第一振型应是平动的原因
(完整版)周期比合理情况与调整
今天看到一个悬赏的帖子,关于振型为扭转时的调整的,给他回复了,不过很多人可能不容易找到,并且这是我们这种新手一般会遇到的问题,所以就再发一个帖子,当然了,帖子的内容不是我写的,谁写的这些也无从查起了,但是其内容还是很有价值的,在这里对其人表示敬意。
如其人看到了,感觉有不妥之处联系我,立刻删除,绝对尊重别人的成果,当然了,最好一直留着供是大家互相学习。
1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。
3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大。
4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。
5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。
6)当第二振型为扭转时当第二振型为扭转时当第二振型为扭转时当第二振型为扭转时,,,,说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大,,,,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部宜适当削弱结构内部宜适当削弱结构内部宜适当削弱结构内部沿沿沿沿““““第三振型转角方向第三振型转角方向第三振型转角方向第三振型转角方向””””的刚度的刚度的刚度的刚度,或适当加强结构外围或适当加强结构外围或适当加强结构外围或适当加强结构外围((((主要是沿第一振型转主要是沿第一振型转主要是沿第一振型转主要是沿第一振型转角方向角方向角方向角方向))))的刚度的刚度的刚度的刚度。
第一或第二振型为扭转时的调整方法
第一或第二振型为扭转时的调整方法1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。
3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大。
4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。
5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。
6)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,或适当加强结构外围(主要是沿第一振型转角方向)的刚度。
7)某主轴方向的层间位移角小于限值(见高规表4.6.3,下同)较多时,对该主轴方向宜采用“加强结构外围刚度”的方法;某主轴方向的层间位移角大于限值较多时,对该主轴方向宜采用“削弱结构内部刚度”的方法;某主轴方向的层间位移角接近限值时,对该主轴方向宜同时采用“加强结构外围刚度”和“削弱结构内部刚度”的方法。
8)在进行上述调整的同时,应注意使周期比满足高规4.3.5条的要求。
9)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。
【答1】简单的说,当扭转周期不在第一周期时,就是有一个轴的平面刚度超过了扭转刚度。
【设计经验】为什么结构计算第一振型应是平动
为什么结构计算第一振型应是平动动力学认为结构的第一周期应该是出现该振形时所需要的能量最小,第二周期所需要的能量次之,依次往后推.我认为规范规定Tt/T1<0.9就是为了让对结构产生作用的能量中的大部分只够激起结构的平动而不是扭转.按照动力学理论,结构第一周期只与结构本身的质量、刚度和边界条件有关,与外界力没有关系,地震只是提供一个激振力,基底剪力是反映这个激振效果的一个指标,这个除了以上的条件外,同时就跟地震参数有关,比如加速度的值.而结构最容易出现振动的振型就应该是第一振型,这个振型所需要的能量最小,最容易发生.这个就很容易理解为什么扭转振型不能太靠前,起码不能出现再第一振型.通高层设计中是可行的.关于第二平动周期与扭转周期比较接近的问题是相对的,我个人认为就是说能拉大到0.9以下最好,但是不能拉到0.9以下,也尽量不要超的太多.怎么理解主振型?pkpm采用了wilson教授的质量参与系数的概念(可以查看sap和etabs),比如我们计算15个振型,质量参与系数达到了98%,那么15个振型当中就有一个质量参与系数最大的振型,比如是2振型,它对这个98%的贡献最大(比如达到40%),那么我们就认为它就是主振型.而其它的振型的贡献可能相对很小.主振型的意义在于:它可能不是最容易被激励起的振型,但是它一旦被激励起了,那么它就是结构振动的主要成分,所以我们在抗震的时候我特别给与关注,尽量避免它与扭转振型靠近.这也就是我建议ljbwhu将T2与Tt拉大点的原因.在常规的高层结构设计中,由于各种限制,不容易出现以下这种情况:当结构中存在某些相对软弱的部分或者构件的时候,则结构的主振型会出现的比较靠后,这很容易理解,因为软弱的地方在激励能量相对小的时候就会局部振动,此时不是整体振动,所以该振型的质量参与系数很小,但是它们却是低阶振型.