自动控制原理标准实验报告
自动控制原理实验报告
自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
自动控制原理实验报告五个实验
自动控制原理实验专业班级姓名学号实验时间:2010.10—2010.11一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线 18根典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。
2、掌握用运算放大器构成各种常用的典型环节的方法。
3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。
4、学会时域法测量典型环节参数的方法。
(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理实验原理及实验设计:1.比例环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节: Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤2、测量输入和输出波形图。
自控原理实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理实验报告
《自动控制原理实验》实验报告班级:自动化0901姓名:***学号:*********东华大学信息学院实验一 MATLAB 中数学模型的表示MP2.1考虑两个多项式2()21p s s s =++ ,()1q s s =+使用 MATLAB 计算下列各式:程序: (a )>> A=[1 2 1];B=[1 1]; >> C=conv(A,B)运行结果: C =1 3 3 1 (b)>> num=[1 1]; >> den=[1 2 1]; >> z=roots(num); >> p=roots(den); >> z,p运行结果: z =-1 p =-1 -1 (c)>> value=polyval(p,-1) 运行结果: value = 0程序:(a)>> num1=[1];num2=[1 2];den1=[1 1];den2=[1 3];[num,den]=series(num1,den1,num2,den2);[num,den]=cloop(num,den,-1);printsys(num,den)运行结果:num/den =s + 2----------------s^2 + 5 s + 5(b)step(num,den)运行结果:(a)>> num1=[1]; den1=[1 1];num2=[1]; den2=[1 0 2];[num3,den3]=series(num1,den1,num2,den2);num4=[4 2]; den4=[1 2 1];[num5,den5]=feedback(num3,den3,num4,den4,-1);num6=[1]; den6=[1 0 0];num7=[50]; den7=[1];[num8,den8]=feedback(num6,den6,num7,den7,1);[num9,den9]=series(num5,den5,num8,den8);num10=[1 0 2]; den10=[1 0 0 14];[num11,den11]=feedback(num9,den9,num10,den10,-1);num12=[4]; den12=[1];[num13,den13]=series(num11,den11,num12,den12)F=tf(num13,den13)运行结果:Transfer function:4 s^5 + 8 s^4 + 4 s^3 + 56 s^2 + 112 s + 56 ----------------------------------------------------------------------------------------------------s^10 + 3 s^9 - 45 s^8 - 129 s^7 - 198 s^6 - 976 s^5 - 2501 s^4 - 3558 s^3 - 4841 s^2 - 6996 s – 2798(b)[p,z]=pzmap(num13,den13); pzmap(num13,den13);grid on运行结果:p =7.0710-7.07101.2047 +2.0871i1.2047 -2.0871i0.2984 + 1.4750i0.2984 - 1.4750i-2.4108-1.5219 + 0.9395i-1.5219 - 0.9395i-0.5517>> zz =1.2051 +2.0872i1.2051 -2.0872i-2.4101-1.0000 + 0.0000i-1.0000 - 0.0000i(c)>> Z=roots(num13)Z =1.2051 +2.0872i1.2051 -2.0872i-2.4101-1.0000 + 0.0000i-1.0000 - 0.0000i>> P=roots(den13)P =7.0710-7.07101.2047 +2.0871i1.2047 -2.0871i0.2984 + 1.4750i0.2984 - 1.4750i-2.4108-1.5219 + 0.9395i-1.5219 - 0.9395i-0.5517绘制系统的单位阶跃响应,参数Z=3,6和12。
