甲壳素, 壳聚糖开发和研究进展
国内外壳聚糖开发应用及市场概况
![国内外壳聚糖开发应用及市场概况](https://img.taocdn.com/s3/m/089e13fc370cba1aa8114431b90d6c85ed3a8848.png)
国内外壳聚糖开发应用及市场概况甲壳素是自然界第二丰富的生物聚合体,第二大再生资源,分布十分广泛,每年的生物合成量约为100亿吨以上。
同时甲壳素也是自然界中除蛋白质外数量最大的含氮天然有机高分子。
壳聚糖(chitosan)是一种由甲壳素脱乙酰基后的产物。
鉴于壳聚糖及其衍生物具有优良的生理活性和功能保健作用。
在食品,医药方面显示出非常诱人的应用价值,近年来在国内外对甲壳素以及壳聚糖的开发研究十分活跃。
一、壳聚糖的特性壳聚糖是由大部分D-氨基葡萄糖和少量的N-乙酰-D-氨基葡萄糖组成,以β-(1,4)糖苷键连接起来的直链多糖,化学名为(1,4)-2-氨基-2-脱氧-β-D-葡萄糖,其结构类似于纤维素。
壳聚糖因其独特的分子结构,是天然多糖中惟一大量存在的碱性氨基多糖,因而具有一系列特殊功能性质。
壳聚糖有αβγ三种构象,其分子链是以螺旋形式存在,α-型研究的较多,因为这种构象的壳聚糖存在最多也最易制得。
β-型则关注的相对较少,然而这种构象的特征是具有很弱的分子间作用力,并且被确定在不同的调节反应中会显示出比α-型更高的反应能够活性和对溶剂的更高的亲和力。
在壳聚糖结构中存在四种类型的糖苷键,但由于C2-氨基或乙酰氨基的存在而使得糖苷键都较难水解。
壳聚糖分子中含有羟基,乙酰氨基和氨基,决定了壳聚糖可进行多功能基化学反应。
低分子量的壳聚糖及其衍生物在水溶液中的构象变化理象对其生理活性及功能性质有极其重要的影响。
壳聚糖分子量与水溶液性质的研究,壳聚糖衍生物的液晶行为的研究,均受到了国内外的关注。
二、壳聚糖的制备方法甲壳素经脱乙酰化反应后便得到壳聚糖。
常见的制备法有化学法和酶法。
一般情况下,影响脱乙酰化程度的主要因素有原料的种类(晶型)。
甲壳素的制备方法,甲壳素颗粒的大小和密度,碱液的浓度,反应的气氛,温度和时间等。
衡量壳聚糖产品性能的主要指标是脱乙酰化度和分子量(或黏度)等。
一般提高反应温度,碱液浓度和延长反应时间均可提高脱乙酰化度,但这样会伴随有甲壳素主链的降解。
壳聚糖酶
![壳聚糖酶](https://img.taocdn.com/s3/m/a11a340052ea551810a68717.png)
微生物壳聚糖酶的研究进展及应用现状几丁质(chitin)又名甲壳素、甲壳质,是N-乙酰-D-葡萄糖胺以β-1,4-糖苷键相连而成,是地球上仅次于纤维素的第二大类天然高分子化合物。
壳聚糖(chitosan)为几丁质脱乙酰化后的产物,是一种阳离子型多糖,也是目前唯一的商品化碱性多糖。
壳聚糖是一种高分子阳离子絮凝剂,由于具有无毒、可被生物降解、良好的生物容性和成膜性等优良特性,在医药卫生、农业等方面得到广泛的应用。
如可作为离子交换剂,毛发固定剂、保湿剂和柔软剂,药物缓释剂、增溶剂,饲料添加剂,种子处理剂等。
但是壳聚糖的分子量大,水溶性较差,在人体内不易吸收,使其应用受到限制。
而壳聚糖的降解产物壳寡聚糖(Chitooligosaccharides)不仅具有水溶性好、易吸收等优点,近年来更是发现,低分子量壳寡聚糖(如五糖、六糖)具有抗肿瘤、抗菌、免疫激活及保湿吸湿等特点,使其在医药领域有着广泛的应用前景。
壳寡糖的制备大多数是以虾、蟹等为原料,经过脱乙酰基等处理得到壳聚糖,再进一步水解得到壳寡糖。
目前,由壳聚糖制备壳寡糖主要有两种水解方法:酸解法和酶解法。
酸解法一般是用盐酸部分水解壳聚糖,用甲醇除去水解液中产生的大量单糖,经加Dowex离子交换树脂分离得到壳寡糖。
酸水解法的缺点是反应产物单糖较多,而壳寡糖含量低,反应条件苛刻,工艺烦琐,同时这一工艺由于产生大量废弃酸液,易给环境造成污染。
酶解法是指采用酶制剂在较温和的条件下降解壳聚糖。
一般分为两类:非专一性水解酶和专一性水解酶。
非专一性酶工艺,是利用如脂肪酶、溶菌酶等壳聚糖非专一性水解酶,降解壳聚糖。
但降解程度有限,而且产物复杂,不易分离,酶量使用大。
专一性水解酶是利用以壳聚糖为专一性底物的壳聚糖酶,专一性水解壳聚糖,该反应条件温和,可通过反应时间控制水解产物,为大规模生产壳寡糖提供了可能,是一种较为理想的壳寡糖制备方法。
壳聚糖酶(Chitosanase,EC.3.2.1.132)是催化壳聚糖降解的专一性酶。
壳聚糖的改性研究进展及其应用
![壳聚糖的改性研究进展及其应用](https://img.taocdn.com/s3/m/8a6249272379168884868762caaedd3383c4b5ab.png)
壳聚糖的改性研究进展及其应用壳聚糖是一种天然高分子材料,由于其具有良好的生物相容性、生物活性和生物降解性,因此在工业、生物医学等领域得到了广泛的应用。
然而,壳聚糖也存在一些不足之处,如水溶性差、稳定性低等,因此需要对壳聚糖进行改性研究,以提高其性能和应用范围。
壳聚糖的改性方法主要包括化学改性和物理改性。
化学改性是通过化学反应改变壳聚糖的分子结构,从而提高其性能。
例如,通过引入疏水基团可以改善壳聚糖的水溶性和生物相容性。
物理改性则是通过物理手段改变壳聚糖的形态、结构等因素,以达到提高性能的目的。
例如,通过球磨法可以制备壳聚糖纳米粒子,从而提高其在生物医学领域的应用效果。
目前,壳聚糖的改性研究已经取得了显著的进展。
然而,仍存在一些问题和挑战。
其中,如何保持壳聚糖的生物活性是改性过程中面临的重要问题。
改性后的壳聚糖可能会出现新的毒性问题,因此需要进行深入的毒性研究。
未来,随着壳聚糖改性技术的不断发展,相信这些问题将逐渐得到解决。
壳聚糖在工业、生物医学等领域有着广泛的应用。
在工业领域,壳聚糖可用于制备环保材料、化妆品添加剂、印染助剂等。
例如,通过接枝共聚将壳聚糖与聚丙烯酸制成高分子复合材料,可用于制备可生物降解的塑料袋等环保材料。
在生物医学领域,壳聚糖可用于药物传递、组织工程、生物传感器等方面。
例如,利用壳聚糖制备的药物载体能够实现药物的定向传递,提高药物的疗效并降低毒副作用。
在生物医学领域,壳聚糖还可用于组织工程。
通过将壳聚糖与胶原等生物活性物质结合,可以制备出具有良好生物相容性和生物活性的组织工程支架。
这些支架可为细胞生长提供适宜的微环境,促进组织的再生和修复。
壳聚糖还可用于制备生物传感器,用于检测生物分子和有害物质。
例如,将壳聚糖与酶或抗体结合制成生物传感器,可实现对血糖、胆固醇等生物分子和有害物质的快速、灵敏检测。
壳聚糖作为一种天然高分子材料,具有良好的生物相容性、生物活性和生物降解性,在工业、生物医学等领域得到了广泛的应用。
羧甲基壳聚糖的制备及在水处理中的应用研究进展
![羧甲基壳聚糖的制备及在水处理中的应用研究进展](https://img.taocdn.com/s3/m/3d1b8b0c763231126edb11dc.png)
总第136期2005年第4期安徽化工甲壳素是由虾、蟹等甲壳类动物外壳制备的一种天然生物高分子化合物,属线形多糖类。
但它难溶于水、稀酸及一般有机溶剂。
经脱乙酰化反应后制成的壳聚糖,虽能溶于稀酸,但不溶于水,使它的应用受到了限制。
因此,改善壳聚糖的溶解性能,尤其是溶解于水的性能,是开拓壳聚糖应用领域的重要环节。
将壳聚糖进一步醚化,可制成水溶性的羧甲基壳聚糖,根据羧甲基位置不同羧甲基壳聚糖可分为三种:O-羧甲基壳聚糖,N-羧甲基壳聚糖,N,O-羧甲基壳聚糖。
羧甲基壳聚糖是一种新型的无毒高分子絮凝剂,能够吸附水中的一些重金属离子,在环境保护方面尤其是水处理方面的应用前景很好。
壳聚糖经羧甲基化改性以后,提高了其水溶性,具有成膜、增稠、保湿、絮凝、螯合和胶化等特性。
