变压器绝缘故障

合集下载

电力变压器常见故障及处理方法范文

电力变压器常见故障及处理方法范文

电力变压器常见故障及处理方法范文电力变压器是电力系统中不可或缺的设备之一,负责将电能从一电压等级转换为另一电压等级,以满足电力传输和分配的需要。

然而,变压器在长期运行中可能会遇到各种故障,这些故障会影响电力系统的稳定运行和供电可靠性。

因此,对于电力变压器常见故障及其处理方法的了解是非常重要的。

本文将详细介绍电力变压器常见故障及其处理方法。

一、变压器绕组故障1. 绝缘老化变压器绕组中的绝缘材料随着时间的推移会发生老化。

这会导致绝缘材料的强度下降,从而增加了电压击穿的风险。

绝缘老化的常见原因包括潮湿、高温、电场强度、绝缘材料质量等。

一旦绝缘老化,可能会导致绕组间短路或相间短路,严重时可能会引发火灾。

处理方法:1)定期进行绝缘测试,检查绝缘材料的状态;2)定期进行绝缘油测试,及时发现绝缘油中的杂质和水分;3)定期进行绝缘表面的清洁和防潮工作;4)定期检查绝缘材料的连续性。

2. 绕组接触不良变压器绕组中的连接头和引线之间存在着相互接触的接触面,这些接触面往往会因为松动、腐蚀或氧化等原因导致接触不良。

接触不良会增加接触电阻、产生局部高温,并可能引起发热、烧毁故障等。

处理方法:1)定期检查绕组连接头和引线的接触面,确保其紧固和干净;2)定期测量接触电阻,及时发现异常情况,并及时采取措施修复。

3. 绕组短路绕组短路是指绕组内的两个或多个导体之间发生接触或相间短路。

绕组短路可能是由于绝缘材料老化、电弧击穿、绕组振动引起的绕组移位等原因引起的。

一旦发生绕组短路,可能会引发严重的火灾或事故,对电力系统造成严重影响。

处理方法:1)定期进行绕组绝缘测试,及时发现绝缘状态异常的绕组;2)定期检查绕组连接头的紧固情况,防止因外力振动引起的绕组移位。

二、变压器油污染故障1. 油中气体积累变压器中的绝缘油会受到绝缘材料的气体分解产生气体的影响,从而导致油中气体积累。

这些气体积累会导致油的体积膨胀、压力升高,并可能引起电弧击穿。

变压器的常见故障及处理方法

变压器的常见故障及处理方法

变压器的常见故障及处理方法变压器是电力系统中常见的电力设备之一,常见的故障有多种多样,下面将介绍一些常见的变压器故障及其处理方法。

1.短路故障:变压器的内部绝缘层受损,导致两个或多个绕组之间发生短路。

处理方法:立即切断变压器的电源,并对变压器进行绝缘测试,确定是否需要更换绕组,修复绝缘层。

2.绕组过热:长时间运行或负载过大,导致变压器的绕组温度升高。

处理方法:降低负载,减少额定功率,保证变压器正常运行,对于温度过高的绕组,可以采取冷却措施,如增加风扇散热等。

3.油变质:变压器绝缘油的质量下降,降低了绝缘性能。

处理方法:定期对变压器绝缘油进行检测和维护,更换变压器绝缘油,保证其绝缘性能。

4.气化故障:由于变压器内部的局部放电或绕组的局部绕组故障,导致油中产生气泡。

处理方法:对变压器的绕组和设备进行全面检查,找出故障的位置,并进行修复,以防止继续产生气化。

5.地线故障:变压器中的绝缘层发生损坏,导致绕组与地之间产生短路。

处理方法:立即停电,切断变压器与电源的连接,对绝缘层进行修复或更换,确保绝缘性能良好。

6.异常噪音:变压器在运行过程中产生异常噪音。

处理方法:对变压器进行维护和检查,查找引起噪音的原因,如冷却系统的故障、内部松动的零件等,并及时修复。

7.外部短路故障:变压器外部线路短路,导致变压器内部过电流,潮流过大。

处理方法:及时切断变压器与电源的连接,排除外部短路故障,修复或更换受损的部件。

8.电涌故障:外部电力设备突然断电或重启,导致变压器绝缘击穿。

处理方法:安装过电压保护装置,及时切断变压器与电源的连接,进行绝缘层测试,并及时修复绝缘层。

9.损坏绝缘:绝缘层被机械损坏,如割裂、磨损等。

处理方法:对绝缘层进行修复或更换,保证绝缘层的完整性。

10.过载故障:电网发生异常起动或负荷突然增加,导致变压器超过额定容量。

处理方法:降低变压器的负载,减少额定功率,保证变压器正常运行,避免过载。

总之,对于变压器的常见故障,在发生故障时应立即切断电源,保证人员和设备的安全。

电力变压器绝缘故障的分析与诊断_1

电力变压器绝缘故障的分析与诊断_1

电力变压器绝缘故障的分析与诊断现在,国内的电力体系的作战策略是把西部地区的电向东输送、南北方的电相互供应、全国连接的状态,电力变压设备是电力设备中最为关键的设备,其正常安全工作对于整个电网的运行来讲都有着很关键的作用。

电力变压设备中的绝缘材料大多是绝缘油以及绝缘纸,在长久的工作中,这些绝缘材料肯定会受到不同程度的老化,进而会导致电力变压设备事故的发生,根据调查资料显示,很多电力变压设备事故都是因为绝缘而产生的,文章主要针对这种现象进行了讨论,针对相关的绝缘事故判断措施展开了研究。

标签:电力变压器;绝缘故障;故障诊断1 变压器故障诊断概述伴随着输电电压级别的持续提升,变压设备的含量以及电压级别也随之有所提升,对变压设备的安全稳定性要求也越来越高。

为了保证变压设备能够安全稳定的工作,对变压设备的事故判断就显得十分重要。

实践表明,变压设备的事故很多都是因为绝缘物质造成的,经过变压设备的绝缘事故判断,可以及时精准的清楚变压设备中潜在的危险,进而避免重大事故的出现,对电力体系的正常安全工作有着关键的作用。

2 电力变压器故障诊断的意义最近几年,国内的电力体系电压级别的持续提升,现在最根本的工作就是完成电网以及电网智能化,一年内进行改革亦或是开发建立新变电所差不多有一千多座,电力工业的飞速前进带领着更多的电力电器的发展,为了能够确保电力体系的正常工作,要对每一个项目状态都要进行监督检测,对于电器绝缘状态的判断也一定要多加注意。

发电设备单机的能量越来越高,电力变压设备在电压级别上也随之有所增加,这对稳定性的要求也随之提升,我们都清楚,电力变压设备在各个类型的电器中都很关键的作用,根据调查得知,电力变压设备发生事故的次数也是最多,对电力体系的正常安全运行有着影响,假如电力变压设备不能够正常工作,整个电网就瘫痪不能工作,并且维修难度高。

