南京信息工程大学概率论与数理统计第一章习题册作业答案
概率论与数理统计第一章习题解答
《概率论与数量统计》第一章习题解答1、写出下列随机试验的样本空间:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。
(2)生产产品直到有10件正品为止,记录生产产品的总件数。
(3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果。
(4)在单位圆内任意取一点,记录它的坐标。
解:(1)设该班有n人,则该班总成绩的可能值是0,1,2,……,100n。
故随机试验的样本空间S={i/n|i=0,1,2,……,100n}。
(2)随机试验的样本空间S={10,11,12,……}。
(3)以0表示检查到一个次品,1表示检查到一个正品,则随机试验的样本空间S={00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111}。
(4)随机试验的样本空间S={(x,y)|x2+y2<1}。
2、设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B 与C都不发生。
(2)A与B都发生,而C不发生。
(3)A,B,C中至少有一个发生。
(4)A,B,C都发生。
(5)A,B,C都不发生。
(6)A,B,C中不多于一个发生。
(7)A,B,C中不多于两个发生。
(8)A,B,C中至少有两个发生。
解:(1)A B C(2)AB C(3)A∪B∪C (4)ABC(5)A B C(6)A B C∪A B C∪A B C∪A B C(7)S-ABC (8)ABC∪AB C∪A B C∪A BC3、(1)设A,B,C为三个事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率。
(2)已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(AC)=1/15,P(BC)=1/20,P(ABC)=1/30,求A∪B,A B,A∪B∪C,A B C,A B C,A B∪C的概率。
概率论与数理统计01-第一章作业及答案
习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ).(A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ).(A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销.(C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = ,本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色;(2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色;(3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数;(4) 生产产品直到有10件正品为止, 记录生产产品的总件数.解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件:(1) 仅有A 发生;(2) A , B , C 中至少有一个发生;(3) A , B , C 中恰有一个发生;(4) A , B , C 中最多有一个发生;(5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生.解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件:(1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)23A A ; (6)12A A .解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题(1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0.解 本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= ,故()()1P A P B +=. 于是()1.P B p =-3. 已知()0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .解 由公式()()()()P A B P A P B P AB =+- 知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解 由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为ABC AB ⊂,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0.由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题 在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品.(C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为023225C C C ⨯, 将两者加起即为0.7.答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C . 3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率;(3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有29C 种,两个球都是白球的取法有24C 种,一黑一白的取法有1154C C 种,由古典概率的公式知道 (1) 两球都是白球的概率是2924C C ; (2) 两球中一黑一白的概率是115429C C C ; (3) 至少有一个黑球的概率是12924C C -. 习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件.(C) AB B =. (D)()()P AB P B =.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P B A =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件.(D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}.解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则(0,1,2,3)i B i =表示“恰有i 发击中目标”. i B 为互斥的完备事件组. 于是没有击中目标概率为0()0.60.50.30.09P B =⨯⨯=,恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =⨯⨯+⨯⨯+⨯⨯=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =⨯⨯+⨯⨯+⨯⨯=,恰有三发击中目标概率为3()0.40.50.70.14P B =⨯⨯=.又已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到30()()(|)0.360.20.410.60.1410.458.i i i P A P B P A B ===⨯+⨯+⨯=∑4. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,i H 表示“取得球来至第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A == 5. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知, 123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.20.0384.=⨯+⨯+⨯=. (2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ⨯===, 222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ⨯===, 333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ⨯===. 习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件.解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()()()P AB P A P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).(3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A) (|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B 一定互斥. (D)()()()()()P A B P A P B P A P B =+- .解 因事件A 与B 独立, 故A B 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C = , 求()P A .解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+ . 由题设可知 A , B 和C 两两相互独立, ,ABC =∅ 1()()()2P A P B P C ==<, 因此有 2()()()[()],()()0,P A B P A C P B C P A P A B C P ====∅= 从而 29()3()3[()]16P A B C P A P A =-=, 于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =. 3. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率;(3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==⨯= (2) ()()0.70.20.30.80.38;P AB P AB +=⨯+⨯=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总 习 题 一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396⨯=⨯. (1) 抽得一件为正品,一件为次品的概率为95559519.10099198⨯+⨯=⨯ 3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设 A ={取到的产品是次品}, B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =∅(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004, 由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221⨯+⨯+⨯=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ⨯====. 5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====. 由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
《概率论与数理统计答案》第一章
4/15,刮风(记作事件 B )的概率为 7/15,刮风又下雨(记作事件 C )的概率为
网 1/10。求 P( A | B) , P(B | A) , P( A ∪ B) 。
案 提示与答案: P(A | B) = 3 , P(B | A) = 3 , P(A ∪ B) = 19 。
6.已知事件 A 、 B 满足 P( AB) = P( A ∩ B ) 且 P( A) = 1/ 3 ,求 P(B) 。
解法一:由性质(5)知
m P(B) = P( A ∪ B) − P( A) + P( AB)
(性质 5)
co =1− P( A∪ B) − P( A) + P( AB)
(性质 3)
球,也可能是黑球),并且也只有这两种可能。因此若把这两种可能看成两个事
件,这两个事件的和事件便构成了一个必然事件。
若设 A 表示:“由甲袋取出的球是白球”; B 表示:“由甲袋取出的球是黑 球”; C 表示:“从乙袋取出的球是白球”。则 P(C) = 5 /12 。
18.设有一箱同类产品是由三家工厂生产的,其中 1 是第一家工厂生产的, 2
16.一机床有 1/3 的时间加工零件 A ,其余时间加工零件 B ,加工零件 A 时, 停机的概率是 3/10,加工零件 B 时,停机的概率是 4/10,求这台机床停机的概 率。
提示与答案:依题意,这是一全概率问题。若设 A 事件表示:“加工零件 A ”; B 事件表示:“加工零件 B ; C 事件表示:“机床停机”。 则 P(C) = 11/ 30 。
相同”; B 表示事件:“这 n 个人至少有两个人生日在同一天”。
概率论与数理统计习题答案(第一章)
