原子吸收光谱分析仪器原理及组成
原子吸收光谱仪原理、结构、作用及注意事项
原子吸收光谱仪原理、结构、作用及注意事项1。
原子吸收光谱的理论基础原子吸收光谱分析(又称原子吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量.1 原子吸收光谱的理论基础1。
1原子吸收光谱的产生在原子中,电子按一定的轨道绕原子核旋转,各个电子的运动状态是由4个量子数来描述。
不同量子数的电子,具有不同的能量,原子的能量为其所含电子能量的总和。
原子处于完全游离状态时,具有最低的能量,称为基态(E0).在热能、电能或光能的作用下,基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。
激发态原子(Eq)很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。
其辐射能量大小,用下列公式示示:由于不同元素原子结构不同,所以一种元素的原子只能发射由其E0与Eq决定的特定频率的光。
这样,每一种元素都有其特征的光谱线.即使同一种元素的原子,它们的Eq 也可以不同,也能产生不同的谱线.原子吸收光谱是原子发射光谱的逆过程。
基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。
因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。
原子的电子从基态激发到最接近于基态的激发态,称为共振激发。
当电子从共振激发态跃迁回基态时,称为共振跃迁。
这种跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。
元素的共振吸收线一般有好多条,其测定灵敏度也不同。
在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线。
1.2 吸收强度与分析物质浓度的关系原子蒸气对不同频率的光具有不同的吸收率,因此,原子蒸气对光的吸收是频率的函数。
但是对固定频率的光,原子蒸气对它的吸收是与单位体积中的原子的浓度成正比并符合朗格-比尔定律。
当一条频率为ν,强度为I0的单色光透过长度为ι的原子蒸气层后,透射光的强度为Iν,令比例常数为Kν,则吸光度A与试样中基态原子的浓度N0有如下关系:在原子吸收光谱法中,原子池中激发态的原子和离子数很少,因此蒸气中的基态原子数目实际上接近于被测元素总的原子数目,与式样中被测元素的浓度c成正比.因此吸光度A与试样中被测元素浓度c的关系如下:A=Kc式中K—-—吸收系数.只有当入射光是单色光,上式才能成立。
原子吸收光谱法的仪器装置及工作原理
3) 火焰原子化系统的优缺点
a) 优点:火焰原子吸收法装置不太复杂,操 作方便快速,测定精度好,已经成为完善
和定型的方法,广泛用于常规分析。
3) 火焰原子化系统的优缺点
b) 缺点:
灵敏度还不够高。其原因之一是雾化效率低,到达火
焰的试样仅为提升量(4—6mL/min)的10%,大部分试液 排泄掉了。原因之二是火焰气氛的稀释作用和高速燃烧限 制了灵敏度的提高。这些作用不但使原子化效率低而且使 基态原子在吸收区内停留的时间很短(约10-3s)。
3.2 原子吸收光谱法的仪器装置 及工作原理
原子吸收光谱法的仪器装置
原子吸收光谱法的仪器装置(2)
原子吸收光谱法的仪器装置(3)
原子吸收光谱法的仪器装置(4)
Z-5000原子吸收光谱仪(塞曼偏振)
1、综述
原子吸收分光光度计主要由四部分组成,即 光源、原子化系统、分光系统和检测系统四个部 分。如图所示:
1) 高温石墨炉原子化法(二)
a) 石墨炉原子化法的优缺点 缺点: 如由于干扰大,必须有扣除背景装置,设
备比火焰法复杂、昂贵;
测定的精密度较差(相对偏差约等于3%);
分析所需的时间比火焰法要长等。
1) 高温石墨炉原子化法(三)
a) 高温石墨炉原子化装置及工作原理
无火焰原子化器装置有多种,主要对电热高温石墨管 原子化器作一简单介绍。
要用来测定As、Sb、Bi、Sn、Ge、Se、Pb和Te 等元素。
这些元素在酸性介质中与强还原剂硼氢化
钠(或钾)反应生成气态氢化物。然后将此氢
化物送入原子化系统进行测定。
2) 氢化物原子化法(二)
例如对于砷,其反应为: AsCl3+4KBH4+HCl=AsH3+4KCl+4HBO2+13H2 氢化物原子化法由于还原转化为氢化物时 的效率高,生成的氢化物可在较低的温度(一 般为700-900 。 C)原子化,且氢化物生成过程 本身是个分离过程,因而此法具有高灵敏度, 较少的基体干扰和化学干扰等优点。
