实验一 燃烧热的测定

合集下载

实验1燃烧热的测定

实验1燃烧热的测定

实验1燃烧热的测定一、目的要求1.用氧弹热量计测定萘的燃烧热。

2.了解氧弹热量计的原理、构造及使用方法。

二、原理燃烧热是指一摩尔物质完全氧化时的热效应。

所谓完全氧化是指C 变为CO 2(气),H 变为H 2O (液),S 变为SO 2(气),N 变为N 2(气),金属如银等都成为游离状态。

燃烧热的测定是热化学的基本手段,对于一些不能直接测定的化学反应的热效应,通过盖斯定律可以利用燃烧热数据间接未清算出。

测定物质燃烧热的氧弹式热量计是重要的热化学仪器,在热化学、生物化学以及某些工业部门中应用广泛。

由热力学第一定律可知,若燃烧在恒容条件下进行,体系不对外作功,恒容燃烧热等体系的改变,∆U =Q V (1-1)在绝热条件下,将一定量的样品放在充有一定氧气的氧弹中,使其完全燃烧,放出的热量使得体系(反应产物、氧弹及其周围的介质和热量计有关附件等)的温度升高(∆T ),再根据体系的热容(C V ,总),即可计算燃烧反应的热效应,Q V =-C V ∆T (1-2),上式中负号是指体系放出热量,放热时体系的内能降低,而C V 和∆T 均为正值,故加负号表示。

一般燃烧热是指恒压燃烧热Q p ,Q P 值可由Q V 算得:Q P =∆H =∆U +P ∆V =Q V +P ∆V(1-3)若以摩尔为单位,对理想气体:Q P =Q V +∆nRT 这样,由反应前后气态物质摩尔数的变化∆n ,就可算出恒压燃烧热Q P 。

反应热效应的数值与温度有关,燃烧热也不例外,其关系为:P C TH ∆=∂∆∂)( 式中,∆C P 是反应前后的恒压热容差,它是温度的函数。

一般来说,热效应随温度的变化不是很大,在较小的温度范围内,可认为是常数。

由于实验燃烧热测量的条件与标准条件的不同,为求出标准燃烧热,需将求得的实验燃烧热数据进行包括压力、温度等许多影响因素的校正。

在精度要求不高的前提下,可以忽略这些因素的影响。

三、仪器和试剂氧弹热量计1台;氧气钢瓶1个;分析天平一台;压片机一台;容量瓶(1L )一个;锥形瓶一个;碱式滴定管(50mL )一支。

实验报告燃烧热的测定

实验报告燃烧热的测定

实验报告燃烧热的测定实验报告:燃烧热的测定一、实验目的本实验旨在通过测量物质在氧气中的燃烧热,深入理解热力学第一定律,掌握量热技术和相关仪器的使用方法,提高实验操作技能和数据处理能力。

二、实验原理燃烧热是指 1 摩尔物质完全燃烧时所放出的热量。

在恒容条件下测得的燃烧热称为恒容燃烧热(Qv),在恒压条件下测得的燃烧热称为恒压燃烧热(Qp)。

对于一般的有机化合物,燃烧反应通常可以表示为:CxHyOz +(x +y/4 z/2)O2 → xCO2 +(y/2)H2O在本实验中,采用氧弹式量热计来测量燃烧热。

氧弹式量热计的基本原理是能量守恒定律,即样品燃烧所释放的能量等于量热计和周围介质所吸收的能量。

量热计与水组成的体系近似为绝热体系,通过测量燃烧前后体系温度的变化(ΔT),以及已知量热计的水当量(W),可以计算出样品的燃烧热。

恒容燃烧热的计算公式为:Qv =CΔT / m其中,C 为量热计和水的总热容量(J/℃),m 为样品的质量(g)。

恒压燃烧热与恒容燃烧热的关系为:Qp = Qv +ΔnRT其中,Δn 为反应前后气体物质的量的变化,R 为气体常数(8314 J/(mol·K)),T 为反应温度(K)。

三、实验仪器与试剂1、仪器氧弹式量热计贝克曼温度计压片机电子天平氧气钢瓶及减压阀2、试剂苯甲酸(标准物质,已知燃烧热)待测物质(如萘)四、实验步骤1、量热计的准备清洗氧弹,擦干并检查是否漏气。

准确称取一定量的引火丝,记录其质量。

2、样品的准备用电子天平准确称取苯甲酸和待测物质,分别压片。

再次准确称取引火丝的质量,并将其缠绕在样品片上。

3、装样将样品片和引火丝放入氧弹的坩埚中,拧紧氧弹盖。

4、充氧缓慢向氧弹中充入氧气,压力达到 15 20 MPa。

5、测量初始温度将氧弹放入量热计内桶中,插入贝克曼温度计,搅拌均匀,测量体系的初始温度。

6、点火燃烧接通电源,点火,记录温度随时间的变化,直至温度不再升高,记录最高温度。

燃烧热的测定

燃烧热的测定

实验一 燃烧热的测定一、目的1.通过测定萘的燃烧热,掌握有关热化学实验的一般知识和技术。

2.明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。

3.了解量热计中主要部分的作用,掌握氧弹量热计的实验技术。

4.学会雷诺图解法校正温度改变值。

二、基本原理燃烧热是指1摩尔物质完全燃烧时所放出的热量,在恒容条件下测得的燃烧热为恒容燃烧热(Q v ),恒容燃烧热等于这个过程的内能变化(ΔU )。

在恒压条件下测得的燃烧热称为恒压燃烧热(Q p ),恒压燃烧热等于这个过程的热焓变化(ΔH )若把参加反应的气体和反应生成的气体作为理想气体处理,则存在下列关系式()p V B Q Q g RT ν=+∑ (1) 式中 为生成物和反应物气体的摩尔数之差;R 为摩尔气体常数;T 为反应前后的绝对温度(可取反应前后温度的平均值计算Q P )。

若测得某物质恒容燃烧热或恒压燃烧热中的任何一个,就可根据(Ⅱ-1-1)式计算另一个数据。

须指出,化学反应的热效应(包括燃烧热)通常是用恒压热效应(ΔH )来表示的。

B ν∑()g 在盛有定量水的容器中,放入内装有一定量的样品和氧气的密闭氧弹,然后使样品完全燃烧,放出的热量传给水及仪器,引起温度上升。

通过测定燃烧前后卡计(包括氧弹周围介质)温度的变化值ΔT ,就可以求出该样品的燃烧热。

其关系如下:(2)() 5.983Na OH V r mM Q Q Q V m m m +′×−+×−=点火丝点火丝棉线点火丝棉线卡W T Δ热容量的求法是用已知燃烧热标准物质(如苯甲酸,它的恒容燃烧热Q w 卡v =26434 J ·g -1)来标定,将其放在量热计中燃烧,测其始、末温度,按(2)式求。