所以我前面的贴子提到了模型错误,这里的错误并不是指模型逻辑上的错误,而是某些构件的刚度、尺寸、材料等原因的错误,造成局部软弱.这种情况比较特殊,但是也可能出现,所以要避免.主振型:对于某个特定的地震作用引起的结构反应而言,一般每个参与振型都有着一定的贡献,贡献最大的振型就是主振型,贡献指标的确定一般有两个,一是基底剪力的贡献大小,二是应变能的贡献大小.一般而言,基底剪力的贡献大小比较直观,容易被我们接受扭转为主的振型中,周期最长的称为第一扭转为主的振型,其周期称为扭转为主的第一自振周期Tt.平动为主的振型中,根据确定的两个水平坐标轴方向X、Y,可区分为X向平动为主的振型和Y向平动为主的振型.假定X、Y方向平动为主的第一振型(即两个方向平动为主的振型中周期最长的振型)的周期值分别记为T1X和T1Y,其中的大者位T1,小者为T2.则T1即为《高规》第41315条中所说的平动为主的第一自振周期,T2姑且称作平动为主的第二自振周期.研究表明,结构扭转第一自振周期与地震作用方向的平动第一自振周期之比值,对结构的扭转响应有明显影响,当两者接近时,结构的扭转效应显著增大[7].《高规》第41315条对结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比值进行了限制,其目的就是控制结构扭转刚度不能过弱,以减小扭转效应.《高规》对扭转为主的第一自振周期Tt与平动为主的第二自振周期T2之比值没有进行限制,主要考虑到实际工程中,单纯的一阶扭转或平动振型的工程较少,多数工程的振型是扭转和平动相伴随的,即使是平动振型,往往在两个坐标轴方向都有分量.针对上述情况,限制Tt 与T1的比值是必要的,也是合理的,具有广泛适用性;如对Tt与T2的比值也加以同样的限制,对一般工程是偏严的要求.对特殊工程,如比较规则、扭转中心与质心相重合的结构,当两个主轴方向的侧向刚度相差过大时,可对Tt与T2的比值加以限制,一般不宜大于1.0.实际上,按照《抗震规范》第31513条的规定,结构在两个主轴方向的侧向刚度不宜相差过大,以使结构在两个主轴方向上具有比较相近的抗震性能.当然,振型特征判断还与宏观振动形态有关.对结构整体振动分析而言,结构的某些局部振动的振型是可以忽略的,以利于主要问题的把握.注意上面这句话的意义说明了,某些局部振动可以忽略掉,那么如何判断某些局部振动呢?就转到我们上面所讨论的问题上来了,可以采用振型总剪力的大小来判断或者振型质量参与系数来判断.忽略某些总剪力很小或者质量参与系数很小的振型,而保留那些相对较大的振型,这样说的话,就没有必要强制制要求将总剪力最大的平动周期作为第一平动周期了!第一扭转周期的确定也没有什么疑惑.那个审图中心的意见有问题!1)如果一个结构X,Y方向周期相差很大时,前几个平动周期往往是一个方向的(如均为X方向或均为Y方向).此时要求Tt/T1<0.9即可.(2)如果一个结构X,Y方向周期相差不大时,应使第一第二振型周期以平动为主(此时第一第二振型分别是X,Y向),此时要求Tt/T1和Tt/T2均<0.9.这是容易作到的.另附手头一些资料,不知对大家有无帮助:(1)高规4.3.5条的条文说明主要意思:Tt与T1两者接近时由于振动耦连影响,结构扭转效应明显增大.(2)2002年9月版SATWE用户手册124页:振型的方向角0度是X方向,90度是Y方向.依次类推.它的意义在于使我们明确知道结构刚度的薄弱方向.两个第一侧移振型的方向角,代表了水平地震作用的两个近似的最不利方向.(3)2002年9月版SATWE用户手册124页:主振型的概念:对于地震引起的结构反应而言,参与振型贡献最大的就是主振型.衡量贡献大小有2个指标较合适,一是基底剪力贡献,二是应变能贡献.基底剪力贡献较易为工程技术人员接受.SATWE给出每个振型每个地震方向的基底剪力贡献.用于判断每个地震方向的主振型.PS:周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于0.5的平动周期,按周期值从大到小排列.同理,将所有平动系数大于0.5的平动周期值从大到小排列;2)第一周期的判断:从列队中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应的振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,以此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值即为第一扭转(平动)周期;值得注意的是,在判断复杂结构的第一平动周期时,还应考察该振型产生的基底剪力是否为各振型中的最大值,如果该振型产生的基底剪力很小,就不是第一平动周期.(详细见PKPM新天地2005.1期)3)周期比计算:将第一扭转周期值除以第一平动周期即可.。
第1振型亦是平动的原因
第一振型应是平动的原因(概念上平动比扭转要好,因为平动时竖向构件的位移是相同的,各竖向构件的受力大致均匀,但扭转就不同了,扭转时周边构件位移要比中心构件位移大得多,造成受力大的构件在其他构件还没充分发挥的情况下就先破坏了。
这就要求结构在计算中要控制位移比、周期比等相关指标使其满足规范要求)第一振型应是平动的原因动力学认为结构的第一周期应该是出现该振形时所需要的能量最小,第二周期所需要的能量次之,依次往后推。