原子吸收光谱仪的结构组成及原理是怎样的
原子吸收光谱仪的结构组成及原理是怎样的什么是原子吸收光谱仪原子吸收光谱仪(Atomic Absorption Spectrophotometer,缩写为AAS)是一种用于分析物质中化学元素含量的专用仪器,广泛应用于化学、生物、环境、医学等领域的实验室中。
原子吸收光谱仪的结构组成原子吸收光谱仪的结构主要包括以下几个组成部分:光源光源是原子吸收光谱仪的核心组成部分,其作用是通过加热溶液中的样品,使样品中的化学元素原子蒸发并被激发到高能态。
常用的光源有电极炉、火焰和石墨炉等。
光路系统光路系统是原子吸收光谱仪的另一个重要组成部分,其作用是将被激发的化学元素原子产生的光信号传输到检测器中,得到元素含量的信号。
光路系统主要包括光学镜头、光栅和光束分束器等。
检测器检测器是原子吸收光谱仪的另一个关键组成部分。
其作用是将传输到检测器中的信号转换为电信号,并将其放大和数字化。
常用的检测器有光电倍增管、光导二极管、相位敏锁相放大器等。
控制电路控制电路是对整个原子吸收光谱仪进行控制的组成部分。
它主要包括供电电源、控制面板和电子数字显示器等。
原子吸收光谱仪的工作原理当样品经过加热或气化处理后,其中的化学元素原子将会被激发到高能态。
原子吸收光谱仪通过一系列的光学和电学装置,将这种高能态原子激发时所辐射的谱线信号转化成对应元素浓度的信息。
原子吸收光谱仪的工作过程可以大体分为三个步骤:离子化样品加热或气化处理后,化学元素原子将会被激发到高能态。
此时,原子的亚稳态或稳态离子将会产生,如钠(Na)原子被激发到3s亚能级和3p能级产生Na+离子。
吸收原子离子化后,测量系统通过一系列的光学设备,将具有特定波长的光能,输送到样品的化学元素离子化原子中。
当这些能量向化学元素的原子、离子传递时,就会被特定元素的原子、离子吸收。
因此,通过检测被化学元素原子和离子吸收的射线强度,可以得到型样品的特定元素含量信息。
信号检测和表示当通过化学元素原子和离子的吸收后,谱线的强度将会减弱。
原子吸收光谱法
火焰原子吸收光谱法测定水中铜的含量一、实验目的1.掌握原子吸收光谱分析法的基本原理。
2.了解火焰原子吸收分光光度计的基本结构、性能和使用方法。
3.掌握火焰原子吸收光谱法进行定量分析的方法和主要性能指标的检验。
二、实验原理1.分析仪器简介原子吸收光谱法是根据物质的基态原子蒸气对特征辐射的吸收作用来进行元素定量分析的方法。
原子吸收分光光度计一般由光源、原子化系统、分光系统、检测系统、读出系统五个主要部分组成(见图1)。
图1 原子吸收分光光度计结构图2.实验原理(1)定量分析方法原子吸收光谱法中有两种基本定量方法:校正曲线法和标准加入法。
标准曲线法简便、快速,但只适用于基体成分较为简单的试样。
如果溶液中共存基体成分比较复杂,则应在标准溶液中加入相同类型和浓度的基体成分,以消除或减少基体效应带来的干扰,必要时采用标准加入法而不用标准曲线法。
在使用标准曲线法时要注意以下几点:①配制的标准溶液的浓度,应在吸光度与浓度成直线关系的范围内;②标准系列的组成与待测试样组成尽可能相似③在整个分析过程中测定条件应保持不变;由于仪器的不稳定会使标准曲线的斜率发生变动,在大量试样测定过程中,应该经常用标准溶液对吸光度进行检查和校正。
在使用标准加入法时要注意以下几点:①配制的标准溶液的浓度,应在吸光度与浓度成直线关系的范围内;②为了得到很好的外推结果,至少应采用4个点来作外推曲线,而且要使第一个加入量产生的吸收值为试样原吸收值的一半左右。
③采用标准加入法只能消除基体效应带来的影响,但不能消除背景吸收的影响。
④对于斜率太小的曲线,也就是当灵敏度很低时,容易引起很大的测定误差。
(2)最佳工作条件的选择依据选择最佳的工作条件能获得最好的灵敏度、检出限和良好的线性范围,不同的仪器与不同的待测元素其仪器工作条件都有所不同,因此在进行元素分析前均需进行工作条件的选择。
①分析波长的选择:分析波长的选择一般根据灵敏度、干扰、仪器条件三方面进行选择。
原子吸收光谱仪的原理、构成、操作及应用领域详解
原子吸收光谱仪的原理、构成、操作及应用领域详解一、原子吸收光谱仪原理原子吸收光谱仪的原理是根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析。
1、原子吸收光谱的产生任何元素的原子都是由原子核和核外电子组成。
原子核是原子的中心体,核正电,电子荷负电,总的负电荷与原子核的正电荷数相等。
电子沿核外的圆形或椭圆形轨道围绕着原子核运动,同时又有自旋运动。
