一次函数分类题型题目

合集下载

一次函数的定义、图象和性质压轴题九种模型全攻略(解析版)

一次函数的定义、图象和性质压轴题九种模型全攻略(解析版)

专题11一次函数的定义、图象和性质压轴题九种模型全攻略【考点导航】目录【典型例题】 (1)【考点一判别是否一次函数】 (1)【考点二根据一次函数的定义求参数的值】 (2)【考点三画一次函数的图象】 (4)【考点四一次函数的图象和性质】 (9)【考点五根据一次函数经过的象限求参数问题】 (11)【考点六根据一次函数的增减性求参数问题】 (12)【考点七一次函数的图象与坐标轴的交点问题】 (13)【考点八两个一次函数图象共存问题】 (15)【考点九一次函数中的规律探究问题】 (16)【过关检测】 (20)【典型例题】【考点一判别是否一次函数】【变式训练】【考点二根据一次函数的定义求参数的值】【变式训练】故答案为:2-.【考点三画一次函数的图象】(1)请在所给的平面直角坐标系中画出该函数的图象.(2)结合所画图象,分别求出在函数图象上满足下列条件的点的坐标:①横坐标是4-;②和x轴的距离是2个单位长度.【答案】(1)见解析(2)①横坐标是4-的点是()45-,;②和x轴的距离是;(2)解:①当4x =-时,()143232y =-⨯-+=+=∴横坐标是4-的点是()45-,;② 和x 轴的距离是2个单位长度,2y ∴=或=2y -,当2y =时,1322x -+=,解得:2x =,此时点的坐标为1【变式训练】1.(2023上·福建漳州·八年级福建省漳州第一中学校考阶段练习)已知,一次函数24y x =-+的图像分别与x 轴,y 轴交于点A ,B .(1)请直接写出,A B 两点坐标:A :__________,B :__________;(2)在直角坐标系中画出函数图象(不用列表,直接描点、连线);(3)解:如图所示,当OP与一次函数此时,1122ABO S OA OB AB OP =⋅=⋅ 2,4OA OB == ,2225AB OA OB ∴=+=,11242522OP ∴⨯⨯=⨯,455OP ∴=,故答案为:45.(2)设直线与x 轴交于点A ,与y 轴交于点B ,求出AOBy>.由图象可知:当2x<时,0故答案为:2x<;【考点四一次函数的图象和性质】例题:(2023上·广东深圳·八年级校考期中)下列关于函数32y x =+的结论中,错误的是()A .图象经过点()1,1--B .点()11,A x y ,()22,B x y 在该函数图象上,若12x x >,则12y y >C .将函数图象向下平移2个单位长度后,经过点()0,1D .图象不经过第四象限【答案】C【分析】本题考查的是一次函数的性质,一次函数图象的平移,根据一次函数图象上点的坐标特点可判断A ,根据一次函数的增减性可判断B ,根据一次函数图象的平移可判断C ,根据一次函数系数与经过的象限的关系可判断D ,熟记一次函数的性质是解本题的关键.【详解】解:A 、当=1x -时,32321y x =+=-+=-,故图象经过点(1,1)--,故本选项正确,不合题意;B 、 函数32y x =+中,30k =>,y ∴随x 的增大而增大,∵12x x >,12y y ∴>,故本选项正确,不合题意;C 、根据平移的规律,函数32y x =+的图象向下平移2个单位长度得解析式为3y x =,所以当0x =时,0y =,则图象经过点()0,0,故本选项错误,符合题意;D 、32y x =+,30k =>,20b =>,函数经过第一,二,三象限,不经过第四象限,故本选项正确,不符合题意.故选:C .【变式训练】1.(2023下·广西南宁·八年级校考阶段练习)对于一次函数2y x =+,下列说法正确的是()A .图象不经过第三象限B .当2x >时,4y <C .图象由直线y x =向上平移2个单位长度得到D .图象与x 轴交于点()2,0【答案】C【分析】根据一次函数的图象与性质即可解答.【详解】解:∵一次函数解析式为2y x =+,∴图象经过第一、二、三象限,故A 不符合题意;当2x >时,224y >+=,故B 不符合题意;直线y x =向上平移2个单位得到的新解析式为2y x =+,故C 符合题意;对于2y x =+,令0y =,则2x =-,∴图象与x 轴交于点()2,0-,故D 不符合题意.故选C .【点睛】本题考查一次函数的图象与性质.熟练掌握一次函数的图象与性质是解题关键.2.(2023上·安徽六安·八年级校考阶段练习)一次函数24y x =-+,下列结论错误..的是()A .若两点A (11,x y ),B (22,x y )在该函数图象上,且12x x <,则12y y >B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得到2y x =-的图象D .函数的图象与x 轴的交点坐标是()04,【答案】D【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 、因为一次函数24y x =-+中20k =-<,因此函数值随x 的增大而减小,故A 选项正确;B 、因为一次函数24y x =-+中20k =-<,40b =>,因此此函数的图象经过一、二、四象限,不经过第三象限,故B 选项正确;C 、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得2y x =-的图象,故C 选项正确;D 、令0y =,则2x =,因此函数的图象与x 轴的交点坐标是()2,0,故D 选项错误.故选:D .【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.【考点五根据一次函数经过的象限求参数问题】【变式训练】【考点六根据一次函数的增减性求参数问题】【变式训练】【考点七一次函数的图象与坐标轴的交点问题】【变式训练】【考点八两个一次函数图象共存问题】例题:(2023上·陕西西安·八年级统考期末)直线y kx k =-+与直线y kx =在同一坐标系中的大致图象可能是图中()A .B .C .D .【答案】B【分析】本题考查了根据一次函数解析式判断其经过的象限,对于一次函数y kx b =+,当0k >时,图象必过一、三象限;当0k <时,图象必过二、四象限;当0b >时,图象必过一、二象限;当0b <时,图象必过三、四象限;熟记相关结论即可求解.【详解】解:若0k >,则0k -<,此时直线y kx k =-+经过一、二、四象限;直线y kx =经过一、三象限;无此种情况的选项;若0k <,则0k ->,此时直线y kx k =-+经过一、三、四象限;直线y kx =经过二、四象限;选项B 符合题意;故选:B 【变式训练】.B .C .D .【答案】B【分析】本题考查一次函数的图像,根据函数图像所在象限可判断出k ,b 的取值范围.一次函数y =图像的性质:当0k >,b >时,图像经过一、二、三象限;当0k >,0b <时,图像经过一、三、四象限;.B.C.D.【答案】A【分析】本题考查了一次函数的图象与性质;根据一次函数图象的升降及直线与轴交点的位置即可确定的符号,从而确定mn的符号,再与正比例函数的一次项系数mn的符号比较.【考点九一次函数中的规律探究问题】【答案】()1,1(20232【分析】本题考查了勾股定理,到点B 1的坐标,然后利用等腰直角三角形的性质得到点得到点Bn 的坐标.【详解】解:∵12OB =,点【变式训练】1.