力好,形状复杂,有内孔、内腔的镀件均可获得均匀的镀层;
3)镀层致密,孔隙率低;
4)适用的基体材料范围广,可在金属、非金属以及有机物上沉积镀层;
5)容易制取非晶态合金和某些持殊功能薄膜,如磁学、光学、电学等功能镀层。
缺点:镀液寿命短、稳定性差,镀覆速度较慢。
应用:尼龙表面化学镀铜,使尼龙布具有良好的防电磁辐射性能。
2、电镀
是一利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程,是利用电解作用使金属或其它材料制件的表面附着一层金属膜的工艺。
目前用于电镀最多的塑料是ABS,其次是PP。
另外PSF、PC、PTFE等也有成功电镀的方法,但难度较大。
优点:电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、光滑性、耐热性和表面美观。
缺点:需要使用对环境有害的铬金属衍生物和镍,危害环境。
应用:塑料电镀标牌
3、化学还原法
化学还原法制备聚合物金属化表面主要步骤:1)将含有极性基团的聚合物和能与其形成络合物的金属盐共同溶解在溶剂中制成均匀的溶液;2)将溶液通过蒸发成型得到样品;3)将样品置于还原溶液中,通过化学还原反应在样品表面上形成导电金属层。
化学还原法一定程度上解决了表面结合力差,耐久性不佳,镀膜设备造价高,工艺复杂等问题,具有很大的发展空间。
三、其他金属化镀膜方法
1、金属涂料涂装:采用以银、铜、镍、铝等金属粉末符合的涂料,涂装于塑料上使塑料金属化。
这种方法除了使塑料表面具有金属质感的装饰作用外,还可以利用图层的导电性,作为使塑料手机壳具有屏蔽性能的方法。
2、金属喷涂:金属喷涂是用熔融金属的高速粒子流喷在基体表面,以产生覆层的材料保护技术。
包括电弧喷涂,等离子喷涂、火焰喷涂和高速氧燃料喷涂。
3、金属粉复合法:此方法是在塑料成型过程中添加特殊的金属颜料,例如金属粉、色母、造粒料等,使塑料制品实现珠光、金属光泽等效果。
这种方法可以避免一些喷涂过程,是塑料整体金属化的方法。
目前有些塑料企业在开发这类产品,所生产的塑料颗粒能直接应用成型,工艺简单,降低成本。
金属化工艺可以实现塑料外观金属质感,与此同时金属化工艺得到的塑料制品在导电性、磁性、导热性等方面展现优势。
就目前现状而言,金属化的塑料种类还是很少的,最多的是ABS,其次是PP,再者是PSF、PC、PTFE等。
所以,塑料金属化的发展还需要继续努力。