九年级下册数学知识点总结
新整理人教版九年级数学下册重要知识点提纲
新整理人教版九年级数学下册重要知识点提纲第一章函数的概念与性质- 函数的概念及表示方法- 函数的自变量和函数值- 函数的定义域和值域- 过点作图法和描点法- 直线函数- 函数的单调性和奇偶性- 函数y=f(x)+b及y=f(x-a)的图像第二章常见函数- 一次函数和二次函数- 幂函数和指数函数- 对数函数- 三角函数- 周期性函数- 分段函数第三章几何变换与图形- 平移- 旋转- 对称- 相似- 位似- 平面镜映- 空间镜映第四章数据和命题逻辑- 统计调查设计和问卷编制- 统计分布和统计图形- 等差数列和等比数列- 命题与命题联结词- 命题公式及命题的真值- 命题的充分条件和必要条件- 等价命题和常用命题的否定第五章几何图形的计算- 四边形- 三角形- 圆- 圆环和扇形- 球及其它圆锥体和圆柱体的计算第六章立体几何初步- 空间坐标系和三视图- 立体图形的种类和特征- 立体图形的表面积和体积- 平面和直线与立体的位置关系- 空间中的投影第七章相似和全等- 相似的基本概念- 判定两个三角形全等的条件- 根据全等判定几何关系- 测量和应用三角形的面积和周长- 测量和应用圆的周长和面积第八章数形关系初步- 万能公式及其应用- 勾股定理及其逆定理- 正弦、余弦、正切的定义和计算- 海伦公式及其应用- 同济柿子及其应用第九章海量数据的处理和分析- 经验规律的发现- 数据分析与表示- 用样本估计总体- 正态分布及其应用- 离散变量和连续变量的概念- 描述数据的集中趋势和离散程度- 概率的概念及其性质以上是新整理人教版九年级数学下册的重要知识点提纲。
九年级上下册数学知识点
九年级上下册数学知识点
一、上册数学知识点
1. 数与式
- 整数与有理数的运算
- 代数表达式的简化与变形
- 绝对值与不等式
2. 方程与不等式
- 一元一次方程与不等式
- 二元一次方程组的解法
- 含参方程及其应用
3. 函数的初步认识
- 函数的概念与表示方法
- 线性函数与二次函数的图像和性质
- 函数的基本运算
4. 几何图形初步
- 平行线与角的关系
- 三角形的基本性质
- 四边形的性质与分类
5. 几何图形的计算
- 面积与体积的计算
- 相似三角形的性质与应用
- 圆的基本性质与计算
二、下册数学知识点
1. 比例与相似
- 比例的概念与性质
- 相似三角形的判定与性质
- 比例线段的应用
2. 解直角三角形
- 锐角三角函数
- 解直角三角形的应用
- 三角函数的图像与性质
3. 统计与概率
- 统计的基本概念与方法
- 概率的初步认识
- 随机事件的概率计算
4. 数据的收集与处理
- 数据的表示方法
- 频数分布与直方图
- 抽样与估计
5. 平面直角坐标系
- 坐标系的基本概念
- 坐标系中的几何变换
- 函数图像的交点问题
6. 综合应用题
- 数学知识在实际问题中的应用 - 解决问题的策略与方法
- 开放性与探究性问题
请注意,以上内容仅为九年级数学上下册的主要知识点概览,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应参考具体的教材和课程标准进行学习和复习。
人教版九年级下册数学知识点总结
人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
初中九年级数学下册知识点
初中九年级数学下册知识点初中九年级数学下册知识点在日常生活或是工作,学习中,大家一定都或多或少地接触过一些化学知识,下面是店铺为大家收集的有关初中数学之基础知识点总结相关内容,仅供参考,希望能够帮助到大家。
初中九年级数学下册知识点11、二次根式成立的条件:被开方数是一个非负数。
2、二次根式的实质:是一个非负数的算术平方根。
因此√a≥0。
3、两个公式:(√a)2=a(a≥0);√a2=∣a∣.4、二次根式的乘除:√a×√b=√ab(a≥0,b≥0);√a÷√b=√a/b(a≥0,b>0).5、最简二次根式:⑴被开方数不含分母;⑵被开方数中不含能开的尽方的因数或因式。
6、二次根式的加减:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
7、利用公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2.第二十二章一元二次方程1、定义:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。
