BP神经网络matlab源程序代码
BP神经网络的数据分类_MATLAB源代码
%%%清除空间clcclear all ;close all ;%%%训练数据预测数据提取以及归一化%%%下载四类数据load data1 c1load data2 c2load data3 c3load data4 c4%%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ;data ( 501:1000 , : ) = data2 ( 1:500 , : ) ;data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ;data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ;%%%%%%从1到2000间的随机排序k = rand ( 1 , 2000 ) ;[ m , n ] = sort ( k ) ; %%m为数值,n为标号%%%%%%%%%%%输入输出数据input = data ( : , 2:25 ) ;output1 = data ( : , 1) ;%%%%%%把输出从1维变到4维for i = 1 : 1 :2000switch output1( i )case 1output( i , :) = [ 1 0 0 0 ] ;case 2output( i , :) = [ 0 1 0 0 ] ;case 3output( i , :) = [ 0 0 1 0 ] ;case 4output( i , :) = [ 0 0 0 1 ] ;endend%%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本input_train = input ( n( 1:1500 , : ) )’ ;output_train = output ( n( 1:1500 , : ) )’ ;input_test = input ( n( 1501:2000 , : ) )’ ;output_test = output ( n( 1501:2000 , : ) )’ ;%%%%输入输出数据归一化[ inputn , inputps ] = mapminmax ( input_train ) ;%%%网络结构初始化innum = 24 ; %输入层midnum = 25 ; %隐含层outnum = 4 ; %输出层%权值初始化w1 = rands ( midnum , innum ) ;b1 = rands ( midnum , 1 ) ;w2 = rands ( midnum , outnum ) ;b2 = rands ( outnum , 1) ;w2_1 = w2 ; w2_2 = w2_1 ;w1_1 = w1 ; w1_2 = w1_1 ;b1_1 = b1 ; b1_2 = b1_1 ;b2_1 = b2 ; b2_2 = b2_1 ;%%%学习速率xite = 0.1 ;alfa = 0.01 ;%%%%%网络训练for ii = 1:10E( ii ) = 0 ;for i = 1:1:1500 ;%%网络预测输出x = inputn ( : , j ) ;%%%隐含层输出for j = 1:1:midnuml (j) = inputn ( : , i )’*w1( j , :)’ + b1 (j) ;lout (j) = 1/( 1 +exp( -1(j) ) ) ;end%%%%输出层输出yn = w2’ * lout’ + b2 ;%%%权值阈值修正%计算权值变化率dw2 = e * lout ;db2 = e’ ;for j = 1:1:midnumS= 1/(1 + exp ( -l(j) ) ) ;Fl (j) = S * ( 1- S) ;endfor k = 1:1:innumfor j = 1:1:midnumdw1( k, j ) = Fl (j) * x (k) *( e(1)*w2( j,1) + e(2)*w2( j,2) + e(3)*w2( j,3) + e(4)*w2( j,4) ) ; db1( j ) = Fl (j) * *( e(1)*w2( j,1) + e(2)*w2( j,2) + e(3)*w2( j,3) + e(4)*w2( j,4) ) ;endendw1=w1_1+xite*dw1';b1=b1_1+xite*db1';w2=w2_1+xite*dw2';b2=b2_1+xite*db2';w1_2=w1_1;w1_1=w1;w2_2=w2_1;w2_1=w2;b1_2=b1_1;b1_1=b1;b2_2=b2_1;b2_1=b2;endend%%%%语音特征信号分类input_test = mapminmax ( ‘apply’ , input_test , inputps ); for ii = 1:1for i = 1:500%隐含层输出for j = 1:1:midnuml (j) = input_te st ( : , i )’ * w1( j , : )’ + b1(j) ;lout ( j ) = 1/ ( 1 + exp( -l(j) ) ) ;endfore( :,i ) = w2’ * lout’ + b2 ;endend%%%结果分析%%%%根据网络输出找出数据属于哪类for i = 1:500output_fore (i) = find ( fore (:,i) = =max (fore(:,i) ) ) ; end%%%%%BP网络预测输出error = output_fore - output1 ( n( 1501:2000) )’ ;%%画出分类图figure (1)plot ( output_fore , ‘r’ )hold onplot (output1( n (1501:2000))’ , ‘b’ ) ;legend ( ‘预测语音类别’, ‘实际语音类别’) %%%画出误差图figure (2)plot (error)title ( ‘BP网络分类误差’, ‘fontsize’, 12 ) xlabel ( ‘语音信号’, ‘fontsize’, ‘12’) ylabel ( ‘分类误差’, ‘fontsize’, 12 ) %%%%%找出属于哪种类型for i = 1:500if error (i) ~= 0[ b,c ] = max (output_test( :,i ) );switch ccase 1k(1) = k(1) + 1 ;case 2k(2) = k(2) + 1 ;case 3k(3) = k(3) + 1 ;case 4k(4) = k(4) + 1 ;endendend%%%%找出每一类的个体总和kk = zeros ( 1,4 )for i = 1:500[ b,c ] = max ( output_test( :,i) ) ; switch ccase 1kk(1) = kk(1) + 1 ;case 2kk(2) = kk(2) + 1 ;case 3kk(3) = kk(3) + 1 ;case 4kk(4) = kk(4) + 1 ;endend%%%正确率nightridio = ( kk - k )./ kk。