在国内许多的变电所中的电力变压设备已经到了要更换的年限,但因为资金的原因,还是在使用着应该更换掉的设备,仍在继续作业,这些差不多将近报废的设备,其绝缘性也几乎起不到任何绝缘效果,发生事故率的危险性极高。

电力变压器的绝缘与故障分析

电力变压器的绝缘与故障分析

电力变压器的绝缘与故障分析引言:电力变压器作为电力系统中的重要设备,承担着电能的传输和分配任务。

然而,由于长时间的运行和环境因素的影响,变压器绝缘会出现老化和故障。

本文将对电力变压器的绝缘和故障进行分析和探讨,希望能对相关领域的研究和实践有所裨益。

一、电力变压器绝缘的重要性电力变压器的绝缘是保证其正常运行和长寿命的重要因素。

绝缘系统的功能在于隔离高压和低压部分,防止电能泄露。

因此,绝缘材料的选择和绝缘系统的设计至关重要。

常见的绝缘材料包括石蜡纸、绝缘油和绝缘漆,它们具有良好的绝缘性能和耐电压能力。

二、变压器绝缘老化的原因1. 温度变压器长期处于高温环境下,高温会导致绝缘材料分解、老化,进而使绝缘电阻下降,增加了绝缘破坏的可能性。

因此,合理控制变压器的运行温度,选择合适的冷却方式是非常重要的。

2. 电压应力高电压应力是导致绝缘老化和故障的另一个重要原因。

较高的电压应力会产生局部强电场,蜕变绝缘材料,导致局部放电和介质击穿。

因此,要合理设计变压器的绝缘结构,减小电压应力集中。

3. 湿度和污秽潮湿和污秽的环境会使绝缘材料吸湿,并导致绝缘电阻下降。

此外,污物和灰尘还会形成导电层,增加了绝缘击穿的风险。

因此,对于暴露在恶劣环境下的变压器,需要加强保护措施,保持绝缘材料的干燥和清洁。

三、电力变压器的故障诊断和分析方法1. 绝缘电阻测试绝缘电阻测试是一种常用的故障诊断方法,通过测量绝缘电阻的变化,来判断绝缘系统是否出现老化或故障。

一般来说,绝缘电阻在正常状态下应该较高,若绝缘电阻明显下降,则需要进一步检查。

2. 局部放电测量局部放电是变压器故障的早期信号,通过测量局部放电信号的强度和频率,可以判断绝缘是否存在故障。

一般使用局部放电仪进行测量,及时发现和定位故障,可以有效保护变压器。

3. 红外热像测试红外热像测试是一种无损检测方法,通过测量变压器表面的温度分布,来判断绝缘系统是否存在异常。

由于故障部位的温度升高,红外热像测试可以帮助定位和识别故障。

常见变压器故障与解决措施

常见变压器故障与解决措施

常见变压器故障与解决措施变压器作为电力系统中的重要设备,承载着电能的传输和分配任务。

然而,由于各种原因,变压器也常常会出现故障。

本文将介绍常见的变压器故障以及解决措施。

1.短路故障短路故障是指变压器的绕组之间或绕组与地之间发生不正常的连接,导致电流异常增大。

短路故障会造成变压器过热、发生火灾等严重后果。

解决措施:-及时对变压器进行巡视和检测,发现异常情况立即修理。

-增加合理安装变压器的隔离和保护设备,减少短路故障的可能性。

2.绝缘故障绝缘故障是指变压器的绝缘部分出现破损或击穿,导致电器设备之间短路或绝缘损坏。

解决措施:-定期进行变压器的绝缘电阻测试,发现问题及时维修或更换绝缘部分。

-增加变压器绝缘部分的保护层,提高绝缘能力。

3.过载故障过载故障是指变压器长时间承担过高负载,导致变压器内部温度升高,引起热失控、损坏绝缘等问题。

解决措施:-控制负载,在变压器额定负载范围内运行,避免长时间高负载运行。

-定期对变压器进行检测和保养,确保正常运行。

4.漏油故障漏油故障是指变压器内部油量减少或油箱内发现油迹,可能会导致变压器绝缘能力下降,严重时会引起火灾。

解决措施:-定期检查变压器的油位,确保油位在正常范围内。

-加强变压器的密封性能,防止油箱漏油。

5.电压波动故障电压波动故障是指供电电源的电压不稳定,导致变压器输出电压偏低或偏高,影响正常使用。

解决措施:-加强对供电电源的监测,确保电压的稳定。

-安装电压调节设备,使输出电压保持在正常范围内。

总结:以上是常见的变压器故障和解决措施,但是变压器的故障形式各异,解决方法也需要根据具体情况来确定。

因此,对于变压器的维护和检修工作,需要有专业的技术人员进行操作,并且要定期对变压器进行检测和保养,以确保其正常运行和安全使用。

变压器故障原因检查方法

变压器故障原因检查方法

变压器故障原因检查方法变压器是电力系统中常见的电力设备,但在使用过程中有时会出现故障,影响电力系统的正常运行。

为了保证变压器的正常运转,需要定期检查并排除故障。

下面将介绍一些常见的变压器故障原因检查方法。

1. 外部因素检查:首先,检查变压器周围环境是否存在污染物、腐蚀性气体、潮湿等。

如果存在这些外部因素,可能会引起变压器绝缘水平降低,导致故障。

通过检查变压器周围环境是否干净、干燥,可以初步排除这些因素对变压器故障的影响。

2. 绝缘检查:绝缘是变压器正常运行的重要保证。

通过检查变压器的绝缘电阻、绝缘材料是否受潮、受热等情况,可以判断绝缘是否正常。

常用的检测方法包括绝缘电阻测量、局部放电检测等。

如果发现绝缘电阻异常低或局部放电现象,可能表示绝缘已经受损,需要进行绝缘处理或更换绝缘材料。

3. 线圈检查:变压器的线圈是关键部件,如果出现线圈接触不良、绕组短路等情况,将严重影响变压器的工作稳定性和安全性。

检查变压器线圈的接触情况、绕组间的绝缘状况,可以排除这些故障。

常用的线圈检查方法包括观察线圈外观是否受损、使用热红外热像仪检测线圈热点等。

4. 冷却系统检查:变压器冷却系统的正常运行对保证变压器性能和寿命具有重要影响。

检查冷却系统的冷却剂供应、冷却器是否通畅、风扇是否正常工作等情况,可以判断冷却系统的运行状态。

异常的冷却系统可能导致变压器过热,进而引发其他故障。

5. 油质检查:变压器的绝缘油是绝缘和冷却的重要介质,检查变压器绝缘油的质量和含水率,可以判断绝缘油是否需要更换。

通常需要进行油样抽取和实验室测试。

若发现绝缘油中含有杂质、水分过高等,可能会影响绝缘油的绝缘性能,需要及时更换。

综上所述,变压器故障原因的检查方法主要从外部因素、绝缘、线圈、冷却系统和油质几个方面进行。

通过定期检查并排除故障,可以确保变压器的正常运行,提高电力系统的可靠性和稳定性。

变压器内部绝缘故障的分析

变压器内部绝缘故障的分析

变压器内部绝缘故障的分析赵永峰刘献功李新刚刘新陈文军(中原油田油气储运管理处,河南濮阳457000)应用科技睛要l变压器在电力系统和供电系统中占有十分重要的地往。