①是整式方程,②未知数的最高次数是二次,③只含有一个未知数,④二次项系数不为零。
2、化为一元二次方程的一般形式:按降幂排列,二次项系数通常为正,右端为零。
3、一元二次方程的根:代入使方程成立。
4、一元二次方程的解法:①配方法:移项→二次项系数化为一→两边同时加上一次项系数的一半→配方→开方→写出方程的解。
②公式法:x=(-b±√b2-4ac)/2a,③因式分解法:右端为零,左端分解为两个因式的乘积。
5、一元二次方程的根的判别式①当△>0时,方程有两个不相等的②当△=0时,方程有两个相等的实数根,③当△<0时,方程没有实数根。
注意:应用的前提条件是:a≠0.6、一元二次方程根与系数的关系:x1+x2=-b/a,x1*x2=c/a.注意:应用的前提条件是:a≠0,△≥0.7、列方程解应用题:审题设元→列代数式、列方程→整理成一般形式→解方程→检验作答。
苏教版九年级数学知识点归纳总结
苏教版九年级数学知识点归纳总结九年级下册数学知识点归纳一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
初三数学复习资料因式分解的方法1.十字相乘法(1)把二次项系数和常数项分别分解因数;(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字图并写出因式分解的结果;(4)检验。
2.提公因式法(1)找出公因式;(2)提公因式并确定另一个因式;①找公因式可按照确定公因式的方法先确定系数再确定字母;②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法(1)确定所求问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决。
九年级数学下册知识点
九年级数学下册知识点九年级下册数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a 都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
九年级下册数学全部知识点
九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。
在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。
数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。
通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。
希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。
九年级下册数学知识点汇总(人教版)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
九年级数学下册各章知识点
九年级数学下册各章知识点第一章:有理数1. 有理数的概念:有理数是整数和分数的统称,包括正数、零和负数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的加减法:通分后相加减。
4. 有理数的乘除法:同号异号相乘、除法转化为乘法求解。
5. 有理数的乘方:正数与负数的幂的性质。
第二章:代数式与方程1. 代数式的概念:包含有常数和变量,并且包含加减乘除等运算符号的式子。
2. 代数式的运算:常数与变量的运算、代数式的合并与展开。
3. 简单方程的解法:等式的转化与解方程。
4. 一元一次方程:含有一个未知数的一次方程的解法与应用。
5. 实际问题中的应用:运用方程进行实际问题的解答。
第三章:函数与图像1. 函数的概念:函数是自变量与因变量之间的关系,每个自变量对应唯一一个因变量。
2. 函数的表示:函数关系可以通过表格、图像、公式等形式表示。
3. 线性函数:函数图像为直线的函数。
4. 平方函数:函数图像为抛物线的函数。
5. 函数的最值:函数图像的最大值和最小值。
第四章:全等与相似1. 图形的基本概念:点、线、面及其性质。
2. 直线、射线、线段的比较:长度比较和角度比较。
3. 全等三角形:全等三角形的判定条件与性质。
4. 相似三角形:相似三角形的判定条件与性质。
5. 相似三角形的应用:运用相似三角形进行实际问题的解答。
第五章:平面图形的性质1. 四边形的性质:平行四边形、矩形、正方形、菱形等四边形的特殊性质。
2. 三角形的性质:等腰三角形、等边三角形等三角形的特殊性质。