我认为规范规定Tt/T1<0.9就是为了让对结构产生作用的能量中的大部分只够激起结构的平动而不是扭转。
按照动力学理论,结构第一周期只与结构本身的质量、刚度和边界条件有关,与外界力没有关系,地震只是提供一个激振力,基底剪力是反映这个激振效果的一个指标,这个除了以上的条件外,同时就跟地震参数有关,比如加速度的值。
而结构最容易出现振动的振型就应该是第一振型,这个振型所需要的能量最小,最容易发生。
这个就很容易理解为什么扭转振型不能太靠前,起码不能出现再第一振型。
通高层设计中是可行的。
关于第二平动周期与扭转周期比较接近的问题是相对的,我个人认为就是说能拉大到0.9以下最好,但是不能拉到0.9以下,也尽量不要超的太多。
怎么理解主振型?pkpm采用了wilson教授的质量参与系数的概念(可以查看sap和etabs),比如我们计算15个振型,质量参与系数达到了98%,那么15个振型当中就有一个质量参与系数最大的振型,比如是2振型,它对这个98%的贡献最大(比如达到40%),那么我们就认为它就是主振型。
而其它的振型的贡献可能相对很小。
主振型的意义在于:它可能不是最容易被激励起的振型,但是它一旦被激励起了,那么它就是结构振动的主要成分,所以我们在抗震的时候我特别给与关注,尽量避免它与扭转振型靠近。
这也就是我建议ljbwhu将T2与Tt拉大点的原因。
在常规的高层结构设计中,由于各种限制,不容易出现以下这种情况:当结构中存在某些相对软弱的部分或者构件的时候,则结构的主振型会出现的比较靠后,这很容易理解,因为软弱的地方在激励能量相对小的时候就会局部振动,此时不是整体振动,所以该振型的质量参与系数很小,但是它们却是低阶振型。
【结构设计】详细解读地震周期振型
详细解读地震周期振型动力学认为结构的第一周期应该是出现该振形时所需要的能量最小,第二周期所需要的能量次之,依次往后推.我认为规范规定Tt/T1<0.9就是为了让对结构产生作用的能量中的大部分只够激起结构的平动而不是扭转.按照动力学理论,结构第一周期只与结构本身的质量、刚度和边界条件有关,与外界力没有关系,地震只是提供一个激振力,基底剪力是反映这个激振效果的一个指标,这个除了以上的条件外,同时就跟地震参数有关,比如加速度的值.而结构最容易出现振动的振型就应该是第一振型,这个振型所需要的能量最小,最容易发生.这个就很容易理解为什么扭转振型不能太靠前,起码不能出现再第一振型.关于第二平动周期与扭转周期比较接近的问题是相对的,我个人认为就是说能拉大到0.9以下最好,但是不能拉到0.9以下,也尽量不要超的太多.怎么理解主振型?pkpm采用了wilson教授的质量参与系数的概念(可以查看sap和etabs),比如我们计算15个振型,质量参与系数达到了98%,那么15个振型当中就有一个质量参与系数最大的振型,比如是2振型,它对这个98%的贡献最大(比如达到40%),那么我们就认为它就是主振型.而其它的振型的贡献可能相对很小.主振型的意义在于:它可能不是最容易被激励起的振型,但是它一旦被激励起了,那么它就是结构振动的主要成分,所以我们在抗震的时候我特别给与关注,尽量避免它与扭转振型靠近.这也就是我建议ljbwhu将T2与Tt拉大点的原因.在常规的高层结构设计中,由于各种限制,不容易出现以下这种情况:当结构中存在某些相对软弱的部分或者构件的时候,则结构的主振型会出现的比较靠后,这很容易理解,因为软弱的地方在激励能量相对小的时候就会局部振动,此时不是整体振动,所以该振型的质量参与系数很小,但是它们却是低阶振型.计算时某些构件的刚度、尺寸、材料等原因的错误,造成局部软弱,这种情况比较特殊,但是也可能出现,所以要避免.主振型:对于某个特定的地震作用引起的结构反应而言,一般每个参与振型都有着一定的贡献,贡献最大的振型就是主振型,贡献指标的确定一般有两个,一是基底剪力的贡献大小,二是应变能的贡献大小.一般而言,基底剪力的贡献大小比较直观,容易被我们接受扭转为主的振型中,周期最长的称为第一扭转为主的振型,其周期称为扭转为主的第一自振周期Tt.平动为主的振型中,根据确定的两个水平坐标轴方向X、Y,可区分为X向平动为主的振型和Y向平动为主的振型.假定X、Y方向平动为主的第一振型(即两个方向平动为主的振型中周期最长的振型)的周期值分别记为T1X和T1Y,其中的大者位T1,小者为T2.则T1即为《高规》第41315条中所说的平动为主的第一自振周期,T2姑且称作平动为主的第二自振周期.研究表明,结构扭转第一自振周期与地震作用方向的平动第一自振周期之比值,对结构的扭转响应有明显影响,当两者接近时,结构的扭转效应显著增大[7].《高规》第41315条对结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比值进行了限制,其目的就是控制结构扭转刚度不能过弱,以减小扭转效应.《高规》对扭转为主的第一自振周期Tt与平动为主的第二自振周期T2之比值没有进行限制,主要考虑到实际工程中,单纯的一阶扭转或平动振型的工程较少,多数工程的振型是扭转和平动相伴随的,即使是平动振型,往往在两个坐标轴方向都有分量.