基于遗传算法的BP神经网络MATLAB代码
基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。
1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。
BP神经网络整定的PID算法-matlab源程序
BP神经网络整定的PID控制算法matlab源程序,系统为二阶闭环系统。
%BP based PID Controlclear all;close all;xite=0.28;alfa=0.001;IN=4;H=5;Out=3;%NN Structurewi=0.50*rands(H,IN);wi_1=wi;wi_2=wi;wi_3=wi;wo=0。
50*rands(Out,H);wo_1=wo;wo_2=wo;wo_3=wo;x=[0,0,0];u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;y_1=0;y_2=0;y_3=0;Oh=zeros(H,1); %Output from NN middle layerI=Oh; %Input to NN middle layererror_2=0;error_1=0;ts=0.01;sys=tf(2。
6126,[1,3。
201,2.7225]);%建立被控对象传递函数dsys=c2d(sys,ts,’z’); %把传递函数离散化[num,den]=tfdata(dsys,'v’);%离散化后提取分子、分母for k=1:1:2000time(k)=k*ts;rin(k)=40;yout(k)=—den(2)*y_1-den(3)*y_2+num(2)*u_2+num(3)*u_3;error(k)=rin(k)-yout(k);xi=[rin(k),yout(k),error(k),1];x(1)=error(k)—error_1;x(2)=error(k);x(3)=error(k)-2*error_1+error_2;epid=[x(1);x(2);x(3)];I=xi*wi’;for j=1:1:HOh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j)));%Middle Layer endK=wo*Oh; %Output Layerfor l=1:1:OutK(l)=exp(K(l))/(exp(K(l))+exp(-K(l)));%Getting kp,ki,kd endkp(k)=K(1);ki(k)=K(2);kd(k)=K(3);Kpid=[kp(k),ki(k),kd(k)];du(k)=Kpid*epid;u(k)=u_1+du(k);if u(k)〉=45 %Restricting the output of controlleru(k)=45;endif u(k)〈=-45u(k)=-45;enddyu(k)=sign((yout(k)—y_1)/(u(k)-u_1+0。
BP神经网络实验详解(MATLAB实现)
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
基于遗传算法的BP神经网络MATLAB代码
由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。
以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。
程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------%% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=[1:19;2:20;3:21;4:22]';YY=[1:4];XX=premnmx(XX);YY=premnmx(YY);YY%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 11],'maxGenTerm',gen,...'normGeomSelect',[],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);{2,1}=W1;{3,2}=W2;{2,1}=B1;{3,1}=B2;XX=P;YY=T;%设置训练参数训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值想运行程序,直接在代码窗口输入GABPNET即可。
BP神经网络MATLAB实例
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本
% P 为输入矢量
P=[-1, -2, 3, 1; -1, 1, 5, -3];
inputbias=net.b{1}
% 当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
pause
clc
% 设置训练参数
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
pause;
clc
echo off
下面给出了网络的某次训练结果,可见,当训练至第 136 步时,训练提前停止,此时的网络误差为 0.0102565。给出了训练后的仿真数据拟合曲线,效果是相当满意的。
[net,tr]=train(net,P,T,[],[],val);
clc
elseif(choice==2)
echo on
clc
% 采用贝叶斯正则化算法 TRAINBR
net.trainFcn='trainbr';
pause
clc
% 对 BP 网络进行仿真
A = sim(net,P)
% 计算仿真误差
E = T - A
MSE=mse(E)
pause
clc
echo off
例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:
BP神经网络MATLAB编程代码