3. 圆的性质:圆心角、圆内外切等与圆相关的性质。
4. 圆的应用:运用圆的性质解答实际问题。
5. 长方体与棱柱:长方体、正方体、棱柱的性质及计算表面积和体积。
第六章:统计与概率1. 统计调查:设计统计调查方案、收集数据、整理数据等。
2. 统计图表:直方图、折线图、饼图等图表的绘制与分析。
3. 概率的概念:事件发生的可能性。
4. 事件与概率:事件的概率计算、相互独立事件的概率计算等。
人教版九年级下册数学知识点汇总
一、二次函数1.二次函数定义o二次函数(quadratic function)是指未知数的次数为二次的多项式函数,可以表示为f(x)=ax²+bx+c(a不为0)。
2.基本形式o一般式:y=ax²+bx+c (a≠0)o顶点式:y=a(x-h)²+k 或y=a(x+m)²+k(h, k为常数,a≠0)o交点式(与x轴):y=a(x-x1)(x-x2)3.重要概念o顶点坐标:(-b/2a, (4ac-b²)/4a)o开口方向:由a决定,a>0时开口向上,a<0时开口向下。
o开口大小:由|a|决定,|a|越大开口越小,|a|越小开口越大。
4.函数变化o当a>0时,x>0时y随x增大而增大;x<0时y随x增大而减小。
o当a<0时,x>0时y随x增大而减小;x<0时y随x增大而增大。
二、相似三角形1.相似三角形的定义o三条边对应成比例,三个角对应相等的两个三角形叫相似三角形。
2.相似比o相似三角形的对应边的比叫作这两个三角形的相似比。
3.判定定理o如果两个三角形的两个角对应相等,则这两个三角形相似。
o如果两个三角形的两组对应边的比相等,并且相应的夹角相等,则这两个三角形相似。
o如果两个三角形的三组对应边的比相等,则这两个三角形相似。
o平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
4.特殊情况o两个等边三角形一定相似。
o两个等腰直角三角形一定相似。
5.相似三角形的性质o相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
o相似三角形周长的比等于相似比。
o相似三角形面积的比等于相似比的平方。
三、锐角三角函数1.基本概念o在直角三角形中,锐角的正弦(sin)、余弦(cos)和正切(tan)等称为锐角三角函数。
2.定义o正弦(sin):对边/斜边o余弦(cos):邻边/斜边o正切(tan):对边/邻边o余切(cot):邻边/对边3.特殊角的三角函数值o需要记忆如30°、45°、60°等特殊角的三角函数值。
九年级数学下册知识点总结
图1九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
九年级下册数学每章知识点
九年级下册数学每章知识点第一章:多边形和三角形1. 多边形的定义和性质- 多边形是由线段组成的封闭图形,通常有三条或三条以上的边。
- 不同种类的多边形包括三角形、四边形、五边形等。
- 多边形的性质包括外角和内角的关系、对角线的数量等。
2. 三角形的分类和性质- 三角形按边长可以分为等边三角形、等腰三角形和普通三角形。
- 三角形按角度可以分为直角三角形、钝角三角形和锐角三角形。
- 三角形的性质包括角的和为180度、边的关系等。
3. 三角形的相似性与全等性- 相似三角形的定义是对应角相等,对应边成比例。
- 全等三角形的定义是三边和三角形的对应角均相等。
第二章:相似与全等1. 两个角相等的条件- 如果两个角的度数相等,那么它们是相等的。
2. 判定两个三角形相似的条件- 如果两个三角形的对应角相等,且对应边成比例,那么它们是相似的。
3. 利用相似三角形的性质解题- 根据相似三角形的性质,可以推导出边比例、高比例等相关信息,从而解决与长度有关的问题。
4. 判定两个三角形全等的条件- 如果两个三角形的对应边和对应角均相等,那么它们是全等的。
第三章:平面直角坐标系和图形的位置关系1. 平面直角坐标系的建立- 平面直角坐标系由横坐标x和纵坐标y组成,以原点为起点。
- 坐标点表示为(x,y),表示在横轴和纵轴上的位置。
2. 图形的位置关系- 图形之间的位置关系包括重合、相交、相离等。
- 可以通过坐标系中的点的位置关系来确定图形的位置。
第四章:一次函数与方程1. 函数的定义与表示- 函数是两个集合之间的对应关系,常表示为y=f(x)。
- 函数的定义域为x的取值范围,值域为y的取值范围。
2. 一次函数的概念与性质- 一次函数是表示为y=kx+b的函数形式,其中k为斜率,b为截距。