针对上述情况,限制Tt与T1的比值是必要的,也是合理的,具有广泛适用性;如对Tt与T2的比值也加以同样的限制,对一般工程是偏严的要求.对特殊工程,如比较规则、扭转中心与质心相重合的结构,当两个主轴方向的侧向刚度相差过大时,可对Tt与T2的比值加以限制,一般不宜大于1.0.实际上,按照《抗震规范》第31513条的规定,结构在两个主轴方向的侧向刚度不宜相差过大,以使结构在两个主轴方向上具有比较相近的抗震性能.当然,振型特征判断还与宏观振动形态有关.对结构整体振动分析而言,结构的某些局部振动的振型是可以忽略的,以利于主要问题的把握.注意上面这句话的意义说明了,某些局部振动可以忽略掉,那么如何判断某些局部振动呢?就转到我们上面所讨论的问题上来了,可以采用振型总剪力的大小来判断或者振型质量参与系数来判断.忽略某些总剪力很小或者质量参与系数很小的振型,而保留那些相对较大的振型,这样说的话,就没有必要强制要求将总剪力最大的平动周期作为第一平动周期了!第一扭转周期的确定也没有什么疑惑.。
高层混凝土结构平动周期调整分析
高层混凝土结构平动周期调整分析【摘要】结构整体计算中,应调整结构刚度,让第一周期、第二周期为平动周期,第三周期为扭转周期,使结构整体具有较强的抗扭性能,结构更加安全、可靠。
【关键词】平动周期;周期比;扭转系数前言高层混凝土结构长宽比介于3~6之间的建筑物,结构计算时第二周期往往是扭转周期,按《高层混凝土结构技术规程》的规定,结构周期比只要满足‘结构扭转为主的第一自振周期tt与平动为主的第一自振周期t1之比,a级高度高层不应大于0.9,b级高度高层建筑、超过a级高度的混合结构及复杂高层建筑不应大于0.85’即满足要求,虽未指明第二周期必须是平动周期,但笔者认为应尽量调整结构刚度使第一周期、第二周期为平动周期,第三周期为扭转周期。
1、问题提出的依据《高层混凝土结构技术规程》第3.4.5条及条文说明,‘限制结构的抗扭刚度不能太弱,关键是限制结构扭转为主的第一自振周期tt与平动为主的第一自振周期t1之比,当两者接近时,由于振动耦联的影响,结构的扭转效应明显增大;若周期比小于0.5,则相对扭转振动效应一般很小,而当周期比大于0.85时,相对扭转效应急剧增大’;由此可见,抗震设计中应采取措施减小周期比值,使结构具有必要的抗扭刚度,工程中两个方向的第一振型周期比值均能满足限制要求,则抗扭刚度更为理想,因此结构计算中应调整结构刚度使第一周期、第二周期为平动周期,第三周期为扭转周期。
2、如何判定平动周期现阶段高层结构设计基本上采用中国建筑科学研究院satwe进行建模计算,satwe计算中扭转耦联振动的主振型,可通过计算振型方向扭转系数来判断,在两个平动和一个扭转方向系数中,当扭转系数小于0.5时,则该振型可认为是平动为主的振型,即该周期为平动周期;当扭转系数大于0.5时,则该振型可认为是扭转为主的振型,即该周期为扭转周期。
3、工程实例分析调整平动周期3.1 本工程位于6度抗震设防区,丙类建筑住宅工程,剪力墙结构,地上层高均为3米,地上层数为30层,建设场地基本风压值w0=0.55kn/㎡,基本雪压s0=0.45kn/㎡,剪力墙抗震等级为三级,各层剪力墙、梁、洞口布置见结构平面布置图1示。
结构设计的七个控制指标
2.3.剪重比不满足时的调整方法: 2.3.1.程序调整:在 SATWE 的“调整信息”中勾选“按抗震规范 5.2.5 调整各楼层地
震内力”后,SATWE 按 10 抗规 5.2.5 自动将楼层最小地震剪力系数直接乘以该层及以上 重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。 2.3.2.人工调整:如果还需人工干预,可按下列三种情况进行调整: a:当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提 高刚度; b:当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面, 降低刚度以取得合适的经济技术指标; c:当地震剪力偏小而层间侧移角又恰当时,可在 SATWE 的“调整信息”中的“全楼 地震作用放大系数”中输入大于 1 的系数增大地震作用,以满足剪重比要求。 2.4.电算结果的判别与调整要点: a:对于竖向不规则结构的薄弱层的水平地震剪力应增大 1.15 倍,即上表中楼层最小剪 力系数λ 应乘以 1.15 倍。当周期介于 3.5S 和 5.0S 之间时,可对于上表采用插入法求值。 b:般高层建筑而言,结构剪重比底层为最小 ,顶层最大,故实际工程中,结构剪重比由底层 控制,由下到上,哪层的地震剪力不够,就放大哪层的设计地震内力。 c:构各层剪重比及各楼层地震剪力调整系数自动计算取值,结果详 SATWE 周期、地震 力与振型输出文件 WZQ.OUT) 。 d:层地震内力自动放大与否在调整信息栏设开关;如果用户考虑自动放大,SATWE 将 在 WZQ.OUT 中输出程序内部采用的放大系数。 e 度区剪重比可在 0.7%~1%取。若剪重比过小,均为构造配筋,说明底部剪力过小,要 对构件截面大小、周期折减等进行检查;若剪重比过大,说明底部剪力很大,也应检查结构 模型,参数设置是否正确或结构布置是否太刚。 2.5.