本文对变压器内部绝缘故障原因进行了分析,并提出了解决的方法。

鹾键词变压器;内部绝缘故障;故障分析我国配电变压器行业经过不断努力,在90年代以后较过去有了突破性的进展,变压器性能不仅是铁,心硅钢片材质的改进,而且在容量结构和制造工艺都有所突破,因而在节能降耗、昭氏空载电流和噪音都取得较大进展。

随着市场经济的发展和科技的不断进步,新材料、新工艺的不断应用,新的低损耗配电变压器相继开发成功。

国内许多变压器制造厂商投入了大量资金引进国外先进的制造技术及设备,不断研制开发低损耗变压器和各种结构形式的变压器,如新干式变压器的S C9系列以及非晶合金铁心等低损耗等产品都显示了我国配电变压器的节能潜力。

变压器内部绝缘故障始终是制约变压器发展的瓶颈。

变压器内部绝缘故障的分析电力变压器运行中发生的故障率是评价变压器运行的重要指标!在各电压等级上运行的为数众多的油浸式电力变压器或因技术、制造工艺水平、制造质量,或因运行时间较长等等诸多原因,引起变压器在运行中出现内部绝缘故障的情况时有发生。

近年来,对变压器可靠性要求已经有了很大变化,除要求可靠性和寿命长之外,还有i弼境要求,尽可能的符合环保的要求,以及节能、提高效率等。

变压器在运行中发生的重大故障,几平绝大部分都是由于绝缘缺陷、热或变压器出口媸匣路电动力等原因所引起的。

变压器内部绝缘故障类型大体上可分为绝缘中的故障和线圈中的敌障两类。

下面对这两类故障加以简要的分析:1绝口彖中的故障在变压器绝缘结构中,通常是把不同的介电系数的绝缘相串联,盔【=线圈间采用油——俑板绝缘结构,由于变压器油与绝缘纸板的介电系数不同,当对其施加电压时,则其中的场强按介电系数成反比分配,因此,线圈溷除应以等电场强度原则分配和调整油隙之外,并应合理地确定隔板的厚度,从而使场强控制在许用值之内。