一般因每次的水量相同。

故可再次通过(2)式确定蔗糖的Q w 卡v 。

在较精确的实验中,辐射热,铁丝的燃烧热添加物的燃烧热等都应予以考虑。

三、仪器与药品量热仪、氧气钢瓶、充氧仪、压片机、万用表、精密天平各一台(套);电子台称一台,苯甲酸(A.R.);萘(A.R.);蔗糖(A.R.),棉线若干。

物理化学-物理化学-实验一:燃烧热的测定

物理化学-物理化学-实验一:燃烧热的测定

实验一 燃烧热的测定一、实验目的及要求1.用氧弹量热计测定萘的燃烧热,明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别与相互关系。

2. 了解氧弹量热计的原理、构造及其使用方法,掌握有关热化学实验的一般知识和测量技术。

3. 掌握用雷诺图解法校正温度的改变值。

二、实验原理燃烧热是指一摩尔物质完全燃烧时的热效应。

所谓“完全燃烧”,是指有机物质中的碳燃烧生成气态二氧化碳、氢燃烧生成液态水等。

例如:萘的完全燃烧方程式为:C 10H 8(s)+12O 2(g)=10CO 2(g)+4H 2O(1)燃烧热测定可在恒容或恒压条件下进行。

由热力学第一定律可知:在不做非膨胀功情况下,恒容燃烧热Q v = ΔU , 恒压燃烧热Q p = ΔH 。

在氧弹式量热计中测得燃烧热为Q v , 而一般热化学计算用的值为Q p , 这两者可通过下式进行换算:Q p = Q v + ΔnRT (1)式中Δn 为反应前后生成物和反应物中气体的物质的量的差值;R 为摩尔气体常数;T 为反应温度(K )。

在盛有定量水的容器中,放入内装有一定量的样品和氧气的密闭氧弹,然后是样品完全燃烧,放出的热量传给水及仪器,引起温度上升。

若已知水量为W 克,水的比热为C , 仪器的水当量W ’(量热计每升高1o C 所需的热量)。

而燃烧前、后的温度为t 0和t n 。

则m 克物质的燃烧热为:Q ’ = (CW + W ’) (t 0 - t n ) (2)若水的比热为1 (C = 1), 摩尔质量为M 的物质,其摩尔燃烧热为:Q = Mm (W + W ’) (t 0 - t n ) (3) 水当量W ’的求法是用已知燃烧热的物质(如本实验用苯甲酸)放在量热计中燃烧,测其始、末温度,按式(3) 求W ’。

一般因每次的水量相同,(W + W ’)可作为一个定值 (W )来处理。

故Q = Mm (W ) (t 0 t n ) (4) 在精确的实验中,辐射热及铁丝燃烧所放出的热量及温度计本身的校正都应该考虑。

实验一 燃烧热的测定

实验一 燃烧热的测定

实验一燃烧热的测定一、实验目的1.明确燃烧热的定义,了解QV与Qp的差别。

2.通过萘的燃烧热的测量,了解氧弹式量热计中主要部件的作用,掌握量热计的使用技术。

3.学会雷诺图解法。

二、实验原理燃烧热:1mol物质完全燃烧时所放出的热量。

恒容条件下测得的燃烧热称为恒容燃烧热(QV),QV=ΔU。

恒压条件下测得的燃烧热为恒压燃烧热(Qp),Qp=ΔH。

若把参加反应的气体和生成的气体作为理想气体处理,则存在如下关系式:Qp=QV+ΔnRT。

Δn为反应产物中气体物质的总摩尔数与反应物中气体物质总摩尔数之差;R为气体常数;T为反应前后绝对温度。

本实验采用氧氮式量热计测量萘的燃烧热。

氧弹是一具特制的不锈钢容器,如图4-1所示。

为保证样品在其中迅速而完全地燃烧,需要用过量的强氧化剂,通常氧弹中充以氧气作为氧化剂。

实验时氧弹是旋转在装有一定量水的不锈钢桶中,水桶外是空气隔热层,再外面是恒定的水夹套,如图4-2所示。

样品和点火丝在氧弹中燃烧所放出的热大部分被不锈钢桶中的水所吸收,其余部分为氧弹、水桶、搅拌器、感温探头等吸收。

在热量计没有热量交换的情况下,可以写出以下平衡关系“丝丝样Q m Q m T C v if +=∆(1)ifC :量热计的热容,包括氧弹、量热计、水的热容。

1-⋅g JT ∆:准确温差。

K样m :样品的质量。

gvQ :所求样品的恒容燃烧热。

1-⋅g J丝m :燃烧掉的点火丝的质量。

g丝Q :点火丝的燃烧热。

1-⋅g J已知:实验所用点火丝丝Q =-41001-⋅g J要测量样品的v Q ,必须先知道热量计的ifC ,测定的方法就是在一定温度下,用已知燃烧热的标准物质(苯甲酸-26477=v Q 1-⋅g J ),在相同条件下进行实验,测量其温差,代入(1)式后,计算出热量计的ifC 。

关于真实温差的求算:氧弹量热计不可能是严格绝热的。

在燃烧后升温阶段,系统和环境间难免要发生热交换,因而温度计读得的温差并非真实温差。

物理化学热力学与热化学反应的实验测定

物理化学热力学与热化学反应的实验测定

物理化学热力学与热化学反应的实验测定实验测定物理化学热力学与热化学反应引言热力学与热化学反应是物理化学的重要分支,通过实验测定这些反应的热力学参数,可以揭示反应的性质和机理,为相关领域的应用研究提供基础。

本实验旨在探究热力学与热化学反应的实验测定方法,并通过实验测定,获得相关参数。

实验一:燃烧热的测定实验原理燃烧热是指化学物质在燃烧过程中释放的热量。

实验中可通过测量燃烧物质前后水的温度变化来计算燃烧热。

实验步骤1. 准备工作:将水加热至初始温度,并称量待燃烧物质的质量。

2. 准备实验装置:将待燃烧物质置于密闭容器中,在容器内设置水的容器,并记录下水的初始温度。

3. 进行燃烧:点燃待燃烧物质,并迅速将密闭容器与水的容器接触,使燃烧释放的热量转移到水中。

4. 记录数据:记录下水的最终温度变化,并计算燃烧热量。

实验结果经过实验测定,得到待燃烧物质的质量为m,初始温度为T1,最终温度为T2。

根据热量守恒定律和水的比热容,可以计算得到燃烧热量Q:Q = m × c × (T2 - T1)实验二:化学反应焓变的测定实验原理化学反应焓变是指化学反应中吸热或放热的过程。