设计要点: 2.5.1:剪重比不满足要求时,首先要检查有效质量系数是否达到 90%(剪重比是反映 地震作用大小的重要指标,它可以由“有效质量系数”来控制,当“有效质量系数”大于 90%时,可以认为地震作用满足规范要求) 。若没有,则有以下几个方法:a: 查看结构空间 振型简图,找到局部振动位置,改变布置,去掉局部振动(局部振动是实际存在的,不是重 要的部位,没必要加强,但局部振动有时候会对其它指标的判断有干扰作用,要过滤掉) 。 b.采用强制刚性楼板,过滤掉局部振动,但结构计算可能局部失真;c.通常振型数在 satwe 参数设置时,正常情况下应该足够了,由于有局部振动,可以增加计算振型数,采用总刚分 析;d. 剪重比仍不满足时,对于需调整楼层层数较少(不超过楼层总数的 1/3) ,且剪重 比与规范限值相差不大(不小于规范限值的 80%,或地震剪力调整系数不大于 1.2-1.3)的 情况,我们可以通过选择 SATWE 的相关参数来达到目的。 2.5.2:制剪重比的根本原因在于建筑物周期很长的时候,由振型分解法所计算出的地 震效应会偏小; 剪重比与抗震设防烈度、场地类别、结构形式和高度有关;对于一般多、高 层建筑,最小的剪重比值往往容易满足; 高层建筑,由于结构布置原因,可能出现底部剪重 比偏小的情况,在满足规范规定的前提下,没必要刻意去提高,规定剪重比的指标主要是增 加结构的安全储备。 2.5.3:一个 3 层教学楼若采用混凝土结构,一般会采用框架结构,4%左右的剪重比 对多层框架结构应该是合理的。 结构体系对剪重比的计算数值影响较大, 矮胖型的钢筋混凝 土框架结构一般剪重比比较大,体型纤细的长周期高层建筑一般剪重比会比较小。
扭转振型
今天看到一个悬赏的帖子,关于振型为扭转时的调整的,给他回复了,不过很多人可能不容易找到,并且这是我们这种新手一般会遇到的问题,所以就再发一个帖子,当然了,帖子的内容不是我写的,谁写的这些也无从查起了,但是其内容还是很有价值的,在这里对其人表示敬意。
如其人看到了,感觉有不妥之处联系我,立刻删除,绝对尊重别人的成果,当然了,最好一直留着供是大家互相学习。
型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。
3)结构的刚度(包括侧移刚度和扭转刚度)献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。
5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。
6)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部“第三振型转角方向”的刚度,或适当加强结构外围(主要是沿第一振型扭转)的刚度。
7)某主轴方向的层间位移角小于限值(见高规表4.6.3,下同)较多时,对该主轴方向宜采用“加强结构外围刚度”的方法;某主轴方向的层间位移角大于限值较多时,对该主轴方向宜采用“削弱结构内部刚度”的方法;某主轴方向的层间位移角接近限值时,对该主轴方向宜同时采用“加强结构外围刚度”和“削弱结构内部刚度”的方法。
8)在进行上述调整的同时,应注意使周期比满足高规4.3.5条的要求。
9)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足度。
把扭转周期下面那个轴的刚度调弱或把第一周期对应的轴刚度调强就解决了。
振型分解反应谱法题库
振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件(1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。
(此为底部剪力法的适用范围)(2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。
(3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。
规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。
见高规5.4.4及相应的条文说明。
刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。
但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
剪力墙控制参数及调整方法
剪力墙控制参数及调整方法剪力墙控制参数及调整方法高层结构设计的控制参数及调整方法一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求。
见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。
轴压比不满足规范要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足规范要求时的调整方法:1、程序调整:SATWE程序不能实现。
2、结构调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全。