电子的运动状态由波函数0描述。
求解描述电子运动状态的薛定愕方程,可以得到表征原子内电子运动状态的量子数n、L、m,分别称为主量子数、角量子数和磁量子数。
原子核外的电子按其能量的高低分层分布而形成不同的能级,因此一个原子核可以具有多种能级状态。
能量最低的能级状态称为基态能级(Eo),其余能级称为激发态能级,而能量最低的激发态则称为第一激发态。
一般情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。
如果将一定外界能量如光能提供给该基态原子,当外界光能量恰好等于该基态原子中基态和某一较高能级之间的能级差△E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态而产生原子吸收光谱。
2、原子吸收光谱仪基本原理仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。
3、原子吸收光谱仪方法原理原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。
当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原原子吸收光谱仪子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。
基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱根据郎伯-比尔定律来确定样品中化合物的含量。
已知所需样品元素的吸收光谱和摩尔吸光度,以及每种元素都将优先吸收特定波长的光,因为每种元素需要消耗一定的能量使其从基态变成激发态。
检测过程中,基态原子吸收特征辐射,通过测定基态原子对特征辐射的吸收程度,从而测量待测元素含量。
原子吸收光谱仪原理及注意事项
原子吸收光谱仪原理、结构、作用及注意事项1.原子吸收光谱的理论基础原子吸收光谱分析(又称原子吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。
1 原子吸收光谱的理论基础1.1 原子吸收光谱的产生在原子中,电子按一定的轨道绕原子核旋转,各个电子的运动状态是由4个量子数来描述。
不同量子数的电子,具有不同的能量,原子的能量为其所含电子能量的总和。
原子处于完全游离状态时,具有最低的能量,称为基态(E0)。
在热能、电能或光能的作用下,基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。
激发态原子(Eq)很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。
其辐射能量大小,用下列公式示示:由于不同元素的原子结构不同,所以一种元素的原子只能发射由其E0与Eq决定的特定频率的光。
这样,每一种元素都有其特征的光谱线。
即使同一种元素的原子,它们的Eq也可以不同,也能产生不同的谱线。
原子吸收光谱是原子发射光谱的逆过程。
基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。
因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。
原子的电子从基态激发到最接近于基态的激发态,称为共振激发。
当电子从共振激发态跃迁回基态时,称为共振跃迁。
这种跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。
元素的共振吸收线一般有好多条,其测定灵敏度也不同。
在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线。
1.2 吸收强度与分析物质浓度的关系原子蒸气对不同频率的光具有不同的吸收率,因此,原子蒸气对光的吸收是频率的函数。
原子吸收光谱法基本原理
原子吸收光谱法模块1 原子吸收光谱法基本原理仪器结构:光源;检测系统;分光系统;原子化系统一、 原子吸收法定义原子吸收法是一种利用元素的基态原子对特征辐射线的吸收程度进行定量的分析方法。
测定对象:金属元素及少数非金属元素。
二、原子吸收光谱的产生当有光辐射通过自由原子蒸气,且入射光辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。
原子吸收光谱是原子由基态向激发态跃迁产生的原子线状光谱。
分光法:分子或离子的吸收为带状吸收。
原子法:基态原子为线状吸收。