实验中可通过测量反应物质溶液的温度变化来计算反应焓变。

实验步骤1. 准备工作:准备好反应物质的溶液,并称量其质量。

2. 准备实验装置:将两种反应溶液分别置于两个容器中,在实验室温度下,将两个容器倾斜,使溶液不混合。

3. 开始反应:将两个容器倾斜,让两种溶液混合,观察反应溶液温度的变化。

4. 记录数据:记录下混合溶液的初始温度和最终稳定温度,并计算反应焓变。

实验结果经过实验测定,得到反应溶液的质量为m,初始温度为T1,最终稳定温度为T2。

根据热量守恒定律和溶液的比热容,可以计算得到反应焓变ΔH:ΔH = m × c × (T2 - T1)小结通过实验测定燃烧热和反应焓变,可以获得物理化学反应的热力学参数。

燃烧热的测定需要注意营造密闭环境,准确记录水的温度变化,以获得准确的燃烧热量。

实验一-燃烧热测定

实验一-燃烧热测定

实验一-燃烧热测定-CAL-FENGHAI.-(YICAI)-Company One12Ⅱ 基本实验2.1 热力学部分实验一 燃烧热测定1 目的要求(1) 学会用氧弹热量计测定有机物燃烧热的方法。

(2)明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别。

(3)掌握用雷诺法和公式法校正温差的两种方法。

(4) 掌握压片技术,熟悉高压钢瓶的使用方法。

学会用精密电子温差测量仪测定温度的改变值。

2 基本原理有机物的燃烧焓0m c H 是指1摩尔的有机物在 p 0 时完全燃烧所放出的热量,通常称燃烧热。

燃烧产物指定该化合物中 C 变为CO 2 (g ),H 变为H 2O(l ),S 变为SO 2 (g ),N 变为N 2 (g ),Cl 变为HCl(aq ),金属都成为游离状态。

燃烧热的测定,除了有其实际应用价值外,还可用来求算化合物的生成热、化学反应的 反应热和键能等。

量热方法是热力学的一个基本实验方法。

热量有 Q p 和 Q v 之 分。

用氧弹热量计测得的是恒容燃烧热Q v ;从手册上查到的燃烧热数值都是在298.15K ,101.325 kPa 条件下,即标准摩尔燃烧焓,属于恒压燃烧热Q p 。

由热力学第一定律可知,在不做其它功的条件下, Q v =△U;Q p =△H。

若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:△H = △U+△(PV)Q p= Q v+△nRT式中,△n为反应前后生成物和反应物中气体的物质的量之差;R为气体常数;T 为反应的热力学温度(量热计的外桶温度,环境温度)。

在本实验中,设有m克物质在氧弹中燃烧,可使W克水及量热器本身由T1升高到T2,令C代表量热器的热容,Q v为该有机物的恒容摩尔燃烧热,则:|Q v|= (C+W)(T2 - T1)·M / m式中,M为该有机物的摩尔质量。

该有机物的燃烧热则为:△c H m = △r H m= Q p= Q v+△nRT= -M (C+W)(T2 - T1) / m+△nRT由上式,我们可先用已知燃烧热值的苯甲酸,求出量热体系的总热容量(C+W)后,再用相同方法对其它物质进行测定,测出温升△T=T2 - T1,代入上式,即可求得其燃烧热。

燃烧热的测定实验报告

燃烧热的测定实验报告

燃烧热的测定实验报告本文将介绍一种测量物质燃烧热的实验方法,即燃烧热的测定实验,这是化学实验中常用的一种。

燃烧热是指物质在完全燃烧时释放的热量,是一种热力学量,能够反映物质的化学活性。

燃烧热的测定实验是在常温下开展的,旨在检验化学反应是否释放热量或吸收热量。

实验步骤:1.测量物质质量:首先要准确地测量物质的质量,使用天平进行称量。

可选用两种物质,如氯化铵和硫酸钠。

2.搭建实验装置:在实验室的通风橱内搭建装置,将加热器、称量装置、燃烧炉等放置在一个四方形木板上,并用夹子固定。

3.准备燃烧热计:将燃烧热计安装在装置上,通过其红外传感器测量反应热量。

4.确定燃烧反应物:将测量的物质放入燃烧炉中,使用点火器点燃反应物。

在氯化铵和硫酸钠分别的实验中,氯化铵来自铵和氯离子的化合物,硫酸钠则是由硫酸和钠离子组成的物质。

5.测定燃烧热:在燃烧过程中,可以通过测量燃烧炉中的能量损失,计算出反应的燃烧热值。

燃烧热计可以直接测量得到这个数值。

实验结果:对于氯化铵,多次实验表明其燃烧热为-1393.6千焦耳/摩尔。

对于硫酸钠,其燃烧热为-1385.4千焦耳/摩尔。

这两个值非常接近,说明实验结果是可靠的。

实验原理和应用:燃烧热的测定实验可以检验化学反应是否具有放热或吸热性质,是热力学研究中不可或缺的实验之一。

实验原理基于反应热的概念,即定义在常量温度下,当化学反应发生时,吸收或释放的热量与这个反应有关系,称为反应热。

燃烧热是一种特殊的反应热,它涉及的化学反应是完全燃烧反应。

该实验的应用领域非常广泛,如在化学反应中测量反应热,评价燃料的能量效率等方面均有应用。

结论:通过燃烧热的测定实验,我们可以得到物质的燃烧热值,并了解到燃烧热的意义和应用。

燃烧热对于化学反应研究有着重要意义,同时也在燃料评价、环境保护等众多领域有着广泛应用。

实验一 燃烧热的测定

实验一 燃烧热的测定

实验一燃烧热的测定1. 在本实验中,哪些是系统?哪些是环境?系统和环境间有无热交换?这些热交换对实验结果有何影响?如何校正?答:①盛水桶内部物质及空间如内筒水,氧弹,温度计,内筒搅拌器为系统,除盛水桶内部物质及空间的热量计其余部分为环境如外筒水。

②系统和环境之间有热交换,③热交换的存在会影响燃烧热测定的准确值,④可通过雷诺校正曲线校正来减小其影响。

2 搅拌太快或太慢对实验有何影响?答:搅拌的太慢,会使体系的温度不均匀,体系测出的温度不准,实验结果不准,搅拌的太快,会使体系与环境的热交换增多,也使实验结果不准。

3.压片时,压力需适中,压力压得太紧或太松时对实验结果有何影响?影响实验结果的主要因素有哪些? 本实验成功的关键因素是什么?答:①片粒压的太紧,燃烧丝陷入药片内会造成燃不着,结果偏小(数值)。

片粒压的太松,当高压充氧时会使松散药粉飞起,使得真正燃烧的药品少了,结果偏小(数值)。

②能否保证样品充分燃烧、系统和环境间的热交换是影响本实验结果的主要因素。

③本实验成功的关键:药品的量合适,压片松紧合适,雷诺温度校正。

实验二甲基红的离解平衡常数的测定1在测定吸光度时,为什么每个波长都要用空白液校正零点?理论上应用什么溶液作为空白液?本实验用的是什么溶液?答:①因为溶液(即使是去离子水也有紫外吸收,虽然很小)也是有吸光度的,而且溶液的吸光度会随着波长变化。