(2023上·四川成都·八年级校考阶段练习)如图,在平面直角坐标系中,ABC ,111A B C △,222A B C △,【答案】6527,44⎛⎫⎪⎝⎭1232n n --【分析】本题考查等腰直角三角形的性质,一次函数的应用,规律型问题等知识.分别求出4C ,……,探究规律,利用规律解决问题即可.【详解】解:当=1x -时,()141133y =⨯-+=,【答案】()202320222,2【分析】先根据一次函数方程式求出律便可求出点2023C 的坐标.【详解】解:直线y x =,点【过关检测】一、单选题1.(2024上·浙江宁波·八年级统考期末)下列各点在一次函数21y x =-的图象上的是()A .()2,3B .()2,3-C .()3,3D .()4,3【答案】A【分析】本题考查了一次函数图象上点的坐标特征.求得当3y =时,x 的值,进行判断即可.【详解】解:观察四个选项,四个点的纵坐标都是3,当3y =时,213x -=,解得2x =,∴点()2,3在一次函数21y x =-的图象上,故A 选项符合题意;故选:A .2.(2023上·江苏淮安·八年级淮安市浦东实验中学校考阶段练习)函数(1)y x π=(2)21y x =-(3)23y x =+(4)33y x =-(5)21y x =-中一次函数有()A .4个B .3个C .2个D .1个【答案】B【分析】本题考查的是一次函数的定义,解决本题的关键是明确一次函数的定义,一般地,形如y kx b =+(0k ≠,k ,b 是常数)的函数,叫做一次函数.利用一次函数的定义分析得出即可.【详解】解:(1)y x π=是一次函数,符合题意;(2)21y x =-是一次函数,符合题意;(3)23y x =+中23x +不是整式,不是一次函数,不符合题意;(4)33y x =-是一次函数,符合题意;(5)21y x =-的自变量的次数是2,不是一次函数,不符合题意;故是一次函数的有3个.故选:B .3.(2024上·河南平顶山·八年级统考期末)一次函数()12y m x =-+中,若y 随x 的增大而减小,则m 的值可能是()A .0B .1C .2D .3【答案】A【分析】本题考查了一次函数的性质,熟练掌握一次函数的性质是解答本题的关键.根据题意,y 随x 的增大而减小,则10m -<,由此得到答案.【详解】解:根据题意得:一次函数()12y m x =-+中,若y 随x 的增大而减小,∴10m -<,∴1m <,故选:A .4.(2023上·山东济南·八年级统考阶段练习)在同一平面直角坐标系中,函数()0y mx m =-≠与2y x m =+的图象大致是()A .B .C .D .【答案】B【分析】本题考查了正比例函数和一次函数的图象;分0m >和0m <,分别根据正比例函数和一次函数的图象与系数的关系判断即可.【详解】解:当0m >时,函数()0y mx m =-≠过二、四象限,函数2y x m =+过一、二、三象限,选项B 中函数图象符合;当0m <时,函数()0y mx m =-≠过一、三象限,函数2y x m =+过一、三、四象限,均不符合;故选:B .5.(2023上·江苏无锡·八年级校联考阶段练习)关于一次函数31y x m =+-的图像与性质,下列说法中不正..确.的是()A .y 随x 的增大而增大B .当1m ≠时,该图像与函数3y x =的图像是两条平行线C .若图像不经过第四象限,则1m >D .不论m 取何值,图像都经过第一、三象限【答案】C【分析】本题考查了一次函数的增减性以及一次函数图象与系数的关系.两条直线的平行问题:若直线111y k x b =+与直线222y k x b =+平行,那么1212,k k b b =≠.根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D .【详解】解:A 、一次函数31y x m =+-中,∵30k =>,∴y 随x 的增大而增大,故本选项说法正确;B 、当1m ≠时,10m -≠,一次函数31y x m =+-与3y x =的图象是两条平行线,故本选项说法正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,∴10m -≥,即m 1≥,故本选项说法错误;D 、一次函数31y x m =+-中,∵30k =>,∴不论m 取何值,图象都经过第一、三象限,故本选项说法正确.故选:C .二、填空题【答案】202252⨯/202225⨯【分析】本题考查了一次函数图象上点的坐标特征,坐标规律的探索,先根据题意求出1231052A A ==⨯,2342052A A ==⨯,以此类推总结规律便可求出【详解】解:点()11,2A 在直线2y x =上,过点故答案为:202252⨯.三、解答题11.(2024上·安徽合肥·八年级校考期末)已知正比例函数图像经过点()1,2A -.(1)求此正比例函数的解析式:(2)点()2,2B -是否在此函数图像上?请说明理由;【答案】(1)2y x=-(2)点()2,2B -不在此函数图像上,理由见解析【分析】本题主要考查了求正比例函数图象的性质,求正比例函数值:(1)利用待定系数法求解即可;(2)求出当2x =-时y 的值即可得到答案.【详解】(1)解:设此正比例函数的解析式为()0y kx k =≠,把()1,2A -代入()0y kx k =≠中得:2k =-,∴此正比例函数的解析式为2y x =-;(2)解:点()2,2B -不在此函数图像上,理由如下:在2y x =-中,当2x =-时,()224y =-⨯-=,∴点()2,2B -不在此函数图像上.12.(2023上·江苏扬州·八年级校联考期末)已知2y +与x 成正比例,且3x =时4y =.(1)求y 与x 之间的函数关系式;(2)当2y =时,求x 的值.【答案】(1) 22y x =-(2)2x =【分析】本题考查待定系数法求一次函数解析式,解题的关键是灵活运用待定系数法建立函数解析式.(1)已知2y +与x 成正比例,可设()20y kx k +=≠,把3x =,4y =代入求出k 的值,从而可得函数解析(1)求图象与两条坐标轴的交点坐标,并在如图的直角坐标系中画出它的图象;(2)从图象看,y随着x的增大而增大,还是随(2)由图象可知,y 随着x 的增大而减小;(3)解:当0y >时,即320x ->,解得32x <.16.(2023上·山西太原·八年级统考阶段练习)如图,直线(1)点B的坐标为__________,点(2)若点P是x轴上的一个动点,画图说明并求出当点最小值.【答案】(1)(0,2),(2,1)-()4,0⎛⎫设直线B C '的表达式为y kx b=+将点(2,1)C -和点(0,2)B '-分别代入上式,得解得322k b ⎧=-⎪⎨⎪=-⎩,(1)求m ,b 的值;(2)是否存在点P ,使得ACP ≌△(3)当CPQ 为直角三角形时,求点【答案】(1)22m b =-=,(3)解:当90PCQ ∠=︒时,点当90PQC ∠=︒时,由(2)知,45OBE OAC ∠=∠=∴BC AC ⊥,∵45CPQ BAC ∠=∠=︒,∴CPQ 为等腰直角三角形,∴PQ CQ =;∴点P 的坐标为(0,2)-.当90CPQ ∠=︒时,由于45CPQ BAC ∠=∠=︒,此种情况不存在.综上,点P 的坐标为(0,6)-或(0,2)-.【点睛】本题考查了一次函数图象点的坐标特征,全等三角形的性质,等腰直角三角形性质与判定,勾股定理等知识,注意分类讨论.。