BP神经网络的设计MATLAB编程例1 采用动量梯度下降算法训练 BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为 t = [-1 -1 1 1]解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对 BP 神经网络进行训练% SIM——对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用 TRAINGDM 算法训练 BP 网络[net,tr]=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。
BP神经网络matlab源程序代码
%======原始数据输入========p=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;...3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;...4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;...2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;...2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;...3489 3172 4568;3172 4568 4015;]';%===========期望输出=======t=[4554 2928 3497 2261 6921 1391 3580 4451 2636 3471 3854 3556 2659 ... 4335 2882 4084 1999 2889 2175 2510 3409 3729 3489 3172 4568 4015 ... 3666];ptest=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;...3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;...4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;...2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;...2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;...3489 3172 4568;3172 4568 4015;4568 4015 3666]';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %将数据归一化关于用premnmx语句进行归一化:premnmx语句的语法格式是:[Pn,minp,maxp,Tn,mint,maxt]=premnmx(P,T) 其中P,T分别为原始输入和输出数据,minp和maxp分别为P中的最小值和最大值。
BP 神经网络的设计实例(MATLAB编程)
BP神经网络的设计实例(MATLAB编程)例1采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 31-11 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP神经网络进行训练% SIM——对BP神经网络进行仿真pause%敲任意键开始clc%定义训练样本% P为输入矢量P=[-1,-2,3,1;-1,1,5,-3];% T为目标矢量T=[-1, -1, 1, 1];pause;clc%创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') %当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}%当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc%设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc%调用TRAINGDM算法训练BP网络[net,tr]=train(net,P,T);pauseclc%对BP网络进行仿真A = sim(net,P)%计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2采用贝叶斯正则化算法提高BP网络的推广能力。
在本例中,我们采用两种训练方法,即L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP网络,使其能够拟合某一附加有白噪声的正弦样本数据。
人工神经网络Matlab实现代码
以下是用Matlab中的m语言编写的BP神经网络代码,实现的是一个正弦函数的拟合过程,包括了初始化、BP算法、绘制曲线等过程,可以将代码放到一个M文件中运行,以下是代码:defaultpoints=20; %%%%%%%%%隐含层节点数inputpoints=1; %%%%%%%%%输入层节点数outputpoints=1; %%%%%%%%%输出层节点数Testerror=zeros(1,100);%%%%每个测试点的误差记录a=zeros(1,inputpoints);%%%%输入层节点值y=zeros(1,outputpoints);%%%样本节点输出值w=zeros(inputpoints,defaultpoints);%%%%%输入层和隐含层权值%初始化权重很重要,比如用rand函数初始化则效果非常不确定,不如用zeros初始化v=zeros(defaultpoints,outputpoints);%%%%隐含层和输出层权值bin=rand(1,defaultpoints);%%%%%隐含层输入bout=rand(1,defaultpoints);%%%%隐含层输出base1=0*ones(1,defaultpoints);%隐含层阈值,初始化为0cin=rand(1,outputpoints);%%%%%%输出层输入cout=rand(1,outputpoints);%%%%%输出层输出base2=0*rand(1,outputpoints);%%输出层阈值error=zeros(1,outputpoints);%%%拟合误差errors=0;error_sum=0; %%%误差累加和error_rate_cin=rand(defaultpoints,outputpoints);%%误差对输出层节点权值的导数error_rate_bin=rand(inputpoints,defaultpoints);%%%误差对输入层节点权值的导数alfa=0.5; %%%% alfa 是隐含层和输出层权值-误差变化率的系数,影响很大belt=0.5; %%%% belt 是隐含层和输入层权值-误差变化率的系数,影响较小gama=5; %%%% gama 是误差放大倍数,可以影响跟随速度和拟合精度,当gama大于2时误差变大,容易震荡%%%%规律100个隐含节点,当alfa *gama =1.5时,效果好,其他值误差变大,belt基本不影响效果%%%%规律200个隐含节点,当alfa *gama =0.7时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样%%%%规律50个隐含节点,当alfa *gama =3时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样trainingROUND=200;% 训练次数,有时训练几十次比训练几百次上千次效果要好很多sampleNUM=361; % 样本点数x1=zeros(sampleNUM,inputpoints); %样本输入矩阵y1=zeros(sampleNUM,outputpoints); %样本输出矩阵x2=zeros(sampleNUM,inputpoints); %测试输入矩阵y2=zeros(sampleNUM,outputpoints); %测试输出矩阵observeOUT=zeros(sampleNUM,outputpoints); %%拟合输出监测点矩阵i=0;j=0;k=0; %%%%其中j是在一个训练周期中的样本点序号,不可引用i=0;h=0;o=0; %%%%输入层序号,隐含层序号,输出层序号x=0:0.2*pi:2*pi; %%%%步长for j=1:9 %%%%%%这里给样本输入和输出赋值,应根据具体应用来设定x1(j,1)=x(j);y1(j,1)=sin(x1(j,1));endx=0:2*pi/361:2*pi;for j=1:361x2(j,1)=x(j);y2(j,1)=sin(x2(j,1));endfor o=1:outputpointsy1(:,o)=(y1(:,o)-min(y1(:,o)))/(max(y1(:,o))-min(y1(:,o)));%归一化,使得输出范围落到[0,1]区间上,当激活函数为对数S型时适用y2(:,o)=(y2(:,o)-min(y2(:,o)))/(max(y2(:,o))-min(y2(:,o)));endfor i=1:inputpointsx1(:,i)=(x1(:,i)-min(x1(:,i)))/(max(x1(:,i))-min(x1(:,i)));%输入数据归一化范围要和输出数据的范围相同,[0,1]x2(:,i)=(x2(:,i)-min(x2(:,i)))/(max(x2(:,i))-min(x2(:,i)));endsampleNUM=9;for mmm=1:trainingROUND %训练开始,100次error_sum=0;if mmm==trainingROUNDsampleNUM=361;endfor j=1:sampleNUM %%%%%每次训练一个样本点for i=1:inputpoints %%%%%样本输入层赋值a(i)=x1(j,i);endfor o=1:outputpoints %%%%%样本输出层赋值y(o)=y1(j,o);endif mmm==trainingROUNDfor i=1:inputpoints %%%%%样本输入层赋值a(i)=x2(j,i);endfor o=1:outputpoints %%%%%样本输出层赋值y(o)=y2(j,o);endendfor h=1:defaultpointsbin(h)=0;for i=1:inputpointsbin(h)=bin(h)+a(i)*w(i,h);endbin(h)=bin(h)-base1(h);bout(h)=1/(1+exp(-bin(h)));%%%%%%隐含层激励函数为对数激励endtemp_error=0;for o=1:outputpointscin(o)=0;for h=1:defaultpointscin(o)=cin(o)+bout(h)*v(h,o);endcin(o)=cin(o)-base2(o);cout(o)=1/(1+exp(-cin(o))); %%%%%%输出层激励函数为对数激励observeOUT(j,o)=cout(o);error(o)=y(o)-cout(o);temp_error=temp_error+error(o)*error(o);%%%%%记录实际误差,不应该乘伽玛系数error(o)=gama*error(o);endTesterror(j)=temp_error;error_sum=error_sum+Testerror(j);for o=1:outputpointserror_rate_cin(o)=error(o)*cout(o)*(1-cout(o));endfor h=1:defaultpointserror_rate_bin(h)=0;for o=1:outputpointserror_rate_bin(h)= error_rate_bin(h)+error_rate_cin(o)*v(h,o);enderror_rate_bin(h)=error_rate_bin(h)*bout(h)*(1-bout(h));endfor h=1:defaultpointsbase1(h)=base1(h)-5*error_rate_bin(h)*bin(h);%%%%base1变化不影响最小误差,但是可以抑制由于过多训练产生的发散效果for o=1:outputpointsv(h,o)=v(h,o)+alfa*error_rate_cin(o)*bout(h); % 可能要改,正负号?% base1(i)=base1(i)+0.01*alfa*error(i);endfor i=1:inputpointsw(i,h)=w(i,h)+belt*error_rate_bin(h)*a(i); % 可能要改,正负号?%base2=base2+0.01*belt*out_error;endendend%%%%%%%%一轮训练结束if(error_sum<0.01)%%%%error_sum中记录一轮训练中所有样本的所有输出和拟合输出值差值平方和break;endend %//训练结束figureplot(x(1:sampleNUM),Testerror(1:sampleNUM),'r+')hold onplot(x(1:sampleNUM),y2(1:sampleNUM,1),'*')hold onplot(x(1:sampleNUM),observeOUT(1:sampleNUM,1),'o')hold onylabel(num2str(mmm));xlabel(num2str(error_sum));。
MATLAB程序代码 bp神经网络通用代码
实用标准文案MATLAB程序代码--bp神经网络通用代码matlab通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。
