1.2.2(2)分段函数知识点及例题解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2(2)分段函数知识点
及例题解析
-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
2
分段函数常见题型例析
所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下: 1.求分段函数的定义域、值域
例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2
)2(,42x x x x x 的值域.
解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4. 当x >-2时,y =2x , ∴y >2
2-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}.
评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.
2.作分段函数的图象
例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩
,,,,
,,,画函数
解:函数图象如图1所示.
评注其图象.作图时,一要注意每段自变量的取值范围;
二要注意间断函数的图象中每段的端点的虚实.
3.求分段函数的函数值
例3.已知)(x f =⎪⎩⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.
x 图
3
解:∵ -3<0 ∴
f (-3)=0, ∴ f (f (-3))=f (0)=π
又π>0 ∴(((3)))f f f -=f (π)=π+1.
评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.
4.求分段函数的最值
例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩
,≥, 求出这个函数的最值. 解:由于本分段函数有两段,所以这个函数的图象
没有最大值.
5.表达式问题
例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.
解:如图3所示,当P 点在AB 上运动时,PA x =;
当P 点在BC
上运动时,由PBA △Rt ,求得PA =;
当P 点在
CD 上运动时,由PDA Rt △求出PA =
当P 点在DA 上运动时,4PA x =-, A
B
P
图3
所以y关于x
的表达式是
01
12
23
43 4.
x x
x
y
x
x x
⎧
<
=
<
-<
⎩
,≤≤,
≤,
≤,
,≤
在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识.
4