作为一种新型材料,羧甲基壳聚糖在化工、食品、医疗、纺织等领域将有愈来愈广泛的应用[1~2]。
这里介绍羧甲基壳聚糖作为吸附剂和絮凝剂在水处理方面的应用。
1 羧甲基壳聚糖的制备1.1 以壳聚糖为原料合成羧甲基壳聚糖传统的羧甲基壳聚糖合成方法一般分为以下几步:溶胀、碱化、羧甲基化、提纯。
其中溶胀这一步采用乙醇、异丙醇等有机溶剂浸泡数小时即可;碱化,采取浓度为38%~60%的碱液为佳,温度可控制在20C~60C之间,且时间也是一个关键的控制参数;羧甲基化,将适量的氯乙酸加到碱化后的壳聚糖中,反应温度65C为佳,反应数小时后得粗品,采用75%或80%乙醇或甲醇溶液进行洗涤以除去反应过程中生成的盐类。
也可采用膜析法除去盐,但是成本较高。
除盐后需在真空状态下干燥,得黄色或白色纤维状粉末,干燥温度不超过65C,否则产品变性[1~2]。
1.2 以甲壳素为原料合成羧甲基壳聚糖壳聚糖是由甲壳素制备来的,若直接以甲壳素为原料制备羧甲基壳聚糖也是一条可行的路线,且因为制备壳聚糖的过程也存在碱化步骤,可合二为一,使碱化一步到位。
具体制备方法如下:甲壳素浸泡于40%~60%的NaOH溶液中,一定温度下浸泡数小时后,在搅拌过程中缓慢加入氯乙酸,于70C反应0.5~5h,酸碱质量比控制在1.2~1.6I1;反应混合物再在0C~80C时保温5~ 36h,然后用盐酸或醋酸中和,将分离出来的产物用75%乙醇水溶液洗涤后于60C干燥[3~5]。
甲壳素的应用及最新研究进展
![甲壳素的应用及最新研究进展](https://img.taocdn.com/s3/m/d637e0f8910ef12d2af9e7b9.png)
甲壳素的应用研究与展望刘淑君090524115摘要:从虾和蟹的壳中提取的甲壳素是一种非常重要的生物材料,应用范围十分广阔,在食品,医药,环保等领域有极其广泛的用途,它在制成人造皮肤, 隐形眼镜, 化妆品, 纸张、食品等方面起着其他材料所无法替代的重要作用, 尤其在整个国际社会日益重视环境的今天, 它在污水处理和用来生产可自然分解的薄膜包装材料上大有用武之地,甲壳素的研究开发已成为世人瞩目的高新科技领域和获利颇丰的新兴产业。
本文主要介绍了甲壳素的应用以及国内外研究进展。
关键词:甲壳素,壳聚糖,应用,发展前景前言甲壳素广泛存在于海洋甲壳动物外壳、软体动物内骨骼、昆虫翅膀、菌类及藻类细胞壁内。
这些虾壳原本是废弃物,几乎成为环境污染源,经过近40多年国内外学者研究,竟变废为宝,一跃成为跨世纪的引人瞩目的全球性热门科研课题,并竞相开发出一系列的甲壳素类高科技产品,应用于工业、农业、国防、化工、环保、医药、保健、美容、纺织等诸多领域。
至今,国内发表的甲壳素研究成果已超过400多项,我国甲壳素事业呈现出欣欣向荣的发达景象,一些发达国家争相投入大量资金对甲壳素进行深入研究开发。
目前甲壳素是日本政府惟一准许宣传疗效的机能性食品。
1993 年日本厚生省受理了甲壳素作为癌细胞转移抑制剂静门注射药品的申请。
1996年,甲壳素又通过了美国药品、食品管理局(FDA)及欧共体(EC)检测,核准在美国、欧洲市场销售。
甲壳素的研究开发及其商业产品已出现了全球竞争趋势,并将保持持续稳定的高速发展趋势。
1.甲壳素分子组成和分布1. 1甲壳素分子组成甲壳素又名甲壳质和壳多糖,是法国科学家布拉克诺1811 年首次从蘑菇中提取的一种类似于植物纤维的六碳糖聚合体, 被命名为Fungine( 茸素) 。
1823年法国科学家欧吉尔( Odier)在甲壳动物体外壳中也提取了这种物质, 并命名为几丁质和几丁聚糖, 是几丁胺粉的合称。
经结构分析甲壳素是自然界中唯一带正电荷的一种天然高分子聚合物, 它由几丁质与几丁糖组成, 是天然无毒性高分子, 并且具有生物可分解性, 它的构造类似于纤维素, 由1 000~ 3 000个n- 2葡萄糖胺聚合物组成, 属于直链氨基多糖。
甲壳素、壳聚糖作为固定化酶载体的研究进展
![甲壳素、壳聚糖作为固定化酶载体的研究进展](https://img.taocdn.com/s3/m/17667d262af90242a895e571.png)
由于壳 聚糖具 有在 酸 性条件 下溶 解 ,碱 性条 件 下沉 淀 的特 点 , 以将其 作 为 固定 化 酶的载 体 时 , 所 先 把 壳聚 糖溶 解于稀 酸 中 , 滤去不溶 物 , 向滤液 中滴 加 氢 氧化钠 溶 液 .收集沉 淀 物作 为载体 。 以下 介 绍 的 几种 固定 化 酶 的载 体一 壳 聚糖 ,是用 上述 方法 处理 的。这样 处 理能使 壳 聚糖有 更多 的 氨基参 与 固定化 反应 , 因此 固定化 酶 的活力 回收率 较 高。 姜 涌 明… 等以 自制壳 聚糖 为载 体 , 戊二 醛 为交 联 剂 , 到固定 化木 瓜蛋 白酶 。活力 回收率 为 4 % 得 2
3 舒 展 、 用 酶 促 水 解 改 进 大 豆分 离蛋 白 的乳 化 性能 应 学 报 .9 2.( )3 —4 19 7 3 :9 8 4 翟瑞文 、 雁群 、 子林等 李 陈
业科技 1 9( ) 3 —4 9 7 5 :8 0
中 国 辕 油
玉米 渣 中 蛋 白质 的 酶 水 解
食 品 工
许 多 固定化 酶 的成功 与否 要依靠 载体 的特性 ,因此
载体 的选 择便 成 了研究 的热 点 。
乙酰胺 基 . 葡萄糖 单 元和 B( ,)2 氨 基 一 葡 萄 D 一14.一 D
糖 单 元组成 的共 聚物 。壳 聚糖 属 多糖类 物质 。亲水
甲壳 素又 名几 丁质 、 多糖 , 由 2 乙 酰胺 一. 壳 是 一 2 脱 氧葡 萄糖单 体 通过 口( , ) 一1 4 糖苷 键联 结起 来 的直
甲壳 素 、 聚糖 作 为 固定化 酶 载 体 的研 究 进展 壳
邢 晓薏 吕晓 砖 宫慧梅 黄 良 昌 天津轻 工业 学 院
小龙虾壳中甲壳素的提取及壳聚糖的制备
![小龙虾壳中甲壳素的提取及壳聚糖的制备](https://img.taocdn.com/s3/m/f8fd15da5a8102d277a22f80.png)
小龙虾壳中甲壳素的提取及壳聚糖的制备甲壳素(Chitin),又名几丁质,是一种氨基多糖,主要存在于节肢动物如虾、蟹的外壳和真菌及一些藻类植物的细胞壁中,是仅次于纤维素的第二大可再生资源。
壳聚糖是甲壳素脱乙酰基的产物,是天然多糖中惟一的碱性多糖,具有许多特殊的物理化学性质和生理功能,被认为是继蛋白质、脂肪、糖类、维生素和无机盐之后的第六大生命要素。
目前,甲壳素/壳聚糖及其衍生物在食品、材料科学、医药科学、微生物学、免疫学、农业等方面有重要的应用价值,现已成为最热门的研究领域之一。
我国目前加工提取甲壳素和壳聚糖的主要原料是海虾和海蟹壳等,用淡水虾壳制备甲壳素和壳聚糖的报道尚不多见。
小龙虾学名为克氏原螯虾(Procambarus clarkii),也叫红螯虾,是一个淡水小龙虾种,原产于美国东南部,现广泛分布于长江中下游各省市。
小龙虾壳为虾仁加工或食用后的废弃物,长期以来未得到很好的利用,既浪费了资源,又污染了环境。
因此,以小龙虾壳为原料生产甲壳素类产品具有综合利用资源和保护环境的双重意义。
本研究以小龙虾壳为原料,采用酸碱法提取甲壳素,然后将甲壳素脱乙酰基制备壳聚糖,考察不同提取制备条件对甲壳素提取率和壳聚糖质量的影响,确定最佳工艺条件,旨在为虾壳的综合利用提供参考。
1 试验方法1.1 甲壳素的提取1.1.1 甲壳素的提取将收集于荆州市南门某大排档的新鲜小龙虾壳洗净,除去附着物,烘干并磨成粉,取小龙虾壳粉,室温下分别用不同浓度的HCl溶液浸泡,期间不断搅拌,除去虾壳中的矿物质,直至无气泡产生。
倾去酸液,水洗至中性;用不同浓度的NaOH溶液在90~100 ℃水浴中反应不同时间,水解除去虾壳中的蛋白质。
倾去NaOH溶液,水洗至中性,得甲壳素粗品。