概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.”B =“至少有一次出现正面.”C =“两次出现同一面.”【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ======= ,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生;(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A B C (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A B C ∪A BC ∪A B C ∪AB C ∪ABC =AB C(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪A B C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;(3) BA ∩C=AB C;(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.(3)不成立.BA ,AB画文氏图如下:不发生,所以,若Α-B发生,则AB发生, A B故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.(7)不成立.画文氏图,可知B A⊂.(8)成立.若事件Α发生,由()A A B ⊂ ,则事件Α∪B 发生. 若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求: (1) 在什么条件下P (AB )取到最大值? (2) 在什么条件下P (AB )取到最小值? 【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. 对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同)(2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C15C 种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nMN M N -- (2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P P Pmmn mn M N MnN --由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N MnN--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/mmn mnn P A MN M N -=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为()C 1mn mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C35C35P A P A ====故 232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1) 两粒都发芽的概率;(2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯= (3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == 16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率. 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+2222333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】 4111152222410C C C C C 131C21p =-=18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A ===(2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯ 21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22. 从(0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23. 设P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P A B P A P A BP B A BP A B P A P B P A B-==+-0.70.510.70.60.54-==+-24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P BA P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C CCCCCC C=∙+∙+∙+∙0.089= 25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知 (1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P A B P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P BA P A ===∑2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.97=-⨯⨯⨯= 31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n-≥即为 (0.8)0.n≤ 故 n ≥11 至少必须进行11次独立射击.32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P A B P A B P B P B =亦即 ()()()()P A B P B P A B P B = ()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P A B P A P B = 故A 与B 相互独立.33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()iii P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 310110C(0.35)(0.65)0.5138k k kk p -===∑(2) 10102104C(0.25)(0.75)0.2241kk kk p -===∑36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n nn --''===≥38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率 【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =.39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关. 【证】 11P 1,1,2,,P k n k np k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ). 【证】 ()[()](P A P A BC P A BA C≥= ()()()P A B P A C P A BC =+-()()()P A B P A C P B C ≥+- 42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A ==43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率. 【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22nn n n P C C =故 2211()[1C ]22nn n P A =-44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =- 45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P A C P B C ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P A C P B C ≥ 故 ()()()()()()P A P A C P A C P B C P B CP B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n kki kki j ki i i n P A nnP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)()(1)n n nk ki n i ki j n i j nn kn i i i n i i i nn nn i ni S P A n nnS P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C(1)kkn n kn nn n nnn--=---++-- 故所求概率为121121()1C (1)C (1)n k i i n n i P A nn=-=--+--+ 111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()nn ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知 (),()m n P B P B m nm n==++1(|),(|)12rP A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrr mm m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
概率论与数理统计第一章习题及答案
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。
相当于AB ,BC ,AC 中至少有一个发生。
故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。
概率论与数理统计习题册答案
第一章 随机事件与概率 § 随机试验 随机事件 一、选择题1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==甲产品滞销或乙产品畅销,故选D.2. 由A B B A B B A AB =⇔⊂⇔⊂⇔=Φ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间1. {}3,420,,2 []0,100 3. z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度;三、1任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω=2{}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=,{}6AB ω=,{}15,AB ωω=四、1ABC ;2ABC ;3“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;4A B C ;5“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB ACBC .§ 随机事件的概率 一、填空题1. 试验的样本空间包含样本点数为10本书的全排列10,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!⋅,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排;故8!3!1()10!15P A ⋅==; 2. 样本空间样本点7!5040n ==,设事件A 表示这7个字母恰好组成单词SCIENCE,则因为C 及C, E 及E 是两两相同的,所以A 包含的样本点数是2!2!4A =⨯=,故2!2!1()7!1260P A ⋅==二、求解下列概率1. 1 25280.36C C ≈; 2 1515373766885!0.3756!C C C A C A == 2. 412410.427112A -≈3. 由图所示,样本点为随机点M 落在半圆202 ()y ax x a <<-为正常数内,所以样本空间测度可以用半圆的面积S 表示;设事件A 表示远点O 与随机点M 的连线OM 与x 轴的夹角小于4π,则A 的测度即为阴影部分面积s , 所以2221142()22a a s P A S aπππ+===+ §概率的性质 一. 填空题 1.; 2. 1p -; 3. 16; 4. 712二. 选择题1. C;2. A;3. D;4. B;5. B. 三. 解答题解:因为,AB A AB ⊆⊆所以由概率的性质可知:()()().P AB P A P A B ≤≤又因为()0,P AB ≥所以可得 ()()(),P AB P A P B ≤+于是我们就有()P AB ≤ ()()P A P A B ≤()()P A P B ≤+.如果,A B ⊆则,AB A = ()()P AB P A =; 如果,B A ⊆则,AB A =这时有()().P A P A B =如果,AB φ=则(0,P AB =)这时有()()().P A B P A P B =+§ 条件概率与事件的独立性aa2a1.1图一. 填空题 1.23;2. 0.3、;3. 23;4. 14; 5. 2; 5. 因为AB AB =,所以()(),()()AB AB AABB AB AB AB AB φ====,则有,AB A B A B φ=+=+=Ω,因为,AB A B φ=+=Ω且所以A 与B 是对立事件,即A B A B ==,;所以,()()1,P A B P A B ==于是()()2P A B P A B +=二. 选择题1. D ;2. B ;3. A ;4. D ;5. B1. 已知()()1,P A B P A B +=又()()1,P A B P A B +=所以()(),P A B P A B =于是得()()()()P AB P AB P B P B =,注意到()()(),()1(),P AB P A P AB P B P B =-=-代入上式并整理后可得()()()P AB P A P B =;由此可知,答案D; 三. 解答题 1.33105,; 2. 2n§ 全概率公式和逆概率Bayes 公式 解答题 1. 2. 1;23.10.943;20.848§ 贝努利概型与二项概率公式 一. 填空题1. 11(1),(1)(1)n n n p p np p ----+-;2.23二. 解答题 1. .2. 0.94n,222(0.94)(0.06)n n n C --,11(0.94)(0.06)(0.94)n n n ---3.1,2,3章节测验一. 填空题 1.825; 2. 对立;3. 0.7; 4. 84217,二. 选择题 三、解答题 1.1; 22232. .0038 四、证明题略; 随机变量 分布函数一、填空题1.)(1a F -;)1()1(--F F ;)()()(b F a F b F -;2. 1,12a b ==/π;3.121--e二、选择题1、D ;2、A ; 三、计算题1.所以得随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=5,154,10443,1013,0)(x x x x x F2.解:1由条件知,当1-<x 时,0)(=x F ; 由于81}1{=-=X P ,则81}1{)1(=-≤=-X P F ; 从而有 8581411}1{}1{1}11{=--=-=-=-=<<-X P X P X P ;由已知条件当11<<-x 时,有 )1(}111{+=<<-≤<-x k X x X P ; 而1}1111{=<<-≤<-X X P ,则21=k 于是,对于11<<-X 有}111{}11{}11,1{}1{<<-≤<-⋅<<-=<<-≤<-=≤<-X x X P X P X x X P x X P 16)1(52185+=+⨯=x x 所以 167516)1(581}1{}1{)(+=++=≤<-+-≤=x x x X P X P x F 当1≥x 时,1)(=x F ,从而⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,16751,0)(x x x x x F2略;离散型与连续性随机变量的概率分布 一、填空题1.3827;2.2二、选择题; ;三、计算题1.12,1==B A ;2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤--<≤<=2,121,12210,20,0)(22x x x x x x x x F ;343 2.