苏教版八年级上数学好题易错题

合集下载

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题 1.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+ 2.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x = B .||y x = C .1y x = D .412x y = 3.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,84.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直5.下列图案中,不是轴对称图形的是( )A .B .C .D .6.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm7.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x +1,若这两个三角形全等,则x 的值为( )A .2B .2或C .或D .2或或8.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .159.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°10.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38二、填空题11.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.12.点P (﹣5,12)到原点的距离是_____.13.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 14.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.15.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长__________.16.点(−1,3)关于x 轴对称的点的坐标为____.17.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________.18.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.19.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .20.若分式2223x x -+的值为零,则x 的值等于___. 三、解答题21.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.22.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2. 23.(1)计算:()()021320192π-+-+- (2)解方程:2416x =24.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由.(2)求四边形ABCD 的面积.25.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.四、压轴题26.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.27.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点(3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”) (2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.28.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC 2a ,试写出此时BF 的值.29.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).30.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先换算出每项的值,全部保留三位小数,然后观察数轴上P 点的位置,逐项判断即可开.【详解】3≈1.7322≈1.4145 2.2367≈2.646,所以A 项≈1.732,B 项≈2.414,C 项≈1.646,D 项≈3.236观察数轴上P 点的位置,B 项正确.故选B.【点睛】本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.2.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x= ,y 是x 的函数,故正确;D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】 主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.A解析:A【解析】【分析】先判断出OA=OB ,∠OAB=∠ABO ,分两种情况判断出△AOC ≌△ABD ,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB ,∴△OAB 是等边三角形,∴OA=AB ,∠OAB=∠ABO=60°①当点C 在线段OB 上时,如图1,∵△ACD 是等边三角形,∴AC=AD ,∠CAD=60°,∴∠OAC=∠BAD ,在△AOC 和△ABD 中,OA BA OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△ABD ,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.5.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.6.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.7.A解析:A【解析】【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x-2与4是对应边,或3x-2与5是对应边,计算发现,3x-2=5时,2x-1≠4,故3x-2与5不是对应边.【详解】解:∵△ABC三边长分别为3,4,5,△DEF三边长分别为3,3x-2,2x-1,这两个三角形全等,①3x-2=4,解得:x=2,当x=2时,2x+1=5,两个三角形全等.②当3x-2=5,解得:x=,把x=代入2x+1≠4,∴3x-2与5不是对应边,两个三角形不全等.故选A.【点睛】此题主要考查了全等三角形的性质,分类讨论正确得出对应边是解题关键.8.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 9.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.10.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题11.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.12.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.x <1【解析】【分析】当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;解析:x <1【解析】【分析】当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立; 【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为x<1. 考点: 一次函数与一元一次不等式.15.【解析】【分析】设,则,由翻折的性质可知,在Rt△ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt△ADN 中由勾股定理求得AN 的长即可.【详解】解析:89【解析】 【分析】设NC x =,则8DN x ,由翻折的性质可知8EN DN x ==-,在Rt △ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可. 【详解】解:如图所示,连接AN ,设NC x =,则8DNx , 由翻折的性质可知:8EN DN x ==-,在Rt ENC 中, 有222EN EC NC =+,()22284x x -=+,解得:3x =,即5DN cm .在Rt 三角形ADN 中, 22228589AN AD ND , 由翻折的性质可知89FNAN .【点睛】 本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x 的方程是解题的关键.16.(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标变化规律.17.26【解析】【分析】根据题意,令,进而整理得到a ,b 的值即可得解.【详解】根据题意,令整理得:∴,解得:,∴,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的解析:26【解析】【分析】根据题意,令3222()(31)ax bx ax k x x +-=++-,进而整理得到a ,b 的值即可得解.【详解】根据题意,令3222()(31)ax bx ax k x x +-=++-整理得:3232(3)(3)2ax k a x k a x k ax bx +++--=+-∴3302k a b k a k +=⎧⎪-=⎨⎪=⎩,解得:6202a b k =⎧⎪=⎨⎪=⎩,∴26a b +=,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的乘法运算方法及技巧是解决本题的关键. 18.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.19.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2. 故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键. 20.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】 解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.三、解答题21.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.22.原式=2a a -. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a - 当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(12;(2)122,2x x ==-.【解析】 【分析】 (1)先化简绝对值、利用零指数幂法则计算、化简二次根式,最后计算加减法即可得到结果;(2)先变形为24x =,然后利用直接开平方法解方程即可.【详解】解:(1)()()021320192π-+-+- =3112-++=32+(2)2416x =∴24x =∴122,2x x ==-【点睛】此题考查了实数的运算及一元二次方程的解法,熟练掌握运算法则及一元二次方程的解法是解本题的关键.24.(1)∠D 是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC ,先根据勾股定理求得AC 的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD 和△ACB 的面积之和等于四边形ABCD 的面积,进行计算即可.【详解】(1)∠D 是直角.理由如下:连接AC .∵AB =20,BC =15,∠B =90°,∴由勾股定理得AC 2=202+152=625.又∵CD =7,AD =24,∴CD 2+AD 2=625,∴AC 2=CD 2+AD 2,∴∠D =90°.(2)四边形ABCD 的面积=12AD •DC +12AB •BC =12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.25.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.四、压轴题26.