电力变压器常见缺陷及其处理

电力变压器常见缺陷及其处理

电力变压器常见缺陷及其处理电力变压器是电力系统中重要的设备之一,常见的缺陷问题对其正常运行和安全稳定性有着重要影响。

下面列举一些常见的电力变压器缺陷及其处理方法,供参考。

1. 绝缘老化:绝缘老化是电力变压器最常见的故障之一。

其主要原因是长期电压和电流的作用下,绝缘材料会逐渐老化,导致绝缘强度下降。

处理方法包括定期对绝缘材料进行检测,如局部放电检测、交流电场测试等,及时更换老化的绝缘材料。

2. 油泄漏:油泄漏是电力变压器中常见的缺陷问题之一。

油泄漏会导致绝缘油的损失,影响变压器的正常运行。

处理方法包括定期检查变压器的油箱、油管道等,修复泄漏点,并及时补充损失的绝缘油。

3. 温升过高:温升过高是电力变压器中常见的问题之一,其主要原因是变压器负载过大或冷却系统故障。

处理方法包括降低变压器负载,定期检查冷却系统的运行情况,确保正常冷却。

4. 局部放电:局部放电是电力变压器中常见的缺陷之一。

局部放电会导致绝缘损耗和油污染,进一步影响变压器的正常运行。

处理方法包括定期进行局部放电检测,及时处理发现的放电点,保证变压器的正常运行。

5. 绝缘击穿:绝缘击穿是电力变压器中严重程度较高的故障,其主要原因是绝缘强度不足或局部绝缘受到损坏。

处理方法包括定期进行绝缘强度测试,更换不合格的绝缘材料,加强绝缘保护。

6. 过电压:过电压是电力变压器中常见的故障,其主要原因是电力系统突发故障或操作不当。

处理方法包括定期检查电力系统的运行情况,采取合适的保护措施,避免过电压对变压器造成影响。

电力变压器在正常运行过程中可能出现各种各样的故障和缺陷,对于这些问题,及时发现并采取正确的处理方法是确保变压器正常运行和维护的关键。

定期检查、维护以及采取预防措施对于减少电力变压器缺陷的发生具有重要作用。

变压器的故障与事故处理

变压器的故障与事故处理

变压器的故障与事故处理变压器故障主要发生在绕组、铁芯、套管、分接开关和油箱等部位,最常发生的故障是绕组故障。

其中,以绝缘老化和层间绝缘损坏最为多见,其次是套管,分接开关失灵,绝缘油劣化,铁芯和其他零部件的故障较少。

一、绝缘老化变压器绕组一般是A级绝缘。

在正常负荷下,其绝缘材料可以使用20年以上。

如果超负荷运行,其绝缘将加速老化。

绝缘老化后绝缘材料会变黑,并失去原有弹性而变得焦脆。

在这种情况下,只要绕组稍微受到振动或略受摩擦绝缘即可能完全损坏,导致匝间短路或层间短路。

绝缘老化后绝缘性能也明显下降,遇过电压时容易击穿。

为了防止和减缓绝缘老化,必须严格控制和掌握变压器的负荷,严格控制上层油温和温升。

二、绝缘油劣化变压器内的绝缘油在正常情况时,它有很好的电气绝缘性能和合适的黏度。

它能增加绕组层间、相间、绕组与铁芯之间以及绕组与油箱外壳之间的绝缘强度;同时,还能够充满变压器内的所有空隙,排除空气,避免各部件与空气接触受潮而降低绝缘性能。

变压器内的绝缘油还可以通过其循环,把变压器损耗转换的热量散发到油箱外的空气中,从而使变压器的绕组和铁芯得到冷却。

绝缘油有良好的消弧性能,能防止油箱内事故电弧的扩大。

由于绝缘油排除了油箱内的空气,除了有利于绝缘保持原有化学性能和物理性能外,还利于金属的防腐。

运行中的变压器变压器油,有可能与空气接触,并逐渐吸收空气中的水分,降低其绝缘性能。

绝缘油内只要含有/10000的水分,其绝缘性能就会降低为干燥时的1/8。

就是说,绝缘油受潮后容易造成击穿和闪烙,甚至造成事故。

变压器油可吸收和溶解大量气体。

由于油经常在较高的温度下运行,与空气中的氧接触,易生成各种氧化物。

这些氧化物带有酸性,容易使铜、铝、铁和绝缘材料腐蚀,并增加油的介质损耗。

经验表明,油在60~70℃时即开始氧化,但很少发生变质,但温度达到120℃时,氧化就激烈进行,变质加剧。

由于绝缘油劣化是变压器故障的主要原因之一,在运行中应加强对油的管理,注意以下几点:1、按期取样做简化试验,不合格者及时进行处理。

变压器绝缘故障处理

变压器绝缘故障处理

变压器绝缘故障处理变压器是电力系统中不可或缺的重要设备之一,其作用是变换电压、提供电力传输与分配。

然而,在长期运行中,由于各种因素的影响,变压器可能会出现绝缘故障,给电力系统的正常运行带来风险和隐患。

因此,变压器绝缘故障的及时处理至关重要,本文将从绝缘故障的检测、诊断以及处理方面进行探讨。

一、绝缘故障的检测绝缘故障的检测是确保及时发现和解决潜在问题的第一步。

在日常维护与巡检过程中,我们可以采取以下方式对变压器绝缘状况进行检测:1. 温度检测:通过测量变压器的温度来判断是否存在绝缘问题。

通常情况下,变压器运行时温度应保持在正常范围内,若出现异常温升,则说明绝缘可能存在故障。

2. 高压测试:利用高压测试仪对变压器绝缘进行电压击穿测试,以确定绝缘是否能够承受额定电压,从而判断绝缘状况是否正常。

3. 油质检测:通过对变压器油质的检测,包括油位、油色、油温等参数的监测,可以初步判断绝缘是否存在故障。

油色变化、油温异常等都可能表明绝缘存在问题。

二、绝缘故障的诊断当绝缘故障被检测出来后,我们需要进行进一步的诊断,以准确判断故障类型和程度,从而制定合理的处理方案。

常见的绝缘故障诊断方法包括以下几种:1. 绝缘电阻测量:通过使用绝缘电阻测量仪对变压器进行绝缘电阻的测试,以判断绝缘是否存在短路或断路等故障。

根据实测值的大小,可以初步确定故障的位置和严重程度。

2. 红外热像仪检测:红外热像仪可以通过检测变压器表面的温度分布,来诊断绝缘是否存在局部过热的情况,以及是否存在异常放电现象。

3. 油质分析:通过对变压器内绝缘油的成分和物理性质的分析,可以判断绝缘是否受到水分、杂质等因素的污染,从而导致绝缘失效。

三、绝缘故障的处理在确定绝缘故障类型和程度后,我们需要采取相应的处理措施,确保绝缘故障及时得到修复和解决。

下面是几种常见的绝缘故障处理方法:1. 清洗绝缘材料:对于绝缘表面脏污的情况,可以采取清洗绝缘材料的方法。

清洗绝缘材料可以有效去除污染物,恢复绝缘性能。

变压器的常见故障及处理方法

变压器的常见故障及处理方法

变压器的常见故障及处理方法变压器是电力系统中重要的电气设备之一,负责将电能从一电压等级变换为另一电压等级,以满足不同电气设备的用电需求。

然而,由于各种因素的影响,变压器可能会出现故障。

本文将介绍变压器的常见故障及处理方法。

一、变压器的常见故障1.绝缘老化:变压器的绝缘材料会随着使用时间的延长而老化,从而降低绝缘性能。

绝缘老化可能导致绝缘击穿或绝缘电阻降低。

2.短路故障:短路故障指变压器中绕组或铁芯出现电流短路。

短路故障可能由绝缘击穿、绕组过热、绕组内部松动等原因引起。

3.绕组过热:绕组过热是变压器经常出现的故障之一、过高的电流或短路故障可能导致绕组过热,从而损坏绝缘材料和绕组。

4.铁芯松动:铁芯松动会引起噪声和振动,可能导致铁芯损坏。

铁芯松动的主要原因是变压器运行时受到的电磁力的作用。

5.油污染:变压器中的绝缘油可能会因为氧化、水分和灰尘等因素而被污染,导致油的绝缘性能下降。

6.绝缘击穿:绝缘击穿是指绝缘失效,从而导致电流突然通过绝缘介质。

绝缘击穿可能由于过高的电压、电磁波和绝缘老化等原因引起。

二、变压器故障的处理方法1.维修和更换绝缘材料:一旦发现绝缘老化,需要及时维修或更换绝缘材料,确保变压器的安全运行。

常用的绝缘材料有绝缘纸、绝缘漆、绝缘胶带等。

2.检修和维护绕组:定期检查绕组的状态,确保绕组的良好连接和绝缘性能。

在发现绕组过热时,及时停机检修,确定原因并进行维修。

3.修复和固定铁芯:在发现铁芯松动时,需要及时修复和固定铁芯。

可以使用钢丝绳、胶水或紧固螺栓等方法进行固定。

4.定期更换绝缘油:定期对变压器的绝缘油进行更换,以确保油的绝缘性能。

5.绝缘击穿的处理:在发生绝缘击穿时,应及时切断电源,检查绝缘材料和绕组是否受损,并进行必要的维修和更换。

6.预防措施:为了减少变压器的故障发生,可以采取一些预防措施,例如定期检查、维护和保养变压器,及时清除变压器周围的杂物,维护变压器的通风系统等。

综上所述,变压器的常见故障包括绝缘老化、短路故障、绕组过热、铁芯松动、油污染和绝缘击穿等。

电力变压器常见故障及处理方法范文(二篇)

电力变压器常见故障及处理方法范文(二篇)