略;常用的几个随机变量的概率分布 一、填空题1.649;2.232-e ;3.2.0 二、计算题 1、43;2、352.0;3、5167.0;4、19270.01)5.1()5.2(=-Φ+Φ;229.3=d随机向量及其分布函数 边际分布 一、填空题1、(,)(,)(,)(,)F b b F a b F b a F a a --+;(,)(,)F b b F a b -;2、0;1 二、计算题1、12,2,12πππ===C B A ;2161; 3R x x x F X ∈+=),2arctan 2(1)(ππ,R y yy F Y ∈+=),3arctan 2(1)(ππ 2、1⎩⎨⎧≤>-=-0,00,1)(2x x e x F x X ,⎩⎨⎧≤>-=-0,00,1)(y y e y F y Y ,;242---e e;3、⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππx x x x x x F X ,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππy y y y y y F Y二维离散型与连续性随机向量的概率分布一、填空题1、87;2、∑+∞=1j ij p ,∑+∞=1i ij p ;3、41;4、41二、计算题1、1=c ;⎩⎨⎧≤>=-0,00,)(x x e x f xX ;⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2y y y y f Y2、16,(,)(,)0,x y Df x y ∈⎧=⎨⎩其它;226(),01()0,X x x x f x ⎧-<<=⎨⎩其它;),01()0,Y y y f y ⎧<<⎪=⎨⎪⎩其它3、条件分布 随机变量的独立性一、选择题1、B ;2、A ;3、D ;4、C ;5、D 二、计算题1、2、||2,012,01(|),(|)0,0,X Y Y X x x y y f x y f y x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其它其它 3、18=c ;241}2{=<X Y P ;3不独立; 4、)1(11121Φ-+⎪⎪⎭⎫ ⎝⎛--e π 随机变量函数的概率分布一、填空题1、2、1,01()0,Y y f y ≤≤⎧=⎨⎩其它二、选择题1、B ;2、D ; 三、计算题1、⎩⎨⎧<<=else y y f ,010,1)(;2、⎪⎩⎪⎨⎧≥-<<-<=--1,)1(10,10,0)(z e e z e z z f z zZ3、⎪⎪⎩⎪⎪⎨⎧≥<<≤=1,110,21,0)(z z z z f Z ;⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<≤=1,21110,20,0)(z zz z z z F Z 第二章测验一、填空题1、41;2、34;3、0;4、2.0 二、选择题1、C ;2、A ;3、B 三、计算题1、~(3,0.4)X B ,则随机变量的概率函数为其分布函数为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=3,132,12511721,1258110,125270,0)(x x x x x x F2、124=A ;2⎩⎨⎧≤≤-=其它,010),1(12)(2x x x x f X ,⎩⎨⎧≤≤-=其它,010),1(12)(2y y y x f X ;3不独立;4⎪⎩⎪⎨⎧<<<<=⎪⎩⎪⎨⎧<<<<--=其它其它,010,10,2)|(,,010,10,)1()1(2)|(2|2|y x x y x y f y x y x y x f X Y Y X ;3、1⎩⎨⎧≤>=-0,00,)(z z ze z f z Z ;2⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2z z z z f Z第三章 随机变量的数字特征数学期望 一 、填空题1、13,23,3524 ; 2、21,0.2 3、 2 ,4796二、计算题1. 解: 11211()(1)(1)1k k k k k a a a E X k k a a a -+∞+∞+==⎛⎫== ⎪+++⎝⎭∑∑ 根据公式()''12111(1)11k k k k x kx x x x x +∞+∞-==⎛⎫⎛⎫===< ⎪ ⎪-⎝⎭-⎝⎭∑∑ 得到221()(1)11a E X a a a a ==+⎛⎫- ⎪+⎝⎭2. 0 ;3.:2a4. 2/3,4/3 ,-2/3,8/5 ; 5.4/5,3/5,1/2,16/15 方差一、填空题1. 0.49 ;2. 1/6 ;3. 8/9 ;4. 8 , 二、计算题 1.: , 提示: 设0,1,i i X i ⎧=⎨⎩部件个不需要调整部件个需要调整则123,,X X X 相互独立,并且123X X X X =++,显然1(1,0.1),X B2(1,0.2),X B 3(1,0.3)X B2.:1/3,1/3 ; 3.: 16/3 ,28三、 证明题提示: [][]22()())D XY E XY E XY E XY EX EY =-=-[]2)E XY YEX YEX EX EY =-+-[]2()()E Y X EX EX Y EY DX DY =-+-≥ 协方差与相关系数 一、 选择题 1. A ; ; 二、 计算题1. ()()0E X E Y ==,()()0.75D X D Y ==, 0XY ρ=, () 1.5D X Y += X 与Y 不独立2. 0 ,0提示:111()0Y y f y π⎧=-≤≤⎪=⎨⎪⎩⎰其它 1211()10E Y yy dy π-=-=⎰()0.25D Y =同理可得()()0E X E Y ==,()()0.25D X D Y ==221(,)()0x y xyCov X Y E XY dxdy π+≤===⎰⎰3. :2222a b a b-+ 矩与协方差矩阵1. 33321132v v v v μ=-+2.1,,, ;2 ;340.210.020.020.24-⎡⎤⎢⎥-⎣⎦第三章 测验 一、 填空题1. ; 2. 1 ,; 3. ab二、 选择题 1.B ; ;三、 计算题1.解:设X 表示该学徒工加工的零件中报废的个数,又设 0,1,i i X i ⎧=⎨⎩第个零件未报废第个零件报废则由题设知1111iX i i i ⎡⎤⎢⎥⎢⎥++⎣⎦于是有 101i i X X ==∑ 且1()(1,2,,10)1i E X i i ==+从而1010101111111()()() 2.0212311i i i i i E X E XE X i =======+++=+∑∑∑ 2.: 10分25秒提示:设乘客到达车站的时间为X ,由题意可知X 为0,60上的均匀分布,根据发车时间可以得到等候时间Y ,且Y 是关于X 的函数10010301030()553055705560X X X X Y g X X X XX -<≤⎧⎪-<≤⎪==⎨-<≤⎪⎪-<≤⎩3. 0,0第四章习题切比雪夫不等式 随机变量序列的收敛性 1.解:由切比雪夫不等式知,2221(37)(|5|2)12221(|5|8)832P X P X P X <<=-<≥-=->≤=2.解:设X 为在n 次试验中事件A 出现的次数,则~(,)X B n p ,Xn为频率. 21110.750.25()()0.750.75,()()X X E E X n D D X n n n n n n⨯==⨯⨯=== 由题意知{0.70.8}0.9,XP n<<≥而由切比雪夫不等式有20.750.25{|0.75|0.05}10.05X n P n ⨯-<≥- 所以有20.750.2510.90.05n ⨯-=,得750n =大数定理1. 证:有题设知n n=2,3,…的概率分布为:故n 的数学期望为()012101n -)(n =⨯+⎪⎪⎭⎫⎝⎛-⨯+⨯=nn n n X EX n 的方差为()(22222121()[()]012n nn D X E X E X n n n⎛⎫=-=⨯+⨯-+⨯= ⎪⎝⎭故∑==Nnn X NX 11的数学期望 ()()01111==⎪⎪⎭⎫ ⎝⎛=∑∑==Nnn Nn n X E N X NE X E方差()()NN X D N X ND X D Nn Nn n Nn n 2211112121===⎪⎪⎭⎫ ⎝⎛=∑∑∑===在利用车比雪夫不等式得(){}()0222−−−−→−≤≤≥-+∞→N N X D XE X P εεε因此,X 1,X 2,…,X n ,…服从大数定理;2.证:由于X 1,X 2,…,X n 相互独立,且()i i E X μ=,()i D X 存在,令 n 11ni i X X n ==∑则 ()()k k 111111n nn nki i i EX E X E X n n n μ===⎛⎫=== ⎪⎝⎭∑∑∑有限;()()k k 211110n n n ni i D X D X D X n n →∞==⎛⎫==−−−→ ⎪⎝⎭∑∑故由车比雪夫不等式知,0>∀ε; ()()()()1222111nknn k n n D XD X P XE X n εεε→∞=-≤≥-=-−−−→∑即 1111lim {||}1n ni i n i i P X n n με→+∞==-<=∑∑中心极限定理1.解:设X 为抽取的100件中次品的件数,则(100,0.2)XB ,()1000.220,()200.816E X D X =⨯==⨯=则18202025201205{1825}{}{}444244(1.25)(0.5)(1.25)(0.5)10.89440.691510.5859X X P X P P ----<<=<<=-<<=Φ-Φ-=Φ+Φ-=+-=2.解:1 设X 为一年中死亡的人数,则(,)XB n p ,其中n =10000,p =保险公司亏本则必须1000X>120000,即X>120 P{保险公司亏本}={120}P X >=P >=7.769}P >1(7.769)0≈-Φ=2P{保险公司获利不少于40000元}{120000100040000}{80}(2.59)0.995P X P X P -≥=≤=≤=Φ=3.解:设X i ={每个加数的舍入误差},则X i ~ U, ,()0i =X E ,()121i =X D ,i = 1, 2, …故由独立同分布中心极限定理知X 1,X 2,…服从中心极限定理;1[][][]802.10)9099.01(2)4.31(121)4.31(21)4.31()4.31(11211500015001512115000150012115000150015-1151511511515001150011500115001=-⨯=Φ-=-Φ-=-Φ-Φ-≈⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯--=⎪⎭⎫⎝⎛≤≤--=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>∑∑∑∑====i i i i i i i i X P X P X P X P 21{||10}0.9n i i P X =<≥∑,|0.9n i X P ⎧⎫⎪⎪⎪<≥⎨⎪⎪⎩∑由中心极限定理得,210.9,0.95Φ-≥Φ≥,所以1.65≥,解得440n =.第四章 测验一、填空题 1.1/4;211k-. 2.221n σε-.提示:利用切比雪夫不等式估计. 3.1/12 4.0. 5.. 6.()x Φ. 二、选择题1.A 2.C 3 D .三、应用题1.解:设X 为1000次中事件A 出现的次数,则(1000,0.5)X B()500,()5000.5250E X D X ==⨯=25039{400600}{|500|100}10.9751000040P X P X <<=-<≥-==2.解:设至少要掷n 次,有题设条件知应有()9.06.04.0≥<<n X P其中∑==nii X nX 1n1, i=1,2,…独立同分布,且()()5.001i i ====X P X P , 5.0)(i =X E ,25.05.05.0)(i =⨯=X D1 用切比雪夫不等式确定()()()2n 1.011.05.06.04.0nn X D X P X P -><-=<<而()nnX D n X n D X D ni ni i ni 25.05.0111)(12212n ===⎪⎪⎭⎫ ⎝⎛=∑∑∑==即要求90.01.025.012≥-n即)次(2501.025.03=≥n 即至少应掷250次才能满足要求; 2用中心极限定理确定()0.40.60.50.50.5210.90555n n X P X P n n n n n n ⎛⎫<<=<<⎛⎫⎛⎫⎛⎫=Φ-Φ-=Φ-≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得10.900.9552n ⎛⎫+Φ≥= ⎪ ⎪⎝⎭查标准正态分布表的645.15≥n ,225.8645.15=⨯≥n所以6865.67225.82≈=≥n即在这种情况下至少应掷68次才能满足要求; 3.解:设X 为每天去阅览室上自习的人数; 则有(12000,0.08),()120000.08960,()9600.92883.2X B E X D X =⨯==⨯=1{880}1{880}9608809601{}883.2883.21( 2.692)(2.692)0.996P X P X X P >=-≤--=-≤≈-Φ-=Φ= 2设总座位数为n960960{}0.8,{}0.8883.2883.2X n P X n P --<=≤=由中心极限定理知, 960()0.8883.2n -Φ=,查表得960883.2n -=,986n =,所以应增添986-880=105个座位; 4.解:令n 为该药店需准备的治胃药的瓶数 X 为在这段时间内购买该药的老人数则由题意知(2000,0.3)XB ,()20000.3600,()6000.7E X D X =⨯==⨯{}0.99600600{}0.99420420P X n X n P ≤=--≤=由中心极限定理知, 600()0.99420n -Φ≈,查表得6002.33420n -=,所以648n ≈四、证明题1.证明:设则有,11,()()(1)4nn k k k k k k k M X E X p D X p p ====-≤∑ 11111()()().nknn n k k k k k pM E E X E X n n n n======∑∑∑12221111114()()().4nnnn k k k k k M D D X D X n n n nn=====≤≤∑∑∑ 由切比雪夫不等式得,1222()111{||}4nn nM D M p p p n P n n n εεε++-≤-≤-<,所以当n →+∞时121{||}1n nM p p p P n nε++≤-<≤,即12{||}1n n M p p p P n nε++-<=.2.证:因为12,,,n X X X 相互独立且同分布,所以21X ,22X ,…,2n X 相互独立且同分布,且有相同的数学期望与方差:()22a X E i =,()()()[]()0a -22242242≠=-==σa X E X E X D ii i满足独立分布中心极限定理条件,所以∑=nii X 12近似服从正太分布()22,σn na N,即∑==ni i nX n Y 121近似服从⎥⎦⎤⎢⎣⎡-n a a a N 2242)(, 第五章 数理统计的基本概念总体 样本 统计量 一、选择题 1.D2.A ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑3. D二、应用题1. 5,2.551251511()(,,...)(),,...0,i X i i b a f x x x f x a x x b=⎧⎪-==<<⎨⎪⎩∏其它3.0,11,124()3,2341,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩抽样分布 一、选择题 1.C 注:1~(1)t n -才是正确的.2.B 根据()()2221~1n S n χσ--得到()221()~1ni i X X n χ=--∑ 3.A 解:()99211~(0,9)9~0,1ii i i XN X N ==⇒∑∑,()92219~9i i Y χ=∑由t()9t 二、应用题 1. (1,1)F n -2. 