三、原子吸收光谱几个重要概念共振吸收线:当电子吸收一定能量从基态跃迁到第一激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。
共振发射线:当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。
分析线:用于原子吸收分析的特征波长的辐射称为分析线,由于共振线的分析灵敏度高,光强大常作分析线使用。
(亦称为特征谱线)四、原子吸收线的形状(光谱的轮廊 )原子对光的吸收是一系列不连续的线,即原子吸收光谱。
原子吸收光谱线并不是严格几何意义上的线,而是具有一定的宽度。
νI ν0I 频率为ν0的入射光和透过光的强度νK 原子蒸气对频率ν0的入射光的吸收系数 L 原子蒸气的宽度吸收线轮廓——描绘吸收率随频率或波长变化的曲线。
发射线轮廓——描绘发射辐射强度随频率或波长变化的曲线。
原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。
中心频率:曲线极大值对应的频率υ0 峰值吸收系数:中心频率所对应的吸收系数吸收线的半宽度:指在中心频率处,最大吸收系数一半处,吸收光谱线轮廓上A 、B 两点之间的频率差。
吸收曲线的半宽度△υ的数量级约为0.001~0.01nm五、影响原子吸收谱线变宽的原因(1)自然变宽ΔνN不同谱线有不同的自然宽度,在多数情况下,自然宽度约相当于10-5nm 数量级。
大学仪器分析教学课件原子吸收光谱仪主要部件.ppt
四、单色器
monochromators
五、检测器
detector
15:25:11
原子吸收仪器(1)
15:25:11
原子吸收仪器(2)
15:25:11
原子吸收仪器(3)
15:25:11
一、流程
特点
1.采用待测元素的 锐线光源 2.单色器在火焰与 检测器之间 3.原子化系统
(1)雾化器
结构如图所示
主要缺点:雾化效率低。
15:25:11
(动画)
(2)燃烧器
它的作用是产生火焰,使进入火焰的试样 气溶胶蒸发和原子化。燃烧器是用不锈钢材料制 成,耐腐蚀、耐高温。燃烧器所用的喷灯有“孔 型”和“长缝型”两种。预混合型燃烧器中,一
般 采用吸收光程较长的长缝型喷灯。喷灯的缝长和 缝宽随火焰而不同, 空气-乙炔焰: 0.5mm×100mm; 氧化亚氮-乙炔焰:0.5mm×50mm;
(动画)
原子化过程分为干燥、灰化(去除基体)、原子化、净化( 去除残渣) 四个阶段,待测元素在高温下生成基态原子。
15:25:11
(3)优缺点
优点:原子化程度高,试样用量少(1-100μL),可测固 体及粘稠试样,灵敏度高,检测极限10-12 g/L。
缺点:重现性差,测定速度慢,操作不够简便,装置复 杂。
15:25:11
5.其他原子化方法
(1)低温原子化方法 主要是氢化物原子化方法,原子化温度700~900 ゜C ; 主要应用于:As、Sb、Bi、Sn、Ge、Se、Pb、Ti等元素 原理: 在酸性介质中,与强还原剂硼氢化钠反应生成气
态氢化物。例
AsCl3 +4NaBH4 + HCl +8H2O = AsH3 ↑+4NaCl +4HBO2+13H2 将待测试样在专门的氢化物生成器中产生氢化物,送入原
原子吸收分光光度计原理及组成_原子吸收分光度计应用
原子吸收分光光度计原理及组成_原子吸收分光度计应用
什么是原子吸收分光度计原子吸收光谱仪又称原子吸收分光光度计,根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析。
它能够灵敏可靠地测定微量或痕量元素。
原子吸收分光光度计的组成原子吸收分光光度计主要由光源、原子化器、分光系统和检测系统4部分组成。
原子化器主要有两大类,即火焰原子化器和电热原子化器。
火焰有多种火焰,目前普遍应用的是空气乙炔火焰。
电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。
(1)光源的作用是供给原子吸收所需要的足够尖锐的共振线。
(2)原子化器的作用是提供一定的能量,使试样游离出能在原子吸收中起作用的基态原子,并使其进入原子吸收光谱灯的吸收光程。
(3)分光系统的作用是将欲测的吸收线和其他谱线分开,从而得到原子吸收所需的尖锐的共振线。
(4)检测系统包括光电元件、放大器及读数系统。
原子吸收分光光度计分类火焰原子化法的优点是:火焰原子化法的操作简便,重现性好,有效光程大,对大多数元素有较高灵敏度,因此应用广泛。
缺点是:原子化效率低,灵敏度不够高,而且一般不能直接分析固体样品;