自动控制原理实验报告
自动控制原理实验报告实验一典型系统的时域响应和稳定性分析 (2)一、实验目的 (3)二、实验原理及内容 (3)三、实验现象分析 (5)方法一:matlab程序 (5)方法二:multism仿真 (12)方法三:simulink仿真 (17)实验二线性系统的根轨迹分析 (21)一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21)二、根据根轨迹图分析系统的闭环稳定性 (22)三、如何通过改造根轨迹来改善系统的品质? (25)实验三线性系统的频率响应分析 (33)一、绘制图1. 图3系统的奈氏图和伯德图 (33)二、分别根据奈氏图和伯德图分析系统的稳定性 (37)三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导出系统的传递函数 (38)实验四、磁盘驱动器的读取控制 (41)一、实验原理 (41)二、实验内容及步骤 (41)(一)系统的阶跃响应 (41)(二) 系统动态响应、稳态误差以及扰动能力讨论 (45)1、动态响应 (46)2、稳态误差和扰动能力 (48)(三)引入速度传感器 (51)1. 未加速度传感器时系统性能分析 (51)2、加入速度传感器后的系统性能分析 (59)五、实验总结 (64)实验一典型系统的时域响应和稳定性分析一、 实验目的1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。
二、 实验原理及内容1.典型的二阶系统稳定性分析 (1) 结构框图:见图1图1(2) 对应的模拟电路图图2(3) 理论分析导出系统开环传递函数,开环增益01T K K =。
(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图2),s 1T 0=, s T 2.01=,R200K 1= R200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ 2.典型的三阶系统稳定性分析 (1) 结构框图图3(2) 模拟电路图图4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。
自动控制原理实验报告
自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。
2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。
三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。
三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。
三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
自动控制原理实验报告
《自动控制原理》实验报告姓名:学号:专业:班级:时段:成绩:工学院自动化系实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理1.比例环节的传递函数为K R K R R RZ Z sG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-3所示。
三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。
① 比例环节1)(1=s G 和2)(1=s G ;② 惯性环节11)(1+=s s G 和15.01)(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=四、实验结果及分析① 仿真模型及波形图1)(1=s G 和2)(1=s G图1-3 比例环节的模拟电路及SIMULINK 图形② 仿真模型及波形图11)(1+=s s G 和15.01)(2+=s s G 11)(1+=s s G 15.01)(2+=s s G③ 积分环节ss G 1)(1=④ 微分环节⑤ 比例+微分环节(PD )⑥比例+积分环节(PI)五、分析及心得体会实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
自控制原理实验报告(3篇)
第1篇一、实验目的1. 理解自控制原理的基本概念和基本方法。
2. 掌握典型控制系统的组成和基本工作原理。
3. 学习使用实验仪器,进行控制系统模拟实验。
4. 分析和评估控制系统的性能指标,提高对控制系统设计和优化的认识。
二、实验仪器与设备1. EL-AT-III型自动控制系统实验箱一台2. 计算机一台3. 万用表一个三、实验原理1. 自控制原理基本概念:自控制原理是研究如何利用反馈信息来控制系统的行为,使其达到预定的目标。
其基本原理是:通过将系统的输出信号反馈到输入端,与输入信号进行比较,产生误差信号,然后根据误差信号调整系统的控制策略,以达到控制目标。