一次函数经典题型习题精华含答案

一次函数经典题型习题精华含答案

一次函数经典题型习题精华含答案一、线性方程的基本概念在数学中,一次函数又称为线性函数,是最基本的一类函数。

一次函数的标准形式可以表示为:y = kx + b,其中k和b分别表示斜率和截距。

二、一次函数的图像与性质1. 斜率的意义斜率k表示了函数图像在坐标平面上的倾斜程度。

斜率越大,函数图像越陡峭;斜率为负值时,函数图像下降;斜率为正值时,函数图像上升。

2. 截距的意义截距b表示了函数图像与y轴的交点。

当x = 0时,y = b,因此截距实际上就是函数图像与y轴的交点的y坐标值。

3. 函数图像的性质一次函数的图像是一条直线,其性质包括:经过点(0,b)、斜率为k。

三、一次函数的常见题型及解答1. 求斜率题目:已知一次函数y = 2x - 3,求其斜率。

解答:根据一次函数的标准形式,可知该函数的斜率为2。

2. 求截距题目:已知一次函数y = 3x + 4,求其截距。

解答:根据一次函数的标准形式,可知该函数的截距为4。

3. 求函数图像上某点的坐标题目:已知一次函数y = 2x + 1,求其图像上x = 3处的点的坐标。

解答:将x = 3代入函数中,可得到y = 2 * 3 + 1 = 7,因此该点的坐标为(3, 7)。

4. 求函数图像与坐标轴的交点题目:已知一次函数y = -2x + 5,请求函数图像与x轴和y轴的交点坐标。

解答:与x轴的交点:当y = 0时,-2x + 5 = 0,解得x = 2.5。

因此,与x 轴的交点坐标为(2.5, 0)。

与y轴的交点:当x = 0时,y = 5。

因此,与y轴的交点坐标为(0, 5)。

5. 求函数图像的斜率和截距题目:已知函数图像经过点(2, 7)和(4, 9),求该一次函数的斜率和截距。

解答:首先利用两点坐标求斜率:k = (9 - 7) / (4 - 2) = 2 / 2 = 1。

接下来,选择其中一点代入斜率k和函数形式求截距:7 = k * 2 + b,带入斜率和已知点的坐标,可求得b = 5。

一次函数基础训练题

一次函数基础训练题

一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。

选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。

选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。

选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。

选项D,y=√(x)+1,自变量x在根号下,不是一次函数。

所以答案是C。

2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。

解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。

要使函数为一次函数,则m 1≠0,解得m≠1。

二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。

在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。

2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。

解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。

对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。

三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。

一次函数典型题目复习

一次函数典型题目复习

一次函数典型题目复习题型一:概念类问题(1)已知y 与x+1成正比例,且当x=5时,y=12,写出y 与x 之间的函数解析式 (2)已知函数)4()2m (y 32-+-=-m x m,当m 为何值时,它是一次函数?(3)已知函数9m )3m (y 2-++=x 是正比例函数,求m 值是多少?题型二:求解析式问题(待定系数法) 1.若正比例函数的图像经过点(-1,2),则这个图像必经过点【 】A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)2. 坐标平面上,点P (2,3)在直线L 上,其中直线L 的方程式为2x +by =7,求b =?A. 1B.3C.21 D. 313.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为 .题型三:一次函数图像性质问题 1.一次函数y =2x -2的图象不经过...的象限是( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知一次函数21y x =+,则y 随x 的增大而______(填“增大”或“减小”). 3. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 2 4.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )5.已知一次函数32-=x y 的大致图像为 ( )A B C DOy x2-1 o yxo yx yxo o y x题型四:综合问题1.已知一次函数y =k x +b 的图象经过点(-1,-5),且与正比例函数x y 21=的图象相交于点(2,a).求:(1 )求a 的值; (2) 求一次函数的解析式;2.已知,直线y=2x+3与直线y=-2x-1. (1)求两直线交点C 的坐标; (2)求△ABC 的面积.练习1如果()2213m y m x-=-+是一次函数,则的值是( )A 、1B 、-1C 、±1D 、2.若23y x b =+-是正比例函数,则b 的值是 ( ) A.0 B.23 C.23- D.32- 3. 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( ) A .m ﹤OB .m >0C .m ﹤21 D .m >21 4.函数y x=,自变量x 的取值范围是( ) A .x ≥-1 B.x ≠0 C.x>-1且0x ≠ D.x ≥-1且0x ≠5.已知一次函数y =kx +b 的图象如图所示,则k 、b 的符号是( ) A. k >0,b >0 B . k >0,b <0 C . k <0,b >0 D. k <0,b <0 6.关于函数y= -x - 2的图像,有如下说法:①.图像过点(0,-2) ②图像与x 轴的交点是(-2,0) ③ 由图象可知y 随x 的增大而增大 ④图像不经过第一象限 ⑤图像是与y= -x+2平行的直线 ,其中正确说法有( )A .5个 B. 4个C. 3个D. 2个7.直线y=2-3x 不经过第______________象限,y 随x 的增大而___________. 8.直线y=2x+b 的图象过点(3,5),则该直线与x 轴的交点是______,与y 轴的交点是__。