甲壳素粗品用5 g/L的KMnO4溶液浸泡1 h,过滤,水洗除去KMnO4后用10 g/L的草酸水溶液于60~70 ℃搅拌进行脱色反应,直至全部变成白色,水洗至中性,于60~70 ℃干燥24 h,得白色的甲壳素。
壳聚糖的应用研究进展
![壳聚糖的应用研究进展](https://img.taocdn.com/s3/m/fc2fa4830d22590102020740be1e650e52eacf3e.png)
二、壳聚糖在生物医学领域应用 的研究方法
1、制备工艺
壳聚糖的制备主要通过甲壳素的脱乙酰化获得。常用的脱乙酰化方法包括化 学法和生物法,其中化学法主要包括酸碱催化剂法和无催化剂法,生物法则主要 通过酶解法进行。不同的制备工艺会对壳聚糖的分子量、脱乙酰度等性质产生影 响,从而影响其生物医学应用效果。因此,针对不同应用领域,需要优化制备工 艺,以获得具有特定性质的壳聚糖材料。
参考内容
壳聚糖是一种天然高分子聚合物,是由甲壳类动物的外壳经过脱乙酰化处理 而得到的一种生物材料。由于其具有良好的生物相容性、生物活性及独特的物理 化学性质,壳聚糖在工业、医药、环保等领域得到了广泛的应用。本次演示将围 绕壳聚糖的研究进展及应用展开讨论。
壳聚糖具有很好的生物相容性和生物活性,能够被广泛应用于生物医学领域。 近年来,壳聚糖在药物传递系统、组织工程、生物材料等方面的研究取得了很大 的进展。在药物传递系统方面,壳聚糖可以作为药物载体,能够实现药物的定向 传递,从而提高药物的治疗效果。在组织工程方面,壳聚糖可以作为细胞支架材 料,为细胞的生长和繁殖提供适宜的微环境。在生物材料方面,壳聚糖可以用于 制造人工器官、人工关节等医疗器械。
3.环境保护
壳聚糖在环境保护领域也有着广泛的应用。例如,壳聚糖可以用于重金属离 子的吸附和分离,通过离子交换作用有效去除水体中的重金属离子。同时,壳聚 糖还可以用于制备环保材料,如可降解塑料、生物纤维等,以降低环境污染和资 源浪费。
三、壳聚糖的应用优势
壳聚糖具有多种应用优势,这使得它在各个领域得到广泛应用。首先,壳聚 糖具有良好的生物相容性和生物活性,与人体组织具有良好的相容性,对机体无 明显毒副作用。其次,壳聚糖具有优良的吸附性能,可以用于吸附和去除水体中 的重金属离子、有机污染物等有害物质。此外,壳聚糖还具有抗菌性能,可以有 效抑制细菌和真菌的生长繁殖,对于防治感染性疾病具有重要意义。
水溶性甲壳素,甲壳素天然抗菌剂,壳聚糖整理剂,甲壳素,壳聚糖
![水溶性甲壳素,甲壳素天然抗菌剂,壳聚糖整理剂,甲壳素,壳聚糖](https://img.taocdn.com/s3/m/7032e8d284254b35eefd343a.png)
甲壳素又称甲克质、几丁质,是重要的天然抗菌整理剂之一。
它来自天然贝壳、蟹壳、虾壳、鱼骨及昆虫等动物的客体。
当甲壳素脱乙酰度达到55%时,则成为甲壳素最重要的抗菌衍生物壳聚糖。
甲壳素整理剂SAL6680是以壳聚糖、活性添加剂为主要成分,是安全性很高的集保湿、美肤、抗菌为一体的整理剂。
它具有良好的粘合性、生物相容性、生物降解性、无毒性及特殊的吸附性。
适用于各种纤维织物,包括棉、毛等天然纤维和聚酯、尼龙、粘胶等化学纤维纺织品,经其处理后的织物具有优良的耐洗性。
SGS、Intertek 等全球多家权威检测机构一致证明: SAL6680的抗菌性能符合美国AATCC100标准及日本JIS L 1902-2002标准等。
韩笑壳聚糖衍生物抗菌剂的应用王阳(西安工程大学,陕西西安710048)摘要:概述了纺织品抗菌防臭整理的重要性,介绍了抗菌整理剂的种类,重点阐述了改性壳聚糖的抗菌防臭整理剂的应用工艺,采用日本JIS标准测试证明Herst ATB抗菌整理纺织品具有高效、耐久的抗菌防臭效果,并且Herst ATB成本低廉,安全环保,适合于工业化生产。
关键词:甲壳素;抗菌防臭整理剂;抗菌纺织品;抗菌整理工艺The application of chitosan antibacterial agentAbstract: This paper covers the development and the important of antibacterial finishing, as well as the kinds of antibacterial agent, mainly the finishing method by chitosan. Based on American standard JIS, result show that cotton fabric treated with Herst ATB has not only the excellent antibacterial effect, durable to washing, but also safe to body and environmental friendly. It is suitable for manufactory.Key words: chitosan; antibacterial agent; antibacterial textile; antibacterial finishing1前言随着人们卫生保健意识的增强,特别是安全、舒适、健康、清洁、环保等“绿色”观念的形成,对于纺织品要求越来越高,使纺织品的抗菌、防霉、防臭后整理加工更加受到人们的重视。
甲壳素-壳聚糖及其衍生物抗菌、抗肿瘤活性研究进展
![甲壳素-壳聚糖及其衍生物抗菌、抗肿瘤活性研究进展](https://img.taocdn.com/s3/m/81942437376baf1ffc4fad6d.png)
甲壳素/壳聚糖及其衍生物抗菌、抗肿瘤活性研究进展作者:何乃普, 宋鹏飞, 王荣民, 张慧, 王云普作者单位:西北师范大学甘肃省高分子材料重点实验室,兰州,730070刊名:高分子通报英文刊名:POLYMER BULLETIN年,卷(期):2004(3)被引用次数:25次1.Muzzarelli R A A查看详情 19972.Dumitriu S;Chornet E查看详情 19983.Majeti N V;Ravi K查看详情 20004.张文清;柴平海;金鑫荣;应东飞查看详情 19995.谭天伟查看详情 19996.Ueno H;Mori T;Fujinaga T查看详情[外文期刊] 20017.Cho Y W;Cho Y N;Chung S H Water-soluble chitin as a wound healing accelerator.[外文期刊] 1999(22)8.夏文水;吴焱楠查看详情 1996(04)9.鲁从华;罗传秋;曹维孝壳聚糖的改性及其应用[期刊论文]-高分子通报 2001(6)10.Jeon Y J;Park P J;Kim S K查看详情[外文期刊] 200111.No H K;Park N Y;Lee S H查看详情[外文期刊] 200212.Cuero R G查看详情 199913.Jeon Y J;Kim S K查看详情 199814.杨冬芝;刘晓非;管云林;李志,姚康德查看详情[外文期刊] 200115.Jia Z S;Shen D F;Xu W L查看详情[外文期刊] 200116.沈东风;孔祥东;贾之慎壳聚糖及其衍生物的抗菌活性研究进展[期刊论文]-海洋科学 2000(07)17.Shahidi F;Arachchi J K V;Jeon Y J Food applications of chitin and chitosans [Review][外文期刊] 1999(2)18.杨冬芝;刘晓非;管云林壳聚糖的降解改性及其应用[期刊论文]-牙膏工业 1999(2)19.庄品;李治;刘晓非;李松晔,管云林壳聚糖/纤维素抗菌纤维的研究与展望[期刊论文]-化工进展 2002(05)20.