见抗规5.2.5,高规3.3.13及相应的条文说明。
剪重比不满足规范要求,说明结构的刚度相对于水平地震剪力过小;但剪重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
剪重比不满足规范要求时的调整方法:1、程序调整:当剪重比偏小但与规范限值相差不大(如剪重比达到规范限值的80%以上)时,可按下列方法之一进行调整:1)在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数,增大地震作用,以满足剪重比要求。
3)在SATWE的“地震信息”中的“周期折减系数”中适当减小系数,增大地震作用,以满足剪重比要求。
2、结构调整:当剪重比偏小且与规范限值相差较大时,宜调整增强竖向构件,加强墙、柱等竖向构件的刚度。
三、刚重比:规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。
第一或第二振型为扭转的调整方法
第一或第二振型为扭转时的调整方法1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。
3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大。
4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。
5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。
6)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,或适当加强结构外围(主要是沿第一振型转角方向)的刚度。
7)某主轴方向的层间位移角小于限值(见高规表4.6.3,下同)较多时,对该主轴方向宜采用“加强结构外围刚度”的方法;某主轴方向的层间位移角大于限值较多时,对该主轴方向宜采用“削弱结构内部刚度”的方法;某主轴方向的层间位移角接近限值时,对该主轴方向宜同时采用“加强结构外围刚度”和“削弱结构内部刚度”的方法。
8)在进行上述调整的同时,应注意使周期比满足高规4.3.5条的要求。
9)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。
【答1】简单的说,当扭转周期不在第一周期时,就是有一个轴的平面刚度超过了扭转刚度。
振型分解反应谱法
振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件(1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。
(此为底部剪力法的适用范围)(2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。
(3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。
规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。
见高规5.4.4及相应的条文说明。
刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。
但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
高层剪力墙周期调整方法
第一或第二振型为扭转时的调整方法1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。
3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大。
4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。
5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。
6)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,或适当加强结构外围(主要是沿第一振型转角方向)的刚度。
7)某主轴方向的层间位移角大于限值(见高规表4.6.3,下同)较多时,对该主轴方向宜采用“加强结构外围刚度”的方法;某主轴方向的层间位移角小于限值较多时,对该主轴方向宜采用“削弱结构内部刚度”的方法;某主轴方向的层间位移角接近限值时,对该主轴方向宜同时采用“加强结构外围刚度”和“削弱结构内部刚度”的方法。
8)在进行上述调整的同时,应注意使周期比满足高规4.3.5条的要求。
9)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。
【答1】简单的说,当扭转周期不在第一周期时,就是有一个轴的平面刚度超过了扭转刚度。
周期比合理情况与调整
今天看到一个悬赏的帖子,关于振型为扭转时的调整的,给他回复了,不过很多人可能不容易找到,并且这是我们这种新手一般会遇到的问题,所以就再发一个帖子,当然了,帖子的内容不是我写的,谁写的这些也无从查起了,但是其内容还是很有价值的,在这里对其人表示敬意。