初三数学一次函数练习题和答案

初三数学一次函数练习题和答案

初三数学一次函数练习题和答案1. 某超市每天固定开销为200元,每卖出一个商品,能够获得5元的利润。

设售出商品的数量为x个,利润为y元,则利润与售出商品的数量之间的关系可以表示为以下的一次函数:y = 5x - 2002. 一辆汽车以每小时60公里的速度行驶,行驶x小时后所走的距离可以表示为以下的一次函数:y = 60x3. 小明妈妈提醒小明,每晚洗碗时间不得超过30分钟。

设小明每晚洗碗时间为x分钟,洗完碗后剩余时间为y分钟,则剩余时间与洗碗时间之间的关系可以表示为以下的一次函数:y = 30 - x4. 一包含有n个人的旅行团,每人缴纳团费250元,另外还需要支付每人40元的交通费。

设团费总支出为y元,旅行团的人数为x人,则团费总支出与旅行团的人数之间的关系可以表示为以下的一次函数: y = 250x + 405. 某商店推出打折活动,折扣力度为8折,原价为x元的商品,在活动期间的售价为y元。

则售价与原价之间的关系可以表示为以下的一次函数:y = 0.8x6. 一个数增加了7倍后变成了48,设原数为x,增加后的数为y,则原数与增加后的数之间的关系可以表示为以下的一次函数: y = 7x7. 一块面积为x平方米的正方形花坛,边长可以表示为以下的一次函数:y = √x8. 一个图形的周长与边长之间的关系为一次函数。

设该图形的周长为y,边长为x,则周长与边长之间的关系可以表示为以下的一次函数: y = Kx以上是一些关于一次函数的练习题和答案,通过这些题目的练习,可以帮助同学们巩固和深入理解一次函数的概念和性质。

希望同学们能够通过大量的练习,熟练掌握一次函数的相关知识,提高数学解题能力。

在真实的应用中,一次函数是非常常见的数学模型,掌握一次函数的概念和运用对数学学习和实际生活都非常有帮助。

祝同学们在数学学习中取得更好的成绩!。

一次函数经典例题大全

一次函数经典例题大全

一. 定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解:一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线;。

当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。

又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。

一次函数专题训练题

一次函数专题训练题

一次函数专题训练题以下是一些关于一次函数的专题训练题,希望能帮助学生更加深入地理解和掌握一次函数的知识。

1.已知函数f(x) = ax + b中,a为正数,b为负数。

当x = 2时,f(x) = 5,求a和b的值。

解:根据已知条件,我们有f(2)=5,代入函数表达式,得到5=a(2)+b。

我们可以进一步整理方程,得到2a+b=52.已知函数g(x)=3x-1,求函数g(x)的自变量x为多少时,函数值等于10。

解:根据已知条件,我们要求g(x)=10,代入函数表达式,得到10=3x-1、我们可以进一步整理方程,得到3x=11,解得x=11/33.已知函数h(x)=-4x+7,求函数h(x)的自变量x为多少时,函数值等于0。

解:根据已知条件,我们要求h(x)=0,代入函数表达式,得到0=-4x+7、我们可以进一步整理方程,得到4x=7,解得x=7/44.已知函数p(x)=2x+3,求函数p(x)的自变量x为多少时,函数值等于-1解:根据已知条件,我们要求p(x)=-1,代入函数表达式,得到-1=2x+3、我们可以进一步整理方程,得到2x=-4,解得x=-25.已知函数q(x)=5-6x,求函数q(x)的自变量x为多少时,函数值等于-8解:根据已知条件,我们要求q(x)=-8,代入函数表达式,得到-8=5-6x。

我们可以进一步整理方程,得到6x=13,解得x=13/66.已知函数r(x)=-3x+2,求函数r(x)的自变量x为多少时,函数值等于-5解:根据已知条件,我们要求r(x)=-5,代入函数表达式,得到-5=-3x+2、我们可以进一步整理方程,得到-3x=-7,解得x=-7/-3=7/37.已知函数s(x) = kx + 4,当x = 7时,函数值为15,求k的值。

解:根据已知条件,我们有s(7)=15,代入函数表达式,得到15=k(7)+4、我们可以进一步整理方程,得到7k=11,解得k=11/78.已知函数t(x)=6x-5,当函数t(x)的自变量x为多少时,函数值为0?解:根据已知条件,我们要求t(x)=0,代入函数表达式,得到0=6x-5、我们可以进一步整理方程,得到6x=5,解得x=5/69.已知函数u(x)=-2x+k,当函数u(x)的自变量x为多少时,函数值等于k?解:根据已知条件,我们要求u(x)=k,代入函数表达式,得到k=-2x+k。

一次函数复习题目精品

一次函数复习题目精品

1、拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升, 那么油箱中的剩油量y (升)与工作时间x (时)之间的函数 关系式和图象是( )2、如图所示,向高为H 的圆柱形杯中注水,已知水杯底面半径为2,那么注水量y 与水深x 的函数关系的图象是( )3、填空题:(1) 有下列函数:①y=6x-5, ②y=3x ,③y=x+4, ④y=-4x+3。

其中过原点的直线是_____;函数y 随x 的增大而增大的是___________;函数y 随x 的增大而减小的是______;图象在第一、二、三象限的是_____。

