最新离散数学试卷及答案一
离散数学期末考试题及详细答案
离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
《离散数学》试题及答案
《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。
A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。
答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。
答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。
答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。
答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。
《离散数学》试题及答案
《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。
答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。
答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。
答案:2e4. 一个连通图至少有________个顶点。
答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。
答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。
()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。
()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。
()答案:错误4. 树是一种无向图。
()答案:正确5. 哈夫曼编码是一种贪心算法。
()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。
最新离散数学期末考试试题与答案[1]课件ppt
19. (5分) 已知公理 A: (pq) ((qp) (pq)) B: pp∨q
C: pp D: (pr) ((qr) ((p∨q) r)) E: p∧qp 证明定理: p(p∨p)
证明:
(1) pp∨q
公理B
(2) pp∨p
代入
(3) (pr) ((qr) ((p∨q) r))
公理D
(4) (pp) ((pp) ((p∨p) p)) 代入
∑d(v) ≥1+2(|V|-1)=2|E|+1, 这与结论 ∑ d(v) =2|E| 矛盾! 矛盾说明 T 不止
一片树叶。
12. (8分) (G, ·)是一个群,取定u ∊ G. ∀g1,g2∊G,定义: g1*g2= g1·u-1·g2. 证明: (G,*)是群。
证明: (1) 封闭性 (2) 可以结合性 (3) 幺元 e*=u. 事实上, g*e*=g*u=g·u-1·u=g·e=g e**g=u*g=u·u-1·g=e·g=g (4) 逆元 对于∀g∊G, 在代数运算*下的逆元记为g*-1 于是, g*-1=u·g-1·u
所以,根据连通的定义知:G的补图一定连通 。
9. (4分) 一个有奇数条边、偶数个顶点的欧拉图,但不是哈 密尔顿图。
10 (6分) 画出K4,4,判断K4,4是否平面图. 否!
11. (5分) 证明: 多于一个顶点的树,至少有两片树叶。
证明:设 T=(V,E)是一棵树,若T中最多只有一片树叶, 则有
g*a*g-1H,
g*a*g-1K, 从而有g*a*g-1HK, 故HK是G的正规子群。
14. (4分) 已知(G, *),(A, △)是两个群,f: G→A是群同态的。
证明: (1) f(eG)=eA (eG G是幺元, eA A是幺元). (2) ∀g∊G, f(g-1)=(f(g))-1.
离散数学考试题及答案
离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。
A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。
A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。
A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。
A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。
答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。
答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。
答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。
答案:可达10. 命题逻辑中,合取(AND)的符号是______。
答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。
证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。
因此,若p∧q为真,则p和q都为真。
12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。
请找出f的值域。
答案:根据函数的定义,f的值域是其所有输出值的集合。
因此,f的值域为{4,5,6}。
离散数学期末考试题及答案
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于多少?A. {1,2}B. {2,3}C. {3,4}D. {1,4}答案:B2. 命题“若x>0,则x^2>0”的逆否命题是?A. 若x^2≤0,则x≤0B. 若x^2>0,则x>0C. 若x≤0,则x^2≤0D. 若x≤0,则x^2>0答案:C3. 在图论中,一个图是连通的当且仅当?A. 存在一个顶点到所有其他顶点的路径B. 存在一个顶点到所有其他顶点的回路C. 图中没有孤立的顶点D. 图中至少有两个顶点答案:A4. 以下哪个选项是二元关系的自反性质?A. 对于所有元素x,(x, x)∉RB. 对于所有元素x,(x, x)∈RC. 对于所有元素x,y,(x, y)∈R且(y, x)∈RD. 对于所有元素x,y,z,(x, y)∈R且(y, z)∈R则(x, z)∈R5. 以下哪个命题是真命题?A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 所有的马都不是白色的答案:B6. 以下哪个选项是等价命题?A. p∧q和p∨qB. p∧q和¬p∨¬qC. p∧¬q和¬p∨qD. p∧q和¬p∧¬q答案:D7. 在集合论中,以下哪个操作是幂集?A. 并集B. 交集C. 对称差D. 包含所有子集的集合答案:D8. 以下哪个选项是图的路径?A. 一条边B. 一个顶点C. 一系列顶点和边,使得每对连续的顶点由一条边连接D. 一个环答案:C9. 以下哪个选项是命题逻辑中的合取?B. p∧qC. ¬pD. p→q答案:B10. 以下哪个选项是图的连通分量?A. 一个顶点B. 一条边C. 图的一个极大连通子图D. 图的一个极大不连通子图答案:C二、填空题(每题2分,共20分)1. 集合{1,2,3}的子集个数为__7__。