不用空白溶液校正扣去溶液的吸光度,会使得测定结果有较大的误差。

②理论上,应该使用被测溶液中不含有在测量波长处可吸收单色光的物质时所配置的溶液。

③本实验用的是蒸馏水2制备溶液时,加入HCl,HAC,NaAc溶液各起到什么作用?实验三纯液体饱和蒸汽压的测定1、在液体饱和蒸汽压的测定实验中,缓冲储气罐有什么作用?如何检查实验装置的气密性?答案:(1)缓冲压力和调节压力。

(2)接通冷凝水,关闭进气阀和抽气阀,打开平衡阀,开启真空泵电源,缓慢打开抽气阀,抽泣至压力为-70kPa左右时。

物化实验-燃烧热的测定

物化实验-燃烧热的测定

实验一燃烧热的测定实验目的1、通过萘的燃烧热的测定,了解氧弹式量热计各主要部件的作用,掌握燃烧热的测定技术。

2、了解恒压燃烧热与恒容燃烧热的差别及相互关系。

3、学会应用图解法校正温度改变值。

实验原理燃烧热是指1mol物质完全燃烧时所放出的热量。

在恒容条件下测得的燃烧热称为恒容燃烧热(Q V),恒容燃烧热等于个过程的内能变化(ΔU)。

在恒压条件下测得的燃烧热称为恒压燃烧热(Q P),恒压燃烧热等于这个过程的焓变(ΔH)。

若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式:Q P = Q V + ΔnRT (8-7)式中:Δn为产物与反应物中气体物质的量之差;R为气体常数;T为反应的热力学温度。

若测得某物质恒容燃烧热或恒压燃烧热中的任何一个,就可根据式计算另一个数据。

必须指出,化学反应的热效应(包括燃烧热)通常是用恒压热效应(ΔH)来表示的。

测量化学反应热的仪器称为量热计。

本实验采用氧弹式量热计测量萘的燃烧热,氧弹卡计的示意图为图8-7。

由于用氧弹卡计测定物质的燃烧热是在恒容条件下进行的,所以测得的为恒容燃烧热(Q V)。

测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。

通过测定燃烧前后卡计(包括氧弹周围介质)温度的变化值,就可以求算出该样品的燃烧热。

其关系式如下:Q V·m/M r =W卡ΔT-Q点火丝·m点火丝(8-8)式中:m为待测物质的质量(g);M r为待测物质的相对分子质量;Q V为待测物质的摩尔燃烧热;Q点火丝为点火丝的燃烧热(如果点火丝用铁丝,则Q点火丝=6.694 kJ·g-1);m点火丝为点火丝的质量;ΔT为样品燃烧前后量热计温度的变化值;W卡为量热计(包括量热计中的水)的水当量,它表示量热计(包括介质)每升高一度所需要吸收的热量,量热计的水当量可以通过已知燃烧热的标准物(如苯甲酸,它的恒容燃烧热Q V=26.460 kJ·g-1)来标定。

燃烧热实验测定不同物质的燃烧热值

燃烧热实验测定不同物质的燃烧热值

燃烧热实验测定不同物质的燃烧热值引言:燃烧热是指单位质量物质完全燃烧时释放出的热量。

燃烧热的测定对于认识物质的性质、研究燃烧反应机理以及工业生产具有重要意义。

本文将介绍燃烧热实验测定不同物质燃烧热值的方法和应用。

一、燃烧热测定方法1. 单位质量法单位质量法是最常用的燃烧热测定方法之一。

实验中,将待测物质与氧气完全燃烧,通过测量产生的热量和物质质量的比值来求得燃烧热值。

例如,对于液体物质的测定,通常可以使用热量计测量产生的热量,再除以物质的质量得到燃烧热值。

2. 完全燃烧法完全燃烧法是一种较为准确的燃烧热测定方法。

在实验中,将待测物质与适量的氧气充分混合后进行完全燃烧,通过测量温度的变化和进气和出气的体积来计算燃烧热值。

以液体物质为例,实验中常使用流量计测量进气和出气的体积,并通过温度计测量燃烧前后的温度变化,进而推算出燃烧热值。

三、应用举例燃烧热测定在各个领域都有广泛的应用。

下面以几种常见物质为例,介绍其燃烧热值的测定和应用。

1. 纯净石墨纯净石墨的燃烧热值可通过燃烧实验测定得到。

实验结果表明,每克纯净石墨的燃烧热值约为33.6千焦/克。

这一数值在材料研究和工程设计中具有重要应用,可用于计算石墨材料的能量储存性能。

2. 甲醇甲醇是一种常见的有机化合物,其燃烧热值对于燃料开发和利用具有重要意义。

实验测定结果显示,每克甲醇的燃烧热值约为22.7千焦/克。

这一数值可作为评估甲醇燃料的能量密度和燃烧效率的重要参考。

3. 石油石油是重要的化石燃料资源,其燃烧热值的测定对于能源开发和利用至关重要。

经过实验测定,可以得出每克石油的燃烧热值约为47.4千焦/克。

这一数值可用于石油储备评估、燃料设计以及气候变化研究等方面。

结论:燃烧热实验测定可以准确地得到不同物质的燃烧热值,为认识物质性质、研究燃烧反应机理以及工业生产提供了重要依据。

通过单位质量法和完全燃烧法,可以对不同物质进行燃烧热值的测定。

燃烧热值的测定结果在材料研究、工程设计、能源开发和利用等领域具有广泛的应用。

实验一 燃烧热的测定

实验一  燃烧热的测定

实验一燃烧热的测定一、实验目的1.用氧弹式量热计测定萘的摩燃烧焓2.明确燃烧焓的定义,了解恒压燃烧热与恒容燃烧热的差别3.了解氧弹式量热计中主要部分的作用,掌握氧弹式热计的实验技术4.学会雷诺图解法,校正温度改变值二、实验原理燃烧焓是指1mol 物质在等温、等压下与氧化瓜时的焓变。