4、在下列函数中, x 是自变量, y 是x 的函数, 那些是一次函数?那些是正比例函数?y=2x y= -3x+1 y=x 2 y= -x 5 5、某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y 的值随x 值的增大而增大。

请你举出一个满足上述条件的函数(用关系式表示)6、函数 y=32x+4的图像与x 轴交点坐标为________,与y 轴的交点坐标为____________。

7. 设点P(3,m),Q(n,2)都在函数y=x+b 的图象上,求m+n 的值为————。

求下列函数自变量的取值范围 (使函数式有意义):直线 与Y 轴交点 与X 轴交点 y=2x+6y=-x+6y=-xy=5x一次函数y=kx+b(k ≠0)的图象是经过点 且平行于 的一条直线。

直线y=2x-1是由直线y=2x 向下平移 个单位得到。

直线y=2x-3是由直线y=2x+1向 平移个单位得到。

例3:已知函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式。

用待定系数法求函数解析式步骤:8、 对于函数y=21-32x, y 的值随x 值的____而增大。

9、直线y =kx+b 过点(1,3)和点(-1,1),则k b =__________。

10、已知一次函数 y=(6+3m )x+n-4,n 为何值时,函数图象与y 轴交点在x轴的下方数形结合训练:1、已知一次函数y=kx+b(k ≠0)平行于直线y=3x ,且过点(1,4),求函数解析式。

一次函数各类题型详解加练习

一次函数各类题型详解加练习
∴A的坐标为(0,2),B的坐标为(0,-3)
令 +2=-2 -3,解得 =
(提示:求两个函数之间的交点,令两个解析式相等即可得到交点横坐标)
将 = 带入y₁= +2
得:y₁= +2=
∴点C的坐标为( , )
(2)AB=2-(-3)=5(提示:AB与y轴重合,上y减下y求长度。)
(分析:以AB为底,点C到AB的距离为高,就可以求出△ABC的面积。)
求线段AB、CD的长度。
解:∵AB∥x轴
∴AB=6-(-3)= 9
(右x减左x,即可求得长度)
同理∵CD∥x轴
∴CD=5-2=3
③既不平行于x轴,也不平行于y轴:如:点A(x₁,y₁),点B(x₂,y₂),则使用求线段的通用公式AB=
例:点A的坐标为(3,3),点B的坐标为(-3,-5),
求线段AB的长度。
S△COP=
OC·OP= ×8×(2t-8)=8t-32(t≥4)
(上一问中刚求出)
-8t+32=2×16(0≤t<4)
S△COP=2S△AOB,即或解,得:t=0或者t=8
8t-32=2×16(t≥4)
(4)思路:在△COP和△AOB中:∠COP=∠AOB=90°,OC =OA=8
还差一组条件就能证明两三角形全等了,因为整个题目并未有角度的信息,
解:AB中点的坐标为:( , )整理,得( ,3)
∵直线AB的k₁=2,且k₁·k₂=-1
∴垂直于AB的直线的k₂=
设垂直平分线解析式为:y= +b,将( ,3)代入解析式,
可得AB中垂线的解析式为y= +
把y=0代入解析式可得
点P的坐标为:( ,0)
综上:符合要求的点P共有4个:

一次函数题目

一次函数题目

一次函数题目
一、函数表达式和性质
1. 题目:求一次函数的解析式
已知:当x=0时,y=-2;当x=2时,y=0。

求这个一次函数的解析式。

解:设这个一次函数的解析式为y=kx+b。

根据题意,当x=0时,y=-2,即b=-2;当x=2时,y=0,即2k+b=0。

解这个方程组,得到k=1,b=-2。

所以这个一次函数的解析式为y=x-2。

二、函数图像和性质
1. 题目:画一次函数的图像
已知一次函数y=kx+b的图像经过点(1,0)和点(0,-2)。

请画出这个一次函数的图像。

解:根据题意,这个一次函数的图像经过点(1,0)和点(0,-2)。

代入解析式y=kx+b,得到方程组:
k+b=0
b=-2
解这个方程组,得到k=2,b=-2。

因此这个一次函数的解析式为y=2x-2。

在坐标系中,画出这个一次函数的图像,得到一条直线。

这条直线经过点(1,0)和点(0,-2),斜率为2。

三、函数的应用
1. 题目:求一次函数的应用题
已知一次函数y=kx+b的图像经过点(1,3)和点(2,5)。

求这个一次函数的应用题。

解:根据题意,这个一次函数的图像经过点(1,3)和点(2,5)。

代入解析式y=kx+b,得到方程组:
k+b=3
2k+b=5
解这个方程组,得到k=2,b=1。

因此这个一次函数的解析式为y=2x+1。

这个一次函数可以用于解决一些实际问题,比如求路程、求时间等。

例如,如果一个物体以每秒2米的速度移动,那么它移动1米所需的时间是t=1/2秒。

专题01 一次函数 压轴题(十大题型)(原卷版)

专题01 一次函数 压轴题(十大题型)(原卷版)