电力变压器常见故障及处理方法范文电力变压器是电力传输和配电系统中的重要设备之一,其作用是将高电压传输线路上的电能转换成适合用户使用的低电压。

然而,由于长期运行和环境因素等原因,电力变压器常常会遇到各种故障。

本文将介绍一些电力变压器常见的故障及其处理方法。

1. 绝缘老化绝缘老化是电力变压器常见的故障之一。

长期使用和高温环境会导致绝缘材料老化、干裂,使绝缘性能下降,甚至会出现击穿现象。

处理方法包括更换老化的绝缘材料、增强通风散热、降低电压和负载,定期进行绝缘测试和维护保养。

2. 短路故障变压器发生短路故障时,会导致大量电流流过绕组,产生强烈的电磁力和局部过热。

处理方法一般是立即切断供电,检查绕组是否短路,修复或更换故障部件,进行绝缘试验和运行试验。

3. 油泄漏电力变压器使用绝缘油来冷却和绝缘,如果绝缘油泄漏,将会造成电气性能下降和绝缘性能降低。

处理方法包括及时检查油位、密封件和设备连接处,修复或更换泄漏部件,补充绝缘油,并进行绝缘试验。

4. 温升过高变压器在长期工作过程中,由于负载变化和传热不良等原因,可能会导致温升过高。

处理方法包括优化变压器结构和散热系统,增加冷却设备数量,清洁冷却器和通风道,控制变压器负载等。

5. 震动和噪音电力变压器在运行过程中会产生震动和噪音,这可能是由于机械故障、磁噪声和过载等原因导致的。

处理方法包括定期检查设备连接、紧固件、绝缘件等,修复或更换故障部件,减少负载和提高运行稳定性。

6. 局部放电局部放电是由于绝缘材料或介质中存在缺陷,导致电场强度过高而引起的放电现象。

处理方法包括提高绝缘材料和介质的质量,定期进行绝缘测试和维护保养,增强通风散热等。

7. 电压波动电力变压器在接收和分配电能的过程中,可能会遇到电压波动的问题。

处理方法包括调整变压器的变比和电压比率,使用稳压器和电压调节器,控制电网负荷等。

8. 湿度和污染环境湿度和污染物会对电力变压器的正常工作产生一定的影响。

变压器检修中的常见问题及解决方案

变压器检修中的常见问题及解决方案

变压器检修中的常见问题及解决方案在工业生产和电力系统中,变压器被广泛应用,并发挥着重要的作用。

然而,由于长期运行和环境影响,变压器也会出现一些常见问题。

本文将介绍一些在变压器检修中经常遇到的问题,并提供解决方案。

1. 温度异常温度异常是变压器检修中常见的问题之一。

当变压器运行过程中温度异常升高时,可能会导致绝缘材料老化、线圈短路等严重后果。

解决这个问题的方法之一是定期检查冷却系统,保证冷却水流畅无阻,并清理变压器周围的杂物。

另外,定期检查变压器的油位和油质也是必要的步骤。

2. 绝缘故障绝缘故障在变压器检修中也是常见的问题。

绝缘故障可能导致短路、火灾等严重后果。

检测绝缘故障的方法之一是使用高压绝缘测试仪进行绝缘电阻测试,确保绝缘电阻值符合要求。

另外,在变压器检修时应该进行全面的绝缘材料检查,及时更换老化或损坏的绝缘材料。

3. 油污染和漏油油污染和漏油是变压器检修中的另一个常见问题。

污染的油会降低绝缘性能,影响变压器的正常运行。

解决油污染问题的方法之一是定期更换变压器油,同时加强油过滤和沉淀的工作。

对于漏油问题,应该定期检查变压器的油封和密封件,并及时更换损坏的部件。

4. 线圈短路线圈短路是变压器检修中较为复杂的问题之一。

线圈短路可能导致电气事故和设备损坏。

解决线圈短路问题的方法之一是通过红外线测温仪检测线圈温度异常,进一步采用分析法和试验验证来确定具体的故障位置。

在检修过程中,还应该进行线圈绝缘电阻的测试,确保绝缘电阻符合要求。

5. 脱磁问题脱磁是指变压器在运行过程中失去铁芯磁化的情况。

脱磁会导致变压器无法输出电能。

解决脱磁问题的方法之一是检查变压器绕组的接线和接地情况,确保符合标准要求。

另外,检查铁芯的绝缘状态和磁化泄漏情况也是必要的步骤。

总之,变压器检修中常见的问题包括温度异常、绝缘故障、油污染和漏油、线圈短路、脱磁等。

针对这些问题,我们可以采取适当的解决方案,如定期检查冷却系统、进行绝缘电阻测试、更换变压器油等。

变压器几种常见故障产生的原因及其处理方法

变压器几种常见故障产生的原因及其处理方法

变压器几种常见故障产生的原因及其处理方法变压器是电力系统中重要的电气设备,常见的故障有短路、绕组断线、绝缘老化等。

本文将介绍这些故障的产生原因,并针对每种故障提出相应的处理方法。

一、短路故障:短路故障是变压器常见的故障之一,其主要原因有以下几点:1.绕组绝缘老化:长期使用使得绕组绝缘老化,继电器触点接触不良,导致绕组间短路。

2.外部故障:外部因素如雷击、动物侵入、树木倒塌等导致外壳损坏,使绕组间短路。

针对短路故障,可以采取以下处理方法:1.及时检查绕组绝缘状况,如有老化现象应及时更换。

2.定期对变压器外壳进行检查,确保外壳的完好性。

3.安装雷击保护装置,减少雷击对变压器的影响。

4.加装防护措施,防止动物侵入和外来物体对变压器造成损坏。

二、绕组断线故障:绕组断线故障是由于变压器绕组导线断裂或接触不良导致电流无法正常通过。

其主要原因有以下几点:1.导线老化:长时间使用使得导线老化断裂。

2.运输振动:变压器在运输中受到振动,导致导线断裂。

针对绕组断线故障,可以采取以下处理方法:1.定期检查绕组导线状况,如有老化断裂现象应及时更换。

2.加强运输过程中的防护措施,减少振动对变压器的影响。

三、绝缘老化故障:绝缘老化故障是指变压器绝缘材料老化失效导致的故障。

其主要原因有以下几点:1.高温:长期高温工作使得绝缘材料老化。

2.过电压:电力系统中的过电压超过了绝缘耐受范围,导致绝缘老化失效。

针对绝缘老化故障,可以采取以下处理方法:1.检查变压器工作状态,确保温度在安全范围内。

2.定期检查绝缘材料状况,如有老化现象应及时更换。

3.安装过电压保护器,防止过电压对绝缘材料造成损害。

综上所述,变压器常见的故障有短路故障、绕组断线故障和绝缘老化故障。

针对这些故障,可以通过定期检查、维护以及加装防护措施来预防和处理。

这样可以保障变压器的正常运行,提高电力系统的可靠性和稳定性。

变压器常见的故障部位

变压器常见的故障部位

变压器常见的故障部位1.绕组的主绝缘和匝间绝缘故障:变压器绕组的主绝缘和匝间绝缘是容易发生故障的部位。

其主要原因是:由于长期过负荷运行,或散热条件差,或使用年限长,使变压器绕组绝缘老化脆裂,抗电强度大大降低;变压器多次受短路冲击,使绕组受力变形,隐藏着绝缘缺陷,一旦遇有电压波动就有可能将绝缘击穿;变压器油中进水,使绝缘强度大大降低而不能承受允许的电压,造成绝缘击穿;在高压绕组加强段处或低压绕组部位,因统包绝缘膨胀,使油道阻塞,影响散热,使绕组绝缘由于过热而老化,发生击穿短路;由于防雷设施不完善,在大气过电压作用下,发生绝缘击穿。

2.引线绝缘故障:变压器引线通过变压器套管内腔引出与外部电路相连,引线是靠套管支撑和绝缘的。

由于套管上端帽罩(将军帽)封闭不严而进水,引线主绝缘受潮而击穿,或变压器严重缺油使油箱内引线暴露在空气中,造成内部闪络,都会在引线处发生故障。

3.铁芯绝缘故障:变压器铁芯由硅钢片叠装而成,硅钢片之间有绝缘漆膜。

由于硅钢片紧固不好,使漆膜破坏产生涡流而发生局部过热。

同理,夹紧铁芯的穿芯螺丝、压铁等部件,若绝缘破坏,也会发生过热现象。

此外,若变压器内残留有铁屑或焊渣,使铁芯两点或多点接地,都会造成铁芯故障。

4.变压器套管闪络和爆炸:变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹;电容芯子制造上有缺陷,内部有游离放电;套管密封不好,有漏油现象;套管积垢严重等,都可能发生闪络和爆炸。