离散数学试题总汇及答案
离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。
A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。
A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。
A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。
A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。
A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。
A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。
A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。
A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。
A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。
答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。
离散考试试题及答案
离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。
答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。
答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。
答案:连通的4. 在命题逻辑中,一个命题的否定是________。
答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。
答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。
2. 描述一下什么是二元关系,并给出一个例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是数字集合上的一个二元关系。
3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。
四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。
答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。
最新离散数学试题及答案
最新离散数学试题及答案一、选择题(每题2分,共20分)1. 在离散数学中,以下哪个不是命题逻辑的基本联结词?A. 与(∧)B. 或(∨)C. 非(¬)D. 模(%)答案:D2. 以下哪个选项不是命题逻辑的真值表的正确形式?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P | Q | P → QD. P | Q | P ↔ Q答案:B3. 集合A={1, 2, 3},集合B={2, 3, 4},求A∪B的结果。
A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {4}答案:C4. 以下哪个是等价关系的属性?A. 自反性B. 对称性C. 传递性D. 所有选项都是答案:D5. 以下哪个是图论中的基本概念?A. 顶点B. 边C. 路径D. 所有选项都是答案:D6. 在有向图中,如果存在一条从顶点u到顶点v的有向路径,那么称v为u的后继。
以下哪个选项不是后继的定义?A. 存在一条从u到v的有向路径B. 存在一条从v到u的有向路径C. 存在一条从u到v的有向简单路径D. 存在一条从v到u的有向简单路径答案:B7. 以下哪个是二元关系R的自反性的定义?A. 对于所有a,(a, a) ∈ RB. 对于所有a,(a, a) ∉ RC. 对于所有a和b,如果(a, b) ∈ R,则(b, a) ∈ RD. 对于所有a和b,如果(a, b) ∈ R,则(a, a) ∈ R答案:A8. 在命题逻辑中,以下哪个是德摩根定律的表达式?A. ¬(P ∧ Q) ↔¬P ∨ ¬QB. ¬(P ∨ Q) ↔¬P ∧ ¬QC. P ∧ Q ↔¬P ∨ ¬QD. P ∨ Q ↔¬P ∧ ¬Q答案:B9. 以下哪个是集合的幂集?A. 包含集合本身的所有子集的集合B. 包含集合本身的所有超集的集合C. 包含集合本身的所有真子集的集合D. 包含集合本身的所有非空子集的集合答案:A10. 在图论中,以下哪个是强连通性的图?A. 任意两个顶点之间都存在有向路径B. 任意两个顶点之间都存在无向路径C. 任意两个顶点之间都存在有向简单路径D. 任意两个顶点之间都存在无向简单路径答案:C二、填空题(每空1分,共10分)11. 命题逻辑中的“与”操作可以用符号________表示。
离散数学试题及答案解析
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
大学《离散数学》期末考试试卷及答案(1)
大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。
A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。
A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。
A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。
2. 有一个集合A={1,2,3},则集合A的幂集为______。
3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。
三、解答题1. 请写出离散数学中常用的数学符号及其含义。
2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。
3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。
四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。
2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。
3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。
参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。
- ∩:交,表示集合的交集操作。