- 一次函数的图像为直线,斜率决定了直线的倾斜程度。
3. 解一次方程- 解一次方程指找到使方程成立的未知数的值。
- 可以通过移项、消元等方法来解一元一次方程。
九年级数学下册各单元知识点归纳
九年级数学下册各单元知识点归纳第一章:有理数与整式本章主要围绕有理数和整式展开,以下是各单元的知识点归纳。
1.1 有理数- 有理数的概念与性质- 有理数的相加、相减、相乘、相除- 有理数的比较大小和绝对值1.2 整式的加减- 整式的概念与性质- 整式的加减法则- 整式的乘法运算1.3 整式的除法- 整式的除法运算- 整式除法中的因式分解- 分子多项式与分母多项式的最高公因式第二章:平方根与实数本章主要介绍平方根和实数的相关知识点。
2.1 平方根的概念- 平方根的定义和性质- 平方根与平方的关系- 平方根的运算规律2.2 实数- 实数的概念与性质- 实数的运算性质- 实数的分类与表示第三章:一次函数与一元一次方程本章重点讲解一次函数和一元一次方程的内容。
3.1 一次函数- 一次函数的概念与性质- 一次函数的图象与性质- 一次函数的解析式与应用3.2 一元一次方程- 一元一次方程的概念与性质- 一元一次方程的解的判定- 一元一次方程的应用问题第四章:平面图形的认识本章着重介绍平面图形的认识和性质。
4.1 点、线、面- 平面几何基本概念:点、线、面- 线段、射线、角的概念和性质- 角的分类、角的计量和角的平分线4.2 三角形- 三角形的分类- 三角形的性质与判定- 三角形的周长和面积计算4.3 四边形与多边形- 四边形的分类与性质- 多边形的分类与性质- 多边形的内角和外角第五章:函数与一元二次方程本章讲解函数和一元二次方程的相关知识点。
5.1 函数的概念与性质- 函数的定义和性质- 函数的图象与性质- 函数的运算与复合函数5.2 一元二次方程- 一元二次方程的概念与性质- 一元二次方程的解的判定- 一元二次方程的应用问题第六章:统计与概率本章重点介绍统计和概率的相关知识。
6.1 统计- 统计调查的设计与数据的收集方法- 数据的整理与分析- 数据的图表表示和数据的统计指标6.2 概率- 概率的基本概念与性质- 随机事件与样本空间- 概率的计算方法与应用以上是九年级数学下册各单元的知识点归纳,希望对你的学习有所帮助。
九年级数学下册知识点总结(最新最全)
九年级下册知识点第一章 直角三角形边的关系1、正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA=∠A 的对边/∠A 的邻边。
①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan ”乘以“A ”;④tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
(P1-6,11、P3-6、P4-12)2、正弦:定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA=∠A 的对边/斜边;3、余弦:定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=∠A 的邻边/斜边;4、余切:定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cotA=∠A 的邻边/∠A 的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则①sin A = cos(90°−∠A )等等。
6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。
(P4-13、P5-15,16、P10-11、P12-3)7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
0≤sin α≤1,0≤cos α≤1。
同角的三角函数间的关系:t αn α·cot α=1,tan α=sin α/cos α,cot α=cos α/sin α,sin 2α+cos 2α=18、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有:(1)三边之间的关系:a 2+b 2=c 2;(2)两锐角的关系:∠A +∠B=90°;(3)边与角之间的关系:sin α等;(4)面积公式;(5)直角三角形△ABC 内接圆⊙O 的半径为(a+b-c)/2;(6)直角三角形△ABC 外接圆⊙O 的半径为c/2。