石墨炉原子化器的优点是:原子化效率高,在可调的高温下试样利用率达100%,灵敏度高,试样用量少,适用于难熔元素的测定。
缺点是:试样组成不均匀性的影响较大,测定精密度较低,共存化合物的干扰比火焰原子化法大,干扰背景比较严重,一般都需要校正背景。
原子吸收光谱仪的仪器构成
原子吸收光谱仪的仪器构成原子吸收光谱仪的仪器构成主要包括以下几个部分:
1. 光源:原子吸收光谱仪通常使用空心阴极灯作为光源,该灯内部充填有分析元素的气体,通过加热和电弧等方式激发气体,产生特定波长的谱线。
2. 光路:光路由光源、光栅、透镜、样品池和检测器等组成。
光源发出的光线经过光栅分散后,通过透镜聚焦到样品池中。
样品池中的化学样品吸收了特定波长的光线,吸收光线的强度与样品中金属元素的含量成正比。
透过样品池的光线再经过透镜后进入检测器中。
3. 检测器:常用的检测器有光电倍增管、光敏二极管和CCD等。
检测器接收样品池中透过的光线,并将其转化为电信号,供计算机处理和分析。
4. 原子化系统:原子化系统的功能是提供能量,使试样干燥、蒸发和原子化。
入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。
常用的原子化器有火焰原子化器和非火焰原子化器。
相应的两种仪器分别为火焰原子吸收光谱仪和石墨炉原子吸收光谱仪。
原子吸收光谱仪 分光光度计
原子吸收光谱仪分光光度计
原子吸收光谱仪(Atomic Absorption Spectrophotometer,AAS)是一种用于分析金属元素含量的仪器。
它利用原子在特定波长
下吸收光线的原理,通过测量样品中金属元素吸收光线的强度来确
定其浓度。
分光光度计是AAS中的一个重要部分,它能够分解来自
样品中的光线,并测量吸收光线的强度。
AAS分光光度计的工作原理是基于原子在特定波长下吸收光线
的特性。
当样品被加热至高温时,其中的金属元素会被激发并跃迁
至高能级。
然后,通过向样品中传入特定波长的光线,可以使金属
原子吸收并跃迁至高能级。
分光光度计会测量样品吸收光线的强度,从而得出金属元素的浓度。
AAS分光光度计在许多领域都有广泛的应用,包括环境监测、
食品安全、药物分析等。
它具有高灵敏度、高选择性和高准确性的
特点,能够快速、准确地分析样品中金属元素的含量。
因此,AAS
分光光度计在科学研究和工业生产中发挥着重要作用。
总的来说,AAS分光光度计作为原子吸收光谱仪的核心部件,
是一种非常重要的分析仪器。
它的高灵敏度和准确性使其成为许多
行业中不可或缺的工具,为金属元素含量的分析提供了有力支持。
随着科学技术的不断发展,AAS分光光度计将会在更多领域展现其价值,为人类的发展和进步做出更大的贡献。
原子吸收光谱仪的结构(精选文档)
原子吸收光谱仪的结构(精选文档)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)原子吸收光谱仪的的结构原子吸收光谱仪由光源、原子化系统、分光系统、检测系统等几部分组成,其结构示意图如图3.4所示。
这种仪器光路系统结构简单,有较高的灵敏度,价格较低,便于推广,能满足日常分析工作的要求,但其最大的缺点是,不能消除光源被动所引起的基线漂移,对测定的精密度和准确度有意境的影响。
图1原子吸收光谱仪结构示意图1. 光源光源的功能是发射被测元素的特征共振辐射。
对光源的基本要求是:发射的共振辐射的半宽度要明显小于吸收线的半宽度;辐射强度大、背景低,低于特征共振辐射强度的1%;稳定性好,30分钟之内漂移不超过1%;噪声小于0.1%;使用寿命长于5安培小时。
原子吸收光谱仪的光源主要有空心阴极灯和无极放电灯两种。
1.1空心阴极灯空心阴极灯是目前最普遍应用的光源,是由一个钨棒阳极和一个内含有待测元素的金属或合金的空心圆柱形阴极组成的其结构如图3.5所示。
两极密封于充有低压惰性气体(氖或氩)带有窗口的玻璃管中。
接通电源后,在空心阴极上发生辉光放电而辐射出阴极所含元素的共振线。
施加适当电压时,电子将从空心阴极内壁流向阳极,与充入的惰性气体碰撞而使之电离产生正电荷,其在电场作用下,向阴极内壁猛烈轰击。
使阴极表面的金属原子溅射出来,溅射出来的金属原子再与电子、惰性气体原子及离子发生撞碰而被激发,于是阴极内辉光中便出现了阴极物质和内充惰性气体的光谱。
用不同待测元素作阴极材料,可制成相应空心阴极灯。
空心阴极灯的辐射强度与灯的工作电流有关。
空心阴极灯在使用中其优点是辐射光强度大,稳定,谱线窄,灯容易更换,而不便之处是每测一种元素需更换相应的灯。
图2 空心阴极灯1.2 无极放电灯无极放电灯是把被测元素的金属粉末与碘(或溴)一起装入一根小的石英管中,封入压力为267~667Pa的氩气。