(1)OC 的长为______,OD 的长为______;(2)如图,点()1,M a -是线段CD 上一点,连接OM ,作ON 并判断MON △的形状;(3)如备用图,若点()1,E b 为直线AB 上的点,点P 为y 轴上的点,是以点E 为直角顶点的等腰直角三角形,若存在,请求出此时(1)求直线CD 的函数表达式和点D 的坐标;(2)点P 为线段DE 上的一个动点,连接BP .①若直线BP 将ACD 的面积分为7:9两部分,试求点②点P 是否存在某个位置,将BPD △沿着直线BP 翻折,使得点在,请直接写出点P 的坐标;若不存在,请说明理由.题型2:取值范围问题(1)求点A 的坐标;(2)若点C 在第二象限,ACD ①求点C 的坐标;②直接写出不等式组4x kx +>③将CAD 沿x 轴平移,点C(1)求点C 的坐标及直线BC 的表达式;(2)在点E 运动的过程中,若△DEF 的面积为5,求此时点(3)设点E 的坐标为(0,m );①用m 表示点F 的坐标;②在点E 运动的过程中,若△DEF 始终在△ABC 的内部(包括边界)题型3:最值问题5.已知一次函数()134502y kx k k =++≠.的坐标为(),a a ,求CM MP +的最小值.6.如图1,在平面直角坐标系xoy 中,直线1:1l y x =+与x 轴交于点A ,直线2:33l y x =-与x 轴交于点B ,与1l 相交于C 点,过x 轴上动点(),0E t 作直线3l x ⊥轴分别与直线1l 、2l 交于P 、Q 两点.(1)①请直接写出点A ,点B ,点C 的坐标:A ______,B ______,C ______.②若2PQ =,求t 的值;(2)如图2,若E 为线段AB 上动点,过点P 作直线PF PQ ⊥交直线2l 于点F ,求当t 为何值时,PQ PF -最大,并求这个最大值.题型4:旋转问题7.如图1,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象交y 轴于点()0,1A -,交x 轴交于点B ,且2OB OC OA ==,过点C 作y 轴的垂线,交直线AB 于点D .(1)求点D 的坐标;(2)点E 是线段CD 上一动点,直线BE 与y 轴交于点F .①若BDF V 的面积为8,求点F 的坐标;②如图2,当点F 在y 轴正半轴上时,将直线BF 绕点B 顺时针旋转45︒后的直线与线段CD 交于点M ,连接FM ,若1OF MF =+,求线段MF 的长.备用图(1)求直线1l 的表达式;(2)过M 作y 轴的平行线,分别交直线1l ,直线2l 于点D ,E ,连接DE ,①当3m =时,求DE 的长;(1)求n 的值及直线2l 的表达式;(2)在直线2l 上是否存在点E ,使BO ABE A S S =△△若存在,则求出点(3)如图2,点P 为线段AD 上的一个动点,一动点H(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt BPM 直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段OQ 的长度是否发生变化?若不变,求出线段长度;若变化,求线段OQ 的取值范围.题型6:定值问题11.如图1所示,直线l :10y mx m =+与x 轴负半轴、y 轴正半轴分别交于(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,PQCR的值是否变化?若不变,求出该值;若变化,请说明理由.题型7:新定义题型13.函数图象是研究函数的重要工具,类比一次函数的学习,表是探究过程中的部分信息:x…2-1-01232y x=-…4a2-14(1)a的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A.函数图像关于x轴对称x=时,函数有最小值,最小值为B.当0x>时,y随x的增大而增大C.当0③若12x -≤≤,则y 的取值范围为【拓展提升】18.对于两个不同的函数,通过加法运算可以得到一个新函数,我们把这个新函数称为两个函数的数”.例如:对于函数12y x =和231y x =-,则函数1y ,2y 的“和函数”3y =(1)已知函数1y x =和2=y ①写出3y 的表达式,并求出当②函数1y ,2y 的图象如图①所示,则....(2)已知函数4y x =和5y =,这两个函数的“和函数”记为6y .按照上图的速度步行前往学校,记录下小东10天到达学校所用的时间,如表.上学日期4号5号6号7号8号11号到达学校所用时间(单位:min)2524.825.324.925.124.8某天早上7:20,小东按照上表的速度步行上学.t(0<t≤10)分钟后,小明骑自行车以从小区出发,沿着相同的路线上学.骑行7分钟后,自行车因零件损坏无法继续骑行,小明只好将自行车停在路边非机动车停靠点(停车时间忽略不计),改用步行前往学校.为了赶时间,小明的步行速度不小于。

函数:一次函数(题目版)

函数:一次函数(题目版)

2021全国中考真题分类汇编(函数)----一次函数一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A. 23cmB. 24cmC. 25cmD. 26cm2. (2021•甘肃省定西市)将直线y =5x 向下平移2个单位长度,所得直线的表达式为( )A .y =5x ﹣2B .y =5x +2C .y =5(x +2)D .y =5(x ﹣2)3. (2021•湖北省武汉市)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变(单位:km )与慢车行驶时间t (单位:h )的函数关系如图, 两车先后两次相遇的间隔时间是( )A .hB .hC .hD .h4. (2021•长沙市)下列函数图象中,表示直线21y x =+的是( ) A. B. C. D.5. (2021•江苏省苏州市)已知点A (,m ),B (,n )在一次函数y =2x +1的图象上,则m 与n 的大小关系是( )A .m >nB .m =nC .m <nD .无法确定6. (2021•江苏省扬州)如图,一次函数2y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A. 62+B. 32C. 23+D. 32+7. (2021•陕西省)在平面直角坐标系中,若将一次函数y =2x +m ﹣1的图象向左平移3个单位后,得到一个正比例函数的图象( )A .﹣5B .5C .﹣6D .68. (2021•上海市)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.9. (2021•四川省乐山市)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为( )A. 12y x =B. y x =C. 32y x =D. 2y x =10. (2021•重庆市A )甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s .甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是( )A. 5s 时,两架无人机都上升了40mB. 10s 时,两架无人机的高度差为20mC. 乙无人机上升的速度为8m /sD. 10s 时,甲无人机距离地面的高度是60m11. (2021•呼和浩特市)在平面直角坐标系中,点()3,0A ,()0,4B .以AB 为一边在第一象限作正方形ABCD ,则对角线BD 所在直线的解析式为( )AA .147y x =-+B .144y x =-+C .142y x =-+D .4y =12. (2021•贵州省贵阳市)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y =k n x +b n (n =1,2,3,4,5,6,7),其中k 1=k 2,b 3=b 4=b 5,则他探究这7条直线的交点个数最多是( )A .17个B .18个C .19个D .21个13. (2021•广西来宾市)一次函数21y x =+的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二.填空题1. (2021•四川省成都市)在正比例函数y =kx 中,y 的值随着x 值的增大而增大,则点P (3,k )在第 象限.2.(2021•四川省眉山市)一次函数y =(2a +3)x +2的值随x 值的增大而减少,则常数a的取值范围是 .3. (2021•四川省自贡市)当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.4. (2021•天津市)将直线6y x =-向下平移2个单位长度,平移后直线的解析式为_____.5. (2021•湖北省黄石市)将直线1y x =-+向左平移m (0m >)个单位后,经过点(1,−3),则m 的值为______.三、解答题1. (2021•甘肃省定西市)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离y (m )与他所用的时间x (min )的函数关系如图2所示.(1)小刚家与学校的距离为 m ,小刚骑自行车的速度为 m /min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?2. (2021•江苏省南京市)甲、乙两人沿同一直道从A 地去B 地,甲比乙早1min 出发,乙的速度是甲的2倍.在整个行程中,甲离A 地的距离1y (单位:m )与时间x (单位:min )之间的函数关系如图所示.(1)在图中画出乙离A地的距离2y(单位:m)与时间x之间的函数图;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.3. (2021•陕西省))在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是1m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.4.(2021•浙江省绍兴市)Ⅰ号无人机从海拔10m处出发,以10m/min的速度匀速上升,Ⅱ号无人机从海拔30m处同时出发(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m)(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及Ⅱ号无人机海拔高度y(m)与时间x(min)的关系式;(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.5.(2021•北京市)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.6.(2021•呼和浩特市)下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.探究3电话计费问题月使用费/元主叫限定时间/min主叫超时费/(元/min)被叫方式一58 150 0.25 免费方式二88 350 019 免费月使用费固定收:主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费。