初三(九年级)下册数学知识点归纳
初三(九年级)下册数学知识点归纳九年级下册知识点归纳包括二次函数、相似、锐角三角形、投影与视图共四章内容,主要总结了这几个单元的重点和难点的内容,是初三同学们和中考考生的必备资料!第二十六章二次函数26.1 二次函数及其图像二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b2)/4a) ;顶点式y=a(x+m)2+k(a0,a、m、k为常数)或y=a(x-h)2+k(a0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3)) /((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b((b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
最新版数学九年级下册知识点归纳总结
最新版数学九年级下册知识点归纳总结圆周角1、定义:顶点在圆上,角的两边都与圆相交的角。
(两条件缺一不可)2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。
(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)4、圆内接四边形的性质定理:圆内接四边形的对角互补。
(任意一个外角等于它的内对角)补充:1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。
2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。
直线与圆的位置关系①直线和圆无公共点,称相离。
AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。
AB与⊙O相交,d③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。
AB与⊙O相切,d=r。
(d为圆心到直线的距离)平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1当x=-C/Ax2时,直线与圆相离;旋转变换1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
人教版九年级数学下册详细知识点
人教版九年级数学下册详细知识点1. 整式的加减运算- 同类项的加减法- 不同类项的加减法- 图形法- 代数法- 消元法2. 二次根式的运算- 二次根式的化简- 二次根式的加减法- 二次根式的乘法- 二次根式的除法- 二次根式的混合运算3. 平面向量- 平面向量的概念- 平面向量的加法- 平面向量的数乘- 平面向量的线性运算- 平面向量的模- 平面向量的数量积- 平面向量的投影4. 一次函数与一元一次方程- 一次函数的概念- 一次函数的图象- 一次函数的性质- 一次函数的表示方法- 一元一次方程的概念- 一元一次方程的解- 一元一次方程的应用5. 特殊三角函数值的计算- 30°、45°、60°特殊角的三角函数值- 任意角的正弦、余弦、正切值的计算6. 相似三角形与三角比- 相似三角形的条件- 相似三角形的性质- 三角比的定义- 三角比的性质和应用- 相似三角形和三角比的综合应用7. 幂的乘法与除法- 幂的乘法- 幂的除法- 科学计数法- 根式及其运算8. 多边形的面积- 任意多边形的面积- 三角形的面积- 正多边形的面积- 扇形和梯形的面积9. 数据的收集、整理和分析- 数据的收集和整理- 数据的图形表示- 数据的分析与解释- 统计指标的运算以上是人教版九年级数学下册的详细知识点。
不同章节涵盖了整式的运算、二次根式的处理、平面向量的操作、一次函数与一元一次方程、特殊三角函数值的计算、相似三角形与三角比、幂的乘除法、多边形的面积以及数据的收集、整理和分析等内容。
通过学习这些知识,学生将能够更好地掌握九年级数学下册的重点内容。
新北师大版九年级数学下册知识点总结
新北师大版九年级数学下册知识点总结第一章:有理数1. 有理数的概念:有理数包括整数和分数,整数包括正整数、负整数和零,分数包括正分数和负分数。
2. 有理数的比较:两个有理数的大小可以通过比较它们的大小关系来确定。
3. 有理数的加法和减法:有理数的加法和减法遵循相同数相加减法则。
第二章:平面直角坐标系1. 平面直角坐标系的概念:平面直角坐标系是一个有序数对的平面,其中包括横轴和纵轴。