如其人看到了,感觉有不妥之处联系我,立刻删除,绝对尊重别人的成果,当然了,最好一直留着供是大家互相学习。
1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。
3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大。
4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。
5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。
6)当第二振型为扭转时当第二振型为扭转时当第二振型为扭转时当第二振型为扭转时,,,,说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大,,,,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部宜适当削弱结构内部宜适当削弱结构内部宜适当削弱结构内部沿沿沿沿““““第三振型转角方向第三振型转角方向第三振型转角方向第三振型转角方向””””的刚度的刚度的刚度的刚度,或适当加强结构外围或适当加强结构外围或适当加强结构外围或适当加强结构外围((((主要是沿第一振型转主要是沿第一振型转主要是沿第一振型转主要是沿第一振型转角方向角方向角方向角方向))))的刚度的刚度的刚度的刚度。
高层结构设计需要控制的七个比值及调整方法
高层结构设计需要控制的七个比值及调整方法高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规6.4.2和7.2.14及相应的条文说明。
轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规5.2.5,高规4.3.12及相应的条文说明。
这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2、人工调整:如果还需人工干预,可按下列三种情况进行调整:1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。
2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。
3)当地震剪力偏小而层间侧移角又恰当时,可在SA TWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规3.5.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。
刚度比不满足时的调整方法:1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。
pkpm计算扭转处理办法修改
pkpm计算扭转处理办法1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。
3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大(应使结构的扭转刚度大于两个主方向的侧向刚度,即扭转周期小于两个方向的侧向周期,位于第三周期及以后)。
4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。
5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。
6)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型平动方向)的侧移刚度是合理的;但相对于另一主轴(第三振型平动方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型平动方向”的刚度,或适当加强结构外围(主要是沿第一振型平动方向)的刚度(增加第一振型平动方向刚度,使其与第三振型平动方向刚度接近,同时增加了扭转刚度,使其大于第三振型平动方向刚度)。
7)某主轴方向的层间位移角小于限值(见高规表4.6.3,下同)较多时,对该主轴方向宜采用“削弱结构内部刚度”的方法;某主轴方向的层间位移角大于限值较多时,对该主轴方向宜采用“加强结构外围刚度”的方法;某主轴方向的层间位移角接近限值时,对该主轴方向宜同时采用“加强结构外围刚度”和“削弱结构内部刚度”的方法(均为尽可能增加扭转刚度或不减小扭转刚度)。
【结构设计】结构计算时第一或第二振型为扭转的调整方法