P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc(net.iw{1},net.b{1});net.adaptparam.passes=3;for a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc(net.iw{1},net.b{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0:0.025:5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。
精彩文档.实用标准文案P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');精彩文档.实用标准文案title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9)%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7);max_perf_inc(表现函数增加最大比,缺省为1.04)%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为1.2);delt_dec(权值变化减小量,缺省为0.5);% delta0(初始权值变化,缺省为0.07);deltamax(权值变化最大值,缺省为50.0)% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法;%训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr %训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为5.0e-5);% lambda(Hessian阵不确定性调节参数,缺省为5.0e-7)% 缺少1个训练参数:lr精彩文档.实用标准文案%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);net.trainparam.epochs=300; %最大训练次数(前缺省为10,自trainrp后,缺省为100)net.trainparam.lr=0.05; %学习率(缺省为0.01)net.trainparam.show=50; %限时训练迭代过程(NaN表示不显示,缺省为25)net.trainparam.goal=1e-5; %训练要求精度(缺省为0)%net.trainparam.max_fail 最大失败次数(缺省为5)%net.trainparam.min_grad 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6)%net.trainparam.time 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[1.5 3.6 6.7];精彩文档.实用标准文案net=newgrnn(P,T);%仿真验证p=4.5;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1:0.1:1;T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609...0.1336 -0.2013 -0.4344 -0.500 -0.3930 -0.1647 -0.0988...0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');精彩文档.实用标准文案xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas(p-1.5);a3=radbas(p+2);a4=a+a2*1.5+a3*0.5;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sceg=0.02;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试精彩文档.实用标准文案plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=0.7;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);精彩文档.实用标准文案title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Tc(i)))endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)精彩文档.实用标准文案for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Ac(i)))endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')P=[13, 0, 1.119, 1, 26.3;22, 0, 1.135, 1, 26.3;-15, 0, 0.9017, 1, 20.4;-30, 0, 0.9172, 1, 26.7;24,0,1.238,0.9704,28.2;3,24,1.119,1,26.3;0,52,1.089,1,26.3;0,-73,1.0889,1,26.3;1,28,0.8748,1,2 6.3;-1,-39,1.1168,1,26.7;-2, 0, 1.495, 1, 26.3;0, -1, 1.438, 1, 26.3;4, 1,0.4964,0.9021, 26.3;3, -1, 0.5533, 1.2357, 26.7;-5, 0, 1.7368, 1, 26.7;1, 0, 1.1045, 0.0202,26.3;-2, 0, 1.1168, 1.3764, 26.7;-3, -1, 1.1655, 1.4418,27.5;3, 2, 1.0875, 0.748, 27.5;-3, 0, 1.1068, 2.2092, 26.3;4, 1, 0.9017, 1, 13.7;3, 2, 0.9017, 1, 14.9;-3, 1, 0.9172, 1, 13.7;-2, 0, 1.0198, 1.0809, 16.1;0, 1, 0.9172, 1, 13.7]T=[1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1 ];%期望输出plotpv(P,T);%描绘输入点图像精彩文档.。
基于遗传算法的BP神经网络MATLAB代码
用遗传算法优化BP神经网络的Matlab编程实例(转)由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。