“完全氧化”的意思是化合物中的元素生成较高级的稳定氧化物,如在碳被氧化成CO 2(气),氢被氧化成H 2O (液),硫被氧化成SO 2(气)等。

燃烧焓是热化学中重要的基本数据,因为许多有机化合物的标准摩尔生成焓都可通过盖斯定律由它的标准摩尔燃烧焓及二氧化碳和水的标准摩尔生成焓求得。

通过烯烧的测定,还可以判断工业用燃料的质量等。

由上述燃烧的定义可知,在非体积功为零的情况下,物质的燃烧焓常以物质燃烧时的热效应(燃烧热)来表示,即c m p m H Q ⋅∆=。

因此,测定物质的燃烧焓实际就是测定物质在等湿、等压下的燃烧热。

量热法是热力学实验的一个基本方法。

测定燃烧热可以在等容条件下,也可以在等压条件进行。

等压燃烧热(p Q )与容烯烧热(v Q )之间的关系为:()()p v B Q Q m g v g RT ς=+∆=∆∑(1)或()pm vm B Q Q v g RT =+∑式中,p m Q ⋅或v m Q ⋅均指摩尔反应热,()B v g ∑为气体物质化学计算数的代码和;ς∆为反应进度增量,p Q 或v Q 则为反应物质的量为ς∆时的反应热,()m g ∆为该反应前后气体物质的物质的量变化,T 为反应的绝对温度。

1.搅动棒2.外筒3.内筒4.垫脚5.氧弹6.传感器7.点火按键8.电源开关9.搅拌开关10.点火输出负极11.点火输出正极12.搅拌指示灯13.电源指示灯14.点火指示灯测量热效应的仪器称作量热计,本实验用氧弹式量热计测量燃烧热,图1为氧弹示意图。

测量其原理是能量守恒定律,样品完全燃烧放出的能量使量热计本身及其周围介质(本实验用水)温度升高,测量了介质燃烧前后温度的变化,就可以求算该样品的恒容燃烧热。

实验一 燃烧热的测定

实验一  燃烧热的测定

实验一燃烧热的测定(4学时)一、实验目的1. 学会智能型燃烧热量热计(SHR-15型)的使用。

2. 测定萘的燃烧热,掌握燃烧热的测定技术和仪器的标定。

3. 了解恒容燃烧热和恒压燃烧热的区别和联系。

4. 学会应用电脑软件处理图解法校正温度的改变值。

二、实验原理燃烧热是指1摩尔物质完全燃烧时的热效应。

由热力学第一定律可知,燃烧时系统的状态发生变化,系统内能往往改变。

在恒容条件下测得的燃烧热称为恒容燃烧热(QV),恒容燃烧热等于系统内能的变化。

△U=Qv(2-1)在恒压条件下测得的燃烧热称为恒压燃烧热(QP),恒压燃烧热等于系统的焓变。

△Qp=△H=△U+p△V(2-2)若以摩尔为单位,把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式:Qp=Qv+△nRT(2-3)这样由反应前后气态物质的量的变化,就可以算出恒压燃烧热。

本实验采用智能型燃烧热量热计测量萘的燃烧热。

测量的基本原理是将一定量的待测物质放在氧弹中充分燃烧,燃烧释放出的热量使其卡计本身及氧弹周围介质(包括氧弹、水、桶、搅拌器等等)的温度升高。

所以测定燃烧前后量热计温度的变化值,就可以算得该样品的燃烧热,关系式如下:(m/M)×Qv=Wr△T-Qd×md(2-4)式中m为待测物质的质量(g),M为待测物质的摩尔质量,Qv为待测物质的摩尔燃烧热,Qd为点火丝的燃烧热(kJ/g),md为点火丝的质量(g),△T为样品燃烧前后量热计温度的变化值,W r为量热计的水当量,它表示量热计(包括介质)每升高一度所需要吸收的热量,量热计的水当量可以通过已知燃烧热的标准物(如苯甲酸,它的恒容燃烧热为26.460 kJ/g)来标定。

已知量热计的水当量后,就可以利用(2-4)式通过实验测定其它物质的燃烧热。

氧弹是一个特制的不锈钢容器。

为了保证样品迅速完全燃烧,氧弹中应充入压力为1.5~2.0 MPa的高压氧气。

为防止充氧时将样品吹散必须在实验前对样品压片。

燃烧热的测定_实验报告

燃烧热的测定_实验报告

一、实验目的1. 理解燃烧热的定义及其在化学反应中的重要性;2. 掌握使用氧弹式量热计测定燃烧热的基本原理和操作方法;3. 学会利用实验数据计算燃烧热,并分析实验误差;4. 熟悉燃烧热测定实验的实验步骤和注意事项。

二、实验原理燃烧热是指1摩尔物质在标准状态下(25℃,101kPa)完全燃烧时所放出的热量。

燃烧热是热化学中的一个重要参数,它反映了化学反应的热效应。

本实验采用氧弹式量热计测定燃烧热,其原理如下:1. 将一定量的待测物质放入氧弹中,充入高压氧气;2. 点燃待测物质,使其在氧弹中完全燃烧;3. 燃烧过程中产生的热量使氧弹内水溶液的温度升高;4. 测量水溶液温度的变化,根据热量守恒定律计算出燃烧热。

三、实验仪器与试剂1. 仪器:氧弹式量热计、天平、温度计、秒表、烧杯、量筒、滴定管等;2. 试剂:待测物质(如苯甲酸、萘等)、去离子水、苯甲酸标准溶液等。

四、实验步骤1. 准备实验仪器,将氧弹式量热计的各个部件连接好;2. 用天平称取一定量的待测物质,放入氧弹中;3. 向氧弹中充入高压氧气,确保待测物质完全被氧气包围;4. 在氧弹中放入适量的去离子水,使水溶液体积与实验要求一致;5. 将氧弹放入量热计,记录初始温度;6. 点燃待测物质,使其在氧弹中完全燃烧;7. 燃烧过程中,用秒表记录燃烧时间;8. 燃烧结束后,记录水溶液的最高温度;9. 重复上述步骤,进行多次实验,取平均值。

五、数据处理与结果分析1. 根据实验数据,计算燃烧热:燃烧热 = (最高温度 - 初始温度)× 量热计热容× 1000 / 待测物质质量2. 分析实验误差,包括系统误差和随机误差;3. 讨论实验结果,与理论值进行比较。

六、实验结果与讨论1. 实验结果:通过多次实验,得到待测物质的燃烧热为XX kJ/mol;2. 结果分析:实验结果表明,待测物质的燃烧热与理论值相符,说明实验方法可靠;3. 误差分析:实验误差主要来源于量热计热容的测定和温度测量的准确性;4. 讨论与展望:燃烧热测定实验对于理解和研究化学反应的热效应具有重要意义,未来可以进一步优化实验方法,提高实验精度。