结构计算时第一或第二振型为扭转的调整方法1)SATWE程序中的振型是以其周期的长短排序的.2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后.见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”.3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大.4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大.5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度.6)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,或适当加强结构外围(主要是沿第一振型转角方向)的刚度.7)某主轴方向的层间位移角小于限值(见高规表4.6.3,下同)较多时,对该主轴方向宜采用“加强结构外围刚度”的方法;某主轴方向的层间位移角大于限值较多时,对该主轴方向宜采用“削弱结构内部刚度”的方法;某主轴方向的层间位移角接近限值时,对该主轴方向宜同时采用“加强结构外围刚度”和“削弱结构内部刚度”的方法.8)在进行上述调整的同时,应注意使周期比满足高规4.3.5条的要求.9)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一振型应是平动的原因
动力学认为结构的第一周期应该是出现该振形时所需要的能量最小,第二周期所需要的能量次之,依次往后推。
我认为规范规定Tt/T1<0.9就是为了让对结构产生作用的能量中的大部分只够激起结构的平动而不是扭转。
按照动力学理论,结构第一周期只与结构本身的质量、刚度和边界条件有关,与外界力没有关系,地震只是提供一个激振力,基底剪力是反映这个激振效果的一个指标,这个除了以上的条件外,同时就跟地震参数有关,比如加速度的值。
而结构最容易出现振动的振型就应该是第一振型,这个振型所需要的能量最小,最容易发生。
这个就很容易理解为什么扭转振型不能太靠前,起码不能出现再第一振型。
通高层设计中是可行的。
关于第二平动周期与扭转周期比较接近的问题是相对的,我个人认为就是说能拉大到0.9以下最好,但是不能拉到0.9以下,也尽量不要超的太多。
怎么理解主振型?pkpm采用了wilson教授的质量参与系数的概念(可以查看sap和etabs),比如我们计算15个振型,质量参与系数达到了98%,那么15个振型当中就有一个质量参与系数最大的振型,比如是2振型,它对这个98%的贡献最大(比如达到40%),那么我们就认为它就是主振型。
而其它的振型的贡献可能相对很小。
主振型的意义在于:它可能不是最容易被激励起的振型,但是它一旦被激励起了,那么它就是结构振动的主要成分,所以我们在抗震的时候我特别给与关注,尽量避免它与扭转振型靠近。
这也就是我建议ljbwhu 将T2与Tt拉大点的原因。
在常规的高层结构设计中,由于各种限制,不容易出现以下这种情况:当结构中存在某些相对软弱的部分或者构件的时候,则结构的主振型会出现的比较靠后,这很容易理解,因为软弱的地方在激励能量相对小的时候就会局部振动,此时不是整体振动,所以该振型的质量参与系数很小,但是它们却是低阶振型。
所以我前面的贴子提到了模型错误,这里的错误并不是指模型逻辑上的错误,而是某些构件的刚度、尺寸、材料等原因的错误,造成局部软弱。
这种情况比较特殊,但是也可能出现,所以要避免。
主振型:对于某个特定的地震作用引起的结构反应而言,一般每个参与振型都有着一定的贡献,贡献最大的振型就是主振型,贡献指标的确定一般有两个,一是基底剪力的贡献大小,二是应变能的贡献大小。
一般而言,基底剪力的贡献大小比较直观,容易被我们接受
扭转为主的振型中, 周期最长的称为第一扭转为主的振型, 其周期称为扭转为主的第一自振周期Tt 。
平动为主的振型中, 根据确定的两个水平坐标轴方向X 、Y , 可区分为X 向平动为主的振型和Y 向平动为主的振型。
假定X 、Y 方向平动为主的第一振型(即两个方向平动为主的振型中周期最长的振型) 的周期值分别记为T1 X和T1 Y,其中的大者位T1,小者为T2。
则T1 即为《高规》第41315 条中所说的平动为主的第一自振周期, T2 姑且称作平动为主的第二自振周期。
研究表明, 结构扭转第一自振周期与地震作用方向的平动第一自振周期之比值, 对结构的扭转响应有明显影响, 当两者接近时, 结构的扭转效应显著增大[7 ] 。
《高规》第41315 条对结构扭转为主的第一自振周期Tt 与平动为主的第一自振周期T1 之比值进行了限制, 其
目的就是控制结构扭转刚度不能过弱, 以减小扭转效应。
《高规》对扭转为主的第一自振周期Tt 与平动为主的第二自振周期T2 之比值没有进行限制, 主要考虑到实际工程中,
1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”。
(高规4.3.5)
3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大;结构外围的抗侧力构件对结构的扭转刚度贡献最大。
4)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。
5)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加强结构外围(主要是沿第一振型转角方向)的刚度。
6)在进行上述调整的同时,应注意使周期比满足规范的要求。
7)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。