- ∖:差,表示减去一个集合中的元素。
- ⊆:包含,表示一个集合包含于另一个集合。
- =:相等,表示两个集合具有相同的元素。
2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。
离散数学期末考试题及答案
离散数学期末考试题及答案一、选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于()。
A. {1,2}B. {2,3}C. {3,4}D. {4,5}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。
A. 若x≤1,则x≤0B. 若x≤1,则x<0C. 若x≤0,则x≤1D. 若x<1,则x≤0答案:D3. 在图论中,一个连通图的最小生成树包含的边数是()。
A. n-1B. nC. n+1D. 2n答案:A4. 布尔代数中,A+0的结果是()。
A. 0B. AC. 1D. A+1答案:B5. 函数f: X→Y是双射的,当且仅当()。
A. f是单射且满射B. f是单射或满射C. f是单射且非满射D. f是非单射且满射答案:A二、填空题(每题3分,共15分)6. 若A={1,2,3},B={4,5,6},则A∪B的元素个数为 6 。
7. 命题“若x>0,则x>1”的逆命题是“若 x>1 ,则x>0”。
8. 在一个有n个顶点的完全图中,边的总数为 n(n-1)/2 。
9. 布尔代数中,A·1的结果是 A 。
10. 函数f: X→Y是单射的,当且仅当对于任意的x1, x2∈X,若f(x1)=f(x2),则 x1=x2 。
三、解答题(每题10分,共20分)11. 证明:若A和B是等价关系,则A∩B=A=B。
证明:由于A和B是等价关系,根据等价关系的性质,A和B都是自反的、对称的和传递的。
因此,A∩B也是自反的、对称的和传递的,所以A∩B是等价关系。
又因为A和B是等价关系,它们包含相同的元素,所以A∩B=A=B。
12. 给定一个有向图G,其中包含5个顶点和7条边,请构造一个包含所有顶点的最小路径覆盖。
解答:由于题目没有给出具体的图G,我们无法给出一个具体的最小路径覆盖。
但是,根据最小路径覆盖的定义,我们需要找到一组边,使得图中的每个顶点至少与这组边中的一条边相关联,且这组边的数量尽可能少。
离散数学期末考试题及答案
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。
答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。
答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
新版离散数学试卷及答案-新版-精选.pdf
题目
1
2
3
4
5
6
7
8
9
10
答案 C D
B、 C C A
DCAD
B
A
三、证明 26%
1、 证:
“
”
a, b, c X 若 < a, b >, < a, c > R 由 R 对 称 性 知
< b, a >, < c, a R ,由 R 传递性得 < b, c > R
“ ” 若 < a, b > R , < a, c > R 有 < b, c > R 任 意 a, b X , 因
求出 R 的传递闭包 t (R) 。
(9 分)
2、如下图所示的赋权图表示某七个城市 v1, v2 , , v7 及预先算出它们之间的一些直接通
信线路造价, 试给出一个设计方案, 使得各城市之间能够通信而且总造价最小。
(9分)
试卷一答案: 一、填空 20% (每小题 2 分)
1、{0 ,1,2,3,4,6} ; 2、( B C ) A ;3、1; 4、( P S R) ( P
试卷二试题与答案
一、填空 20% (每小题 2 分)
1、 P:你努力, Q:你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。
2、论域 D={1 , 2} ,指定谓词 P
P (1,1) P (1,2) P (2,1) P (2,2)
T
T
F
F
则公式 x yP( y, x) 真值为
C. f : R I , f (x) = [x] ; D . f :I N, f (x) = | x | 。
离散数学期末考试题及答案
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。
A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。
A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。
答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学试题及答案解析
离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
离散数学试题推荐及答案
离散数学试题推荐及答案一、选择题(每题2分,共20分)1. 以下哪个选项是命题逻辑中的有效公式?A. (P∧¬P)→QB. (P∨Q)∧¬(P∨Q)C. (P∧Q)∨¬(P∧Q)D. (P→Q)∧(Q→P)答案:A2. 在图论中,以下哪个选项不是连通图?A. 树B. 环C. 完全图D. 非连通图答案:D3. 以下哪个选项是二元关系的自反性质?A. 如果aRb,则bRaB. 如果aRb,则aRaC. 如果aRb,则bRbD. 如果aRa,则aRb答案:B4. 在集合论中,以下哪个选项表示集合A和集合B的交集?A. A∪BB. A∩BC. A-BD. A∈B答案:B5. 以下哪个选项是图论中的路径?A. 从顶点v1到顶点v2的边B. 从顶点v1到顶点v2的边序列C. 从顶点v1到顶点v2的边序列,且边不重复D. 从顶点v1到顶点v2的边序列,且顶点不重复答案:D6. 在命题逻辑中,以下哪个选项是德摩根定律?A. ¬(P∧Q)≡¬P∨¬QB. ¬(P∨Q)≡¬P∧¬QC. ¬(P∧Q)≡¬P∧¬QD. ¬(P∨Q)≡¬P∨¬Q答案:B7. 在集合论中,以下哪个选项表示集合A和集合B的差集?A. A∪BB. A∩BC. A-BD. A∈B答案:C8. 在图论中,以下哪个选项是树的性质?A. 至少有一个环B. 至少有两个顶点C. 没有环D. 至少有三个顶点答案:C9. 在命题逻辑中,以下哪个选项是逻辑等价?A. P∧Q≡Q∧PB. P∨Q≡Q∨PC. P→Q≡Q→PD. P∧Q≡P∨Q答案:A10. 在集合论中,以下哪个选项表示集合A是集合B的子集?A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A二、填空题(每题2分,共20分)1. 在命题逻辑中,合取(AND)的符号是________。
(完整版)《离散数学》试题及答案解析,推荐文档
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=xP(x), H=xP(x),则一阶逻辑公式
(A)下界 (B)上界 (C)最小上界
(D)以上答案都不对
6
4 下列语句中,( )是命题。
5
(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?