5.分接开关故障:变压器分接开关是变压器常见故障部位之一。

分接开关分无载调压和有载调压两种,常见故障的原因是:1)无载分接开关:由于长时间靠压力接触,会出现弹簧压力不足,滚轮压力不均,使分接开关连接部分的有效接触面积减小,以及连接处接触部分镀银磨损脱落,引起分接开关在运行中发热损坏;分接开关接触不良,引出线连接和焊接不良,经受不住短路电流的冲击而造成分接开关被短路电流烧坏而发生故障;由于管理不善,调乱了分接头或工作大意造成分接开关事故。

电力变压器常见故障分析与处理

电力变压器常见故障分析与处理

电力变压器常见故障分析与处理
1.短路故障
短路故障是电力变压器常见的故障之一、导致短路故障的原因包括绝缘损坏、绝缘材料老化、绝缘油失效等。

在检测到短路故障时,首先应立即切断对应的电源,并对变压器进行检修。

具体处理方法包括替换损坏的绕组,更换绝缘材料,检查和更换变压器内部各种连接器和导体,确保绝缘材料和绝缘油的质量符合要求。

2.过载故障
过载故障是由于变压器负荷超过额定容量而引起的。

过载故障可能会导致电压降低、温升过高,严重时甚至会引发变压器内部零件损坏。

处理过载故障的方法包括调整负荷,合理规划负荷分布,增加变压器容量等。

3.绝缘老化
绝缘老化是电力变压器常见的故障之一、绝缘老化可能是由于使用时间长、操作不当、环境恶劣等原因引起的。

当发现绝缘老化时,需要进行绝缘测试,评估其绝缘程度,根据测试结果决定是否需要更换绝缘材料。

此外,还应注意提高变压器的运行环境,加强绝缘材料的保养和维护。

4.变压器油污染
变压器油污染是由于变压器内部绝缘油受到污染引起的。

污染物可能是水分、固体颗粒、氧化物等。

油污染会导致变压器绝缘能力下降,甚至引发绝缘击穿。

处理油污染的方法包括定期检查油质量,定期更换变压器内部绝缘油,保持变压器内部清洁等。

5.异常噪声
总之,针对电力变压器的常见故障,及时发现并采取相应的处理措施
是非常重要的。

通过定期维护、检查和测试,保持变压器设备的良好状态,可以提高电力系统的运行可靠性,保障供电质量。

同时,还应加强对变压
器的监测和维护,以提前发现和处理潜在故障,减少停电事故的发生。

干式变压器常见故障及处理方法

干式变压器常见故障及处理方法

干式变压器常见故障及处理方法1.干式变压器绝缘电阻下降:①原因分析。

浇注式干式变压器绕组多是由树脂浇注而成,导体材料密封在其中,因此其绝缘电阻的下降大多是由绕组表面凝聚水汽、积聚灰尘或者是部分绝缘材料受潮引起。

②处理方法。

清洁绕组表面,表面水蒸气凝露用干布擦拭,自然风干就可以恢复。

可采用白炽灯、加热器等烘干及加装风机通风等方法处理。

可断开干式变压器三相的连接中性线(零排),用兆欧表确定问题出在哪一相,再仔细查找处理。

2.变压器铁心多点接地:①原因分析。

a.外部因素:铁心绝缘铁轭、铁心穿心绝缘筒等绝缘材料,由于凝露或受潮大大降低绝缘性能导致铁心出现低阻性多点接地;变压器在运行中铁心的漏磁使附近空间产生弱磁性,吸引了周围的金属粉末和粉尘,如果长期没有维护清洁会引起铁心多点接地的发生;由于运行维护不当,长期过载、高温运行使硅钢片片间绝缘老化,铁心局部过热严重,片间绝缘遭破坏造成多点接地。

B.内在因素:选用的硅钢片质量有问题,如硅钢片表面粗糙不光滑,锈蚀严重、绝缘漆涂层附着力差而脱落,会造成片间短路,形成多点接地;硅钢片加工工艺不合理,如毛刺超标,剪切造成片间短路;硅钢片叠片叠张时压力过大,损坏了片间绝缘等等。

②处理方法。

从维护方面出发可以分为两个步聚:a.根据现场变压器状况分析,判断处理外部因素影响的多点接地故障。

干式变压器因长期停用或没有密封,积尘、受潮或凝露,可先对铁心表面进行清理后采用多个太阳灯对铁轭进行烘烤,或是在条件允许情况下,可采用空载法进行烘烤。

要做好安全防护工作,将其变压器高压侧开路,低压侧通额定电压,所需时间较短。

如果排除绝缘件受潮影响原因后,若其绝缘电阻仍为零可用交流试验装置对铁心进行加压,当故障接地点不牢固,在升压的过程中会出现放电点,可根据相应的放电点进行处理。

B.采用逐级排查方法处理内在因素造成的铁心接地故障。

通常使用直流、交流法对铁心多点接地故障点进行查找,检查时应该从上铁轭开始,拆除穿心螺杆后测试铁心对地绝缘电阻。

电力变压器常见故障及处理方法范本

电力变压器常见故障及处理方法范本

电力变压器常见故障及处理方法范本电力变压器是电力系统中的核心设备,负责将高压电能转换为低压电能,常见故障会严重影响电力系统的稳定运行。

下面是电力变压器常见故障及处理方法的范本:一、变压器外观异常1. 变压器外壳变形:外壳变形可能是因为设备运行过程中受到外部力的影响导致,也可能是设备内部故障引起。