黄立新;谢林明;崔毅华蛹壳聚糖对真丝织物的抗菌防皱整理[期刊论文]-丝绸 2003(04)21.赵铁;杜予民;唐汝培壳聚糖水杨酸盐-明胶共混膜结构表征及其抗菌性[期刊论文]-分析科学学报 2002(02)22.郑化;杜予民纤维素/羧甲基壳聚糖共混膜结构与抗菌性能[期刊论文]-高分子材料科学与工程 2002(04)23.严瑞瑄水溶性高分子 199824.何学斌;薛存宽;杜予民;肖玲壳多糖抗肿瘤作用的实验研究[期刊论文]-中成药 2003(07)25.何学斌;薛存宽;沈凯;蒋鹏壳多糖抗肿瘤作用及对荷瘤小鼠免疫功能的影响[期刊论文]-医学导报 2003(04)26.Suzuki K;Mikami T;Okawa Y查看详情 198627.Tokoro A;Tatewaki N;Suzuki K查看详情 198828.Mizunu T;Kawagishi H;Mizun K静冈大学农学部研究报告 198629.Shiratori Y;Nagtsuyu H;Umishio K查看详情30.文镜;吕菁菁;戎卫华;金宗濂查看详情31.Qin C Q;Du Y M;Xiao L查看详情[外文期刊] 200232.刘艳如;余萍水溶性壳聚糖对小鼠免疫功能与移植性肿瘤的影响[期刊论文]-福建师范大学学报(自然科学版) 1999(04)33.王芳宇;何淑雅;李邦良;费树荣水溶性壳聚糖抗肿瘤作用的实验研究[期刊论文]-中国生化药物杂志 2001(01)34.Maria G;Jan I;Elzbieta W查看详情 1996(05)35.郭振楚;韩永生;封惠侠三种多糖的光谱鉴定、化学改性及活性[期刊论文]-光谱学与光谱分析 1999(01)36.Claus T查看详情 199837.Murata J;Saki I;Nishi N查看详情 1989(09)38.Murata J;Saki I;Matsuno K查看详情 1990(05)39.Saki I;Murata J;Nakajina M查看详情 1990(12)40.Murata J;Saki I;Makabe T查看详情 1991(01)41.Tokura S;Tamura H;Azuma I查看详情 199942.Lee J K;Lim H S;Kim J H查看详情 200243.Kimura Yoshiyuki;Okuda Hiromichi查看详情[外文期刊] 1999(07)44.Kimura Yoshiyuki;Okuda Hiromichi甲壳素,壳聚糖研究 1999(02)45.Pavis H;Wilcock A;Edgecombe J查看详情 2002(06)46.Nsereko S;Amiji M查看详情[外文期刊] 200247.Son Y J;Jang J S;Cho Y W查看详情[外文期刊] 200348.Chen W R;Liu H;Nordquist J A;Nordquist R E Reactive ion etching of ZnSe, ZnSSe, ZnCdSe and ZnMgSSe by H-2/Ar and CH4/H-2/Ar[外文期刊] 2000(6A)49.Chen W R;Adams R L;Carubelli R;Nordquisa R E查看详情 199750.Tokumitsu H;Hiratsuka J;Sakurai Y查看详情[外文期刊] 2000(02)51.Tokumitsu H;Ichikawa H;Fukumori Y查看详情[外文期刊] 1999(12)52.Futoshi Shikata;Hiroyuki Tokumitsu;Hideki Ichikawa;Yoshinobu Fukumori查看详情[外文期刊] 200253.Shim B C;Park K B;Jang B S查看详情[外文期刊] 200154.Kim J R;Kim Y M;Park K B查看详情 19961.王磊.潘可风.黄远亮.WANG Lei.PAN Ke-feng.HUANG Yuan-liang甲壳素、壳聚糖在骨修复方面的研究进展[期刊论文]-口腔颌面外科杂志2007,17(4)2.马继安甲壳素的应用和制造[期刊论文]-现代渔业信息2002,17(5)3.玉顺子甲壳素及其衍生物药理作用的研究进展[期刊论文]-时珍国医国药2006,17(10)4.宋超.吉爱国.宋淑亮.梁浩.王伟莉甲壳素及其衍生物在医用领域的最新研究进展[会议论文]-20065.周彦斌.曾庆孝.吴小勇.宁初光壳聚糖与胃肠道健康[期刊论文]-广州食品工业科技2004,20(z1)1.张晓菲.刘丽宏.丁春雷.杨润涛.赵长琦印迹壳低聚糖在小鼠体内的代谢与组织分布[期刊论文]-中国药理学与毒理学杂志 2011(3)2.覃容贵.吴建伟.国果.付萍蝇蛆壳聚糖急性毒性实验[期刊论文]-时珍国医国药 2009(3)3.杨靖亚.吴宏忠.于有军.刘建文羧甲基壳聚糖抗肿瘤及免疫增强活性研究[期刊论文]-中国临床药理学与治疗学2007(12)4.杜经武.来水利.颜珩烨H2O2/ClO2法制备低聚壳聚糖[期刊论文]-陕西科技大学学报(自然科学版) 2008(4)5.吴迪.柴云甲壳素及其衍生物在制剂中的应用和前景[期刊论文]-实用医技杂志 2006(19)6.孔高原.王军强.闫训友壳聚糖对金顶侧耳液体发酵可溶性糖含量的影响[期刊论文]-西南农业学报 2012(5)7.史振霞.吴智艳壳聚糖对香菇菌丝生长代谢的影响[期刊论文]-食用菌学报 2011(4)8.孙芳利.段新芳.毛胜凤.吕建全.王建辉壳聚糖金属配合物处理后竹材的防褐腐作用及力学性能[期刊论文]-林业科学 2007(8)9.吴智艳.史振霞.王利荣壳聚糖对平菇菌丝体生长代谢的影响[期刊论文]-北方园艺 2007(7)10.吴智艳.史振霞.王利荣不同浓度壳聚糖对平菇菌丝体生长代谢的影响[期刊论文]-食用菌 2007(4)11.张瑞娟甲壳素及其衍生物的药理作用及研究进展[期刊论文]-内蒙古中医药 2013(29)12.许云辉.杜兆芳.刘新壳聚糖亚胺改性棉纤维的结构与性能[期刊论文]-纺织学报 2012(9)13.钟志梅.邢荣娥.刘松.汲霞.郭占勇.李鹏程壳聚糖在饲料添加剂中的应用研究[期刊论文]-海洋科学 2008(3)14.李和生.孙玉喜.王鸿飞果胶酶降解壳聚糖工艺优化及特性动态变化分析[期刊论文]-农业机械学报 2006(1)15.吴秋小.黄冠庆.潘俊福.曾得寿壳聚糖对0~3周龄三黄肉仔鸡生产性能和免疫力影响的初探[期刊论文]-饲料工业 2007(2)16.刘琨.侯本祥.杨圣辉.李金陆壳聚糖体外抑菌实验研究[期刊论文]-现代口腔医学杂志 2007(3)17.何康.冯有辉.艾春媚硫酸壳聚糖体内抗肿瘤作用的实验研究[期刊论文]-中国临床药理学与治疗学 2008(1)18.孙振玲.刘俊龙抗菌塑料的制备及应用研究进展[期刊论文]-塑料科技 2007(10)19.刘琨.侯本祥.杨圣辉氢氧化钙、甲壳素体外抑菌实验研究[期刊论文]-牙体牙髓牙周病学杂志 2006(12)20.李冰.封桂英几丁糖的生物学性能及其在口腔颌面外科领域的应用[期刊论文]-承德医学院学报 2006(1)21.付小蓉.朱昊.黄丹棉织物壳聚糖衍生物抗菌整理[期刊论文]-印染 2010(13)22.张爱英.王学东.邓树娥.孙凤祥.王振松磺化壳聚糖对MCF-7的体外抑制作用研究[期刊论文]-现代生物医学进展 2010(10)23.张礼华.胡人峰.沈青植物多酚在高分子材料中的应用[期刊论文]-高分子通报 2007(8)24.李冰几丁糖关节腔内注射对兔颞下颌关节骨关节病的预防作用[学位论文]硕士 200525.杨黎明壳聚糖的改性及其智能水凝胶的研究[学位论文]博士 2005引用本文格式:何乃普.宋鹏飞.王荣民.张慧.王云普甲壳素/壳聚糖及其衍生物抗菌、抗肿瘤活性研究进展[期刊论文]-高分子通报 2004(3)。