以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。
程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------% GABPNET.m% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=[1:19;2:20;3:21;4:22]';YY=[1:4];XX=premnmx(XX);YY=premnmx(YY);YY%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 11],'maxGenTerm',gen,...'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);net.LW{2,1}=W1;net.LW{3,2}=W2;net.b{2,1}=B1;net.b{3,1}=B2;XX=P;YY=T;%设置训练参数net.trainParam.show=1;net.trainParam.lr=1;net.trainParam.epochs=50;net.trainParam.goal=0.001;%训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x)load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值想运行程序,直接在代码窗口输入GABPNET即可。
基于遗传算法的BP神经网络MATLAB代码
用遗传算法优化BP神经网络的Matlab编程实例(转)由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。
以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。
程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------%% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=[1:19;2:20;3:21;4:22]';YY=[1:4];XX=premnmx(XX);YY=premnmx(YY);YY%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模save data2 XX YY % 是将xx,yy 二个变数的数值存入data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...'normGeomSelect',[],['arithXover'],[2],'nonUnifMutation',[2 gen 3]); %绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);{2,1}=W1;{3,2}=W2;{2,1}=B1;{3,1}=B2;XX=P;YY=T;%设置训练参数训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution% options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2 for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值想运行程序,直接在代码窗口输入GABPNET即可。
用matlab编BP神经网络预测程序
求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。
];输入T=[。
];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights={1,1}inputbias={1}% 当前网络层权值和阈值layerWeights={2,1}layerbias={2}% 设置训练参数= 50;= ;= ;= 10000;= 1e-3;% 调用 TRAINGDM 算法训练 BP 网络[net_1,tr]=train(net_1,P,T);% 对 BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。
]';%测试sim(net_1,x)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。
3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。
(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP神经网络matlab源程序代码)%******************************%学习程序%******************************%%======原始数据输入========p=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;...3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;...4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;...2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;...2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;...3489 3172 4568;3172 4568 4015;]';%===========期望输出=======t=[4554 2928 3497 2261 6921 1391 3580 4451 2636 3471 3854 3556 2659 ... 4335 2882 4084 1999 2889 2175 2510 3409 3729 3489 3172 4568 4015 ... 