3
4
2
5 设 I 是如下一个解释:D={a,b}, P(a, a) P(a, b) P(b, a) P(b, b)
1
1010
AB=_________________________;A-B= _____________________ . 7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________. 8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
(1)
1
4
2
3
1 0 0 0
(2)
MR
1 1
1 1
0 1
0 0
1 1 1 1
3. (1)•=((x))=(x)+3=2x+3=2x+3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z, Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为__0____,称为树根,其余结点的入度均为__1____。
17.A={1,2,3,4}上二元关系R={〈2,4〉,〈3,3〉,〈4,2〉},R的关系矩阵M R中m24=___1___,m34=___0___。
18.设〈s,*〉是群,则那么s中除__幺元____外,不可能有别的幂等元;若〈s,*〉有零元,则|s|=___1___。
19.设A为集合,P(A)为A的幂集,则〈P(A),⊆〉是格,若x,y∈P(A),则x,y最大下界是______,最小上界是______。
20.设函数f:X→Y,如果对X中的任意两个不同的x1和x2,它们的象y1和y2也不同,我们说f是___入射___函数,如果ranf=Y,则称f是___满射___函数。
21.设R为非空集合A上的等价关系,其等价类记为〔x〕R。
∀x,y∈A,若〈x,y〉∈R,则〔x〕R与〔y〕R的关系是______,而若〈x,y〉∉R,则〔x〕R∩〔y〕R=______。
22.使公式(∃x)( ∃y)(A(x)∧B(y))⇔(∃x)A(x)∧(∃y)B(y)成立的条件是______不含有y,______不含有x。
23.设M(x):x是人,D(s):x是要死的,则命题“所有的人都是要死的”可符号化为(∀x)______,其中量词(∀x)的辖域是______。
24.若H1∧H2∧…∧H n是______,则称H1,H2,…Hn是相容的,若H1∧H2∧…∧H n是______,则称H1,H2,…H n是不相容的。
25.判断一个语句是否为命题,首先要看它是否为,然后再看它是否具有唯一的。
三、计算题(共30分)26.(4分)设有向图G=(V,E)如下图所示,试用邻接矩阵方法求长度为2的路的总数和回路总数。
27.(5)设A={a,b},P(A)是A的幂集,⊕是对称差运算,可以验证<P(A),⊕>是群。
设n是正整数,求({a}-1{b}{a})n⊕{a}-n{b}n{a}n28.(6分)设A={1,2,3,4,5},A上偏序关系R={〈1,2〉,〈3,2〉,〈4,1〉,〈4,2〉,〈4,3〉,〈3,5〉,〈4,5〉}∪I A;(1)作出偏序关系R的哈斯图(2)令B={1,2,3,5},求B的最大,最小元,极大、极小元,上界,下确界,下界,下确界。
29.(6分)求┐(P→Q)⇔(P→┐Q)的主合取范式并给出所有使命题为真的赋值。
30.(5分)设带权无向图G如下,求G的最小生成树T及T的权总和,要求写出解的过程。
31.(4分)求公式┐((∀x)F(x,y)→(∃y)G(x,y))∨(∃x)H(x)的前束范式。
四、证明题(共20分)32.(6分)设T是非平凡的无向树,T中度数最大的顶点有2个,它们的度数为k(k≥2),证明T中至少有2k-2片树叶。
33.(8分)设A是非空集合,F是所有从A到A的双射函数的集合, 是函数复合运算。
证明:〈F, 〉是群。
34.(6分)在个体域D={a1,a2,…,a n}中证明等价式:(∃x)(A(x)→B(x))⇔(∀x)A(x)→(∃x)B(x)五、应用题(共15分)35.(9分)如果他是计算机系本科生或者是计算机系研究生,那么他一定学过DELPHI语言而且学过C++语言。