处理方法包括将设备停机,检查外壳变形的原因并进行必要的维修。

2. 变压器油箱漏油:变压器油箱漏油可能是由于油箱密封不良或管路老化造成。

处理方法是及时发现漏油并采取相应措施修复漏油部位,确保油箱密封性。

3. 变压器绝缘子破损:绝缘子破损可能会在设备工作中出现,导致设备局部绝缘能力下降。

处理方法是及时更换破损的绝缘子,提高设备的绝缘能力。

二、变压器绝缘故障1. 绝缘油污染:绝缘油污染可能会引起电流偏移,导致设备发热,严重时可能引起设备爆炸。

处理方法是定期检查绝缘油的污染程度,及时更换绝缘油。

2. 绝缘击穿:绝缘击穿可能是由于设备过载、缺乏维护或外界因素造成,导致设备失效。

处理方法是找出击穿原因并进行维修,同时加强设备的维护保养。

三、变压器过载故障1. 长时间过载:长时间过载可能会导致设备发热、绝缘老化,进而引起设备的严重故障。

处理方法是合理规划变压器额定容量,避免长时间过载。

2. 瞬态过电流:瞬态过电流可能是由于电力系统的其他设备故障引起,导致变压器瞬时电流超过额定值。

处理方法是提高变压器的抗短路能力,通过控制其他设备的运行来减小过电流的影响。

四、变压器接地故障1. 主接地开路:主接地开路可能导致设备的绝缘失效,引起严重的电压波动。

处理方法是找出开路原因并进行维修,确保设备的绝缘正常运行。

2. 局部接地:局部接地可能导致变压器的绝缘能力下降,进而引起设备的故障。

处理方法是及时发现接地点并进行修复,确保设备的正常运行。

五、变压器冷却系统故障1. 冷却系统堵塞:冷却系统堵塞会导致设备温度过高,影响设备的正常运行。

110kV变压器绝缘故障与原因分析

110kV变压器绝缘故障与原因分析

2 退出运行后的试验情况
并 对其 进行 了全 面的 试
� 在确 定 变压 器 有影 响 正 常运 行 的 故障 后 我 级批准 该 变压器已于当日正式退 出运行 们 立即将 其退 出了运 行 表� 1 故障变压器历年 绝缘试验数据 验 变 比 直 流电 阻 直流 泄 漏电 流 介 质 损耗 绝 � � � � � � � � 缘 电阻测量 等试验 数据如 表 本体介
续表 1
19 5 7 7
- 0000/ 0 ) 于 00 年 中数据 可以看出
月投入运 行
8. 5 0. 39 5 30140 5. 0 0. 344 217 34
该 变压器 00 年
月进 行投运
前试 验时 试验数据 正常 次试验时 ( 试验周期为 次的相比较 无明显变化
00 年 0 月进行 第二
年一 次 ) 试验数 据与第一 00 年 月进行的第三 00
1 故障情况
我公司某 0 变电站 号主变 压器( 从表 �
2005 年 月24 11 日 高压 1. 5 中压 0. 8 低压 0. 7 铁芯 高压 0. 3 0. 51 2008 年 中压 0. 2 0. 4 3. 5 1. 5 1. 5 2. 5 1. 2 1. 1 2. 1 0. 6 0. 9 2. 25 2. 2 2. 75 2. 0 2. 4 2. 7 36 27 16 1. 7 2. 0 2. 16 2. 35 2. 75 3. 23 2. 3 1. 9 2. 1 20 0. 39
2008 . 5. 16 浅黄色 15 6 5. 91 0. 003
这样 通过
表4 故障变 压器油中含水量检测 结果
所测 得的 吸 收比 的 数值 可以 初 步判 断 电力 设 备 的绝 缘是 否受 潮
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)绝缘油进水受潮,由于水是强极性物质。在电场的作用下易电离分解,而增加了绝缘油的电导电流,因此,微量的水分可使绝缘油介质损耗显著增加。通过测试绝缘油的微水,叮判断是否属于该类缺陷。对绝缘油进行压力式真空滤油,一般能消除水分。
3)绝缘油感染微生物细菌。例如在主变压器安装或吊芯时,附在绝缘件表面的昆虫和安装人员残留的闩:渍等都有可能携带细菌,从而感染了绝缘油:或者绝缘油本身已感染微生物。主变压器—·般运行在40—80℃的环境下,非常有利于这些微生物的生长、繁殖。由于微生物及其排泄物中的矿物质、蛋白质的绝缘性能远远低于绝缘油,从而使得绝缘油介损升高。这种缺陷采用现场循环处理的方法很难处理好,因为无论如何处理,始终有一部分微生物残留在绝缘固体上。处理后,短期内主变压器绝缘会有所恢复,但由于主变逐年生长繁殖,从而使某些主变压器绝缘逐年下降;
(3)变压器油劣化的过程。
油在劣化过程中主要阶段的生成物有过氧化物、酸类、醇类、酮类和油泥。
早期劣化阶段。油中生成的过氧化物与绝缘纤维材料反应生成氧化纤维素,使绝缘纤维机械强度变差,造成脆化和绝缘收缩。生成的酸类是一种粘液状的脂肪酸,尽管腐蚀性没有矿物酸那么强,但其增长速率及对有机绝缘材料的影响是很大的。
当然,不同成分纤维材料的性质及相同成分纤维材料的不同品质,其影响大小及性能也不同,如棉花中纤维成分最高,大麻中纤维最结实,某些进口绝缘纸板由于其处理加工好,使性能明显优于国产某些材质的纸板等。变压器大多绝缘材料都是用各种型式的纸(如纸带、纸板、纸的压力成型件等)作绝缘的。因此在变压器制造和检修中选择好纤原料的绝缘纸材料是非常重要的。纤维纸的特殊优点是实用性强、价格低、使用加工方便,在温度不高时成型和处理简单灵活,且重量轻,强度适中,易吸收浸渍材料(如绝缘漆、变压器油等)。
氧来源于变压器内的空气,即使在全密封的变压器内部仍有容积为0.25%左右的氧存在,氧的溶解度较高,因此在油中溶解的气体中占有较高的比率。
变压器油氧化时,作为催化剂的水分及加速剂的热量,使变压器油生成油泥,其影响主要表现在:在电场的作用下沉淀物粒子大;杂质沉淀集中在电场最强的区域,对变压器的绝缘形成导电的“桥”;沉淀物并不均匀而是形成分离的细长条,同时可能按电力线方向排列,这样无疑妨碍了散热,加速了绝缘材料老化,并导致绝缘电阻降低和绝缘水平下降。
4)含有极性物质的醇酸树脂绝缘漆溶解在油中。在电场的作用下,极性物质会发生偶极松弛极化,在交流极化过程中要消耗能量,所以使油的介质损耗上升。虽然绝缘漆在出厂前经过固化处理,但仍可能存在处理不彻底的情况。主变压器运行一段时间后,处理不彻底的绝缘漆逐渐溶解在油中,使之绝缘性能逐渐下降。该类缺陷发生的时间与绝缘漆处理的彻底程度有关,通过一两次吸附处理可取得一定的效果。
(4)变压器油质分析、判断利维护处理。
1)绝缘油变质。包括它的物理和化学性能都发生变化,从而使其电性能变坏。通过测试绝缘油的酸值、界面张力、汕泥析出、水溶性酸值等项目,可判断是否属于该类缺陷,,对绝缘油进行再生处理,可能消除油变质的产物,但处理过程中也可能去掉了天然抗氧剂。