2. 坐标的表示方法:在平面直角坐标系中,点的位置可以用坐标表示,横坐标表示横轴上的位置,纵坐标表示纵轴上的位置。
3. 点的位置关系:在平面直角坐标系中,有不同的点的位置关系,如同一点、同一直线、同一平面等。
第三章:相似三角形1. 相似三角形的概念:两个三角形的对应角相等,对应边成比例,则这两个三角形相似。
2. 相似三角形的性质:相似三角形的各对应角相等,对应边成比例。
3. 判断相似三角形的方法:可以通过判断三角形的角度和边长是否成比例来确定两个三角形是否相似。
第四章:代数式1. 代数式的概念:由数、字母和运算符号组成的式子称为代数式。
2. 代数式的运算:代数式可以进行加法、减法、乘法和除法运算。
3. 代数式的化简:将代数式中的同类项合并,进行合并加减法运算。
第五章:线性方程与方程组1. 线性方程的概念:一次方程称为线性方程,形如ax + b = 0。
2. 解线性方程的方法:可以通过逆运算求解线性方程,将方程两边加上同一个数或将方程两边乘以同一个数。
3. 方程组的概念:包含多个方程的组合称为方程组。
以上是新北师大版九年级数学下册的知识点总结,希望对你有帮助!。
九年级下册数学相似知识点汇总
九年级下册数学相似知识点汇总在九年级下册数学中,相似是一个重要的概念。
相似可以理解为两个几何图形在形状上保持一定的比例关系。
本文将对九年级下册数学中的相似知识点进行汇总,以帮助同学们更好地理解和应用这些知识。
1. 相似三角形相似三角形是九年级下册数学中的一个重要概念。
两个三角形相似的条件是:对应角相等,对应边成比例。
同学们应该注意掌握相似三角形的判定方法和应用。
2. 相似比例相似比例是相似的基本性质,它表示两个相似图形中对应边的比例关系。
例如,如果两个三角形相似,那么它们的对应边的比例相等。
同学们需要灵活运用相似比例来求解各种几何问题。
3. 三角形的面积比如果两个三角形相似,那么它们的面积比等于它们相应边长的平方比。
同学们应该掌握如何计算三角形的面积,并且了解面积比的性质及应用。
4. 相似三角形的性质相似三角形具有一些特殊的性质,比如它们的对应角相等,对应边成比例。
同学们应该学会利用这些性质解决各种几何问题,如长度比、面积比等。
5. 相似图形的比例尺对于相似的几何图形,我们可以定义一个比例尺来表示它们的对应边长之间的比例关系。
同学们需要了解比例尺的概念和使用方法,并且能够将实际问题转化为比例尺问题进行求解。
6. 平行线与相似平行线与相似有密切的联系。
同学们应该了解平行线与相似的性质,如平行线分割的三角形相似、平行线分割的四边形相似等。
7. 相似三角形的判定如何快速判断两个三角形是否相似是一个重要的问题。
同学们应该熟练掌握相似三角形的判定方法,如AAA判定法、相似三角形对应角相等等。
8. 应用题相似的知识在应用题中经常会出现。
同学们需要善于将实际问题转化为相似三角形问题,并通过相似的性质和方法解决问题。
总结:通过对九年级下册数学相似知识点的汇总,我们可以看到相似是一个重要的几何概念。
同学们在学习相似知识时,应该注重理解概念和性质,熟练掌握判定方法和计算技巧,并能够将相似的知识灵活应用到实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.
4.圆周角和圆心角的关系:
※1.1°的弧的概念: 把顶点在圆心的周角等分成360份时,每一份的角都是1°的圆心角,相应的整个圆也被等分成360份,每一份同样的弧叫1°弧.
③用数学的方式表示它们之间的关系;
④做数学求解;
⑤检验结果的合理性、拓展性等.
※二次函数 的图象(抛物线)与x轴的交点的横坐标x1;x2是对应一元二次方程 的两个实数根
※抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:
>0<===> 抛物线与x轴有2个交点;
=0<===> 抛物线与x轴有1个交点;
※2. 弧长公式:
在半径为R的圆中;n°的圆心角所对的弧长的计算公式弧长 (R表示圆的半径, n表示弧所对的圆心角的度数)
※如果扇形半径为R,圆心角为n°那么扇形的面积 (R表示圆的半径, n表示弧所对的圆心角的度数)如果利用胡长公式则有:
(书上没有六.圆和圆的位置关系.
的图象可以由y=ax2的图象平移得到;其步骤如下:
1将 配方成 的形式;
(其中h= ;k= );
②把抛物线 向右(h>0)或向左(h<0)平移|h|个单位;得到y=a(x-h)2的图象;
③再把抛物线 向上(k>0)或向下(k<0)平移| k|个单位;便得到 的图象.