实验01燃烧热的测定

实验01燃烧热的测定

实验目的
1.通过萘的燃烧热的测定,掌握有关热 化学实验的一般知识和测量技术,了解 氧弹式量热计的原理、构造和使用方法。 2.了解恒压燃烧热与恒容燃烧热的差别 及相关关系。 3.学会应用图解法校正温度的改变值。
实验原理
1mol物质在标准压力下(101.325KPa)完 全燃烧时所放出的热量称为燃烧热。在恒容条 件下测得的燃烧热为恒容燃烧热(QV=内能变化 △U),在恒压条件下测得的燃烧热为恒压燃 烧热(QP=热焓变化△H ),若把参加反应的气 体和反应生成的气体作为理想气体处理,则存 在下列关系式: QP= QV +△nRT
假设环境与量热体系没有热量交换样品完全燃烧所放出的热量全部用于量热体系的温度改变那么的温度改变那么如果测得温度改变值t和量热体系的水当量即量热体系温度升高1时所需的热量就可以计算样品的燃烧热
燃烧热的测定
一、实验目的 三、药品仪器 五、实验记录 二、实验原理 四、实验步骤 六、数据处理
七、结果分析与讨论 八、注意事项 九、思考题
2.根据水的温度,分别确定水的密度ρ 1、ρ
10 温度℃ 密度g/ml 0.9997 16 温度℃ 密度g/ml 0.9990 22 温度℃ 密度g/ml 0.9978 28 温度℃ 密度g/ml 0.9962 11 0.9996 12 0.9995 13 0.9994
2
14 15 0.9993 0.9991
3.装置热量计
(1)用万用电表再次测量氧弹两极是否通路,若电阻在 10Ω左右(如果没有,须放气重装),将氧弹放入量热计 内桶; (2)用容量瓶准确量取已被调好的低于外桶水温0.51.0℃的蒸馏水2500ml,装入量热计内桶; (3)装好搅拌器,将点火装置的电极与氧弹的电极相连; (4)将已调好的贝克曼温度计插入桶内,盖好盖子,总 电源开关打开,开始搅拌; (5)振动点火开关开向振动,计时开始,每隔0.5min读 取贝克曼温度计

实验一 燃烧热的测定

实验一 燃烧热的测定

实验一燃烧热的测定1. 在本实验中,哪些是系统?哪些是环境?系统和环境间有无热交换?这些热交换对实验结果有何影响?如何校正?提示:盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线校正来减小其影响。

2. 固体样品为什么要压成片状?萘和苯甲酸的用量是如何确定的?提示:压成片状有利于样品充分燃烧;萘和苯甲酸的用量太少测定误差较大,量太多不能充分燃烧,可根据氧弹的体积和内部氧的压力确定来样品的最大用量。

3. 试分析样品燃不着、燃不尽的原因有哪些?提示:压片太紧、燃烧丝陷入药片内会造成燃不着;压片太松、氧气不足会造成燃不尽。

4. 试分析测量中影响实验结果的主要因素有哪些? 本实验成功的关键因素是什么?提示:能否保证样品充分燃烧、系统和环境间的热交换是影响本实验结果的主要因素。

本实验成功的关键:药品的量合适,压片松紧合适,雷诺温度校正。

5. 使用氧气钢瓶和氧气减压器时要注意哪些事项?提示:阅读《物理化学实验》教材P217-220实验二凝固点降低法测定相对分子质量1. 什么原因可能造成过冷太甚?若过冷太甚,所测溶液凝固点偏低还是偏高?由此所得萘的相对分子质量偏低还是偏高?说明原因。

答:寒剂温度过低会造成过冷太甚。

若过冷太甚,则所测溶液凝固点偏低。

根据公式和可知由于溶液凝固点偏低,∆T f偏大,由此所得萘的相对分子质量偏低。

2. 寒剂温度过高或过低有什么不好?答:寒剂温度过高一方面不会出现过冷现象,也就不能产生大量细小晶体析出的这个实验现象,会导致实验失败,另一方面会使实验的整个时间延长,不利于实验的顺利完成;而寒剂温度过低则会造成过冷太甚,影响萘的相对分子质量的测定,具体见思考题1答案。

3. 加入溶剂中的溶质量应如何确定?加入量过多或过少将会有何影响?答:溶质的加入量应该根据它在溶剂中的溶解度来确定,因为凝固点降低是稀溶液的依数性,所以应当保证溶质的量既能使溶液的凝固点降低值不是太小,容易测定,又要保证是稀溶液这个前提。

实验一 燃烧热的测定

实验一  燃烧热的测定

实验一 燃烧热的测定(一)、实验目的1.掌握氧弹式量热计使用方法及测量物质燃烧热的技术。

2.测定萘的摩尔燃烧热。

(二)、实验原理燃烧热是指温度为T 时由物质B 与氧进行完全氧化时所放出的热。

所谓完全氧化是指C 全部生成CO 2,H 全部生成H 2O (l ),若有CO 或游离C 产生则说明氧化不完全甚至很不完全。

燃烧热可在恒容或恒压情况下测定。

如在298.15K 和101325P a 下,苯甲酸的恒压燃烧热(摩尔燃烧热)为3326.8kJ ·mol -1。

在实验中用氧弹量热计进行实验时,氧弹放置在装有一定量水的铜水桶中,水桶外是空气隔热层,再外面是温度恒定的水夹套。

样品在体积固定的氧弹中燃烧放出的热、引火丝燃烧放出的热和由氧气中微量的氮气氧化成硝酸的生成热,大部分被水桶中的水吸收;另一部分则被氧弹、水桶、搅拌器及温度计等所吸收。

在量热计与环境没有热交换的情况下,可写出如下的热量平衡式:T C T h W c b q a Q V ∆⋅+∆⋅⋅=+⋅-⋅-总98.5 (1-1)式中:V Q —被测物质的定容热值,单位为J ·g -1;a —被测物质的质量,单位为g ;q —引火丝的热值,单位为J ·g -1(铁丝为-6694J ·g -1); b —烧掉的引火丝质量,单位为g ;5.98—硝酸生成热为-59831 J ·mol -1,当用0.100mol ·L -1N a OH 滴定生成的硝酸时,每毫升碱相当于-5.98J ;c —滴定生成硝酸时耗用0.100mol ·L -1NaOH 的毫升数; W —水桶中水的质量单位g ; h —水的比热容单位J ·g -1·K -1;总C —氧弹、水桶等的总热容单位J ·K -1; T ∆—与环境无热交换时的真实温差。

如在实验时保持水桶中水量一定,把(1—1)式右端常数合并得到下式: T K c b q a Q V ∆⋅=+⋅-⋅-98.5 (1-2) 式中:(总C h W K +⋅=),J ·K -1;称为量热计常数。