13~(10,)2X N 23.第五章 测验一、选择题 1. C2.C 注:统计量是指不含有任何未知参数的样本的函数 3D对于答案D,由于~(0,1),1,2,,i X N i n μσ-=,且相互独立,根据2χ分布的定义有2212()~()nii Xx n μσ=-∑4.C 注:1~(0,)X N n~(1)t n -才是正确的5.C 12345{max(,,,,)15}P X X X X X >123451{max(,,,,)15}P X X X X X =-≤ ()15115,,15P X X =-≤≤=5)]5.1([1Φ- 二、填空题 1.μ,2nσ2.1nii Xn=∑()2111n i i X X n =--∑,11i n k i X n =∑,()11nk i i X X n =-∑ 3. ,pqp n4. 252(1)n χ-三、应用题1.(1)21211(,,...)()!!n n knn n ni i f x x x e e k k λλλλ+--====∏∏2. 0.13.(1)t n -第六章 参数估计参数的点估计 一、选择题二、解答题 1.解 1()()∑∑∞=-∞=-===1111}{x x x p p x x X xP X E ∑∞='⎪⎪⎭⎫ ⎝⎛-==11x x q q p q dq dpp1=()p q -=1 用X 代替()X E ,则得p 的矩估计量Xp 1=⎪⎭⎫ ⎝⎛=∑=n i i X n X 112分布参数p 的似然函数()()∏∏=-=-===ni x i n i p p x X P p L i 1111}{()∑-=-=ni i nx np p 11取对数 ()()p n x p n p L n i i -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1解似然方程 ()011ln 1=⎪⎭⎫⎝⎛---=∑=n i i n x p p n dp p L d得p 的极大似然估计量 Xp 1=⎪⎭⎫⎝⎛=∑=n i i X n X 112.解 1()()()26;32θθθθθ=-==⎰⎰∞+∞-dx x x dx x xf X E ,用∑==ni i X n X 11代替总体均值()X E ,则得参数θ的矩估计量为.2X =θ2()()()⎪⎭⎫ ⎝⎛===∑=n i i X n D X D X D D 11442θ()()()∑====ni iX D nX nD nX D n122444因为()()()()⎰∞+∞-⎪⎭⎫⎝⎛-=-=22222;][θθdx x f x X E XE X D ()⎰=--=θθθθθ022332046 dx x x 所以 ()nn D 520422θθθ==3.解 取()()∑-=+-=112121,,,,n i i i n X X C X X X ϕ由定义()]()⎢⎢⎣⎡⎢⎣⎡=⎥⎦⎤-=∑-=+112121,,,n i i i n X X C E X X X E ϕ()∑-=+=-1121n i i i X X E C][=+-∑-=++1121212n i i i i i X X X X E C ()()()][∑-=++=+-1121212n i i i i i X E X X E X E C()()()()][=+-∑-=++1121212n i iii i X E X E X E XE C ()()()][∑-=+=+-1122212n i ii X E X E X E C()()21122221σσσσ=-=+∑-=n i n C C所以 ()121-=n C参数的区间估计 一、选择题1. C2. A一个总体均值的估计1.解 由于,99.01=-α 故,31,01.0=-=n 又α查t 分布表得()0.0123 5.841,t =又%,03.0%,34.8==s x 故得μ的99%的置信区间为][%428.8%,252.8)%403.0841.534.8()%,403.0841.534.8( =⎢⎣⎡⎥⎦⎤⨯+⨯- 2.解 计算得样本均值16,0171.0,125.22===n s x10.120.10,1.645,0.01,u ασ=== 总体均值μ的90%的置信区间为]22 2.121, 2.129x u x u αα⎡⎤⎡-+=⎢⎣⎢⎣2.151,10.0=-=n α查t 分布表得()0.1215 1.753t =()753.11510.0=t ,总体均值μ的90%的置信区间为((]2211 2.117, 2.133x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣3.解:计算得265,3000,0.05x s α===, n -1=7,查t 分布表得()0.1027 1.895t =,计算得株高绝对降低值μ的95%的置信下限为(2128.298x t n α--=. 4.解 每20.10hm 的平均蓄积量为315m ,以及全林地的总蓄积量375000m ,估计精度为0.9505A =5. ,一个总体方差与频率的估计1.解 由样本资料计算得3750.60=x ,3846.02=s ,6202.0=s ,又由于05.0=α,025.02=α,975.021=-α,151=-n 查2χ分布表得临界值,488.27)15(2025.0=χ,262.6)15(2975.0=χ从而2σ及σ的置信概率为%95的置信区间分别为,与,.2. 解 1由于,14=n ,05.0=α查t 分布表得()0.05213 2.16,t =又67.1,7.8==s x ,故得总体均值μ的95%的置信的区间为((]22117.736,9.664x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣2由于,10.0=α 05.0=2α,,95.021=-α,131=-n 查2χ分布表得()362.2213205.0=χ,()892.513295.0=χ,故得总体方差2σ的90%的置信区间为()()()()][153.6,621.111,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n S n n S n ααχχ 3. 解,41,95.021,05.02,10.0=-=-==n ααα查2χ分布表得(),488.94205.0=χ ()711.04295.0=χ,又计算得1.21=x ,505.82=s ,故得该地年平均气温方差2σ的90%的置信区间为()()()()][85.47,58.311,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n s n n s n ααχχ 4. 解 造林成活率的置信区间为[0.8754,0.9369] 两个总体均值差的估计1. 解 由于182,05.021=-+=n n α,查t 分布表得临界值()0.05218 2.101.t =又,8.126,06.14,1021====y x n n ,96.71,93.162221==s s 从而求得21μμ-的置信概率为95%的置信区间为,.即以95%的概率保证每块试验田甲稻种的平均产量比乙稻种的平均产量高7.536kg 到20.064kg.2.解由样本值计算得5,5,27,4.24221=====A B A n n y x σ,82=Bσ,05.0=α,,96.105.0=u 故21μμ-的95%的置信区间为()()]5.76,0.56A B A B x y x y ⎡⎢⎡---+=-⎣⎢⎣3.解由样本值计算得222211.10,875.75,30.11,44.81====B B A A s y s x ,,91=n ,82=n ,05.0=α 查t 分布表得()0.05215 2.131,t =故得B A μμ-的95%的置信区间为4. ,两个总体方差比的估计解 ,025.02,05.0,911===-=-ααB A n n 查F 分布表得()=--1,12B A n n F α()(),03.49,91,1025.02==--F n n F A B α故 2221σσ的95%的置信区间为:()()][⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤----6008.3,2217.01,1·,1,11·222222 n n F s s n n F s s A B BA B AB A αα第六章 测验一、选择题二、填空题 1.12α=2.21ˆ2X θ-= 3. ][588.5,412.4 4. 21;1λλ 5. ()0.351t n k -=三、计算题1.解 因为X ~N (),4,2μ所以(),9492222χχ~S =于是, ⎩⎨⎧=⎭⎬⎫>=>1.0169169}{22σS P a S P 查2χ分布表得,684.14169=a所以.105.26≈a ()(()(12212222 5.58,16.71.A B A B x y t n n x y t n n αα⎡--+-⎢⎣⎡⎤⎤-++-=-⎢⎥⎥⎦⎦⎣2.解 1()()λλλ-==∏∏==ex x f x x x f n i ni ix in i1121!;,,, ∏=-∑==ni i x n x eni i 1!·1λλ;2()()()λλλnn S E nX D X E n 1,,2-===. 3.解 因为X ~N()22,30 ,于是()(),)21(,30)162(,3022 =N ~N X 从而()1,02130 ~N X U -=,故 }{⎩⎨⎧⎭⎬⎫-<-<-=<<2/130312/1302/130293129X P X P()()()9545.0197725.0212222221302=-⨯=⎩⎨⎧-Φ=-Φ-Φ=⎭⎬⎫<-<-=X P4.解 1178320,314022====b x σμ ;219813322==s σ5.解 设施肥与不施肥的收获量分别为总体,,Y X 且X ~N (),,21σμY ~N)(~22σμ,N Y ,计算可得,1738.1,9227.0,7.9,4.11222221====s s y x 又,05.0,162,10,82121==-+==αn n n n 查t 分布表得临界值()0.05216 2.12,t =从而计算均值差21μμ-的95%的置信区间为()()][.7773.2,6227.016810181738.199227.0712.27.94.11,16810181738.199227.0712.27.94.112222=⎥⎦⎤⨯⨯⨯+⨯+-⎢⎣⎡⨯⨯⨯+⨯--故在置信概率下,每201亩水稻平均收获量施肥比不施肥的增产到斤.第七章 假设检验假设检验概念和原理 一、填空题:1、概率很小的事件在一次试验抽样中是不至于发生的;2、0H 为真,通过一次抽样拒绝0H 所犯错误; 0H 为假,通过一次抽样接受0H 所犯错误; 二、选择题 1、B ;2、D;三、应用计算题1、解:{}1232|1258P x x x p α=++≥=={}1232|14364P x x x pβ=++<==2、解:1、0.62c ==2、因c u α= 故拒绝原假设00:0H μμ==;3、{}1.15P x P α⎫=≥=≥[]3.6412(3.64)10.0003P ⎫⎪=≥=-Φ-=⎬⎪⎭一个总体参数的假设检验 一、填空题:1、X U =12(,,):1n X x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭;3、1(,,):n R x x u p α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭二、选择题1.A 3. B 三、应用计算题1、1若根据以往资料已知σ=14 ;2σ未知; 解:101:500:500H H μμ=↔≠ 0.452x u ===因 20.452 1.96u u α=<= 故接受原假设0H . 从而包装机工作正常; 2.先检验标准差 0010:=15:H H σσσσ≥↔< 22222(1)(101)1610.2415n S χσ--=== 22110.24 3.325(1)n αχχ-=<=- 故拒绝原假设00:=15H σσ≥其次检验01:500:500H H μμ=↔≠ 0.395x T ===因2T 0.395 2.262(1)t n α=<=- 故接受原假设0:500H μ= 所以,综合上述两个检验可知包装机工作正常;2、解:0010:=0.3:=0.3H H σσσσ≤↔<22222(1)(251)(0.36)0.3456(0.3)n S χσ--=== 220.345636.415(1)n αχχ=<=- 故接受原假设;标准差没有明显增大;3、解:0010:0.9:0.9H p p H p p ≤=↔>= 4400.88500W ==1.49U ===-0.050.011.645, 2.33u u ==0.05 1.645U u <= 0.01 2.33U u <= 故两个水平下均接受原假设;两个总体参数的假设检验 一、填空题 1、等方差; 2、22122212S S F σσ=服从12(1,1)F n n --.分布;3、U =, 其中112212n W n W W n n +=+;二、选择题 1、 B 2. A 三、应用计算题1、解:012112::H H μμμμ=↔≠X YT =0.206==-因20.206 2.131(15)T t α=<= 故接受原假设;2、解:检验012112::H H μμμμ=↔≠1.5X Y U ==-因21.5 1.96U u α=<= 故接受原假设即认为两种工艺下细纱强力无显著差异; 3、解:012112::H p p H p p ≤↔>1202000.1W == 2152000.75W ==112212350.07500nW n W W n n +===+5.97U ==因 5.97 1.645U u α=>= 故拒绝原假设,即认为乙厂产品的合格率显著低于甲厂; 非参数假设检验 一、填空题 1、1m k --2、由抽样检验某种科学科学理论假设是否相符合;3、(1)(1)r c --; 二、选择题 1. A ;2. C 三、应用计算题1、解:0:H 该盒中的白球与黑球球的个数相等;记总体X 表示首次出现白球时所需摸球次数,则X 服从几何分布{}1(1)k P X k p p -==-,1,2,k=其中p 表示从盒中任摸一球为白球的概率;若何种黑球白球个数相等,则此时12p = 从而{}1112p P X ===, {}2214p P X === ,{}3318p P X === {}44116p P X ===,{}552116kk P X +∞-=≥==∑2521() 3.2i i i i v np np χ=-=∑2(4)9.488αχ= 223.29.488(4)αχχ<= 则接受原假设;2、解:0:H X 的概率密度为()2f x x = (01)x <≤{}100.250.0625p P X =<≤=,{}20.250.50.1875p P X =<≤={}30.50.750.3125p P X =<≤=,{}40.7510.4375p P X =<≤= 2421()64 1.82935i i i i v np np χ=-==∑ 2(3)7.815αχ= 因221.8297.815(3)αχχ<=故接受原假设即认为X 的概率密度为()2f x x = (01)x <≤; 3、解:0:H 公民对这项提案的态度与性别相互独立223211()2173.7ij ij i j ijn e e χ==-==∑∑因222173.7 5.991(2)αχχ>= 故拒绝0H ,即认为公民对这项提案的态度与性别不独立;4、略;第七章 测验一、填空题每小题4分,共20分1、12(,,):2n X R x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭2、X T =3、222(1)n S χσ-=;2χ;4、2122S F S =;(){}222211221212,,:,n R x x S S F S S F αα-=≥≤或;5、 =14α; 916β=.