3666];ptest=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;...3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;...4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;...2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;...2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;...3489 3172 4568;3172 4568 4015;4568 4015 3666]';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %将数据归一化NodeNum1 =4; % 隐层第一层节点数NodeNum2=7; % 隐层第二层节点数TypeNum = 5; % 输出维数TF1 = 'tansig';TF2 = 'tansig';TF3 = 'tansig';net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum],{TF1 TF2 TF3},'traingdx');%网络创建traingdmnet.trainParam.show=50;net.trainParam.epochs=50000; %训练次数设置net.trainParam.goal=1e-5; %训练所要达到的精度net.trainParam.lr=0.01; %学习速率net.trainParam.mc=0.9;net.trainParam.lr_inc=1.05;net.trainParam.lr_dec=0.7;net.trainParam.max_perf_inc=1.04;net=train(net,pn,tn);p2n=tramnmx(ptest,minp,maxp);%测试数据的归一化an=sim(net,p2n);[a]=postmnmx(an,mint,maxt) %数据的反归一化,即最终想得到的预测结果plot(1:length(ttest),ttest,'o',1:length(ttest),a,'+');title('o表示预测值--- *表示实际值')grid on%m=length(a); %向量a的长度%t1=[t,a(m)];error=ttest-a; %误差向量figureplot(1:length(error),error,'-.')title('误差变化图')grid on[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %½«Êý¾Ý¹éÒ»»¯NodeNum1 =4; % Òþ²ãµÚÒ»²ã½ÚµãÊýNodeNum2=7; % Òþ²ãµÚ¶þ²ã½ÚµãÊýTypeNum = 5; % Êä³öάÊýTF1 = 'tansig';TF2 = 'tansig';TF3 = 'tansig';net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum],{TF1 TF2TF3},'trainrp');%ÍøÂç´´½¨traingdmnet.trainParam.show=50;net.trainParam.epochs=50000; %ѵÁ·´ÎÊýÉèÖÃnet.trainParam.goal=1e-5; %ѵÁ·ËùÒª´ïµ½µÄ¾«¶Ènet.trainParam.lr=0.01; %ѧϰËÙÂÊ%net.trainParam.mc=0.9;%net.trainParam.lr_inc=1.05;%net.trainParam.lr_dec=0.7;%net.trainParam.max_perf_inc=1.04;%trainrpnet.trainParam.delt_inc=1.2;net.trainParam.delt_dec=0.5;net.trainParam.delta0=0.07;net.trainParam.deltamax=50.0;net=train(net,pn,tn);p2n=tramnmx(p,minp,maxp);%²âÊÔÊý¾ÝµÄ¹éÒ»»¯an=sim(net,p2n);[a]=postmnmx(an,mint,maxt) %Êý¾ÝµÄ·´¹éÒ»»¯ £¬¼´×îÖÕÏëµÃµ½µÄÔ¤²â½á¹ûplot(1:length(t),t,'o',1:length(a),a,'+');title('o±íʾԤ²âÖµ--- *±íʾʵ¼ÊÖµ')grid on%m=length(a); %ÏòÁ¿aµÄ³¤¶È%t1=[t,a(m)];error=t-a; %Îó²îÏòÁ¿figureplot(1:length(error),error,'-.')title('Îó²î±ä»¯Í¼')grid on%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9)%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7);max_perf_inc(表现函数增加最大比,缺省为1.04)%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda 的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为1.2);delt_dec(权值变化减小量,缺省为0.5);% delta0(初始权值变化,缺省为0.07);deltamax(权值变化最大值,缺省为50.0) % 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法;%训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr%训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为5.0e-5);% lambda(Hessian阵不确定性调节参数,缺省为5.0e-7)% 缺少1个训练参数:lr%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);net.trainparam.epochs=20000; %最大训练次数(前缺省为10,自trainrp后,缺省为100) net.trainparam.lr=0.05; %学习率(缺省为0.01)net.trainparam.show=25; %限时训练迭代过程(NaN表示不显示,缺省为25)net.trainparam.goal=1e-8; %训练要求精度(缺省为0)%net.trainparam.max_fail 最大失败次数(缺省为5)%net.trainparam.min_grad 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6) %net.trainparam.time 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,H) %网络仿真。