2. 典型控制系统组成:典型控制系统通常由控制器、被控对象、反馈环节和执行机构组成。
3. 控制系统模拟实验:利用实验箱和计算机,通过模拟电路搭建典型控制系统,进行实验研究。
四、实验内容1. 实验一:典型环节及其阶跃响应- 实验目的:掌握控制模拟实验的基本原理和一般方法,掌握控制系统时域性能指标的测量方法。
- 实验步骤:1. 搭建一阶系统的模拟电路。
2. 通过计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。
3. 改变系统的参数,分析参数对系统性能的影响。
2. 实验二:二阶系统阶跃响应- 实验目的:了解二阶系统的阶跃响应特性,掌握二阶系统的性能指标。
- 实验步骤:1. 搭建二阶系统的模拟电路。
2. 通过计算机等测量仪器,测量系统的输出,得到系统的阶跃响应曲线及性能指标。
3. 分析二阶系统的性能指标,如上升时间、超调量、调节时间等。
3. 实验三:连续系统串联校正- 实验目的:学习连续系统串联校正方法,提高控制系统的性能。
- 实验步骤:1. 搭建连续系统的模拟电路。
2. 分析系统的性能指标,确定校正方法。
3. 通过计算机等测量仪器,测量校正后的系统输出,评估校正效果。
五、实验结果与分析1. 实验一:通过搭建一阶系统的模拟电路,测量系统的输出,得到系统的动态响应曲线及性能指标。
自动控制原理实验报告
自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2. 学习在电子模拟机上建立典型环节系统模型的方法。
3. 学习阶跃响应的测试方法。
二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。
2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。
三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。
222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。
自动控制原理实验报告
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
自动控制原理实验报告分析
自动控制原理实验报告分析1. 引言自动控制原理是现代工程中非常重要的一门学科。
它研究如何设计和分析能够实现自动化控制的系统,以满足特定的性能要求。
通过实验,我们可以验证控制系统的性能,并深入理解自动控制原理的基本概念和工作原理。
本文将对自动控制原理实验进行详细分析和总结。
2. 实验目的本次实验的目的是研究PID(比例-积分-微分)控制器在温度控制系统中的应用。
通过调节PID控制器的参数,我们可以观察到不同控制参数对系统稳定性、响应速度和超调量等性能指标的影响。
3. 实验步骤本次实验使用了一个温度控制系统。
我们需要调节PID控制器的三个参数(比例增益、积分时间和微分时间)来实现温度的稳定控制。
具体的实验步骤如下:3.1 准备工作在进行实验之前,我们需要确保实验所需的设备和软件已经准备就绪。
这包括温度传感器、温度控制器、计算机等。
3.2 连接系统将温度传感器连接到温度控制器,并将温度控制器连接到计算机。
确保连接正确并稳定。
3.3 设置初始参数在实验开始前,我们需要设置PID控制器的初始参数。
一般情况下,我们可以先将比例增益和积分时间设置为较小的值,微分时间设置为0。
3.4 开始实验启动温度控制系统,并记录温度的变化。
观察温度的稳定性、响应速度和超调量等指标,并记录下来。
3.5 调节参数根据实验结果,我们可以调节PID控制器的参数来改善系统的性能。
通过增大比例增益可以提高系统的响应速度,但可能会导致较大的超调量。
增大积分时间可以减小超调量,但可能会降低系统的稳定性。
调节微分时间可以改善系统的稳定性和响应速度。
3.6 重复实验根据实验结果,我们可以不断调节PID控制器的参数,并进行多次实验,以得到更好的控制效果。
4. 实验结果分析根据实验的记录数据,我们可以对实验结果进行分析。
通过观察温度的变化曲线以及性能指标的大小,我们可以得出如下结论:•较大的比例增益可以提高系统的响应速度,但会导致较大的超调量。
•较大的积分时间可以减小超调量,但会降低系统的稳定性。
自动控制实验报告
自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。
二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。
2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。
5×100%=0.28%E2=|3.318—3。
3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。
自动控制原理实验报告
⾃动控制原理实验报告实验⼀典型环节的模拟研究及阶跃响应分析1、⽐例环节可知⽐例环节的传递函数为⼀个常数:当Kp 分别为0.5,1,2时,输⼊幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满⾜理论值。