甲壳素及其衍生物壳聚糖的应用研究进展
![甲壳素及其衍生物壳聚糖的应用研究进展](https://img.taocdn.com/s3/m/5b3adadc26fff705cc170a20.png)
甲壳素及其衍生物壳聚糖的应用研究进展(chitin)又名几丁质,是自然界中含量仅次于纤维素的一种多糖,同时,也是地球上数量最大的含氮有机化合物。
其在自然界中主要存在于节肢动物(主要是甲壳纲如虾、蟹等,含甲壳素高达58%~85%)、软体动物、环节动物、原生动物、腔肠动物、海藻及真菌等中,另外在动物的关节、蹄、足的坚硬部分,自从1811年法国科学H·Braconnnot发现甲壳素以来,甲壳素逐渐被认识和利用。
近年来,国内外相关的研究日趋活跃,甲壳素和壳聚糖已被现代科学称之为继糖类、蛋白质、脂肪、维生素、矿物质等五大生命要素之后的第六生命要素[1]。
甲壳素和壳聚糖经过改性之后生成的改性高分子具有无毒,可完全被生物降解、在自然界形成良性循环等诸多优点,显示了良好的应用前景。
本文主要介绍近年来甲壳素/1Papineau等认为,由于壳聚糖分子的正电荷和细菌细胞膜上负电荷的相互作用,使细胞内的蛋白酶和其他成分泄漏,从而达到抗菌、杀菌作用。
他们研究发现,用量为0.2mg/ml的壳聚糖乳酸盐对大肠杆菌具有较好的抑制作用,而且壳聚糖谷氨酸盐对酵母菌如酿酒酵母的繁衍也具有较好的抑制效果,1mg/ml的壳聚糖乳酸盐会使酵母菌在17min内完全失去活性。
Sudharshan等指出,由于壳聚糖可渗入细菌的核中并和DNA结合,抑制mRNA的合成,从而阻碍了mRNA与蛋白质的合成,达到抗菌作用。
他们研究了水溶性壳聚糖如壳聚糖乳酸盐、壳聚糖谷氨酸和壳聚糖氢化谷氨酸对不同细菌增殖的影响。
结果发现,壳聚糖乳酸盐和壳聚糖谷氨酸盐对革兰氏阳性菌和革兰氏阴性菌都有较好的抗菌作用。
Chen等[2]研究了脱乙酰度为69%的壳聚糖、磺化度为0.63%的壳聚糖、磺化度为13.03%的壳聚糖和硫代苯甲酰壳聚糖对牡蛎的防2败变质,从而缩短肉制品的贮存寿命和破坏肉制品的风味。
Darmadji和Izumimoto研究了用壳聚糖处理的牛肉的氧化稳定性效果。
甲壳素_壳聚糖的性质_制备及其在食品中的应用
![甲壳素_壳聚糖的性质_制备及其在食品中的应用](https://img.taocdn.com/s3/m/9812980ce87101f69e319567.png)
作者简介:李维静(1979-),女,安徽蚌埠人,助教,主要从事食品生物技术的教学和研究工作。
收稿日期:2007-04-28甲壳素、壳聚糖的性质、制备及其在食品中的应用李维静(蚌埠学院食品与生物工程系,安徽蚌埠 233030)摘 要:本文概述了甲壳素、壳聚糖的研究现状和最新进展,并介绍了它们的性质、制备,着重探讨了其在食品工业中的应用。
关键词:甲壳素;壳聚糖;食品;应用中图分类号 O622.1 文献标识码 B 文章编号 1007-7731(2007)10-58-03 甲壳素是2-乙酰基葡萄糖直链多聚体,是自然界中大量存在的唯一的氨基多糖,结构见图1,每年地球上的自然生成量就达数十亿t,仅次于纤维素是地球上第2大可再生资源。
壳聚糖,又称为脱乙酰甲壳素、甲壳胺,是通过甲壳素一定程度的脱乙酰而得到,化学名称是(1,4)-2-氨基-2-脱氧-β-D -葡聚糖,结构见图1。
因为甲壳素的脱乙酰反应一般不完全,壳聚糖工业品的脱乙酰度通常在70%-90%之间,所以实际上壳聚糖工业品可视为甲壳素和壳聚糖两种单体单元的无规共聚体。
图1 甲壳素,壳聚糖的结构式最早发现甲壳素的是法国科学家H.B raconnet 。
1811年他从蘑菇中提取到一种类似纤维素的物质并命名为Fungine 。
1823年法国人Odier 在昆虫表面坚硬角皮部分也发现类似物质,用希腊语改为Chitin,是“外壳、信封”的意思。
1859年法国人Rouget 将甲壳素置于氢氧化钠溶液中加热后得到可溶于有机酸的一种新物质,1894年德国人Aoppe -Seuler 将这种脱乙酰物质命名为壳聚糖(Chi 2t osan )。
此后各国科学家对壳聚糖的开发及应用越来越感兴趣,并先后于1978年和1982年两次召开国际会议探讨壳聚糖的提取技术和应用研究。
1 性质甲壳素是一种天然粘多糖,属聚多糖类,分子式(C 16H 26O 10N 2)n,其化学结构与纤维素极其相似,可看成2-羟基被乙酰胺所取代的纤维素。
甲壳素和壳聚糖的化学性质和应用
![甲壳素和壳聚糖的化学性质和应用](https://img.taocdn.com/s3/m/4470e61d941ea76e59fa046b.png)
甲壳素和壳聚糖的化学性质和应用普拉迪普·库马尔·杜塔,乔伊迪普格杜塔和特里帕蒂阿拉哈巴德,莫逖尼赫鲁国家技术研究所,化学系211004。
甲壳素和壳聚糖是相当灵活和有前途的生物材料。
脱乙酰甲壳素和壳聚糖衍生物,更加有用和有趣的生物活性聚合物。
尽管它的生物降解性,它有许多反应性氨基酸侧链基团,其中提供化学修饰,形成了大量的各种有用的衍生物,是市售的可能性或者可以通过接枝反应和离子相互作用。
本研究着眼于当代研究甲壳素和壳聚糖对在各种工业和医学领域的应用。
关键词:甲壳素,生物降解性,壳聚糖,生物材料介绍甲壳素是第二个最普遍的物质,地球上仅次于纤维素和多糖:它是由(1→4)组成的联-2 - 乙酰氨基-2 - 脱氧- - glucose1(D-N-乙酰葡糖胺)(图1)。
它通常被认为是纤维素衍生物,甚至不会发生在生产纤维素的生物中。
它与纤维素结构上是相同的,但它在C-2位置上具有乙酰胺的组(NHCOCH3)。
同样的衍生物甲壳素,壳聚糖线型聚合物(1→4) - 连接的2 - 氨基-2 - 脱氧--D-吡喃葡萄糖,很容易推导出N-脱乙酰化,其特征在于,不同程度上的脱乙酰度,因此它是一个的N-乙酰葡糖胺和葡糖胺的共聚物(图2)。
估计甲壳素每年待产几乎与纤维素一样多。
它已成为极大的研究热点,不仅是一个可利用的资源,也可作为一个新的高功能的生物材料,潜在于各个领域中的最新进展,化学作用是相当显著的。
图1 - 甲壳素结构图2 - 部分脱乙酰甲壳素甲壳素是一种白色,坚硬,无弹性,在含氮多糖中的外骨骼中发现,以及在内部结构的无脊椎动物中发现。
这些天然聚合物表面的一个主要来源在沿海地区。
作为食品工业中获得的甲壳类的壳进行脱乙酰壳多糖的生产,在经济上是可行的,特别是如果它包括恢复类胡萝卜素。
贝壳含有相当数量的虾青素,迄今尚未合成,类胡萝卜素是作为鱼类食品添加剂销售水产养殖,特别是鲑鱼。
印度的平均降落的固体废物分数贝类介乎60,000至8万吨。
甲壳素和壳聚糖
![甲壳素和壳聚糖](https://img.taocdn.com/s3/m/bcc8473b172ded630b1cb6e5.png)
甲壳素和壳聚糖 The pony was revised in January 2021备注第7章甲壳素和壳聚糖甲壳素和壳聚糖的结构、性能甲壳素的存在状态与提取方法甲壳素与壳聚糖的改性甲壳素与壳聚糖及其改性产物的应用掌握甲壳素和壳聚糖的基本结构和反应性能了解甲壳素和壳聚糖的结构改性和应用甲壳素和壳聚糖的结构、性能甲壳素的发现与命名1、1811年温热的稀碱溶液反复处理蘑菇,提取甲壳素,命名Fungine,真菌纤维素。
2、1823年甲壳类昆虫翅鞘中分离,命名Chitin3、4、1878年从Chitin水解反应液中检出氨基葡萄糖和乙酸5、1894年进一步证明Chitin中含有氨基葡萄糖,后来研究证明,Chitin是由N-乙酰基葡萄糖缩聚而成的。
二、结构特征研究证实,甲壳素与其他多糖一样,其分子链也是螺旋形,XRD照片给出的螺距为,一个螺旋平面由6个糖残基组成。
测定方法:红外、核磁共振三、壳聚糖的主要特性1. 不能完全溶解于水和碱溶液中,但可溶于稀酸(pH<6),游离氨基质子化促进溶解。