二、选择题每空4分,共20分1、A ;2、C ;3、B ;4、C ;5、A三、应用题共60分1、解:检验01:70:70H H μμ=↔≠ 1.4x T ===因2T 1.4 2.02(1)t n α=<=- 故接受原假设0:70H μ= 2、解: 001:=8:8H H σσσ=↔≠ 2220(1)(101)75.73310.6564n S χσ--⨯===221210.65 2.7(1)n αχχ-=>=- 故拒绝原假设00:=8H σσ=3、解:先检验2222012112::H H σσσσ=↔≠2122 3.3251.492.225S F S ==2212S S > 查表的212((1),(1)) 5.35F n n α--=因2121.49 5.35((1),(1))F F n n α=<=--故可认为方差相等; 其次检验012112::H H μμμμ≤↔>X YT =3.52=-因 3.52 2.552(18)T t α=-<= 故接受原假设012:H μμ≤ 4、解:0010:0.2:H p p H p p ≤=↔>,3.5U ===因 3.5 1.645U u α=>= 故拒绝原假设; 5、解:(1)1.026α= (2)0.0132β=第八章 方差分析与回归分析方差分析的概念与基本思想 一、名词解释1. 因素:影响试验指标变化的原因;2. 水平:因素所设置的不同等级3. 单因素试验:在试验中仅考察一个因素的试验4. 多因素试验:在试验中考察两个或两个以上因素的试验,这类试验一般可用因素的数目来命名5. 处理:一个试验中所考察因素不同水平的组合6. 处理效应组间误差:试验中所考虑且加以控制的因素不同水平对试验指标的影响7. 随机误差:试验中为考虑或未控制的随机因素所造成的试验指标的变异 二、问答题1. 单因素试验中,因素的每一个水平即为一个处理,试验有几个水平,就相应地有几个处理;多因素试验中,处理的数目是各因素水平的乘积;例如,三因素试验中,A 因素有a 个水平,B 因素有b 个水平,C 因素有c 个水平,则处理数为abc 个;2. 方差分析的基本思想:将测量数据的总变异按照变异来源分解为处理效应和随机误差,利用数理统计的相关原理建立适当的统计量,在一定显著性水平下比较处理效应和随机误差,从而检验处理效应是否显著; 单因素方差分析 一、填空题1. 平方根变换,角度弧度反正弦变换,对数变换;2. 最小显著差数法,最小显著极差法;新复极差法,q 法;3. 总平方和,随机误差平方和,组间平方和; 二、计算题 1.2.解:112229i n r i j i j T X ====∑∑,211199327in rij i j X ===∑∑, ()222112229199327589.3625in rT ij i j T SS X n ===-=-=∑∑()()222122291200704219024174724495.36525ri A i iT T SS n n ==-=+++-=∑589.36495.3694e T A SS SS SS =-=-=方差分析表如下:因为0.01=26.35 4.43(4,20)F F >=,所以,当显著性水平=0.01α,5个温度对产量的影响有显著差异;3.该题属于单因素4水平等重复试验的方差分析;其方差分析表如下:多重比较省略;4.母猪对仔猪体重存在极显著的影响作用; 双因素方差分析1.F 检验结果表明,品种和室温对家兔血糖值的影响均达极显著水平; 2.; 回归分析的基本概念1.如何用数学语言描述相关关系相关关系就是一个或一些变量X 与另一个或一些变量Y 之间有密切关系,但还没有确切到由其中一个可以唯一确定另一个的程度,其数学语言描述可为:如果给定变量X 任意一个具体取值0x ,存在变量Y 的一个概率分布与其对应,并且该概率分布随0x 的不同而不同;同时给定变量Y 任意一个具体取值0y ,存在变量X 的一个概率分布与其对应,并且该概率分布随0y 的不同而不同,则称X 与Y 之间具有相关关系;相关关系是两个随机变量之间的平行相依关系;2.什么是回归关系回归关系与相关关系有何联系回归关系是指在相关关系中,如果X 容易测定或可人为控制,就将X 看成为非随机变量,并记为x 称为预报因子,这时x 与Y 称为预报量之间的关系称为回归关系; 回归关系是相关关系的简化,是变量之间的因果关系;一元线性回归模型的建立与检验 一、填空题 1.()211ˆ2n i i i Y y n =--∑; 2.01ˆˆy x ββ=- , ()()()1121ˆ=ni i xy i n xxi i x x Y Y L L x x β==--=-∑∑; 二、应用题1. 解:21111211113755.68,11xx i i i i L x x ==⎛⎫=-= ⎪⎝⎭∑∑11111111118708.58,11xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭∑∑∑2111121116050.58311yy i i i i L y y ==⎛⎫=-= ⎪⎝⎭∑∑1先求回归方程,由于1=0.633,xy xxL L β=01=-38.97,y x ββ-=所以Y 关于x 的回归方程为ˆy0.633-38.97,x = 2用相关系数检验法计算样本相关系数00.955r ==因为()0.0190.7348,r =而()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的 3把0200x =代入回归直线方程,得ˆ0.633200-38.9787.63y=⨯=, 2. 略; 3. 证明略;预测、控制与残差分析(1) 解:211112211113675051013104.55,1111xx i i i i L x x ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑11111111111139105102143988.18,1111xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-=-⨯⨯= ⎪⎪⎝⎭⎝⎭∑∑∑2111122111154222141258.731111yy i i i i L y y ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑1先求回归方程,由于13988.18=0.304,13104.55xy xxL L β==01214510=0.304 5.36,1111y x ββ-=-⨯= 所以Y 关于x 的回归方程为ˆy5.360.304,x =+ 在检验,用相关系数检验法计算样本相关系数00.982r ===取=0.01α,查相关系数检验表得,()0.0190.7348,r =由于()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的;2把075x =代入回归直线方程,得ˆ 5.360.3047528.16y=+⨯=, ˆ 2.301σ==,0.05(9) 2.626t =, 故当075x s =时,腐蚀深度Y 的95%预测区间为[]28.16 2.262 2.301 1.074,28.16 2.262 2.301 1.074,-⨯⨯+⨯⨯即 []22.57.7,335. 3要使腐蚀深度在1020m μ之间,即1210,20,y y Y ==的取值在区间[]1020,内时,则由方程组10112012ˆ2ˆ2,y x y x ββσββσ=+-⎧⎨=++⎩ 解得()()()()1101220111ˆ210 5.362 2.30130.40,0.30411ˆ220 5.362 2.30133.02.0.304x y x y βσββσβ=-+=⨯-+⨯==--=⨯--⨯=可线性化的一元非线性回归 一、填空题011ln ,ln ,ln ,Y Y x x ββββ''''====;00111ln ,,ln ,Y Y x xββββ''''====;ln ,lg Y Y x x ''==;二、解答题解:做散点图如右图;由于Y 与x 散点图呈指数曲线形状,于是有•,x Y e βαε=()2ln 0,N εσ两边取对数,令ln ,ln ,,,ln Y Y a b x x αβεε'''=====模型转化为线性模型()2,0,Y a bx N εεσ''''=++对所给数据进行形影变换得到10ˆˆ0.29768,8.164585ββ=-= 所以Y '对x '的样本回归方程为 8.164585-0.29768Y x ''=用t 检验法检验'Y 对'x 的回归效果是否显著,取显著性水平为,可得()0.02532.36938 2.3060t t ==>=即线性回归效果是显著的;代回原变量,得曲线回归方程()0.29768ˆˆexp 3514.26x yy e -'== 第八章 测验一、选择题1、A ;2、C ;3、B ;4、D 二、填空题1. 正态 ,独立, 等方差 ;2. ()201,~0,Y x N ββεεσ=++;3. ˆr β=三、解答题 1.提示与解答:方差分析结果表明,农药的杀虫效果是极显著的;2. 提示与解答:一元线性回归方程建立、检验、应用. 销售费用Y 与销售收入x 之间的经验回归方程为ˆ 3.140.108Yx =+ 销售费用Y 与销售收入x 之间的线性回归关系是显著的;。
概率论与数理统计课后习题答案
概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。
本文档将提供《概率论与数理统计》课后习题的详细答案。
2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。
b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。
1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。
【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。
所以,P(A ∩ B) = 【答案】0.2。
b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。
【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。
所以,P(B) = 【答案】1.67。
第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。
b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。
概率论与数理统计第一章习题参考答案
概率论与数理统计第一章习题参考答案第一章随机事件及其概率1.解决方案:(1)s??2,3,4,5,67? (2) s??2,3,4,?? (3) s??h、 th,tth,??(4)s??hh,ht,t1,t2,t3,t4,t5,t6?2.解:?p(a)?14,p(b)?12,p(ab)?1814? 12? 18? 58? p(a?b)?p(a)?p(b)?p(ab)?p(ab)?p(b)?p(ab)=?p(ab)?1?p(ab)?1?1812??7818?38p[(a?b)(ab)]?p[(a?b)?(ab)]p(ab)p(ab)(abab)5818123.解决方案:使用a表示事件“获得的三位数不包含数字1”P(a)?C8C9C990011?8.9? 9900? 一千八百二十五4、解:用a表示事件“取到的三位数是奇数”,用b表示事件“取到的三位数大于330”(1)p(a)?c3c4c4ca121525111?3?4?45?5?41=0.482) p(b)?c2a5?c2c4c5a5121?2.5.4.1.2.45? 5.4=0.485、解:用a表示事件“4只中恰有2只白球,1只红球,1只黑球”,用b表示事件“4只中至少有2只红球”,用c表示事件“4只中没有只白球”(1)p(a)?c5c4c3c12132114=1204954=833(2) p(b)?1.c4c8?c8c412=202195?67165或p(b)?c4c8?c4c8?c4c41222314?67165一(3)p(c)?c7c4412?35495?7996.解决方案:使用a表示事件“在特定销售点获得的K提单”P(a)?cn(m?1)mnkn?K7、解:用a表示事件“3只球至少有1只配对”,用b表示事件“没有配对”(1)p(a)?(2)p(b)?3?13?2?12?1?13?2?1??2313或p(a)?1?2.1.13? 2.1.238、解p(a)?0.5,p(b)?0.3,p(ab)?0.1p(ab)p(b)p(ab)p(a)(1)p(ab)??0.10.30.10.5? 1315,p(ba)p(a?b)?p(a)?p(b)?p(ab)?0.5? 0.3? 0.1? 零点七p[a(a?b)]p(a?b)p(a?ab)p(a?b)p(ab)p(a?b)p(aa?b)p(ab)p(a?b)0.10.717?0.50.7?57 p(aba?b)?p[(ab)(a?b)]p(a?b)p(ab)p(ab)p(aab)?p[a(ab)]p(ab)??1(2)设定人工智能??第一次拿到白球?我1,2,3,4则p(a1a2a3a4)?p(a1)p(a2a1)p(a3a1a2)p(a4a1a2a3)?611?712?513?412?84020592?0.04089.解决方案:用a表示“两个球中至少有一个红球”,用B表示“两个都是红球”。
概率论与数理统计 习题答案 第1章
第一章概率论的基本概念1.写出下列随机试验的样本空间.⑴纪录一个小班一次数学考试的平均分数(充以百分制记分).解S={%=OJ…,100% 其中〃为小班人数.n⑵同时掷三颗骰子,纪录三颗骰子点数之和;解:S={3,4,…,18}.⑶生产产品直到得到10件正品为止,纪录生产产品的总件数;解:S={10, 11, 12,…(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品,停止检查, 纪录检查的结果.解:S={00, 100,0100,0101, 1010,0110, 11009011151011, 1101, 111091111)9 其中。
表示次品,1表示正品.(5)在单位圆内任意取一点,纪录它的坐标;解:S={(x, y)∣x2+y2<l}.(6)将一尺之梗成三段,观看各段的长度.解:S={(x, y, z)k>09γ>09z>0, x+y+z=l},其中.χ z 分别表示第一、二、三段的长度.2.设A, B,C为三大事,用A,昆。
的运算关系表示下列各大事.(1)A发生,3与。
不发生;解表示为:ABC 或A—(A3+A。
或A—(3uC)∙(2)A,3都发生,pre不发生;解表示为:48。
或A5-A3C或48-C(3)4 B, C中至少有一个发生;解:表示为:A+3+C(4)A,民。
都发生;解:表示为:ABC(5)A,B,C都不发生;解:表示为:ABC^i S- (A+B+C)^A U B U C(6)4民C中不多于一个发生;解:即人民。
中至少有两个同时不发生相当于了反BC,入。
中至少有一个发生.故表示为:AB+BC+AC.(7)A, B, C中不多于三个发生;解:相当于:A瓦。
中至少有一个发生.故表示为:4+豆+。