2、积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1µf (0.33µf ),利⽤MATLAB ,模拟阶跃信号输⼊下的输出信号如图: T=0.1 T=0.033与实验测得波形⽐较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满⾜理论条件。
3、惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K=R f /R 1,T=R f C,(1)保持K=R f /R 1=1不变,观测T= 0.1秒,0.01秒(既R 1=100K,C=1µf ,0.1µf )时的输出波形。
利⽤matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较⼩,所以读数时误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2)保持T=R f C= 0.1s 不变,分别观测K=1,2时的输出波形。
武汉大学《自动控制原理》实验报告
2016~2017学年第一学期《自动控制原理》实验报告年级:2014级班号:姓名:He 学号:成绩:教师:实验设备及编号:实验同组人名单:实验地点:电气工程学院自动控制原理实验室实验时间:2016年10月目录:实验一典型环节的电路模拟 (3)一、实验目的 (3)二、实验内容 (3)三、实验电路图及参数 (3)四、实验分析 (10)五、实验思考题 (11)实验二二阶系统的瞬态响应 (12)一、实验目的 (12)二、实验设备 (12)三、实验电路图及其传递函数 (12)四、实验结果及相应参数 (14)五、实验分析 (16)六、实验思考题 (16)实验五典型环节和系统频率特性的测量 (17)一、实验目的 (17)二、实验设备 (17)三、传递函数.模拟电路图及波特图 (17)四、实验思考题 (22)实验六线性定常系统的串联校正 (24)一、实验目的 (24)二、实验设备 (24)三、实验电路图及其实验结果 (24)四、实验分析 (28)五、实验思考题 (28)实验七单闭环直流调速系统 (29)一、实验目的 (29)二、实验设备 (29)三、PID参数记录表及其对应图像 (30)四、PID控制参数对直流电机运行的影响 (37)实验一典型环节的电路模拟一、实验目的1.熟悉THKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。
三、实验电路图及参数1.比例(P)环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。
它的传递函数与方框图分别为:图1-1 比例环节的模拟电路图中后一个单元为反相器,其中R0=200k。
当U i(S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2 所示。
自动控制原理_实验报告
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制原理实验报告
自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。
二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。
2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。
3. 将编写好的代码上传至Arduino UNO开发板。
4.将电源适配器连接至系统,确保实验装置正常供电。
5.启动实验系统并观察电机的转动情况。
6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。
五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。
通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。
2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。
这也是导致实际转动角度与目标角度存在差异的一个重要原因。
3.电源适配器的稳定性对电机的转动精度也有一定的影响。
六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。
同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。
为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。
实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子科技大学自动化工程学院标准实验报告(实验)课程名称自动控制原理电子科技大学教务处制表电子科技大学实验报告学生姓名:陈音学学号:2014070902029 指导教师:实验地点:C2 507 实验时间:实验室名称:实验项目名称:系统认识与系统测试实验学时:4实验原理:实验原理图如下:被测试系统是指:由控制部分,电动机,反馈电位器组成的部分。