专题06一次函数常考重难点题型(十大题型)(原卷版)

专题06一次函数常考重难点题型(十大题型)(原卷版)

专题06 一次函数常考重难点题型(十大题型)【题型1 函数与一次(正比例)函数的识别】【题型2 函数值与自变量的取值范围】【题型3 一次函数图像与性质综合】【题型4 一次函数过象限问题】【题型5 一次函数的增减性】【题型6 一次函数的增减性(大小比较问题)】【题型7一次函数图像判断】【题型8 一次函数图像的变换(平移与移动)】【题型9 求一次函数解析式(待定系数法)】【题型10 一次函数与一次方程(组)】【题型1 函数与一次(正比例)函数的识别】【解题技巧】(1)判断两个变量之间是否是函数关系,应考以下三点: (1)有两个变量: 2)一个变量的变化随另一个变量的变化而变化: (3)自变量每确定一个值,因变量都有唯一的值与之对应。

(2)判断正比例函数,需关于x的关系式满足:= (0),只要与这个形式不同,即不是正比例函数。

(3)一次函数必须满足k+b (0)的形式,其中不为0的任意值1.(2023春•右玉县期末)下列各曲线中不能表示y是x的函数的是()A.B.C.D.2.(2023春•临西县期末)下列函数中,y是x的一次函数的是()A.y=1B.C.y=2x﹣3D.y=x2 3.(2023春•潮阳区期末)下列函数中,表示y是x的正比例函数的是()A.y=2x+1B.y=2x2C.y2=2x D.y=2x 4.(2023春•武城县期末)已知y=(m﹣1)x|m|+4是一次函数,则m的值为()A.1B.2C.﹣1D.±1 5.(2023春•鼓楼区校级期末)正比例函数x的比例系数是()A.﹣3B.C.D.36.(2023春•南岗区校级期中)若函数y=2x2m+1是正比例函数,则m的值是.7.(2023春•岳阳楼区校级期末)已知函数y=(m﹣1)x+m2﹣1.(1)当m为何值时,y是x的一次函数?(2)当m为何值时,y是x的正比例函数?【题型2 函数值与自变量的取值范围】【解题技巧】:函数的取值范围考虑两个方面:(1)自变量的取值必须要使函数式有意义:(2)自量的取值须符合实际意义。

一次函数专项训练题

一次函数专项训练题

一次函数专项训练题一、选择题1. 下列函数中,是一次函数的是()A. y = 2/xB. y = 3x²C. y = x + 1D. y = √x解析:一次函数的一般形式为y = kx + b(k、b 为常数,k≠0)。

A 选项是反比例函数;B 选项是二次函数;C 选项符合一次函数形式;D 选项不是一次函数。

答案是C。

2. 若函数y = (m - 1)x + m² - 1 是一次函数,则m 的值为()A. m = 1B. m = -1C. m ≠ 1D. m = ±1解析:因为是一次函数,所以x 的系数不能为0,即m - 1≠0,解得m≠1。

答案是C。

二、填空题1. 已知一次函数y = 2x - 3,则当x = 2 时,y = _____。

解析:把x = 2 代入函数y = 2x - 3,可得y = 2×2 - 3 = 1。

2. 若一次函数y = kx + 3 的图象经过点(1,5),则k = _____。

解析:把点(1,5)代入函数y = kx + 3,可得 5 = k×1 + 3,解得k = 2。

三、解答题1. 已知一次函数y = 3x + b 的图象经过点(-2,5),求这个一次函数的解析式。

解析:把点(-2,5)代入函数y = 3x + b,可得 5 = 3×(-2) + b,解得 b = 11。

所以这个一次函数的解析式为y = 3x + 11。

2. 若一次函数y = (2m - 1)x + 3 - 2m 的图象经过第一、二、四象限,求m 的取值范围。

解析:因为图象经过第一、二、四象限,所以斜率小于0,在y 轴上的截距大于0。

即2m - 1<0 且 3 - 2m>0。

解2m - 1<0 得m<1/2;解 3 - 2m>0 得m<3/2。

综合起来,m 的取值范围是m<1/2。

3. 已知一次函数y = kx + b 的图象与直线y = -2x + 1 平行,且经过点(2,-1),求这个一次函数的解析式。

八年级一次函数大题典型题

八年级一次函数大题典型题

八年级一次函数大题典型题一、与坐标有关的一次函数问题。

题1:已知一次函数y = kx + b的图象经过点A( - 2, - 3)及点B(1,6)。

(1)求此一次函数的解析式;(2)判断点C(-(1)/(3),2)是否在此函数的图象上。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,-3)和B(1,6),将这两点代入函数可得方程组-3=-2k + b 6=k + b用第二个方程6 = k + b减去第一个方程-3=-2k + b,可得:6-(-3)=(k + b)-(-2k + b) 9=k + b + 2k - b 9=3k k = 3把k = 3代入6=k + b,得6=3 + b,解得b=3。