或砺.(8)A, B, C中至少有二个发生.解:相当于:A民BC, AC中至少有一个发生.故表示为:AB+BC+AC.3.设4 3是两大事且P(A)=0∙6, P(3)=0.7.问:(1)在什么条件下尸(AB)取得最大值,最大值是多少?(2)在什么条件下尸(A5) 取得最小值,最小值是多少?解:⑴由于P(A3)=P(A)+P⑹-P(Au8),且P(A)<P(3)≤尸(Auδ),所以当AuB时,P(Au3)=P(B), P(A3)取到最大值,最大值为P(AB)=P(A)=0.6.⑵当A^J B=S时,P(A3)取到最小值,最小值为P(AB)=0.6+0.7-l=0.3.4.设A,民。
概率论与数理统计练习册—第一章答案
第一章 概率论的基本概念基础训练I一、选择题1. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为:( D )。
A )甲种产品滞销,乙种产品畅销;B )甲乙产品均畅销;C )甲种产品滞销;D )甲产品滞销或乙种产品畅销.2、设A ,B ,C 是三个事件,则C B A ⋃⋃表示( C )。
A ) A ,B ,C 都发生; B ) A ,B ,C 都不发生;C ) A ,B ,C 至少有一个发生;D ) A ,B ,C 不多于一个发生3、对于任意事件B A ,,有=-)(B A P ( C )。
A ))()(B P A P -; B ))()()(AB P B P A P +-;C ))()(AB P A P -;D ))()()(AB P B P A P -+。
4、已知5个人进行不放回抽签测试,袋中5道试题(3道易题,2道难题),问第3个人抽中易题的概率是( A ) 。
A ) 3/5;B )3/4;C )2/4;D )3/10.5、抛一枚硬币,反复掷4次,则恰有3次出现正面的概率是( D )。
A ) 1/16B ) 1/8C ) 1/10D ) 1/46、设()0.8P A =,()0.7P B =,(|)0.8P A B =,则下列结论正确的有( A )。
A )B A ,相互独立; B )B A ,互不相容;C )A B ⊃;D ))()()(B P A P B A P +=⋃。
二、填空题1.设C B A ,,是随机事件,则事件“A 、B 都不发生,C 发生”表示为C B A , “C B A ,,至少有两个发生”表示成BC AC AB ⋃⋃ 。
2.设A 、B 互不相容,4.0)(=A P ,7.0)(=⋃B A P ,则=)(B P 0.3 ;3. 某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸中的一种,则同时订这两种的住户百分比是:30%;4.设4/1)()()(===C P B P A P ,0)()(==BC P AB P ,8/1)(=AC P ,则C B A 、、三件事至少有一个发生的概率为:5/8;5. 若A 、B 互不相容,且,0)(>A P 则=)/(A B P 0 ;若A 、B 相互独立,,且,0)(>A P 则=)/(A B P )(B P 。
《概率论与数理统计》习题册答案1-8
第一章 随机事件及其概率1. 1) {}{}10,11,12,13,,10.n n Z n Ω==∈≥2) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。
写下检查四个产品所有可能的结果,根据条件可得样本空间。
,,,,,,,,,,,,,,,,,,,,,,,,.,,,,S ++--++-++++-+++++---+--++-+-+-++⎧⎫=⎨⎬-+---+-+-++--+++-------+--+---++⎩⎭++--++-++++-+++++--+-+-+-++⎧⎫Ω=⎨⎬-+---+-+-++--+++--⎩⎭3) {}22(,)1.x y x y Ω=+<2.1) ()A B C --, 2) ()AB C -, 3) A B C ++, 4) ABC ,5) ()A B C Ω-++, 6) ()AB BC AC Ω-++,7) ()ABC Ω-, 8) AB AC BC ++. 3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。
(2)当()1P A B +=时,()P AB 取到最小值0.3。
4. 解:依题意所求为()P A B C ++,所以()()()()()()()()1111000(0()()0)44485.8P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==5. 解:依题意,()()()()()()()()()()()()()()0.70.50.25.()()()0.70.60.5P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++==++=+=+---===+-+-6. 解:由条件概率公式得到111()1()()(),(),3412()2P AB P AB P A P B A P B P A B ==⨯=== 所以1111()()()().46123P A B P A P B P AB +=+-=+-=7. 解:1) 2028281222101028()45C C P P A A C P ===,2) 202__________282121212210101()()(|)45C C P P A A P A P A A C P ====,3) 1122________82821212121222210101016()()()145C C P P P A A A A P A A P A A C P P =+==--=, 4) 1120____________8228121212122101()()()5C C C C P A A A A P A A P A A C +=+==.8. 解:(1) 以A 表示第一次从甲袋中取得白球这一事件,B 表示后从乙袋中取 得白球这一事件,则所求为()P B ,由题意及全概率公式得1()()()()().11n N m N P B P A P B A P A P B A n m N M n m N M +=+=⨯+⨯++++++ (2) 以123,,A A A 分别表示从第一个盒子中取得的两个球为两个红球、一红球一白球和两个白球,B 表示“然后”从第二个盒子取得一个白球这一事件,则容易推知211255441232229995103(),(),(),181818C C C C P A P A P A C C C ======123567(|),(|),(|).111111P B A P B A P B A === 由全概率公式得31551063753()()(|).18111811181199i i i P B P A P B A ===⨯+⨯+⨯=∑ 9. 解:以A 表示随机挑选的人为色盲,B 表示随机挑选的人为男子。
概率论与数理统计习题参考答案
概率论与数理统计习题参考答案概率论与数理统计习题参考答案(仅供参考)第一章第1页(共101页)概率论和数理统计的参考答案(附练习)第一章随机事件及其概率1.写出以下随机测试的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和;(2)在单位圆内任意一点,记录它的坐标;(3) 10种产品中有3种存在缺陷。
每次取一个,直到三个有缺陷的产品全部取出后再放回去。
记录提取次数;(4)测量汽车通过给定点的速度解:所求的样本空间如下(1) s={2,3,4,5,6,7,8,9,10,11,12}(2)s={(x,y)|x2+y2<1}(3)s={3,4,5,6,7,8,9,10}(4)s={v|v>0}2.设a、B和C为三个事件,并使用a、B和C的运算关系来表示以下事件:(1)a发生,B和C不发生;(2)a与b都发生,而c不发生;(3)a、b、c都发生;(4)a、b、c都不发生;(5)a、b、c不都发生;(6)至少出现a、B和C中的一种;(7) a、B和C的出现次数不超过一次;(8)解决方案a、B和C中至少有两个出现:请求的事件表示如下(1)abc(2) abc(3)abc(4)abc(6)a?BC(5)abc(7)ab?bc?ac(8)ab?bc?ca3.在某小学的学生中任选一名,若事件a表示被选学生是男生,事件b表示该如果学生是三年级的学生,C项意味着学生是运动员,那么(1)AB项意味着什么?(2)在什么条件下abc=c成立?(3)在什么条件下关系式c?b是正确的?(4)在什么条件下a?b成立?解决方案:请求的事件表示如下(1)事件ab表示该生是三年级男生,但不是运动员.(2)当全校运动员都是三年级男生时,abc=c成立.概率论和数理统计练习参考答案(仅供参考)第1章第2页(101)(3)当全校运动员都是三年级学生时,关系式c?b是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,a?b成立.4.设p(a)=0.7,p(a-b)=0.3,试求p(ab)由于一个问题的解决方案?B=acab,P(a)=0.7,所以p(a?b)=p(a?ab)=p(a)??p(ab)=0.3,所以p(ab)=0.4,故p(ab)=1?0.4=0.6.5.对于事件a、B和C,已知P(a)=P(B)=P(C)=,P(AB)=P(CB)=0,P(AC)=141求a、b、c中至少有一个发生的概率.8解由于abc?ab,p(ab)?0,故p(abc)=0那么p(a+B+C)=p(a)+p(B)+p(C)CP(AB)CP(BC)CP(AC)+p(ABC)?11115 04万肆仟肆佰捌拾捌元6.设盒中有α只红球和b只白球,现从中随机地取出两只球,试求下列事件的概率: A={两个颜色相同的球},B={两个颜色不同的球}222解由题意,基本事件总数为aa?b,有利于a的事件数为aa?ab,有利于b111111中的事件数是aaab?阿巴?2aaab,2aa?ab2则p(a)?2aa?b112aaabp(b)?2aa?B7.若10件产品中有件正品,3件次品,(1)取其中任何一个三次,不放回去,计算得到三个不良品的概率;(2)每次取其中任何一个三次,计算得到三次次品的概率(1)让a={得到三次次品}33c3a316p(a)?3?.或者p(a)?3?c10120a10720(2)设b={取到三个次品},则3327p(a)?3.1010008.在一家旅行社的100名导游中,43人说英语,35人说日语,32人说日语和汉语英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人可能会说英语和日语,但不会说法语;(2)此人只会说法语的可能性解设a={此人会讲英语},b={此人会讲日语},c={此人会讲法语}根据主题的意思,你可以概率论与数理统计习题参考答案(仅供参考)第一章第3页(共101页)(1) p(abc)?p(ab)?p(abc)?(2)p(abc)?p(ab)?p(abc)32923?? 100100100? p(a?b)?0 1? p(a?b)?1.p(a)?p(b)?p(ab)43353254?1一千零一亿零一十万零一百9.罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求:(1)取到的都是白子的概率;(2)获得两个白点和一个太阳黑子的概率;(3)取到三颗棋子中至少有一颗黑子的概率;(4)取到三颗棋子颜色相同的概率.解(1)那么让a={带上所有白人孩子}3c814p(a)?3??0.255.C1255(2)设B={得到两个白点和一个太阳黑子}1c82c4p(b)??0.509.3c12(3)设c={取三颗子中至少的一颗黑子}p(c)?1?p(a).4?0.7(4)设d={取到三颗子颜色相同}33c8?c4p(d)??0.273.3c1210.(1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)六个人中有一个人恰好在同一个月过生日的概率是多少?解决方案(1)设a={至少有一个人生日在7月1日},则364500? 0.746便士?1.p(a)?1.365500(2)假设计算的概率为p(b)41c6?c1?1122?0.0073p(b)?12611.将字母C、C、e、e、I、N和S7随机排列成一行,并尝试将它们精确地排列成科学的概率p.227解决方案因为两个C和两个e共享A2,所以有A2安排,基本事件的总数是a722a2p??0.0007947a7概率论与数理统计习题参考答案(仅供参考)第一章第4页(共101页)12.从5副手套中取出4副手套,并找出这4副手套未配对的可能性解要4只都不配对,我们先取出4双,再从每一双中任取一只,共有c54?24中取法.设a={4只手套都不配对},则有c54?2480便士(a)?4.210c1013.一名实习生用一台机器独立生产三个同类型零件,I零件不合格的概率为pi?为多少?假设AI={第I部分不合格},I=1,2,3,那么p(AI)?圆周率?那么p(AI)?1.圆周率?1,I=1,2,3。
《概率论与数理统计》课后习题答案第一章
概率论与数理统计课后答案习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
概率论与数理统计第一章课后习题及参考答案
概率论与数理统计第一章课后习题及参考答案1.写出下列随机试验的样本空间.(1)记录一个小班一次数学考试的平均分数(以百分制记分);(2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取出3个球;(3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数;(4)在单位圆内任意取一点,记录它的坐标.解:(1)}100,,2,1{ =Ω;(2)}345,235,234,145,135,134,125,124,123{=Ω;(3)},2,1{ =Ω;(4)}|),{(22y x y x +=Ω.2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A .解:(1),9,10}{1,5,6,7,8=A ,}5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ;(3)法1:}10,9,8,7,6,2,1{=B ,}10,9,8,7,6,1{=B A ,}5,4,3,2{=B A ;法2:}5,4,3,2{===B A B A B A ;(4)}5{=BC ,}10,9,8,7,6,4,3,2,1{=BC ,}4,3,2{=BC A ,}10,9,8,7,6,5,1{=BC A ;(5)}7,6,5,4,3,2{=C B A ,{1,8,9,10}=C B A .3.设}20|{≤≤=Ωx x ,}121|{≤<=x x A ,}2341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A .解:(1)B B A = ,}223,410|{≤<<≤==x x x B B A ;(2)=B A ∅;(3)A AB =,}21,210|{≤<≤≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ;(2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB .解:(1)A ,B ,C 恰有一个发生;(2)A ,B ,C 中至少有一个发生;(3)A 发生且B 与C 至少有一个不发生;(4)A ,B ,C 中不多于一个发生.6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.证:A B B A A B A AB A B A AB )()(==-Ω==Ω=A A A A .7.把事件C B A 表示为互不相容事件的和事件.解:)()[(C A B A A A C B A C B A =-=)(B A A A A C A B A A ==CB A BC A B A A )(=C B A B A A =.8.