燃烧热的测定

燃烧热的测定
燃烧热的测定
目录
• 燃烧热测定简介 • 燃烧热测定原理 • 燃烧热测定实验步骤 • 燃烧热测定实验结果分析 • 燃烧热测定实验注意事项 • 燃烧热测定实验改进与创新
01
燃烧热测定简介
燃烧热定义
燃烧热是指物质在完全燃烧时所释放 出的热量,通常以每摩尔物质燃烧放 出的热量表示。
燃烧热是物质的一种特性,与燃烧物 质的量无关,只与燃烧物质本身有关 。
开始实验
点燃燃料样品,记录 燃烧过过程中 的数据,包括燃烧温 度、冷却水温度等。
实验结束
熄灭火源,拆解设备, 清理现场。
数据处理与分析
数据整理
将实验过程中记录的数据进行整理,包括燃 烧温度、冷却水温度等。
数据计算
根据实验数据计算燃烧热值,利用相关公式 计算热效应和焓变等参数。
技术实施方案
详细阐述技术实施方案,包括技术路线、技术难点和解决方案等方 面,以确保技术创新能够顺利实现。
实验结果拓展应用
燃烧热测定实验的应用领域
燃烧热测定实验在能源、化工、环保等领域具有广泛的应用价值, 拓展实验结果的应用范围能够提高其实用性和社会效益。
拓展应用方向
针对不同领域的需求,提出拓展实验结果应用的方案和方向,如燃 烧效率评估、污染物排放控制等。
实验中应保持冷静,避免因 操作失误导致实验失败或安 全事故。
实验过程中应严格按照操作 规程进行,不得随意更改实 验步骤或操作顺序。
实验结束后应整理实验器材, 清洗实验器具,保持实验室 整洁。
实验环境要求
01
实验室应保持干燥、通风良好, 避免潮湿和阴暗的环境。
02
实验室的温度和湿度应符合实验 要求,如有需要可使用恒温恒湿
05
燃烧热测定实验注意事项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 燃烧热的测定一、实验目的1.用氧弹式量热计测定萘的摩燃烧焓2.明确燃烧焓的定义,了解恒压燃烧热与恒容燃烧热的差别3.了解氧弹式量热计中主要部分的作用,掌握氧弹式热计的实验技术4.学会雷诺图解法,校正温度改变值二、实验原理燃烧焓是指1mol 物质在等温、等压下与氧化瓜时的焓变。

“完全氧化”的意思是化合物中的元素生成较高级的稳定氧化物,如在碳被氧化成CO 2(气),氢被氧化成H 2O (液),硫被氧化成SO 2(气)等。

燃烧焓是热化学中重要的基本数据,因为许多有机化合物的标准摩尔生成焓都可通过盖斯定律由它的标准摩尔燃烧焓及二氧化碳和水的标准摩尔生成焓求得。

通过烯烧的测定,还可以判断工业用燃料的质量等。

由上述燃烧的定义可知,在非体积功为零的情况下,物质的燃烧焓常以物质燃烧时的热效应(燃烧热)来表示,即c m p m H Q ⋅∆=。

因此,测定物质的燃烧焓实际就是测定物质在等湿、等压下的燃烧热。

量热法是热力学实验的一个基本方法。

测定燃烧热可以在等容条件下,也可以在等压条件进行。

等压燃烧热(p Q )与容烯烧热(v Q )之间的关系为:()()p v B Q Q m g v g RT ς=+∆=∆∑ (1)或()pm vm B Q Q v g RT =+∑式中,p m Q ⋅或v m Q ⋅均指摩尔反应热,()B v g ∑为气体物质化学计算数的代码和;ς∆为反应进度增量,p Q 或v Q 则为反应物质的量为ς∆时的反应热,()m g ∆为该反应前后气体物质的物质的量变化,T 为反应的绝对温度。

1. 搅动棒2. 外筒3. 内筒4. 垫脚5. 氧弹6. 传感器7. 点火按键8. 电源开关 9. 搅拌开关 10. 点火输出负极 11. 点火输出正极12. 搅拌指示灯 13. 电源指示灯 14. 点火指示灯测量热效应的仪器称作量热计,本实验用氧弹式量热计测量燃烧热,图1为氧弹示意图。

测量其原理是能量守恒定律,样品完全燃烧放出的能量使量热计本身及其周围介质(本实验用水)温度升高,测量了介质燃烧前后温度的变化,就可以求算该样品的恒容燃烧热。

其关系如:v v Q C T =-∆ (2)上式中负号是指系统放出热量,放热时系统的内能降低,而C V 和∆T 均为正值。

系统除样品燃烧放出热量引起系统温度升高以外,其他因素:燃烧丝的燃烧,氧弹内N 2和O 2化合并溶于水中形成硝酸等都会引起系统温度的变化,因此在计算水当量及发热量时,这引起因素都必须进行校正,其校正值如下:(1)燃烧丝的校正:Cu -Ni 合金丝:-3.138J ·cm -1(2)酸形成的校正:(本实验此因素忽略)。

校正后的关系式为:Q V ·W -3.138L = -K ∆T (3)Q V:样品恒容燃烧热(Jg-1)W:样品的重量(g)L:燃烧丝的长度(cm)K:量热计的水当量量热计数的水当量K一般用纯净甲酸的燃烧来标定,苯甲酸的恒容燃烧热Q V = -26460Jg-1。

为了保证样品燃烧,氧弹中必须充足高压氧气,因此要求氧弹密封,而高压、耐腐蚀,同时,粉末样品必须压成片状,以免充气时冲散样品使燃烧不完全,而引起实验误差,完全燃烧是实验成功的第一步,第二步还必须使燃烧的热量不散失,不与周围环境发生热交换,全部传递给量热计放在一恒温的套壳中,故称环境恒温或外壳恒温量热计。

量热计须高度抛光;也是为了减少辐射。

量热计和套壳中间有一层挡屏,以减少空气的对流,虽然如此,热漏还是无法避免,因此燃烧前后温度变化的测量值必须经营雷诺作图法校正。

其校正方法如下:称适量待测物质,使燃烧后水温升高1.5~2.0℃度,预先调节水湿低于环境湿度0.5~1.0度。

然后将燃烧前后历次观察对时间作图,连成FHID折线,见图2(a),图中H相当于开妈燃烧之点,D为观察到最高的湿度读数点,在环境温度读数点,作一平线JI交折线I,过I点作线垂线ab,然后将FH线和GD线外延交ab于A、C两点。

A点与C点所表示的温度差即为欲求温度和升高T仍然可以按照同法校正,图2(b)。

图2(a)图2(b)三、仪器与试剂GR3500型氧弹式热量计(带控制箱)氧气钢瓶(带减压阀)压片机SWC-II D精密数字温度差仪Cu-Ni合金丝温度计(0~100℃)万用电表托盘天平钢尺容量瓶(2L、1L)萘苯甲酸四、实验步骤测定萘的燃烧焓1.校品压片及燃烧丝的准备用台秤称0.6克左右萘(另取约15cm引火丝在天平上称量后,将引火丝打一圆圈放入压片机内,使压片后引火丝穿过药片),将压片机的垫筒放量在可调底座上,装上模子,并从上面倒入已称好的萘样品,把压棒放入模子中,压下手柄至适当的位置,即可松开。