在该实验中要求:1 测试输入(外部、计算机)信号与输出角度信号之间的关系(曲线)。
2 测试反馈电位器的输出电压与角度信号之间的关系(曲线)。
实验电路图实验目的:1了解开环系统的工作状态,掌握闭环系统反馈极性的判别方法及其影响。
2 掌握系统相关数据的测试方法。
实验内容:1 测试输入(外部、计算机)信号与输出角度信号之间的关系(曲线)。
2 测试反馈电位器的输出电压与角度信号之间的关系(曲线)。
实验器材:XZ-IIC型实验仪计算机自动控制原理实验仪万用表实验步骤:1 将系统接为单位负反馈系统,适当选取K值(约等于3)。
2 在-5V-+5V范围内间隔0.5V调整R的输出电压(用万用表监测),读出对应的输出角度值(可用计算机读出)。
3 断开系统输入,用手转动电机,在-150°-+150°间每隔10°选取一测试值用万用表监测反馈电位器的输出电压并作好记录。
(用计算机监测给定角度)实验数据及结果分析:实验机号20054409计算机的给定电压与系统输出角度的关系:给定电压-3-2.5-2-1.5-1-0.500.51 1.5 2.03 2.53输出角度-110-90.4-77.2-53.9-39.4-2201735.555.567.890.4107.6横轴-计算机的给定电压纵轴-系统输出角度系统输出角度与反馈电压间的关系:输出角度-150-140-130-120-110-100-90-80-70-60反馈电压-4.29-4-3.71-3.42-3.087-2.801-2.51-2.29-1.94-1.658-50-40-30-20-1001020304050 -1.366-1.085-0.8-0.52-0.23300.3460.6280.915 1.196 1.483607080901001101201301.772.052 2.338 2.628 2.9133.201 3.824.11横轴-系统输出角度纵轴-反馈电压外部输入电压与系统输出角度的关系:外部输入电压-3-2.5-2-1.5-1-0.500.51 1.52 2.53输出角度-115-86-76-48-36-2001636536885107横轴-外部输入电压纵轴-输出角度实验结论::报告评分:指导教师签字:实验项目名称:随动系统的时域特性分析实验学时:2实验原理:图21 实验系统方块图该实验主要研究系统前向增益K与系统反馈增益H的变化,对系统时域指标的影响。
由于本系统负载摆杆有一限位挡杆,不能连续转动,不宜做系统开环实验,故只做闭环实验。
1)系统前向增益K与系统性能的关系系统输入为单位阶跃信号(refi=1v),先固定反馈增益H为1,设置不同前向增益K=0.3,0.5, 1, 1.5 , 2 , 2.5 , 3(前向增益K首次设置为1),观察并记录其不同的输出响应曲线。
并注意观察对稳态控制精度的影响。
2)系统反馈增益H与系统性能的关系系统输入为单位阶跃信号(refi=1v),先固定前向增益K为1,设置不同反馈增益H=0.5, 1, 1.5 , 2 , 2.5 , 3(反馈增益H首次设置为1),观察记录其输出响应曲线。
并注意观察稳态值及对稳态控制精度的影响。
实验目的:了解系统频域分析方法。
分析并掌握前向增益和反馈增益对系统稳定性的影响,并观察对稳态控制精度的影响。
实验内容:1设置不同前向增益K=0.3,0.5, 1, 1.5 , 2 , 2.5 , 3(前向增益K首次设置为1),观察并记录其不同的输出响应曲线2设置不同反馈增益H=0.5, 1, 1.5 , 2 , 2.5 , 3(反馈增益H首次设置为1),观察记录其输出响应曲线。
实验器材(设备、元器件):XZ-IIC型实验仪计算机(或自动控制原理实验仪、示波器、万用表)实验步骤:1.首先打开DSP.EXE文件,得到PC操作界面;2.接着点击菜单项“文件(F)”—“设置(S)”,或者第二个快捷键得到设置对话框“ESPSetting”,选择其运行模式为“控制模式”,点击“OK”按扭;3. 然后点击菜单项“实验(E)”—“2:随动系统的稳定性分析”,随之出现的“随动系统的稳定性分析”参数设置对话框(如图22)中有三个参数可供选择:参考输入REFI、前向增益K和反馈增益H,设置好参数后点击“OK”按扭;实验数据及结果分析:实验机号20054409k=0.3 h=1 稳态值:44.5 ,46.9 ,47.9k=0.5 h=1 稳态值:35.8 ,35.7 ,35.8k=1 h=1 稳态值:34.1,34.4,34.8k=1.5 h=1 稳态值:35.1 ,35.0 ,35.0k=2 h=1k=3 h=1h=0.5 k=1 稳态值:77.2 ,75.9 ,75.2h=1.5 k=1 稳态值:24.3 ,24.2 ,24.0h=2 k=1 稳态值:18.2 ,17.5 ,16.8h=2.5 k=1 稳态值:14.9 ,14.2 ,14.8h=3 k=1实验结论:1报告评分:指导教师签字:实验项目名称:随动系统的频率特性测试及分析实验学时:4实验原理:系统原理图如下,图25 实验原理简图固定反馈增益H为1,由先验知识可以知道,此随动系统具有低通特性,且频带较窄。
实验时:输入信号采用正弦信号,频率从0.1Hz到6.0Hz(不同的电机可能会有较小的差异)开始时每隔0.1Hz变化,2.0HZ后间隔可增大,选择适当的输入信号的幅值,只要计算输出与输入信号的幅值之比即可。