设0)(>A P ,0)(>B P ,将下列5个数)(A P ,)()(B P A P -,)(B A P -,)()(B P A P +,)(B A P 按有小到大的顺序排列,用符号“≤”联结它们,并指出在什么情况下可能有等式成立.解:因为0)(>A P ,0)(>B P ,)()(B P AB P ≤,故)()()()()()()()()(B P A P B A P A P B A P AB P A P B P A P +≤≤≤-=-≤- ,所以)()()()()()()(B P A P B A P A P B A P B P A P +≤≤≤-≤- .(1)若A B ⊂,则有)()()(B A P B P A P -=-,)()(B A P A P =;(2)若=AB ∅,则有)()(A P B A P =-,)()()(B P A P B A P += .9.已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求)(A P ,)(AB P ,)(B A P 和)(B A P .解:(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .10.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率.(1)只有1件次品;(2)最多1件次品;(3)至少一件次品.解:从10件产品中任取3件,共有310C 种取法,(1)记=A {从10件产品中任取3件,只有1件次品},只有1件次品,可从4件次品中任取1件次品,共14C 中取法,另外的两件为正品,从6件正品中取得,共26C 种取法.则事件A 共包含2614C C 个样本点,21)(3102614==C C C A P .(2)记=B {从10件产品中任取3件,最多有1件次品},=C {从10件产品中任取3件,没有次品},则C A B =,且A 与C 互不相容.没有次品,即取出的3件产品全是正品,共有36C 种取法,则61)(31036==C C C P ,32)()()()(=+==C P A P C A P B P .(3)易知=C {从10件产品中任取3件,至少有1件次品},则65)(1(=-=C P C P .11.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.解:从10个球中任选3球,共有310C 种选法,(1)记=A {从10个球中任选3球,最小标号为5},事件A 发生,则选出球的最小标号为5,另外两个球的标号只可从6,7,8,9,10这5个数中任选,共有25C 种选法,则121)(31025==C C A P .(2)记=B {从10个球中任选3球,最大标号为5},事件B 发生,则选出球的最大标号为5,另外两个球的标号只可从1,2,3,4这4个数中任选,共有24C 种选法,则201)(31024==C C B P .12.设在口袋中有a 个白球,b 个黑球,从中一个一个不放回地摸球,直至留在在口袋中的球都是同一种颜色为止.求最后是白球留在口袋中的概率.解:设=A {最后是白球留在口袋中},事件A 即把b a +个球不放回地一个一个摸出来,最后摸到的是白球,此概率显然为ba a A P +=)(.13.一间学生寝室中住有6位同学,假定每个人的生日在各个月份的可能性相同,求下列事件的概率:(1)6个人中至少有1人的生日在10月份;(2)6个人中有4人的生日在10月份;(3)6个人中有4人的生日在同一月份.解:设=i B {生日在i 月份},则=i B {生日不在i 月份},12,,2,1 =i ,易知121)(=i B P ,1211)(=i B P ,12,,2,1 =i .(1)设=A {6个人中至少有1人的生日在10月份},则=A {6个人中没有一个人的生日在10月份},66101211(1)]([1)(1)(-=-=-=B P A P A P ;(2)设=C {6个人中有4人的生日在10月份},则62244621041046121115)1211()121()]([)]([)(⋅===C B P B P C C P ;(3)设=D {6个人中有4人的生日在同一月份},则52112121115)()(⋅==C P C D P .14.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在这一直径上一个区间内的可能性与此区间的长度成正比,求任意画的弦的长度大于R 的概率.解:设弦与该直径的交点到圆心的距离为x ,已知,当R x 23<,弦长大于半径R ,从而所求的概率为232232=⋅=R R P .15.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在同一昼夜内到达的时刻是等可能的,如果甲船的停泊时间是1h ,乙船的停泊时间是2h ,求它们中的任何一艘都不需要等候码头空出的概率.解:设=A {两艘中的任何一艘都不需要等候码头空出},则=A {一艘船到达泊位时必须等待},分别用x 和y 表示第一、第二艘船到达泊位的时间,则}10,20|),{(≤-≤≤-≤=x y y x y x A ,从而1207.0242221232124)()()(2222≈⋅-⋅-=Ω=μμA A P ;8993.0)(1)(≈-=A P A P .16.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,问由甲射中的概率为多少?解:设=A {甲击中目标},=B {乙击中目标},=C {目标被击中},则B A C =,由题设知A 与B 相互独立,且6.0)(=A P ,5.0)(=B P ,所以)()()()()(AB P B P A P B A P C P -+== 8.0)()()()(=-+=B P A P B P A P ,从而43)()()()()|(===C P A P C P AC P C A P .17.某地区位于河流甲与河流乙的汇合点,当任一河流泛滥时,该地区即被淹没,设在某时期内河流甲泛滥的概率是0.1,河流乙泛滥的概率是0.2,又当河流甲泛滥时引起河流乙泛滥的概率为0.3,求在该时期内这个地区被淹没的概率,又当河流乙泛滥时,引起河流甲泛滥的概率是多少?解:=A {甲河流泛滥},=B {乙河流泛滥},=C {该地区被淹没},则B A C =,由题设知1.0)(=A P ,2.0)(=B P ,3.0)|(=A B P ,从而)()()()()(AB P B P A P B A P C P -+== 27.0)|()()()(=-+=A B P A P B P A P ,15.0)()|()()()()|(===B P A B P A P B P AB P B A P .18.设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件不合格品,求另一件也是不合格品的概率.解:设=A {有一件产品是不合格品},=B {另一件产品也是不合格品},=i D {取出的两件产品中有i 件不合格品},2,1,0=i ,显然,21D D A =,=21D D ∅,2D B AB ==.=Ω{从n 件产品种任取两件},共有2nC 种取法;若1D 发生,即取出的两件产品中有1件不合格品,则该不合格品只能从m 件不合格品中取得,共有1m C 种取法;另一件为合格品,只能从m n -件合格品中取得,共有1m n C -种取法,则事件1D 中共有11m n m C C -个样本点,)1()(2)(2111--==-n n m n m C C C D P n m n m ,类似地,)1()1()(222--==n n m m C C D P n m ,所以)1()1()(2)()()()(2121--+-=+==n n m m m n m D P D P D D P A P ,)1()1()()(2--==n n m m D P AB P ,于是所求概率为121)()()|(---==m n m A P AB P A B P .19.10件产品中有3件次品,每次从其中任取一件,取出的产品不再放回去,求第三次才取得合格品的概率.解:设=i A {第i 次取得合格品},3,2,1=i ,则所求概率为12878792103)|()|()()(213121321=⋅⋅==A A A P A A P A P A A A P .20.设事件A 与B 互不相容,且1)(0<<B P ,证明:)(1)(|(B P A P B A P -=.证:∵事件A 与B 互不相容,则0)(=AB P ,)(1)()(1)()()(1)()()()|(B P A P B P AB P A P B P B A P B P B A P B A P -=--=--==.21.设事件A 与B 相互独立,3.0)(=A P ,45.0)(=B P ,求下列各式的值:(1))|(A B P ;(2))(B A P ;(3)(B A P ;(4)|(B A P .解:∵事件A 与相互独立,∴事件A 与B 也相互独立,(1)45.0)()|(==B P A B P ;(2))()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=615.0=;(3)385.0)](1)][(1[)(()(=--==B P A P B P A P B A P ;(4)7.0()|(==A P B A P .22.某种动物活到10岁的概率为0.92,活到15岁的概率为0.67,现有一只10岁的该种动物,求其能活到15岁的概率.解:设=A {该种动物能活到10岁},=B {该种动物能活到15岁},显然A B ⊂,由题设可知92.0)(=A P ,67.0)(=B P ,所以9267)()()()()|(===A P B P A P AB P A B P .23.某商店出售的电灯泡由甲、乙两厂生产,其中甲厂的产品占60%,乙厂的产品占40%,已知甲厂产品的次品率为4%,乙厂的次品率为5%.一位顾客随机地取出一个电灯泡,求它是合格品的概率.解:设=A {电灯泡是次品},=1B {电灯泡由甲厂生产},=2B {电灯泡由乙厂生产},则=A {电灯泡是合格品}.由题设可知6.0)(1=B P ,4.0)(2=B P ,04.0)|(1=B A P ,05.0)|(2=B A P ,044.0)|()()|()()(2211=+=B A P B P B A P B P A P ,所以956.0)(1)(=-=A P A P .24.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解:设=A {选出的人是色盲患者},=B {选出的人是男性},=B {选出的人是女性},由题设可知21()(==B P B P ,05.0)|(=B A P ,0025.0)|(=B A P ,则2120)|()()|()()|()()|(=+=B A P B P B A P B P B A P B P A B P .25.甲、乙、丙三人独立地向一敌机射击,设甲、乙、丙命中率分别为0.4,0.5和0.7,又设敌机被击中1次、2次、3次而坠毁的概率分别为0.2,0.6和1.现三人向敌机各射击一次,求敌机坠毁的概率.解:设1A ,2A ,3A 分别表示甲、乙、丙射击击中敌机,=i B {敌机被击中i 次},3,2,1=i ,=C {敌机坠毁},则3213213211A A A A A A A A A B =,3213213212A A A A A A A A A B =,3213A A A B =,由题设可知4.0)(1=A P ,5.0)(2=A P ,7.0)(3=A P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P ,则)()()()(3213213211A A A P A A A P A A A P B P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.0=,类似地,51.0)(2=B P ,14.0)(3=B P ,由全概率公式得458.0)|()()(31==∑=i i i B C P B P C P .26.三人独立地破译一份密码,已知各人能译出的概率分别为51,31和41.问三人中至少有一人能将此密码译出的概率是多少?解:分别设事件A ,B ,C 为甲、乙、丙破译密码,则三人中至少有一人能将此密码译出可表示为C B A ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=53=.27.甲袋中装有n 只白球、m 只红球,乙袋中装有N 只白球、M 只红球.今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球,问取到白球的概率是多少?解:设=A {从甲袋中取出白球},=B {从乙袋中取出白球},则由题设可知m n n A P +=)(,m n m A P +=(,11)|(+++=M N N A B P ,1|(++=M N N A B P ,由全概率公式,得)|(()|()()(A B P A P A B P A P B P +=)1)(()1(+++++=N M n m mN N n .28.从区间)1,0(内任取两个数,求这两个数的和小于1.2的概率.解:设x 和y 分别为所取的两个数,显然10≤≤x ,10≤≤y ,即试验的样本空间为边长为1的单位正方形,记}2.1|),{(<+=y x y x A ,由几何概型,有68.0118.08.02111)(=⨯⨯⨯-⨯=A P .29.一个系统由4个元件联结而成(如图),每个元件的可靠性(即元件能正常工作的概率)为r (10<<r ),假设各个元件独立地工作,求系统的可靠性.解:设=i A {第i 个元件能正常工作},4,3,2,1=i ,=B {系统能正常工作},则4314214321)(A A A A A A A A A A B ==,由题知r A P i =)(,i A 相互独立,4,3,2,1=i ,所以)()(431421A A A A A A P B P =)()()(4321431421A A A A P A A A P A A A P -+=)(()()()()()()()()(4321431421A P A P A P A P A P A P A P A P A P A P -+=3)2(r r -=.30.某篮球运动员投篮命中的概率为0.8,求他在5次独立投篮中至少命中2次的概率.解:设=A {该篮球运动员5次独立投篮中至少命中2次},=i B {该篮球运动员5次独立投篮中命中的次数},5,,1,0 =i ,则由题可知5432B B B B A =,10B B A =,i B 互不相容,5,,1,0 =i ,所以)()(1)(1)(10B P B P A P A P --=-=9933.02.08.02.08.0141155005=⋅⋅-⋅⋅-=C C .31.设概率统计课的重修率为5%,若某个班至少一人重修的概率不小于0.95,1324问这个班至少有多少名同学?解:设该班有n 名同学,=A {该班每名同学概率统计课重修},=i B {该班n 名同学中有i 名同学概率统计课重修},=C {该班n 名同学中至少有1名同学概率统计课重修},则 ni i n B B B B C 121===,0B C =,由题可知05.0)(=A P ,n n n C B P C P C P 95.0195.005.01)(1)(1)(000-=⋅⋅-=-=-=,由题意,应有95.095.01=-n ,解得59=n .32.某种灯泡使用时数在1000h 以上的概率为0.6,求3个灯泡在使用1000h 以后最多有1个损坏的概率.