将石英管放于2450MHz微波发生器的微波谐振腔中进行激发。
原子吸收分光光度计原理及基础知识
二、仪器构造
• 分析器(单色器)
将待测元素的共振线与邻近谱线分开。(有析器(单色器):单光束与双光束(疑问) 单光束:光源需要一个短暂的时间到达稳定 双光束:光源分为样品光束和基准光束,一
基准光束会绕过样品池,且双光束仪器的 读数为2者之间的比例,即光强度的波动不 会影响读数的波动。相互间可增加稳定性。 因此光源不需稳定时间便可测试。
一、基本原理
遵循朗伯-比尔定律:光度分析中定量分析的基本 原理
数学表达式:A=kbc A ——吸光度; K ——比例常数; B ——基态原子层的厚度(光程); C ——蒸汽中基态原子的浓度。 朗伯定律:物质对光的吸收与物质的厚度成正比。 比尔定律:物质对光的吸收与物质的浓度成正比。
一、基本原理
• 原子发射 • 原子吸收
三、应用领域
2.在元素分析方面的应用
原子吸收光谱法拼接其本身的特点,现已广泛应用于 工业、农业、生化制药、地质、冶金、食品检验和环保领 域。该法已成为金属元素分析的最有力手段之一。而且在 许多领域已作为标准分析方法,如化学工业中的水泥分析、 玻璃分析、石油分析、电镀液分析、食盐电解液中杂质分 析、煤灰分析以及聚合物中无机元素分析;农业中的植物 分析、肥料分析、内脏以及试样分析、药物分析;冶金众 多的钢铁分析、合金分析;地球化学中的水质分析、大气 污染分析、土壤分析、岩石矿物分析;食品中微量元素分 析等
一、基本原理
• 原子发射:样品在高能热环境中有助于产
生激发态的原子,一般采用火焰或者等离 子体(石墨炉)提供所需要的热环境。尽 管如此,激发状态是不稳定,原子将自动 返回到基态,并发出光能。元素的发射光 谱包含一系列发射波长,这些发射波长是 不连贯的,即发射谱线;随被激发原子数 量的增加,发射谱线就越强。
原子吸收光谱仪的基本原理
原子吸收光谱仪的基本原理
原子吸收光谱仪是一种用于分析物质中元素含量和结构的仪器。
其基本原理是利用原子的特定能级结构和光的相互作用。
原子吸收光谱仪的基本原理可以分为以下几个步骤:
1. 光源产生特定的波长光线。
光源可以是白炽灯、气体放电灯或者激光器。
不同波长的光线可以激发不同元素的原子。
2. 光线通过样品。
样品中的元素原子吸收特定波长的光线。
该波长通常与元素的原子能级结构相关。
3. 光线通过吸收室。
吸收室中包含一个窄缝,用于选择特定波长的光线通过。
吸收室还包含一个火焰或者炉子,用于将样品中的元素转化为原子态。
4. 光线通过检测器。
检测器测量吸收室中通过的光线强度,产生一个相应的电信号。
5. 电信号处理。
电信号经过放大、滤波、积分等处理,得到一个与吸收室中光线吸收强度成正比的信号。
6. 信号分析和结果显示。
信号经过进一步处理和分析,得到样品中元素的含量或者结构信息,并在显示器上显示出来。
总的来说,原子吸收光谱仪利用原子的特定能级结构和光的相
互作用,通过测量样品中特定波长的光线被元素原子吸收的程度,来分析样品中元素的含量和结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子吸收光谱分析仪器原理及组成冯念伦孙铁军刘玲铃(山东省立医院济南市250021)摘要论述了原子吸收光谱分析的基本原理及仪器的主要构成,仪器主要有5部分组成:(1)光源:发射待测元素的锐线光谱;(2)原子化器:产生待测的原子蒸汽;(3)光禄系统:分光、分出共振线波长;(4)电路系统:包括信号变成电信号的转换器,放大电路,计算处理等电路;(5)显示系统等,旨在该类仪器用户逐渐增多的情况下,获得交流和提高。
关键词原子吸收光谱分析;共振线;空心阴板灯StudyonatomicabsorptionspectrometryinstrumentanditsanalyticalmethodsFENGNian-lun,SUNTie-jun,LIULing-ling(Shandongprovincialhospital,Ji'nan250021,China)AbstractInthisarticle,theprincipleofatomicabsorptionspectrometryandconstructionofthisanalyzerareintroduced,sothatwecanexchangeandimproveourrelatedknowledgeastheusersincrease.Keywordsatomicabsorptionspectrometry;resonanceline;hollowcathodelamp原子吸收光谱分析仪器具有灵敏度高(可达到10-9 ̄10-17g/L)重复性和选择性好,操作简便、快速,结果准确、可靠,检测时样品用量少(在几微升至几十微升之间),测量范围广(几乎能用来分析所有的金属元素和类金属元素元件)等优点。