所以一次函数的解析式为y = 3x+3。

(2)把x =-(1)/(3)代入y = 3x + 3,得y=3×(-(1)/(3))+3=- 1 + 3=2所以点C(-(1)/(3),2)在此函数的图象上。

题2:一次函数y=kx + b的图象与x轴、y轴分别交于点A(-2,0)、B(0,4)。

求该一次函数的解析式,并求出AOB的面积。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,0)和B(0,4)把A(-2,0),B(0,4)代入y=kx + b得0=-2k + b 4=b把b = 4代入0=-2k + b得0=-2k+4,解得k = 2所以一次函数的解析式为y = 2x+4。

(2)因为A(-2,0),B(0,4),所以OA = 2,OB=4S_ AOB=(1)/(2)× OA× OB=(1)/(2)×2×4 = 4二、一次函数与方程(组)、不等式的关系。

题3:已知一次函数y = 2x - 4。

(1)求当y = 0时,x的值;(2)求当x = 3时,y的值;(3)当x为何值时,y>0;(4)求直线y = 2x - 4与坐标轴围成的三角形的面积。

八年级一次函数题目

八年级一次函数题目

八年级一次函数题目一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = (2)/(x)B. y = - 2x^2C. y = kx + b(k、b为常数,k≠0)D. y=√(x)+1解析:- 选项A:y=(2)/(x)是反比例函数,不是一次函数。

- 选项B:y = - 2x^2是二次函数,不是一次函数。

- 选项C:y = kx + b(k、b为常数,k≠0)符合一次函数的定义,是一次函数。

- 选项D:y=√(x)+1,自变量x在根号下,不是一次函数。

所以答案是C。

2. 一次函数y = 3x - 1的图象经过()A. 第一、二、三象限。

B. 第一、二、四象限。

C. 第一、三、四象限。

D. 第二、三、四象限。

- 对于一次函数y = kx + b(k≠0),当k>0,b<0时,函数图象经过第一、三、四象限。

- 在y = 3x - 1中,k = 3>0,b=-1<0。

所以图象经过第一、三、四象限,答案是C。

3. 若一次函数y=(m - 3)x + 5的y随x的增大而减小,则m的取值范围是()A. m>3B. m<3C. m = - 3D. m≤slant3解析:- 对于一次函数y = kx + b(k≠0),当k<0时,y随x的增大而减小。

- 在y=(m - 3)x + 5中,k=m - 3,因为y随x的增大而减小,所以m-3<0,解得m<3。

答案是B。

4. 已知一次函数y = kx + b的图象经过点(1, - 1)和( - 1,3),则k、b的值分别为()A. k=-2,b = 1B. k = 2,b=-1C. k=-2,b=-1D. k = 2,b = 1- 把点(1,-1)和( - 1,3)代入y = kx + b中,得到方程组-1=k + b 3=-k + b。

- 将两个方程相加,可得2b = 2,解得b = 1。

一次函数的应用题分类总结整理

一次函数的应用题分类总结整理

一、明确函数类型,利用待定系数法构建函数表达式;特点:所给问题中已经明确告知为一次函数....关系或者给出函数的图像为直线或直线的一部分时,就等于告诉我们此函数为“一次函数”,此时可以利用待定系数法,设关系式为:y=kx+b ,然后寻找满足关系式的两个x与y的值或两个图像上的点,代入求解即可。

常见题型:销售问题中售价与销量之间常以表格形式给出的有规律的变化,蕴含着一次函数关系;行程问题中的路程与时间的关系常给出函数的图像(多是直线或折线);【典型例题赏析】1.(2010 江苏连云港)(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.售价…70 90 …x(元)销售…3000 1000 …量y(件)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?2.已知A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即沿原路返回.图2是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图像。

(1)求甲车在行驶过程中y与x之间的函数关系式;(2)当它们行驶了7小时时,两车相遇. 求乙车的速度.3.(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t 的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数分类题型过关题
题型一、点的坐标
方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;
若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;
若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;
2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;
3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B
关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;
4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题
方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;
若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;
点(,)A A A x y
1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;
2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距
离是____________;
3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离
是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛
⎫⎛⎫-
⎪ ⎪⎝⎭⎝⎭
,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐
标为___________.
题型三、一次函数与正比例函数的识别
方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次
函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2
323y k x x =-++-是一次函数;
2、当m_____________时,()21
345m y m x
x +=-+-是一次函数;
3、当m_____________时,()21445m y m x x +=-+-是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法:
☆特殊直线方程:
X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。

2、对于函数1223
y x =
-, y 的值随x 值的________而增大。

3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

4、直线y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是_________。

5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_______象限。

6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第______象限。

7、已知一次函数
(1)当m取何值时,y随x的增大而减小?
(2)当m取何值时,函数的图象过原点?
题型五、待定系数法求解析式
方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。

☆已知是直线或一次函数可以设y=kx+b(k≠0);
☆若点在直线上,则可以将点的坐标代入解析式构建方程。

1、若函数y=3x+b经过点(2,-6),求函数的解析式。

2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。

5、若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9,求此函数的解析式。

6、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。

7、已知直线y=kx+b 与直线y= -3x +7关于x 轴对称,求k 、b 的值。

8、已知直线y=kx+b 与直线y= -3x +7关于原点对称,求k 、b 的值。

题型六、交点问题及直线围成的面积问题
方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;
复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形); 往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高; 1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

2、 已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB 的面积;
3、 已知直线m 经过两点(1,6)、(-3,-2),它和x 轴、y 轴的交点式B 、A ,直线n 过点(2,
-2),且与y 轴交点的纵坐标是-3,它和x 轴、y 轴的交
点是D 、C ;
(1) 分别写出两条直线解析式,并画草图; (2) 计算四边形ABCD 的面积;
(3)若直线AB与DC交于点E,求△BCE的面积。

4、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,
p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;
(1)求△COP的面积;
(2)求点A的坐标及p的值;
(3)若△BOP与△DOP的面积相等,求直线BD的函数解析式。

5、已知:经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D
(1)求直线的解析式;
(2)若直线与交于点P,求的值。

(2,p)
y
x
P
O F
E
D
C
B
A
6. 如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。

相关文档
最新文档