溶于稀酸呈黏稠状,在稀酸中壳聚糖的β-1,4糖苷键会慢慢水解,生成低相对分子质量的壳聚糖。
2. 壳聚糖在溶液中是带正电荷多聚电解质,具有很强的吸附性。
3. 壳聚糖的溶解性与脱乙酰度、相对分子质量、黏度有关,脱乙酰度越高,相对分子质量越小,越易溶于水.4. 壳聚糖具有很好的吸附性、成膜性、通透性、成纤性、吸湿性和保湿性N-脱乙酰度和黏度(平均分子量)是壳聚糖的两项主要性能指标脱乙酰度(1)脱乙酰度(.)的高低,直接关系到它在稀酸中的溶解能力、黏度、离子交换能力、絮凝性能和与氨基有关的化学反应能力。
(2)测定的方法有酸碱滴定法、电位滴定法、氢溴酸盐法、胶体滴定法、苦味酸分光光度法、UV、IR法等5、黏度黏度反应了高分子物质的分子量大小,在壳聚糖的生产上,常用旋转黏度计来测定其黏度,这是表观黏度,其数值可大体反映出壳聚糖分子量的大小。
甲壳素及壳聚糖在纺织工业中的应用
![甲壳素及壳聚糖在纺织工业中的应用](https://img.taocdn.com/s3/m/821c4825854769eae009581b6bd97f192279bfa8.png)
甲壳素及壳聚糖在纺织工业中的应用1 概述甲壳素(Chitin)又名甲壳质、几丁质等,是一种丰富的自然资源,每年生物合成近10亿吨之多,是继纤维素之后地球上最丰富的天然有机物。
甲壳素的结构与纤维素极其相似,是一种天然多糖,可命名为(l,4)-2-乙酸氨基-2-脱氧-β-D-葡萄糖。
甲壳素兼有高等动物组织中胶原质和高等植物组织中纤维素两者的生物功能,对动、植物都具有良好的适应性,同时还具有生物可降解性和口服无毒性,因此近年来它已成为一种用途广泛的新型材料。
壳聚糖(Chitosan)是甲壳素脱乙酸化的产物,能溶于低酸度的水溶液中,因其含有游离氨基,能结合酸分子,故具有许多特殊的物理化学性质和生物功能。
壳聚精是甲壳素最重要的衍生物,是甲壳素脱乙酸度达到70%以上的产物,也是迄今为止发现的唯一天然碱性多糖,具有无毒性、可生物降解性、良好的生物兼容性等特性。
另外,壳聚糖分子中存有大量的氨基和羟基,可以通过化学反应在其上引入各种功能性基团进行化学修饰作为低等动物组织中的纤维成分,所以表现出了极高的应用价值和广泛的发展前景,是一种新型的多功能织物整理剂,在印染、抗折皱、防毡缩、抗菌和纤维滤嘴等方面应用广泛。
此外,将甲壳素或壳聚糖纺成纤维,进而加工成外科用的可吸收手术缝合线、伤口敷料、人造皮肤等医用材料则是近年来科学家们研究的重要课题。
2 在纺织领域中的应用壳聚糖具有许多天然的优良性质,如吸湿透气性、反应活性、生物活性、吸附性、粘合性、抗菌性等,人们利用这些性能来提高棉、毛、丝绸等天然纤维织物的染色、抗菌、防皱、防缩等性能,并可应用于纺织领域的污水处理。
2.1 手术缝合线用壳聚糖纤维制成的缝合线,在预定时间内有很强的抗张强度,在血清、尿、胆汁、胰液中能保持良好的强度,在体内有良好的适应性,尤其是经过一定时间,壳聚糖缝合线能被溶菌西每解,被人体自行吸收。
因此,当伤口愈合后,不必再拆线。
理想的外科缝合线应满足:愈合前与组织兼容;愈合时所有缝合线不拆除,逐渐被人体吸收而消失;缝合线不破坏愈合。
壳聚糖非织造布的制备及壳聚糖非织造医用敷料的研究进展_百度文
![壳聚糖非织造布的制备及壳聚糖非织造医用敷料的研究进展_百度文](https://img.taocdn.com/s3/m/0ff2e4f6da38376baf1faec9.png)
壳聚糖非织造布的制备及壳聚糖非织造医用敷料的研究进展张洁钱晓明(天津工业大学纺织学院,天津,300160摘要:阐述了壳聚糖纤维和壳聚糖非织造布的制备方法,其中用水刺法加工的壳聚糖非织造布最适合用作医用敷料。
介绍了壳聚糖非织造医用敷料的优良性能及国内外的研究现状,指出壳聚糖非织造布在医用敷料方面有着广阔的市场前景。
关键词:壳聚糖非织造布,医用敷料,制备方法,研究进展中图分类号:TS176+.4文献标志码:A文章编号:1004-7093(201107-0024-041壳聚糖纤维1.1壳聚糖的结构及性能壳聚糖(Chitosan又称甲壳胺,其化学名称为β-(1,4-2-乙酰氨基-2-脱氧-D-葡聚糖。
壳聚糖是甲壳质脱乙酰基的衍生物,在常温下为白色半透明、略有珍珠光泽的固体,不溶于水、碱和一般的有机溶剂,但能溶解在很多稀的无机酸或有机酸中成为半透明的黏稠液体。
壳聚糖的溶解度及其溶液的黏度主要与壳聚糖的脱乙酰度、相对分子质量以及酸的种类和离子化程度有关[1]。
壳聚糖大分子链上分布着许多羟基和氨基,使其具有良好的溶解性和反应活性,因此壳聚糖具有很好的生物相容性、吸附性、成膜性及通透性、成纤性、吸湿性和保湿性[2]。
壳聚糖还具有良好的广谱抗菌、抗感染能力和很强的凝血作用,以及促进伤口愈合、镇痛、调节血脂和降低胆固醇、提高免疫力和抗肿瘤等多种生理活性作用[3],是医用敷料的理想原料。
1.2壳聚糖纤维的制备壳聚糖是线性高分子,具有成纤性,可纺制成丝。
壳聚糖及其衍生物大分子中极性集团较多,分收稿日期:2011-04-07作者简介:张洁,女,1985生,在读硕士研究生。
主要从事医疗卫生材料领域用非织造布的研究。
子间的作用力较强,理论上的熔融温度高于热分解温度,因此壳聚糖类纤维的纺制一般不采用熔融纺丝技术。
目前壳聚糖纤维的制造可以采用湿法纺丝、干法纺丝、干—湿法纺丝、静电纺丝和液晶纺丝工艺[4]。
1.2.1湿法工艺湿法纺丝是壳聚糖纤维制备的一般方法,其关键是溶剂的选择。
利用真菌生产壳聚糖的研究进展
![利用真菌生产壳聚糖的研究进展](https://img.taocdn.com/s3/m/d2e2b205f4335a8102d276a20029bd64793e6261.png)
利用真菌生产壳聚糖的研究进展目录1. 内容概览 (2)1.1 壳聚糖的概况 (3)1.2 真菌在壳聚糖生产中的应用 (4)2. 壳聚糖的性质与功能 (4)2.1 壳聚糖的结构特性 (6)2.2 壳聚糖的生物降解性 (8)2.3 壳聚糖的功能特性 (9)3. 真菌壳聚糖生产技术 (10)3.1 真菌壳聚糖的生产原理 (11)3.2 常用生产真菌 (12)3.2.1 黄曲霉 (13)3.2.2 米曲霉 (14)3.2.3 绿曲霉 (15)3.3 生物工程技术优化壳聚糖生产 (17)3.3.1 发酵条件的优化 (18)3.3.2 基因工程的应用 (19)3.3.3 酶工程在壳聚糖生产中的作用 (20)4. 壳聚糖的下游过程 (21)4.1 壳聚糖的提取与纯化 (23)4.2 壳聚糖的改性 (24)4.2.1 化学改性 (25)4.2.2 物理改性 (26)4.3 壳聚糖的应用研究 (28)4.3.1 生物医药领域 (29)4.3.2 农业技术 (30)4.3.3 环境保护领域 (31)5. 壳聚糖的真菌生产中的挑战与展望 (32)5.1 产量提高与成本降低 (34)5.2 环境影响与可持续性 (35)5.3 壳聚糖产品的市场潜力 (36)1. 内容概览在自然界中,真菌是非常多样且独特的生物类群,它们不仅在生态系统中发挥关键作用,而且在生物技术领域,特别是真菌生物技术领域,具有极大的潜力。
过去的几十年里,科学家们一直在探索如何利用真菌生产的高价值生物聚合物,其中之一便是壳聚糖。
源自甲壳素,是自然界中最丰富的生物聚糖之一,广泛应用于医疗、农业、食品等行业。
它因其生物相容性、降解特性、抗菌性和吸湿性而在现代应用中愈发受到重视。
对于真菌而言,壳聚糖合成往往与真菌的次级代谢过程有关,不尽依赖物种特异性,还在很大程度上受环境因素和培养条件的影响。
研究进展涵盖了多个关键方面,包括真菌种类、发酵培养基与工艺、壳聚糖的纯化及性质评估、生物可降解性评价、应用前景以及现行研究中的挑战。
实验二十二 甲壳素和壳聚糖的制备及测定