其可应用于冶金、化工、地质、农业及医药卫生等许多方面;在环境监测、食品卫生和生物机体内微量金属元素的测定以及医学和生物化学检验等应用也日益广泛。
人体中含有许多对维持正常生理过程有重要意义的金属元素,如钾、钠、钙、镁、铁、铜、锌、锰、钼和钴等。
人体的血液、汗液、尿液、头发及机体组织,由于受环境和饮食污染会引进体内铅、汞、镉和砷等有害元素。
对这些金属元素的分析结果,可以反映机体内的生理过程及受环境污染而中毒的情况。
原子吸收光谱分析仪器既可用于血液、尿液、粪便及生物组织中微量元素的分析,也可对内脏、毛发、骨骼等经一定处理后,进行分析测定。
1原子吸收光谱分析方法的基本原理在自然界中,一切物质的分子均由原子组成,而原子是由一个原子核和核外电子构成。
原子核内有中子和质子,质子带正电,核外电子带负电;其电子的数目和构型决定了该元素的物理和化学性质。
电子按一定的轨道绕核旋转;根据电子轨道离核的距离,有不同的能量级,可分为不同的壳层。
每一壳层所允许的电子数是一定的。
当原子处于正常状态时,每个电子趋向占有低能量的能级,这时原子所处的状态叫基态(E0)。
在热能、电能或光能的作用下,原子中的电子吸收一定的能量,处于低能态的电子被激发跃迁到较高的能态,原子此时的状态叫激发态(Eq),原子从基态向激发态跃迁的过程是吸能的过程。
处于激发态的原子是不稳定的,一般在10-10 ̄10-8s内就要返回到基态(E0)或较低的激发态(Ep)。
此时,原子释放出多余的能量,辐射出光子束,其辐射能量的大小由下列公式表示:△E=Eq-Ep(或E0)=hf=hc/λ(1)式中:h———普朗克常数为6.6234×10-27erg.s;f和λ———电子从Eq能级返回到Ep(或E0)能级时所发射光谱的频率和波长;C———光速。
Eq、Ep或E0值的大小与原子结构有关,不同元素,其Eq、Ep和E0不相同,一般元素的原子只能发射由其Eq、Ep或E0决定的特定波长或频率的光,即:f=Eq-Ep(或E0)/h(2)每种物质的原子都具有特定的原子结构和外层电子排列,因此不同的原子被激发后,其电子具有不同的跃迁,能辐射出不同波长光,就是说,每种元素都有其特征的光谱线。
由于谱线的强度与元素的含量成正比,以此可测定元素的含量,作定量分析。
当某种元素被激发后,核外电子从基态E0激发到最接近基态的最低激发态E1叫共振激发。
当其又回到E0时发出的辐射光线即为共振线。
而基态原子吸收共振线辐射也可以从基态上升至最低激发态,由于各种元素的共振线不相同,并具有一定的特征性,所以原子吸收仅能在同种元素的一定特征波长中观察到,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度A表示,A与被测样品中的待测元素含量成正比;即基态原子的浓度越大,吸收的光量越多,通过测定吸收的光量,就可以求出样品中待测的金属及类金属物质的含量,对于大多数金属元素而言,共振线是该元素所有谱线中最灵敏的谱线,这就是原子吸收光谱分析法的原理,也是该法之所以有较好的选择性,可以测定微量元素的根本原因。
2原子吸收光谱分析仪器原子吸收光谱分析仪器的原理是通过火焰、石墨炉等将待测元素在高温或是化学反应作用下变成原子蒸气,由光源灯辐射出待测元素的特征光,在通过待测元素的原子蒸气时发生光谱吸收,透射光的强度与被测元素浓度成反比,在仪器的光路系统中,透射光信号经光栅分光,将待测元素的吸收线与其他谱线分开。
经过光电转换器,将光信号转换成电信号,中图分类号:O443.4;TH83文献标识码:B文章编号:1003-8868(2006)11-0062-02仪器原理62医疗卫生装备·2006年第27卷第11期ChineseMedicalEquipmentJournal·2006Vol.27No.11由电路系统放大、处理,再由CPU及外部的电脑分析、计算,最终在屏幕上显示待测样品中微量及超微量的多种金属和类金属元素的含量和浓度,由打印机根据用户要求打印报告单。
仪器主要由5部分组成:光源、原子化器、光路系统、电路系统、电脑系统。
2.1光源光源是用来产生待测元素的原子谱线的,必须能够发射出比吸收线宽度更窄,并且光强大、稳定的锐线光谱。
常用的光源有空心阴极灯及无极放电灯。