只要他学过DELPHI语言或者C++语言,那么他就会编程序。
因此如果他是计算机系本科生,那么他就会编程序。
请用命题逻辑推理方法,证明该推理的有效结论。
36.(6分)一次学术会议的理事会共有20个人参加,他们之间有的相互认识但有的相互不认识。
但对任意两个人,他们各自认识的人的数目之和不小于20。
问能否把这20个人排在圆桌旁,使得任意一个人认识其旁边的两个人?根据是什么?参考答案一、单项选择题(本大题共15小题,每小题1分,共15分)1.B2.D3.A4.A5.D6.D7.D8.C9.D 10.B11.A 12.A 13.C 14.B 15.C二、填空题16.0 117.1 018.单位元 119.x ∩y x ∪y20.入射21.[x ]R =[y ]R22.A(x) B(y)23.(M(x)→D(x)) M(x)→D(x)24.可满足式 永假式(或矛盾式)25.陈述句 真值三、计算题26. M=1100101010110011⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪ M 2=2110211121211011⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪ M ij j i 2141418==∑∑=,M ij i 2146=∑= G 中长度为2的路总数为18,长度为2的回路总数为6。
27.当n 是偶数时,∀x ∈P(A),x n =∅当n 是奇数时,∀x ∈P(A),x n =x于是:当n 是偶数,({a }-1{b }{a })n ⊕{a }-n {b }n {a }n=∅⊕({a }-1)n {b }n {a }n =∅⊕∅=∅当n 是奇数时,({a }-1{b }{a })n ⊕{a }-n {b }n {a }n={a }-1{b }{a }⊕({a }-1)n {b }n {a }n={a }-1{b }{a }⊕{a }-1{b }{a }=∅28.(1)偏序关系R 的哈斯图为(2)B 的最大元:无,最小元:无;极大元:2,5,极小元:1,3下界:4, 下确界4;上界:无,上确界:无29.原式⇔(┐(P →Q)→(P →┐Q))∧((P →┐Q)→┐(P →Q))((P →Q)∨(P →┐Q))∧(┐(P →┐Q)∨┐(P →Q))(┐P ∨Q ∨┐P ∨┐Q)∧(┐(┐P ∨┐Q)∨(P ∧┐Q))(┐(P ∧┐Q)∨(P ∧┐Q))(P ∧Q)∨(P ∧┐Q)P ∧(Q ∨┐Q)P ∨(Q ∧┐Q)(P ∨Q)∧(P ∨┐Q)命题为真的赋值是P=1,Q=0和P=1,Q=130.令e 1=(v 1,v 3), e 2=(v 4,v 6)e 3=(v 2,v 5), e 4=(v 3,v 6)e 5=(v 2,v 3), e 6=(v 1,v 2)e 7=(v 1,v 4), e 8=(v 4,v 3)e 9=(v 3,v 5), e 10=(v 5,v 6)令a i 为e i 上的权,则a 1<a 2<a 3<a 4<a 5=a 6=a 7=a 8<a 9=a 10取a 1的e 1∈T,a 2的e 2∈T,a 3的e 3∈T,a 4的e 4∈T,a 5的e 5∈T,即,T 的总权和=1+2+3+4+5=1531.原式⇔┐(∀x 1F(x 1,y)→∃y 1G(x,y 1))∨∃x 2H(x 2) (换名)⇔┐∃x 1∃y 1(F(x 1,y)→G(x,y 1))∨∃x 2H(x 2)⇔∀x 1∀y 1┐(F(x 1,y 1)→G(x,y 1))∨∃x 2H(x 2)⇔∀x 1∀y 1∃x 2(┐(F(x 1,y 1)→G(x,y 1))∨H(x 2)四、证明题32.设T 中有x 片树叶,y 个分支点。
于是T 中有x+y 个顶点,有x+y-1 条边,由握手定理知T 中所有顶点的度数之的d v i i x y()=+∑1=2(x+y-1)。