※二次函数 的性质:
二次函数 配方成 则抛物线的
③tanA不表示“tan”乘以“A”;
④初中阶段;我们只学习直角三角形中;∠A是锐角的正切;
※⑤tanA的值越大;梯子越陡;∠A越大;∠A越大;梯子越陡;tanA的值越大.
※二.
余切:
定义:在Rt△ABC中;锐角∠A的邻边与对边的比叫做∠A的余切;记作cotA;即 ;
※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切.
<0<===> 抛物线与x轴有0个交点(无交点);
※当 >0时;设抛物线与x轴的两个交点为A、B;则这两个点之间的距离:
化简后即为: ------ 这就是抛物线与x轴的两交点之间的距离公式.
第三章 圆
一. 车轮为什么做成圆形
※1. 圆的定义:
描述性定义:在一个平面内;线段OA绕它固定的一个端点O旋转一周;另一个端点A随之旋转所形成的圆形叫做圆;固定的端点O叫做圆心;线段OA叫做半径;以点O为圆心的圆;记作⊙O;读作“圆O”.圆的任意一条直径的两个端点分圆成两条弧;每一条弧都叫做半圆.能够重合的两个圆叫做等圆;在同圆活等圆中;能够互相重合的弧叫做等弧.
※推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;
※四. 确定圆的条件:
※1. 理解确定一个圆必须的具备两个条件:
圆心和半径,圆心决定圆的位置,半径决定圆的大小.
经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.
※2. 经过三点作圆要分两种情况:
※3.垂径定理:垂直于弦的直径平分这条弦;并且平分弦所对的两条弧.
推论:平分弦(不是直径)的直径垂直于弦;并且平分弦所对的两条弧.
说明:根据垂径定理与推论可知对于一个圆和一条直线来说;如果具备:
①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.
上述五个条件中的任何两个条件都可推出其他三个结论.
◎解直角三角形的几种基本类型列表如下:
※如图2;坡面与水平面的夹角叫做坡角(或叫做坡比).用字母i表示;即
◎从某点的指北方向按顺时针转到目标方向的水平角;叫做方位角.如图3;OA、OB、OC的方位角分别为45°、135°、225°.
◎指北或指南方向线与目标方向线所成的小于90°的水平角;叫做方向角.如图4;OA、OB、OC、OD的方向角分别是;北偏东30°;南偏东45°(东南方向)、南偏西为60°;北偏西60°.
④同心圆:圆心相同;半径不等的两个圆叫做同心圆.
⑤等圆:能够完全重合的两个圆叫做等圆;半径相等的两个圆是等圆.
⑥等弧:在同圆或等圆中;能够互相重合的弧叫做等弧.
⑦圆心角:顶点在圆心的角叫做圆心角.
⑧弦心距:从圆心到弦的距离叫做弦心距.
※2. 圆是轴对称图形;直径所在的直线是它的对称轴;圆有无数条对称轴.
九年级下册数学知识点总结
第一章直角三角形边的关系
※一.正切:
定义:在Rt△ABC中;如果锐角∠A确定;那么∠A的对边与邻边的比便随之确定;这个比叫做∠A的正切;记作tanA;
即 ;
①tanA是一个完整的符号;它表示∠A的正切;记号里习惯省去角的符号“∠”;
②tanA没有单位;它表示一个比值;即直角三角形中∠A的对边与邻边的比;
①先找出顶点( ; );画出对称轴x= ;
②找出图象上关于直线x= 对称的四个点(如与坐标的交点等);
③把上述五点连成光滑的曲线.
¤二次函数的最大值或最小值可以通过将解析式配成y=a(x-h)2+k的形式求得;也可以借助图象观察.