![实验二十二 甲壳素和壳聚糖的制备及测定](https://img.taocdn.com/s3/m/2a75a015227916888486d7bc.png)
实验二十二甲壳素和壳聚糖的制备及测定目的要求(1)了解和掌握甲壳素和壳聚糖的制备方法。
(2)掌握壳聚糖的测定方法。
原理甲壳素(Chitin,译音几丁)又称甲壳质、壳多糖、几丁质等。
它是在1811年,被法国科学家H·Braconnot在进行蘑菇研究的,从霉菌发现的。
在蟹等硬壳中,含甲壳素15%~20%,碳酸钙75%。
甲壳素是聚-2-乙酰胺基-2-脱氧-D-吡喃葡萄糖,以β-(1→4)糖苷键连接而成,是一种线性的高分子多糖,即天然的中性粘多糖。
它的分子结构与纤维素有些相似,基本单位是壳二糖(chitobiose),其结构式如下:甲壳素若经浓碱处理,进行化学修饰去掉乙酰基即得到壳聚糖(Chitosa)又称脱乙酰基壳多糖、脱乙酰甲壳素。
在一般条件下,甲壳素不能被生物降解,不溶于水和稀酸,也不溶于一般有机溶剂。
食品工业及水产加工地区有大量虾皮、虾头,蟹壳等下脚,可以利用来制备甲壳素和壳聚糖等。
壳聚糖具有广泛的用途:在食品工业上,把壳聚糖在温和的条件下,局部水解后粉碎成末,得到的壳聚糖产品称为微晶壳聚糖,可用作冷冻食品(冷肴、汤汁、点心)和室温存放食品(蛋黄、酱等)的增稠剂和稳定剂。
用水解方法可以制得纯的N-乙酰氨基葡萄糖。
N-乙酰氨基葡萄糖是肠道中双叉乳酸杆菌的生长因子,因此可作为婴儿食品的保健添加剂。
在医药工业上,由于壳聚糖是类似纤维状的高分子化合物,和生物体有良好的亲和作用,在生物体内可被分解吸收,所以用它可制作手术线,伤好后线与肉长在一起,可免去拆线之苦;用它做人造皮肤,植入受伤伤口,可长出新的不带疤痕的表皮;还可用于制作人造血管、人工肾;用壳聚糖制成的微型胶囊,放入药剂,植入人体内,很容易结合在一起,使药物缓慢地释放,起到长期治疗的效果;用它还可制成透析膜、超滤膜和脱盐的反渗透膜,与纤维素等的交联复合体可作为分子筛,用作药物的载体,具有缓释、特效的优点,国外正研究作许多药物的缓释剂。
若以戊二醛等作交联剂,可与许多酶或微生物细胞固定化,如固定化天门冬酰胺酶;壳聚糖是碱性多糖,有止酸、消炎作用,可抑制胃溃疡;动物实验表明,还可降低胆固醇、血脂,国外已报道用作心血管系统降低胆固醇的药物;经分子修饰制得肝素类似结构物,具抗血栓作用。
甲壳素及其衍生物药理作用的研究进展
![甲壳素及其衍生物药理作用的研究进展](https://img.taocdn.com/s3/m/519eae72dd88d0d232d46a59.png)
甲壳素及其衍生物药理作用的研究进展【关键词】甲壳素;,,药理作用摘要:目的介绍甲壳素药理作用的研究进展,为临床应用和深入研究提供参考。
方法广泛查阅相关文献资料,进行分析,整理,归纳。
结果甲壳素具有抗菌抗感染、降脂、降血糖、抗肿瘤、抗凝血、抗辐射、保护肝脏等药理作用。
结论甲壳素具有广泛的药理作用及其应用价值,值得深入研究。
关键词:甲壳素;药理作用甲壳素又名几丁质、甲壳质、壳多糖等,是一种维持和保护甲壳动物和微生物躯体的线性氨基多糖,广泛存在于甲壳纲动物如蟹、虾、软体动物、昆虫、真菌、海藻及高等植物细胞壁中,其资源丰富,产量仅次于纤维素,是自然界第二大有机物质,也是自然界除蛋白质外数量最大的含氮天然有机高分子,每年自然界生物合成量约为100亿吨。
在甲壳素被发现的一个多世纪以来,人们对此类化合物进行了大量的基础和应用研究,揭示了其在食品、美容、纺织、环境保护、农业、生物等一系列领域的应用价值,发现甲壳素有纤维素所没有的特性,是目前世界上唯一含阳离子的可食性动物纤维,也被认为是继蛋白质、糖、脂肪、维生素、矿物质以外的第六生命要素,可以应用在工业领域(如取代塑料)、农业领域(不需要农药的肥料),化妆品领域(调整皮肤等)、医药、膜材料和其他环保、健康领域。
壳聚糖(chitosan)是甲壳素最重要的衍生物,是甲壳素部分或全部脱乙酰基的产物。
自1811年Braconnol发现甲壳素和1894年Hoppe将甲壳素与KOH在180℃下熔融得到壳聚糖以来,近年来,随着高分子科学和生物医学工程的发展,甲壳素及其衍生物在医药方面的应用研究也日益增多。
国内、外多项实验已经证明,甲壳素及其衍生物具有多种药理作用,临床用于治疗相关病症收到了良好的效果[1]。
现对甲壳素及其衍生物在药理作用及其应用方面作一综述。
1 抗菌抗感染甲壳素及其多种衍生物均具有不同程度的抗感染作用,以甲壳素六聚糖为最强。
小分子的脱乙酰甲壳素具有质子化铵,质子化铵与细菌带负电荷的细胞膜作用,吸附和聚沉细菌,同时穿透细胞壁进入细胞内,扰乱细菌的新陈代谢及合成而具有抗菌作用;体外实验表明,当壳聚糖质量浓度为6 g/L时,约有50%革兰阴性菌被抑制,10 g/L时抑菌率达60%~100%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲壳素, 壳聚糖开发和研究进展摘要作为一种资源丰富, 用途广泛的天然高分子化合物, 甲壳素ˆ壳聚糖的开发研究和应用范围越来越受到重视, 本文对该领域开发和研究进展进行简要评述。
关键词甲壳素; 壳聚糖甲壳素(Chitin) 又名甲壳质、几丁质、壳多糖、聚乙酰氨基葡萄糖等[ 1 ] , 是1, 4—连接的2—乙酰基—2—脱氧—B—D —葡萄糖, 广泛存在于昆虫、甲壳纲动物外壳及真菌细胞壁中[ 2 ] , 是自然界中仅次于纤维素的多糖。
在甲壳素分子中, 因其内外氢键的相互作用, 形成了有序的大分子结构, 溶解性能很差, 这限制了它在很多方面的应用。
就目前的研究情况, 除了少量用作医用敷料外, 在其它方面的应用很少, 而甲壳素经脱乙酰化处理的产物—壳聚糖(Chitosan) , 却由于其分子结构中大量游离氨的存在, 溶解性能大大改观, 具有一些独特的物化性质及生理功能, 在医药、食品、化妆品、农业及环保诸方面具有广阔的应用前景。
本文将介绍甲壳素ˆ壳聚糖产品的开发研究进展情况。
1 甲壳素ˆ壳聚糖产品的开发研究概况自80 年代以来, 在全球范围内形成了甲壳素ˆ壳聚糖的开发研究热潮, 各国都加大了对甲壳素ˆ壳聚糖的开发研究力度, 其中又以日本走在各国的前列。
日本政府曾投资60 亿日元委托数十家高校及科研机构历时10 余年进行甲壳素ˆ壳聚糖产品的开发研究, 取得了大量的科研成果, 并将部分成果实现了产业化, 仅以壳聚糖为主要原料的保健品就有20 个左右的品种上市。
我国早在50 年代就对甲壳素的制备及其应用进行了研究。
1958 年起, 国内首先将乙酰化甲壳素应用于印染工业, 从1977 年起, 每隔几年召开一次关于甲壳素及壳聚糖的国际会议, 极大的促进了这方面的研究。
进入90 年代, 中国对于甲壳素ˆ壳聚糖资源的开发研究也越来越重视, 如在甲壳素ˆ壳聚糖的酶法降解方面、壳聚糖的溶液性质、壳聚糖净化用作药用絮凝剂、壳聚糖降解制备低聚壳聚糖及更低分子量的水溶性壳聚糖等方面进行研究, 现又将研究领域扩展到甲壳素ˆ壳聚糖在化妆品、医药敷料等方面的应用研究, 尤其是壳聚糖的高分子微包囊药物释放体系, 成为新一轮研究的热点。
2 甲壳素ˆ壳聚糖产品开发的新动向甲壳素ˆ壳聚糖及其产品的开发研究情况及可能的研究发展方向分述如下:2. 1 壳聚糖降解甲壳素经脱乙酰化处理得到的壳聚糖的分子量通常在几十万左右, 因其水不溶性, 限制了它在食品、化妆品等许多方面的应用, 若采用适当的方法将其降解为均分子量为~ 1000的低聚产品, 则可使其水溶性质大为改观, 特别是均分子量低于1500 的低聚壳聚糖产品, 可基本全溶于水。
根据目前的研究情况, 用于壳聚糖降解的方法大致可分为酶法降解, 无机酸降解及氧化降解法三种。
用无机酸特别是盐酸来对壳聚糖进行降解以制备低至单糖的低分子量壳聚糖是应用最早的壳聚糖降解方法。