解:设=A {该种灯泡使用时数在h 1000以上},=i B {3个灯泡在使用h 1000以后有i 个损坏},3,2,1,0=i ,=C {3个灯泡在使用h 1000以后最多有1个损坏},则10B B C =,由题知6.0)(=A P ,i B 互不相容,3,2,1,0=i ,所以648.06.04.06.04.0)()()(2113300310=⋅⋅+⋅⋅=+=C C B P B P C P .33.甲、乙两名篮球运动员投篮的命中率分别为0.7和0.6,每人投篮3次,求:(1)二人进球数相等的概率;(2)甲比乙进球数多的概率.解:设=A {甲篮球运动员投篮命中},=B {乙篮球运动员投篮命中},=i A {甲篮球运动员投篮命中i 次},3,2,1,0=i ,=i B {乙篮球运动员投篮命中i 次},3,2,1,0=i ,=C {甲、乙进球数相等},=D {甲比乙进球数多},由题可知A 与B 相互独立,i A 相互独立,i B 相互独立,i A 与i B 相互独立,7.0)(=A P ,6.0)(=B P ,i i i i C A P -⋅⋅=333.07.0)(,i i i i C B P -⋅⋅=334.06.0)(,3,2,1,0=i ,(1) 30==i i i B A C ∑∑======303030)()()()()(i i i i i i i i i B P A P B A P B A P C P 3208.0=;(2)3310201)(B A B B A B A D =,从而有))(()(3310201B A B B A B A P D P =)(]([)(3310201B A P B B A P B A P ++= )()()()(33120201B A P B A P B A P B A P +++=)()()()()()()()(33120201B P A P B P A P B P A P B P A P +++=4362.0=.34.若三事件A ,B ,C 相互独立,证明:B A 及B A -都与C 相互独立.证:(1))())((BC AC P C B A P =)()()(ACBC P BC P AC P -+=)()()(ABC P BC P AC P -+=)()()()()()()(C P B P A P C P B P C P A P -+=)()]()()()([C P B P A P B P A P -+=)()]()()([C P AB P B P A P -+=)()(C P B A P =所以B A 与C 相互独立.(2))())((BC AC P C B A P -=-)()(ABC P AC P -=)()()()()(C P B P A P C P A P -=)()]()()([C P B P A P A P -=)()]()([C P AB P A P -=)()(C P B A P -=,所以B A -与C 相互独立.35.设袋中有1个黑球和1-n 个白球,每次从袋中随机摸出一球,并放入一个白球,连续进行,问第k 次摸到白球的概率是多少?解:设=A {第k 次摸到白球},=A {第k 次摸到黑球},A 发生表示前1-k 次摸球摸到的都是白球,第k 次摸到的是黑球.前1-k 次摸球,每次摸到白球的概率均为n n 1-,第k 次摸到黑球的概率为n 1,每次摸球相互独立,可知nn n A P k 1)1()(1⋅-=-,则n n n A P A P k 11(1)(1)(1⋅--=-=-.。
《概率论与数理统计》习题及答案 第一章
《概率论与数理统计》习题及答案第 一 章1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。
解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。
(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。
(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。
概率论与数理统计第一章总习题答案
概率论与数理统计课后习题答案第一章总习题1.填空题(1)假设B A ,是两个随机事件,且B A AB ⋅=,则()A B =U ,()=AB ;解:AB A B AB A B =⋅⇔= 即AB 与A B U 互为对立事件,又AB A B ⊂U 所以()(),.AB A B A B AB A B AB Ω==∅==(2)假设B A ,是任意两个事件,则()()()()()P A B A B A B A B ⎡⎤=⎣⎦ .解:()()()()()()P A⎡=⎣()()0P B==.(3).已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。
则事件A 、B 、C 全不发生的概率为解:所求事件的概率即为()P ABC ,又,ABC AB ⊂从而()()00,P ABC P AB ≤≤=则()0P ABC =,所以()()()1P ABC P A B C P A B C ==-()()()()()()()31311.488P A P B P C P AB P AC P BC P ABC =---+++-=-+=2.选择题(1)设8.0)(=A P ,7.0)(=B P ,()8.0=B A P ,则下列结论正确的是().(A )事件A 与事件B 相互独立;(B )事件A 与事件B 互逆; (C )A B ⊃;(D )()()()P A B P A P B =+ .解:因为()56.0)()(==B A P B P AB P ,而56.0)()(=B P A P ,即)()()(B P A P AB P =,所以事件A 与事件B 相互独立,选(A ).(2)设B A ,为两个互逆的事件,且0)(>A P ,0)(>B P ,则下列结论正确的是().(A )()0>A B P ;(B )())(A P B A P =;(C )()0=B A P ;(D ))()()(B P A P AB P =. 解:因为B A ,为两个互逆的事件,所以当事件B 发生时,事件A 是不会发生的,故()0=B A P .选(C ).(3)设1)(0<<A P ,1)(0<<B P ,()()1=+B A P B A P ,则下列结论正确的是().(A )事件A 与事件B 互不相容;(B )事件A 与事件B 互逆; (C )事件A 与事件B 不互相独立;(D )事件A 与事件B 互相独立.解:因为()()()()()()()()()()1111P A B P A B P AB P AB P A B P A B P B P B P B P B⋅+=⇔+=⇔+=-()()()()()()()()()()111111P AB P A B P AB P A P B P AB P B P B P B P B ---+⇔+=⇔+=⇔-- ()()[]()()()()[]()()[]⇔-=+--+-B P B P AB P B P A P B P B P AB P 111)()()(B P A P AB P =,所以事件A 与事件B 互相独立.选(D ).3.从五双不同的鞋子中任取四只,求取得的四只鞋子中至少有两只配成一双的概率. 解:此题考虑逆事件求解比较方便,即取得的四只鞋子中不能配成一双.设A 表示“取得的四只鞋子中至少有两只配成一双”,则()4101212124511)(C C C C C A P A P -=-=2113=.4.(找次品问题)盒中有4只次品晶体管,6只正品晶体管,随机地抽取一只进行测试,直到4只次品晶体管都找到为止,求第4次品晶体管在第五次测试中被发现的概率.解:设i A 表示“第i 次找到次品晶体管”()5,4,3,2,1=i ,则所求概率为:()54321543215432154321A A A A A A A A A A A A A A A A A A A A P ⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅=()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A AP A A A AP A A A P A A P A P ⋅⋅⋅⋅⋅⋅+61768293104617286931046172839610461728394106⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=1052617283941064=⎪⎭⎫⎝⎛⨯⨯⨯⨯=.5.(讨论奖金分配的公平性问题)在一次羽毛球比赛中,设立奖金1000元.比赛规定:谁先胜三盘,谁获得全部奖金.设甲、乙两人的球技相当,现已打了三盘,甲2胜1负.由于特殊原因必须中止比赛.问这1000元应如何分配才算公平?解:应以预期获胜的概率为权重来分配这笔奖金,于是求出甲、乙两人获胜的预期概率即可.比赛采取的应是五局三胜制,比赛已打三盘,甲胜两盘,甲若再胜一盘即可获胜.甲获胜的预期概率为:()()()()43212121544544=⨯+=+=+A P A P A P A A A P .于是,甲应分得1000元奖金中的750100043=⨯元,乙分得250元.6.(彩票问题) 一种福利彩票称为幸福35选7,即从01,02,…,35中不重复地开出7个基本号码和一个特殊号码.中奖规则如下表所示.(1)试求各等奖的中奖概率(1,2,,7);i p i = (2) 试求中奖的概率.解:(1) 因为不重复地选号码是一种不放回抽样,所以样本空间Ω含有735C 个样本点.要中奖应把抽样看成是在三种类型中抽取:第一类号码:7个基本号码; 第二类号码:1个特殊号码; 第三类号码:27个无用号码。
概率论与数理统计第一章总习题谜底
B 、 C 全不发生的概率为
解:所求事件的概率即为 P ABC ,又 ABC AB, 从而
0 P ABC P AB 0, 则 P ABC 0 ,所以
PABC PA B C 1 PA B C
4
1 P A P B P C P AB P AC P BC P ABC 1 3 1 3.
所以事件 A 与事件 B 相互独立,选(A).
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
概率论与数理统计第一章答案
概率论与数理统计第一章答案概率论与数理统计答案第一章随机事件与概率习题1-1 随机事件与运算1. 写出下列随机实验的样本空间Ω与随机事件A(1)抛掷三枚均匀的硬币;事件A=“至少两枚硬币是正面朝上”;(2)对一密码进行破译,记录破译成功时总的破译次数,事件A=“总次数不超过8次”(3)从一批手机中随机选取一个,测试它的电池使用时间长度;事件A=“使用时间在72到108小时之间”答案:(1)记正面为T ,反面为FΩ={TTT TTF TFT FTT FTF TFF FFT FFF },A={TTT TTF TFT FTT }(2)Ω={1,2,3,...} A={1,2, (8)(3)Ω={t :t ≥0} A={t :72≤t ≤108}2.抛掷两枚均匀骰子,观察它们出现的面。
(1)试写出该试验的样本空间Ω(2)试写出下列事件所包含的样本点:A=“两枚骰子上的点数相等”,B=“两枚骰子上的点数之和等于8”答案:(1)Ω={(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)}(2)A={(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)}B={(2,6)(3,5)(4,4)(5,3)(6,2)}3.在以原点为圆心的一单位圆内随机取一点。
(1)试描述该试验的样本空间Ω(2)试描述下列事件所包含的样本点:A=“所取得的点与圆心的距离小于0.5”,B=“所取得的点与圆心的距离小于0.5且大于0.3”答案:(1)Ω={(x,y ):-1<x <1,x 2+y 2<1}(2)A={(x,y ):-0.5<x <0.5,x 2+y 2<0.25}B={(x,y ):0.3<|x|<0.5,0.09<x 2+y 2<0.25}4.袋中有10个球,分别编有号码1~10,从中任取一球,设A=“取得球的号码是偶数”,B=“取得球的号码是奇数”,C=“取得球的号码小于5”,问下列运算表示什么事件:(1)A ∪B ;(2)AB ;(3)AC ;(4)AC ;(5)A ∩C ;(6)B ∪C ;(7)A-C答案:Ω= {1,2,3,4,5,6,7,8,9,10 }(1)A ∪C=Ω(2) AB= ?(3)AC=“取得球的号码是小于5的偶数”= {2,4 };(4)AC =“取得球的号码是奇数或是大于5的偶数”= {1,3,5,6,7,8,9,10 } (5)A ∩C=“取得球的号码是大于等于5的奇数”={5,7,9}(6)B ∪C =“取得球的号码是大于5的偶数”={6,8,10}(7)A ?C =“取得球的号码是大于5的偶数”={6,8,10}5.在区间[0,10]上任取一数,记A={x :1<x ≤5},B={x :2≤x ≤6},求下列事件的表达式(1)A ∪B (2)A B (3)A B(4)A ∪B ? 答案:依题意知Ω={x :0≤x ≤10}(1)A ∪B= {x :1<x ≤6 }(2) A B={x :5<x ≤6 }(3) A B= {x :1<x <2 } (4)A ∪B= {x :0≤x ≤5 }∪{x :6<x ≤10 } 6.一批产品中有合格品和废品,从中有放回地抽取三个产品,设事件A i =“第i 次抽到废品”,试用A i 的运算表示下列各个事件(1)第一次、第二次中至少有一次抽到废品(2)只有第一次抽到废品(3)三次都抽到废品(4)至少有一次抽到合格品(5)只有两次抽到废品答案:(1)A 1∪A 2(2)A 1A 2A 3(3)A 1A 2A 3(4)A 1A 2A 3(5)A 1A 2A 3∪A 1A 2A 3∪A 1A 2A 37.试给出下列事件的对立事件(1)事件A=“三门课程的考核成绩都为优秀”;(2)事件B=“三门课程的考核成绩至少有一门为优秀”答案:(1)A =“三门课程的考核成绩不都是优秀”;(2)B=“三门课程的考核成绩都不是优秀” 8.证明下列等式(1)B=AB ∪A B(2)A ∪B=A ∪A B证明:(1)B=Ω∪B=(A ∪A )∪B=AB ∪A B(2)A ∪B=A ∪(B-A )=A ∪A B。
《概率论与数理统计》第一章-习题及答案
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚匀整的硬币抛两次,事务C,分别表示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事务C,中的样本点。
A,B解:{=Ω(正,正),〔正,反〕,〔反,正〕,〔反,反〕} {=A(正,正),〔正,反〕};{=B〔正,正〕,〔反,反〕} {=C(正,正),〔正,反〕,〔反,正〕}2. 在掷两颗骰子的试验中,事务D,,分别表示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事务D-+,-,,中AB-,ABCABCBCA的样本点。
解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以C,分别表示某城市居民订阅日报、晚报和体育报。
试用A,B,表示以下事务:A,BC〔1〕只订阅日报;〔2〕只订日报和晚报;〔3〕只订一种报; 〔4〕正好订两种报; 〔5〕至少订阅一种报; 〔6〕不订阅任何报; 〔7〕至多订阅一种报; 〔8〕三种报纸都订阅; 〔9〕三种报纸不全订阅。
解:〔1〕C B A ; 〔2〕C AB ;〔3〕C B A C B A C B A ++; 〔4〕BC A C B A C AB ++;〔5〕C B A ++; 〔6〕C B A ;〔7〕C B A C B A C B A C B A +++或C B C A B A ++ 〔8〕ABC ; 〔9〕C B A ++4. 甲、乙、丙三人各射击一次,事务321,,A A A 分别表示甲、乙、丙射中。