记录输入、输出信号幅值比及相应的频率,从而分析其幅频特性。
实验目的:1.了解系统频域分析方法;了解系统频域指标与时域指标的关系。
2.掌握系统频率特性的测试方法,进一步理解频率特性的物理意义;3.根据闭环幅频特性求出被测系统相应的开环传递函数。
实验内容:1.记录在不同频率下系统的输入,输出数据。
2.作出闭环系统的幅频特图,并分析求得其相应的传递函数(等效为二阶系统)。
3.实验时应如何选择实验频率及频率间隔?实验器材(设备、元器件):XZ-IIC型实验仪计算机(或自动控制原理实验仪、示波器、信号发生器)。
实验步骤:1 首先打开DSP.EXE文件,得到PC操作界面;2 接着点击菜单项“文件(F)”—“设置(S)”,或者第二个快捷键得到设置对话框“ESP Setting”,选择其运行模式为“控制模式”,点击“OK”按扭;3 然后点击菜单项“实验(E)”—“4:随动系统的频率特性及分析”,随之出现的“随动系统的频率特性及分析”参数设置对话框(如图26)中有两个参数可供选择:正弦输入信号的幅值A和角频率w,选择好参数后点击“OK”按扭;图26 随动系统的频率特性及分析参数设置4 点击菜单项“文件(F )”—“开始(K )”或者第一个快捷键,开始实验;5 如需进行多次实验重复上述(3)、(4)步骤即可。
实验数据及结果分析:实验机号20054409输入电压=0.5sin(ωt) 与 输出角度间的关系:角频率 0.10.20.30.40.50.60.70.80.91817 161815 16 16.5 17.5 1615161715 1817 16.5 15.517输出角度平均值 16.516.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 频率 0.6281.256 1.8842.5123.143.7684.3965.0245.6521 1.52 2.53 3.5 3.6 3.7 3.8 18 15 20 25 32 28 30 30 35 1515 15 20 1825 25 28.53016.5 15 17.5 22.5 25 26.5 27.5 29.25 32.5 6.289.42 12.56 15.7 18.84 21.98 22.608 23.236 23.8643.8 3.9 44.1 4.2 4.3 4.4 4.5 4.6 35 37 40 50 60 110 140 130 115 30 32 35 42 58 100 140 125 110 32.5 34.5 37.5 46 59 105 140 127.5 112.5 23.864 24.492 25.12 25.748 26.376 27.004 27.632 28.26 28.8884.7 4.8 4.9 55.5 6 7 8 100 80 75 65 50 35 20 15 95 75 65 60 40 25 15 10 97.5 77.5 70 62.5 45 30 17.5 12.5 29.516 30.144 30.772 31.4 34.54 37.68 43.96 50.24曲线图如下:由实验数据并结合实验二的结果可得: Amax=4; A(0)≈0.5; ωn ≈8 根据公式 Mr=Amax/A(0); ξ=22^111Mr -- 可求得ξ=0.0707所求二阶系统为 G(s)=6413.12^64++S S其对应的开环益传递函数为)13.1(64+S S报告评分:指导教师签字:实验项目名称:随动系统的PID 校正实验学时:2 实验原理:图27 实验系统结构简图该实验主要观察PID 校正网络各参数变化,对系统时域指标的影响,了解其作用规律。
所加校正网络为:ST ST K2111++T 1为微分环节时间常数 T 2为一阶积分环节时间常数观察校正网络参数变化对系统性能的影响。
实验中参数选取如下:k=1 ;T 2=0.0167 分别取T 1=0.01,0.05,0.1,1 k=1 ;T 1=0.1 分别取T 2=0.001,0.01,0.167,1.67 记录系统的输出曲线、超调量、调节时间Ts 。
实验目的:1.了解线性系统最常用的校正方法。
2.了解PID校正网络参数变化对系统的影响。
3.掌握校正的概念,了解其PID校正对系统时域指标的作用规律。
实验内容:1.记录系统不同结构参数校正下对应的输出响应曲线;2.分析不同的校正参数对系统各项性能指标的影响;实验器材(设备、元器件):XZ-IIC型实验仪计算机(或自动控制原理实验仪、示波器、万用表)实验步骤:1.首先打开DSP.EXE文件,得到PC操作界面;2.接着点击菜单项“文件(F)”—“设置(S)”,或者第二个快捷键得到设置对话框“ESP Setting”,选择其运行模式为“控制模式”,点击“OK”按扭;3.然后点击菜单项“实验(E)”—“5:随动系统的校正”,随之出现的“随动系统的校正”参数设置对话框(如图28)中有四个参数可供选择:参考输入REFI和前向增益K,及两个校正环节参数T1和T2,设置好参数数值后点击“OK”按扭;图28 随动系统的校正参数设置对话框4.点击菜单项“文件(F)”—“开始(K)”或者第一个快捷键,从而开始实验;5. 如需进行多次实验,重复上述(3)、(4)步骤即可。