极性的纤维不但易于吸潮(水分使强极性介质),而且当纸纤维吸水时,使氢氧根之间的相互作用力变弱,在纤维结构不稳定的条件下机械强度急剧变坏,因此,纸绝缘部件一般要经过干燥或真空子燥处理和浸油或绝缘漆后才能使用,浸漆的目的是使纤维保持润湿.保证其有较高的绝缘和化学稳定性及具有较高的机械强度。同时,纸被漆密封后,可减少纸对水分的吸收,阻止材料氧化,还町填充空隙,以减小可能影响绝缘性能、造成局部放电和电击穿的气泡。但也有的认为浸漆后再浸油,可能有些漆会慢慢溶人油内,影响油的性能,对这类油漆的应用应充分子以注意。
油浸变压器中,主要的绝缘材料是绝缘油及固体绝缘材料绝缘纸、纸板和木块等c所谓变压器绝缘的老化,就是这些材料受环境因素的影响发生分解,降低或丧失了绝缘强度。
1.固体纸绝缘故障
固体纸绝缘是油浸变压器绝缘的主要部分之一,包括:绝缘纸、绝缘板、绝缘垫、绝缘卷、绝缘绑扎带等,其主要成分是纤维素,化学表达式为(C6H10O6)n,式中n为聚合度。一般新纸的聚合度为1300左右,当下降至250左右,其机械强度已下降了一半以上,极度老化致使寿命终止的聚合度为150~200。绝缘纸老化后,其聚合度和抗张强度将逐渐降低,并生成水、CO、CO2,其次还有糠醛(呋喃甲醛)。这些老化产物大都对电气设备有害,会使绝缘纸的击穿电压和体积电阻率降低、介损增大、抗拉强度下降,甚致腐蚀设备中的金属材料。固体绝缘具有不可逆转的老化特性,其机械和电气强度的老化降低都是不能恢复的。变压器的寿命主要取决于绝缘材料的寿命,因此油浸变压器固体绝缘材料,应既具有良好的电绝缘性能和机械特性,而且长年累月的运行后,其性能下降较慢,即老化特性好。
(2)变压器油劣化的原因。
变压器油质变坏,按轻重程度可分为污染和劣化两个阶段。
污染是油中混入水分和杂质,这些不是油氧化的产物,污染油的绝缘性能会变坏,击穿电场强度降低,介质损失角增大。
劣化是油氧化后的结果,当然这种氧化并不仅指纯净油中烃类的氧化,而是存在于油中杂质将加速氧化过程,特别是铜、铁、铝金属粉屑等。
后期劣化阶段。是生成油泥,当酸侵蚀铜、铁、绝缘漆等材料时,反应生成油泥,是一种粘稠而类似沥青的聚合型导电物质,它能适度溶解于油中,在电场的作用下生成速度很快,粘附在绝缘材料或变压器箱壳边缘,沉积在油管及冷却器散热片等处,使变压器工作温度升高,耐电强度下降。
油的氧化过程是由两个主要反应条件构成的,其一是变压器中酸价过高,油呈酸性。其二是溶于油中的氧化物转变成不溶于油的化合物,从而逐步使变压器油质劣化。
(2)纸绝缘材料的机械强度。油浸变压器选择纸绝缘材料最重要的因素除纸的纤维成分、密度、渗透性和均匀性以外,还包括机械强度的要求,包括耐张强度、冲压强度、撕裂强度和坚韧性:
1)耐张强度:要求纸纤维受到拉伸负荷时,具有能耐受而不被拉断的最大应力
2)冲压强度:要求纸纤维具有耐受压力而不被折断的能力的量度。
(1)纸纤维材料的性能。绝缘纸纤维材料是油浸变压器中最主要的绝缘组件材料,纸纤维是植物的基本固体组织成分,组成物质分子的原子中有带正电的原子核和围绕原子核运行的带负电的电子,与金属导体不同的是绝缘材料中几乎没有自由电子,绝缘体中极小的电导电流主要来自离子电导。纤维素由碳、氢和氧组成,这样由于纤维素分子结构中存在氢氧根,便存在形成水的潜在可能,使纸纤维有含水的特性。此外,这些氢氧根可认为是被各种极性分子(如酸和水)包围着的中心,它们以氢键相结合,使得纤维易受破坏:同时纤维中往往含有一定比例(约7%左右)的杂质,这些杂质中包括一定量的水分,因纤维呈胶体性质,使这些水分尚不能完全除去。这样也就影响了纸纤维的性能。
3)撕裂强度:要求纸纤维发生撕裂所需的力符合相应标准。
4)坚韧性:是纸折叠或纸板弯曲时的强度能满足相应要求。
判断固体绝缘性能可以设法取样测量纸或纸板的聚合度,或利用高效液相色谱分析技测量油中糠醛含量,以便于分析变压器内部存在故障时,是否涉及固体绝缘或是否存在引起线圈绝缘局部老化的低温过热,或判断固体绝缘的老化程度。对纸纤维绝缘材料在运行及维护中,应注意控制变压器额定负荷,要求运行环境空气流通、散热条件好,防止变压器温升超标和箱体缺油。还要防止油质污染、劣化等造成纤维的加速老化,而损害变压器的绝缘性能、使用寿命和安全运行。
(3)纸纤维材料的劣化。主要包括三个方面:
1)纤维脆裂。当过度受热使水分从纤维材料中脱离,更会加速纤维材料脆化。由于纸材脆化剥落,在机械振动、电动应力、操作波等冲击力的影响下可能产生绝缘故障而形成电气事故。
2)纤维材料机械强度下降。纤维材料的机械强度随受热时间的延长而下降,当变压器发热造成绝缘材料水分再次排出时,绝缘电阻的数值可能会变高,但其机械强度将会大大下降,绝缘纸材将不能抵御短路电流或冲击负荷等机械力的影响。
变压器绝缘故障返回列表
目前应用最广泛的电力变压器是油浸变压器和干式树脂变压器两种,电力变压器的绝缘即是变压器绝缘材料组成的绝缘系统,它是变压器正常工作和运行的基本条件,变压器的使用寿命是由绝缘材料(即油纸或树脂等)的寿命所决定的。实践证明,大多变压器的损坏和故障都是因绝缘系统的损坏而造成。据统计,因各种类型的绝缘故障形成的事故约占全部变压器事故的85%以上。对正常运行及注意进行维修管理的变压器,其绝缘材料具有很长的使用寿命。国外根据理论计算及实验研究表明,当小型油浸配电变压器的实际温度持续在95℃时,理论寿命将可达400年。设计和现场运行的经验说明,维护得好的变压器,实际寿命能达到50~70年:而按制造厂的设计要求和技术指标,一般把变压器的预期寿命定为20一40年。因此,保护变压器的正常运行和加强对绝缘系统的合理维护,很大程度上可以保证变压器具有相对较长的使用寿命,而预防性和预知性维护是提高变压器使用寿命和提高供电可靠性的关键。
(1)变压器油的性能。
从石油中提炼制取的绝缘油是各种烃、树脂、酸和其他杂质的混合物,其性质不都是稳定的,在温度、电场及光合作用等影响下会不断地氧化。正常情况下绝缘油的氧化过程进行得很缓慢,如果维护得当甚至使用20年还可保持应有的质量而不老化,但混入油中的金属、杂质、气体等会加速氧化的发展,使油质变坏,颜色变深,透明度浑浊,所含水分、酸价、灰分增加等,使油的性质劣化。
3)纤维材料本身的收缩。纤维材料在脆化后收缩,使夹紧力降低,可能造成收缩移动,使变压器绕组在电磁振动或冲击电压下移位摩擦而损伤绝缘。
2.液体油绝缘故障
液体绝缘的油浸变压器是1887年由美国科学家汤姆逊发明的,1892年被美国通用电气公司等推广应用于电力变压器,这里所指的液体绝缘即是变压器油绝缘。油浸变压器的特点:①大大提高了电气绝缘强度,缩短了绝缘距离,减小了设备的体积;②大大提高了变压器的有效热传递和散热效果,提高了导线中允许的电流密度,减轻了设备重量,它是将运行变压器器身的热量通过变压器油的热循环,传递到变压器外壳和散热器进行散热,从而提高了有效的冷却降温水平;③由于油浸密封而降低了变压器内部某些零部件和组件的氧化程度,延长了使用寿命。
相关文档
最新文档