空心阴极灯的构造,是由待测元素材料制成圆筒形空心阴极,由钨材料制成棒型阳极,两电极密封在充有惰性气体、前端带有英石窗的玻璃灯管中。
在工作时,仪器的电源电路为灯的阴极和阳极之间加上200~500V的电压,根据不同元素检测要求,提供不同的灯工作电流。
灯通电后,阴极发出的电子在电场作用下加速,与惰性气体碰撞,使其电离,电离后的正离子向阴极加速运动,轰击阴极表面,使阴极材料的原子溅射出来聚集在阴极附近,电子不断接受能量,由低能级跃迁到高能级,而高能态是不稳定的,瞬间要从高能态返回到原来的基态,同时发射出与待测元素相同的特征光谱,由于许多元素的光谱处于紫外区,所以灯的透光窗须使用石英玻璃,灯的供电一般采用脉冲电压,为使灯发光强度稳定,供电电流采用稳流措施,要求电流波动度小于0.1%。
无极放电灯一般用于蒸气压较高的元素或化合物的测定上,这种灯是一个石英管,管内放进数毫克金属化合物并充有氩气。
工作时将灯置于高频电场中,氩气激发。
随着管内温度升高,金属化合物蒸发出来,并进一步离解、激发,从而辐射出金属元素的共振线。
主要用砷、硒、镉、锡、贵金属等元素的测定。
2.2原子化器原子化器的作用是提供一定的能量,使待测样品中的元素游离出蒸气基态原子,并使其进入光源的辐射光程,进行吸收。
由于原子吸收光谱分析是建立在基态原子蒸气对共振线吸收的基础上来分析元素含量的方法,所以各种类型样品的原子化是分析中最关键的问题,测定元素的结果是否准确,很大程度上取决于样品的原子化状态。
这就要求原子化器尽可能有高的原子化率,并且稳定、重现性好,干扰少和装备简单,现在仪器最常用的有两种原子化器,火焰原子化器和石墨炉。
(1)火焰原子化器是最常用的原子化器,包括2个部分:把样品溶液变成高度分散状态的雾化器和燃烧头。
工作时,由仪器外设的空压机提供压缩空气作为助燃气。
由管道进入雾化器,并在出口处以高速度喷出,会造成局部负压,使得样品溶液在大气压作用沿进样毛细管上升,随压缩空气一同喷入雾室中。
样品雾滴、助燃气与燃气一起在雾化器中充分混合后进入燃烧器,借燃烧火焰的热量,使待测元素原子化,常用的燃气为乙炔,仪器外接高纯乙炔气罐,以乙炔做燃气。
燃烧头仪器均采用长缝式,由耐高温合金材料制成,不同型号的仪器其燃烧头的缝长和缝宽不一样,一般有10、7、5cm等几种,缝宽在0.5mm左右。
(2)石墨炉:最常用的是管型高温石墨炉,由于石墨是导体,当在石墨管两端接上正负电极,通上十几伏电压和400 ̄500A之间的大电流时,石墨管会在2 ̄4s的短时间内,升到2000℃ ̄3000℃的高温,将加入到石墨炉中的样品蒸发→分解→原子化,石墨管的内径通常在4 ̄6mm,长度在25 ̄50mm之间。
为了防止石墨管和原子化的原子被氧化,仪器中的石墨管均封闭在一个保护气室里,加热时,石墨管内外均通有惰气气体氩气(Ar)。
为了降低炉体对周围的热辐射,炉体外还通有冷却水,保持原子化器的外边在60℃以下。
石墨炉原子化器,原子化效率高,所需样品量较少,检测灵敏精密度高,使用石墨炉原子化时,样品要经过干燥→灰化→原子化→净化4个过程。
每个过程分别对应不同的温度,由仪器控温电路控制实施。
(1)干燥:是在等于或稍高于溶剂沸点的温度下加热数10s,将溶液烘干,除去溶剂。
(2)灰化:在低于原子化的温度下加热数秒钟,将被测样品中有机物尽可能除去,减少基体组分可能带来的干扰。
(3)原子化:在被测元素的原子化温度下加热数秒钟,同时仪器检测系统记录此时的吸光度值A。
(4)净化:检测完毕,加高温将石墨管内残渣烧尽,开始下一次检测,这4个过程是阶梯式的升温程序,测定不同的元素时,各阶段使用的温度和时间不尽相同,现在的仪器均由微机控制,根据所测元素或操作者预先设定的数值自动完成。
2.3分光系统在原子吸收光谱分析中,为了防止原子吸光区内与吸收波长无关的辐射光进入检测器,均采用单光束分光系统;多选用对称式光栅单色器,以衍射光栅作色散元件,进行分光。
通过电机驱动自动选择波长和进行峰值定位,多数仪器的波长范围190~900nm。
其分出的单色光被凹面镜聚焦通过狭缝,照射到检测器上。
2.4检测系统包括光电转换,各控制放大电路。
单色器分选出基态原子的共振线光束通过狭缝照射到检测器上,由检测器将光信号变成电信号。
以前的仪器采用光电倍增管作光电转换,现在有些厂家的新型仪器采用低噪声CMOS电荷放大器阵列作光电转换。
光信号通过固态检测器后变成电信号,经过前置放大器、对数放大器放大,再经过自动调零、积分运算、浓度直读、曲线校正、自动增益控制、峰值保持等电路的放大处理,将被测元素吸光度值A变成浓度信号,在显示器显示出测定值,并由打印机根据需要打印多种型式的报告单。