现在, 酸降解法已发展有过醋酸法[ 3 ]、酸—亚硝酸法[ 4 ]、浓硫酸法[ 5 ]、氢氟酸法[ 6 ] 等许多种, 不过, 用于工业化生产的主要还是盐酸降解法。
酸法降解壳聚糖是一种非特异性的降解过程, 降解过程及降解产物的分子量分布较难控制, 是否可考虑在反应过程中加添某些试剂以控制其降解反应的进行, 以制备限定分子量范围的低聚产品, 值得探讨。
酶法降解是用于专一性的壳聚糖酶或非专一性的其它酶种来对壳聚糖进行生物降解的。
据研究报道, 已有30 多种的各种酶可用于壳聚糖的降解[ 7 ] , 酶法降解壳聚糖条件温和,且不对环境造成污染, 是壳聚糖降解的最理想方法。
就目前技术而言, 酶法降解尽管也有少量商业应用, 若要以此进行大规模的工业化生产, 却尚有不少困难, 应继续在寻求更廉价的酶种及如何实现工业化生产方面进行更深入研究。
氧化降解法是最近几年研究较多的一种降解方法。
诸多氧化降解法中, 以过氧化氢氧化法[ 7 ] 开发的最多。
这些方法中, 有的已用于低聚壳聚糖的工业化生产, 但大部分仍处于实验室研究阶段。
2. 2 制备甲壳素ˆ壳聚糖衍生物选用适当的反应试剂对甲壳素ˆ壳聚糖分子内的羟基、氨基进行化学修饰包括甲壳素ˆ壳聚糖的羧甲基化、酰基化、烷基化、硫酸酯化、羟基化等等。
通过这些化学修饰作用, 在甲壳素ˆ壳聚糖分子结构中引入了各种功能团, 改善了甲壳素ˆ壳聚糖的物化性质, 从而使其各自具有不同的功能及功效, 可制成各种类型的凝胶、膜、聚电解质及其它水溶性材料, 广泛应用于各种领域。
虽然, 中国许多研究机构对甲壳素ˆ壳聚糖的衍生物研究尚处于起步阶段,但该方面的研究进展很快, 不断有新的研究成果见诸报道, 从甲壳素ˆ壳聚糖化学的发展趋势来分析, 在目前的几个研究领域中, 对甲壳素ˆ壳聚糖进行化学修饰的研究是甲壳素ˆ壳聚糖化学最具潜力、最有可能取得突破性进展的研究方向, 也是甲壳素化学能否发展成为国民经济一大产业的关键所在。
目前该研究方向存在的主要问题是对这些衍生物可能的应用范围研究得太少, 在进行甲壳素ˆ壳聚糖化学修饰的同时, 更应该对其可能存在的应用领域进行探索, 使研究得到的每一种甲壳素ˆ壳聚糖衍生物都能产生巨大的社会经济效益。
2. 3 壳聚糖微囊的药物控释用高分子作为载体的高分子微包囊和纳米级包囊药物制剂不仅能控制药物以一定的速度释放, 而且可对生物体的生理指标变化作出反馈, 因而可以成为靶向药物释放体系。
通过用高分子包囊还可以延长蛋白质和多肽类药物的生理活性, 提高药物稳定性, 使之成为长效药物, 并使一些难以口服的药物能够制成口服制剂。
近年来, 微囊技术被广泛用于微生物、动植物细胞、酶和其它多种生物活性物质和化学药物的固定化方面。
常用的微囊为海藻酸ˆ聚赖氨酸微囊, 由于制备技术复杂, 成囊过程时间较长, 对被包埋物质的生物活性有一定影响,而且聚赖氨酸价格昂贵, 因而限制了这种微囊的应用。
在医学上微包囊技术的早期研究大多集中在具有生物相容性的非生物降解型高分子,如硅橡胶、丙烯酸类聚合物等上面。
七十年代Ydlles 等[ 9 ] 研究了聚乳酸微包囊, 由此开始了生物降解型高分子微包囊药物释放体系的研究。
壳聚糖及其衍生物制成的微包囊在生物体内可降解成为小分子化合物, 从而被机体代谢, 同时药物的释放速度可通过控制材料的降解速度来予以控制, 因此成为研究最多的包囊用高分子材料。
高分子微包囊药物释放体系的药物释放机制不仅与包裹的高分子材料有关, 而且还与微包裹材料的性能有关。
药物的释放机制涉及到: a、聚合物的降解性; b、通过孔的扩散; c、从微包囊的表面释放等三个方面。
以壳聚糖为内核材料喷涂在另一带相反电荷的高聚物上, 靠静电作用制备的不同的胶囊, 可以有效地控制通透性, 有选择的允许不同大小的物质通过微胶囊。
壳聚糖微囊药物释放体系的给药途径一般分为五类[ 10 ]: ①通过胃肠消化道给药; ②体腔内给药(包括眼内、口腔、舌下、鼻腔、直肠以及阴道、子宫内给药) ; ③透皮给药; ④动脉注射及静脉点滴; ⑤皮下及肌肉注射。
通过合适的给药途径, 可使药物释放达到较为理想的效果。
而壳聚糖包裹药物释放体系基本上可以满足理想药物释放体系的要求。
与传统的药剂相比, 高分子药物包裹可大大减少服药次数, 屏蔽药物的刺激性气味, 延长药物的活性、控制药物释放剂量、提高药物疗效, 并且可以降低药物的成本、拓宽给药途径等, 因此具有比一般药物制剂明显的优越性。
壳聚糖微囊的药物控释已经成为新一轮研究的热点。
2. 4 甲壳素ˆ壳聚糖应用研究一般工业品甲壳素ˆ壳聚糖的纯度有限, 而经过纯化处理的壳聚糖在食品、医药、生化等方面有着广泛的应用。
2. 4. 1 在化妆品中的应用壳聚糖在酸性条件下可以成为带正电荷的高分子聚电解质而直接用于香波、洗发精等的配方中, 使乳较稳定化, 以保护胶体; 壳聚糖本身的带电性, 使其具有抑制静电荷的蓄积与中和负电荷的作用, 这种带电防止的效能可以防止脱发; 壳聚糖能在毛发表面形成一层有润滑作用的覆盖膜, 与合成聚合物相比, 壳聚糖与头发角蛋白形成的薄膜在高湿度下性能更稳定。
而且, 此膜的形成可减少摩擦, 避免因洗发所引起的对毛发的伤害。
壳聚糖的保湿性、带电防止性、减少摩擦性等功能互相结合, 可使毛发柔软, 给人以极大的舒适感。
壳聚糖与其他高分子物质复合制备的面膜, 由于壳聚糖这种多糖类物质良好的亲水性、亲蛋白性, 对皮肤无过敏、无刺激、无毒性反应, 而且在成膜过程中使得整个面膜材料与皮肤接触感明显柔和, 所以对皮肤的亲和性明显增加[ 11 ]。
壳聚糖具有免疫调节性, 能有效促进伤口愈合。
膏霜类化妆品中适量加入壳聚糖可增加人体对细菌、真菌引起感染的免疫力, 阻碍原菌生长, 对破损的皮肤不但不会引起感染, 还会促使其愈合, 消除面部疾患; 壳聚糖也可与甲醛水溶液混合, 制备含有福尔马林的化妆品, 具有良好的杀菌效果[ 12 ]。
壳聚糖虽然可应用于化妆品中, 但因其不溶于水, 只能溶于酸中, 使得产品呈微酸性, 对皮肤稍有刺激作用, 因而对壳聚糖进行改性以制备水溶性壳聚糖衍生物显得非常有必要。
今年来, 改性壳聚糖方面的研究越来越多, 并已将多种壳聚糖衍生物用于制备洁肤液、护肤霜、乳液、护发香波、面膜等。
壳聚糖与酰氯在吡啶—氯仿介质中反应得到的酰化产品可作为指甲上光剂[ 13 ]。
与丁二酸酐、顺丁烯二酸酐、缩水甘油等进行酰化反应得到酰化衍生物, 与环氧烷类反应得到的羟基化衍生物都可直接溶于水中, 并且显示了良好的吸湿性和形成水凝胶的保温性[ 14 ]。
壳聚糖与一氯乙酸反应制得羧甲基化壳聚糖, 具有乳化稳定、增稠、抗静电作用, 适用于膏、乳、霜、露等各种化妆品配方, 且与配方中各种成分相容性极好。
同时羧甲基壳聚糖可用在食品保鲜方面作为防腐剂, 因此用在化妆品方面时, 产品可不用另外加入防腐剂[ 15 ]。
羧甲基壳聚糖用于护发用品中, 护发作用明显, 可以防止头发在烫发、染发时破裂, 使头发不发粘、光滑且具有自然光泽。
2. 4. 2 在保健领域中的应用[ 16 ]对消化系统的保护: 甲壳素及其衍生物在消化系统内停留的时间相对较短, 只有其低分子量的衍生物才能被消化, 而高分子量的壳聚糖及其衍生物与胃酸作用形成凝胶, 在胃壁上形成一层保护膜, 这层保护膜能有效地阻止胃酸对损伤面的刺激, 促进伤面的修复, 使胃部的溃疡得以保护和治疗。
研究表明, 消化系统只吸收部分低分子壳聚糖及其衍生物, 未吸收的部分随大便排出。
减肥、去脂作用: 人体内的脂质由两类物质构成, 即脂肪类和胆固醇类, 壳聚糖对它们的作用均十分有效, 80 年代美国已有关于壳聚糖减肥的专利问世。
壳聚糖作为理想的减肥食品的添加剂, 其去脂的机理可能是它能与甘油三脂、脂肪酸、胆汁酸、胆固醇等化合物生成配合物, 该类配合物不易被胃酸水解, 不易被消化系统消化, 阻止了哺乳类动物对这类物质的消化吸收, 促使它排出体外。