¤解决最大(小)值问题的基本思路是:
①理解问题;
②分析问题中的变量和常量;以及它们之间的关系;
0º
30º
45º
60º
90º
sinα
0
1
cosα
1
0
tanα
0
1
—
cotα
—
1
0
(通常我们称正弦、余弦互为余函数.同样;也称正切、余切互为余函数;可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角;则
① ;
② ;
※当从低处观测高处的目标时;视线与水平线所成的锐角称为仰角
※当从高处观测低处的目标时;视线与水平线所成的锐角称为俯角
(2)三角形的外心: 三角形外接圆的圆心叫做这个三角形的外心.
(3)三角形的外心的性质:三角形外心到三顶点的距离相等.
五. 直线与圆的位置关系
※1. 直线和圆相交、相切相离的定义:
(1)相交: 直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.
(2)相切: 直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点.
第二章二次函数
※二次函数的概念:形如 ( 、b、c是常数, ≠0)的函数;叫做x的二次函数.自变量的取值范围是全体实数.
是二次函数的特例;此时常数b=c=0.
※在写二次函数的关系式时;一定要寻找两个变量之间的等量关系;列出相应的函数关系式;并确定自变量的取值范围.
※二次函数y=ax2的图象是一条顶点在原点关于y轴对称的曲线;这条曲线叫做抛物线.
※|a|的越大;抛物线的开口程度越小;越靠近对称轴y轴;y随x增长(或下降)速度越快;|a|的越小;抛物线的开口程度越大;越远离对称轴y轴;y随x增长(或下降)速度越慢.
※二次函数 的图象中;a的符号决定抛物线的开口方向;|a|决定抛物线的开口程度大小;c决定抛物线的顶点位置;即抛物线位置的高低.
※二次函数 的图象与y=ax2的图象的关系:
※4. 切线的性质定理:
圆的切线垂直于过切点的半径.
※推论1 经过圆心且垂直于切线的直线必经过切点.
※推论2 经过切点且垂直于切线的直线必经过圆心.
※分析性质定理及两个推论的条件和结论间的关系,可得如下结论:
如果一条直线具备下列三个条件中的任意两个,就可推出第三个.
①垂直于切线; ②过切点; ③过圆心.
※2. 圆心角的度数和它所对的弧的度数相等.
这里指的是角度数与弧的度数相等,而不是角与弧相等.即不能写成
∠AOB= ,这是错误的.
※3. 圆周角的定义:
顶点在圆上,并且两边都与圆相交的角,叫做圆周角.
※4. 圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半.
※推论1:同弧或等弧所对的圆周角相等;反之;在同圆或等圆中;相等圆周角所对的弧也相等;
A、当a>0时
B、当a<0时
⑤当|a|越大;抛物线开口越小;当|a|越小;抛物线的开口越大.
⑥最大值或最小值:当a>0;且x=0时函数有最小值;最小值是0;当a<0;且x=0时函数有最大值;最大值是0.
※二次函数 的图象是一条顶点在y轴上且与y轴对称的抛物线
※二次函数 的图象是以 为对称轴;顶点在
( ; )的抛物线.(开口方向和大小由a来决定)
①点在圆上 <===> d=r;
②点在圆内 <===> d<r;
③点在圆外 <===> d>r.
其中点在圆上的数量特征是重点;它可用来证明若干个点共圆;方法就是证明这几个点与一个定点、的距离相等.
2.圆的对称性:
3.
三※1. 与圆相关的概念:
①弦和直径:
弦:连接圆上任意两点的线段叫做弦.
直径:经过圆心的弦叫做直径.
※利用特殊角的三角函数值表;可以看出;(1)当角度在0°~90°间变化时;正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大).(2)0≤sinα≤1;0≤cosα≤1.
※同角的三角函数间的关系:
倒数关系:tgα·ctgα=1.
※在直角三角形中;除直角外;一共有五个元素;即三条边和二个锐角.由直角三角形中除直角外的已知元素;求出所有未知元素的过程;叫做解直角三角形.
(1)经过同一直线上的三点不能作圆.
(2)经过不在同一直线上的三点,能且仅能作一个圆.
※定理: 不在同一直线上的三个点确定一个圆.