取出模子和垫筒,把垫筒倒置在底座上,放上模子,放入压棒上,压下手柄至样品掉出。

将样品在分析天平上准确称重,置于燃烧坩埚中待用。

另取燃烧坩埚中待用。

2.充氧气图3将燃烧丝的两端绑牢于氧弹中的两根电极上,并使其中弹簧部分与样品接触,燃烧丝不能与坩埚壁相碰,旋紧氧弹盖,用万用表检查电极是否通路,则旋紧出气阀就可以充氧气(如图3)。

将氧气导管和氧弹的进气管接通,先打开阀门1(逆时针旋开)再渐渐打开阀门2(顺时针旋紧),使表2针指在表压20kg/cm2。

1分钟后关闭阀门2,再关闭阀门1。

松开导气管,此时氧弹中已有约2000P2左右的氧气,可作燃烧之用。

但阀门2到阀门1之间尚有余气,因此要打开减压阀门2以放掉余气,可作燃烧之用。

但阀门2到阀门1之前尚有余气,因此要打开减压阀门2以放掉余气,再关闭阀门2,使钢瓶和表头恢复原状。

3.燃烧和测量温度将充好氧气的氧弹用万用表检查是否通路,若通路则将氧弹放入盛水桶内。

用容量瓶准确量已被调节到低到外筒温度0.5~1.0℃的自来水3000cm3,倒入盛入桶内,并接上控制器上的点火电极,装好搅拌马达,盖上盖子,将温度温差仪的探头插入桶水中,将温国差档打向温差。

将控制器上各线路接好,开动搅拌马达,待温度稳定上升,每隔一分钟读取温度一次,读10个点,按下点火开关,如果指示灯亮,应立即加在电流引发燃烧,如果指示灯根本不亮,或加大电流后指示灯也不熄灭,而且温度也不见迅速上升,则须打开氧弹检查原因,如果指示灯亮后熄掉,温度迅速上升,则表示氧弹内样品已燃料,自按下点火开关后,每隔15秒读一次温度。

待温度升至每分钟上程式小于0.002℃,每隔1分钟读一次温度,再读10个点。

关掉控制开关,取出测量控头,打开外筒盖,取出氧弹,缓缓开氧弹的放气阀门,将气体慢慢放出,放出氧弹头,检查氧弹坩埚内有黑色残渣或未燃尽的样品微粒,说明燃烧不完全,此实验作废。

如未发现这些情况,取下未燃烧完的燃烧丝测其长度,计算实际燃烧丝的长度,将筒内水倒掉,即测好了一个样品。

测定卡计的水量K。

五、数据记录及处理数据记录燃烧丝长度:残丝长度:苯甲酸生:外筒水温: 温差档读数: 基温选择:萘记录格式同上数据处理1.用图解法求出苯甲酸燃烧引起量热计量温度变化的差值1T ∆,并根据(3)式计算水当量K 值。

2.用图解法求出萘燃烧引起量热计温度变化的差值2T ∆,并根据(3)式计算萘的恒容燃烧v Q 。

3.根据v Q 计算萘的摩尔燃烧焓c e H ∆。

实验二 旋光法测定蔗糖转化反应的速率常数一、目的要求1.测定蔗糖转化反应的速率常数和半衰期。

2.了解该反应的反应物浓度与旋光度之间的关系。

3.了解旋光仪的基本原理,掌握旋光仪正确使用方法。

二、基本原理蔗糖在水中转化成葡萄糖和果糖,其反应为:()()果糖葡萄糖蔗糖212661262)(112212O H C O H C O H O H C H +−→−++它是一个二级反应的速率很慢,通常需要H +离子作用下进行。

由于它是一个二级反应时水量存在的,尽管有部分水参加了反应,仍可近似地认为整个反应过程中水的浓度是恒定的;而且H +是催化剂,其浓度也保持不变。

因此蔗糖转化反应可看作一级反应。

一级反应的速率方程可由下式表示kc dtdc =- (1) c 为时间t 时的反应物浓度,k 为反应速率常数。

积分可得:1nc=-kt+1nc 0 (2)C 0为应开始时反应物浓度。

当C=021C 时,时间t 可用t 1/2表示,即为半衰期: t 1/2=KK n 693.021= (3) 从(2)式,不难看出,在不同时间测定反应物的浓度,并以1n C 对t 作图,可得一直线,由直线斜率即可求得反应速率常数k 。

然而反应是不断进行的,要快速分析出反应物的浓度的困难的。

但蔗糖及其转化产物具有旋光性,而且它们的旋光能力不同,故可以利用系统在反应进程中旋光度的变化来度量反应的进程。

测量物质旋光度所用的仪器称为旋光仪。

溶液的旋光度与溶液中可含旋光物质的旋光能力、溶剂性质,样品管长度及温度等均有关系。

当其它条件均固定时,旋光度α与反应物浓度c 呈线性关系,即C βα= (4)式中比例常数β与物质旋光能力、样品管长度、温度等有关。

物质的旋光能力用比旋光度来度量、比旋光度用下式表示:[]AD C ,110020⋅=αα (5) 式中[]20D α右上角的“20”表示实验时温度20℃,D 是指用钠灯光源D 线的波长(即589nm ), α为测得的旋光度[°],1为管长度(dm ),C A 为浓度(g/100ml )。

作为反应物的蔗糖是右旋性物质,其比旋光度[]20D α=66.63°;生成物中葡萄也是左旋性物质,其比旋光度[]20D α=52.5°,但果糖是左旋性物质,基比旋光度[]20D α=-91.9°。

由于生成物中果糖的左旋性比葡萄右旋性大,所以生成物呈现在左旋性质。

因此随着反应的进行,系统的右旋角不断减小,反应至某一瞬间,系统的旋光度可恰好等于零,而后就变成左旋,直至蔗糖完全转化,这时左旋角达到最大值∞α。

设系统最初的旋光度为00C 反βα= (t=0,蔗糖尚未转化) (6)系统最终的旋光度为0C 生βα=∞ (t=∞,蔗糖已转化完全) (7)(6)和(7)中的反β和生β分别为反应物与生成物的比例常数。

当时间为t 时,蔗糖浓度为C ,此时旋光度为α,即)(0C C C t -+=生反ββα (8)由(6)、(7)和(8)联立可解得:()∞∞-=--=ααβββαα000生反C (9) ()∞∞-=--=ααβββααt C 生反00 (10) 将(9)、(10)代入(2)式即得()∞∞-+-=-αααα01)(1n kt n t (11)显然,以)(1∞-ααt n 对t 作图可得一直线,从直线斜率即可求得反应速率常数k 。

三、仪器和试剂旋光仪全套;容量瓶50ml2个,100ml1个,25ml 移液管2支;100ml 锥形瓶3个;50ml 烧杯1个;台秤1套;玻棒1支。

相关文档
最新文档