(1)①6;②5或﹣3;(2)直线AC 的表达式为:y =﹣x+3或y =x+1;(3)m 的取值范围为﹣3≤m ≤﹣或2m ≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A (1,2)作直线y =﹣1的垂线,垂足为点G ,则AG =3求出正方形AGCH 的边长为3,分两种情况求出直线AC 的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF OD①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF=3OD=3,分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2+3,2)或(2﹣3,2);∴m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣3,2)或(﹣2+3,2);∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)①)3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵32a =, ∴11b b ==-=', ∴坐标为:()3,1,故答案为:()3,1; ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,,把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,,∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2, 当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.28.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,102)a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a==,即可求得BF【详解】(1)①连接AD,如图1.∵点C与点D关于直线l对称,∴AC = AD.∵AB= AC,∴AB= AC = AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE ,∠DCE=60°=∠ACB ,∴∠BCD=∠ACE ,且AC=BC ,CD=CE ,∴△BCD ≌△ACE (SAS )∴BD=AE ,(3)如图3,取AC 的中点O ,连接OB ,OF ,BF , ,F 是以AC 为直径的圆上一点,设AC 中点为O ,∵在△BOF 中,BO+OF≥B F ,当B 、O 、F 三点共线时BF 最长;如图,过点O 作OH ⊥BC ,∵∠BAC=90°,2a , ∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,∴∠COH=∠HCO=45°,∴OH=HC , ∴2OC HC =, ∵点O 是AC 中点,AC 2a ,∴2OC a =, ∴OH HC a ==,∴BH=3a , ∴10BO a =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点, ∴2OF OC a ==,∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.29.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC ,∴∠FHC=∠ACE. ∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC ,即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.30.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一只蚂蚁从点A沿数轴向右直爬行2个单位到达点B,点A表示-2,设点B 所表示的数为m,则1m-+(m+6)的值为 ( )A.3 B.5 C.7 D.92.已知一次函数y=kx+3(k≠0)的图象经过点A,且函数值y随x的增大而增大,则点A 的坐标可能是()A.(﹣2,﹣4)B.(1,2)C.(﹣2,4)D.(2,﹣1)3.7的平方根是()A.±7 B.7 C.-7 D.±74.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 6.下列实数中,无理数是()A.227B.3πC.4-D.3277.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE 的长为()A 3x B.23x C3x D3x8.下列以a、b、c为边的三角形中,是直角三角形的是()A.a=4,b=5,c=6 B.a=5,b=6,c=8C.a=12,b=13,c=5 D.a=1,b=1,c39.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C10.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .212- D .2+12二、填空题11.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.12.一次函数y =2x +b 的图象沿y 轴平移3个单位后得到一次函数y =2x +1的图象,则b 值为_____.13.若点(1,35)P m m +-在x 轴上,则m 的值为________.14.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____.15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.16.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.17.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.18. 在实数范围内分解因式35x x -=___________.19.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.20.如图,点 P 是∠AOB 内一点,PE ⊥OA ,PF ⊥OB ,垂足分别为 E 、F ,若 PE =PF ,且∠OPF =72°,则∠AOB 的度数为__________.三、解答题21.(1)计算:03( 3.14)98|3|π--++-(2)求x 的值:228x =.22.如图,等边三角形ABC 的边长为8,点E 是边BC 上一动点(不与点,B C 重合),以BE 为边在BC 的下方作等边三角形BDE ,连接,AE CD .(1)在运动的过程中,AE 与CD 有何数量关系?请说明理由.(2)当BE=4时,求BDC ∠的度数.23.已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.24.如图,△ABC 中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =25.已知:如图,,12AB DC =∠=∠,求证 :EBC ECB ∠=∠.四、压轴题26.阅读并填空: 如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________) 在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =27.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S 最大值.28.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0). ①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)29.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.30.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得2+2∴0<m <1,∴|m-1|+(m+6)=1-m+m+6=7,故选C .【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m 的值,确定m 的范2.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】∵(±7)2=7,∴7的平方根是±7.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.B解析:B【解析】【分析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.5.B【解析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.6.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.7.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE , ∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.8.C解析:C【解析】【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可.【详解】解:A 、因为42+52=41≠62,所以以a 、b 、c 为边的三角形不是直角三角形;B 、因为52+62≠82,所以以a 、b 、c 为边的三角形不是直角三角形;C 、因为122+52=132,所以以a 、b 、c 为边的三角形是直角三角形;D 、因为12+12≠)2,所以以a 、b 、c 为边的三角形不是直角三角形;故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.9.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A 、利用SAS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.10.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a=1,b﹣1,∵2<4<3∴c=2,d=4﹣2=2.∴b+d=1,ac=2.∴b dac+=12.故选:A.【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键.二、填空题11.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120︒【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.12.﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1解析:﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1.∴b±3=1,解得:b=﹣2或4.故答案为:﹣2或4.【点睛】本题考查了直线的平移,属于基本题型,熟练掌握直线的平移规律是解答的关键.13.【解析】【分析】根据x轴上点的纵坐标为0列方程求解即可.【详解】∵点在x轴上,∴3m−5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】 本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.14.<m <2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (m ﹣2,2m ﹣1)在第二象限,∴,解不等式①得,m <2,解不等式 解析:12<m <2. 【解析】【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (m ﹣2,2m ﹣1)在第二象限,∴20210m m -<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).15.70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC解析:70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.16.(-1,0)【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).17.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.18.【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为解析:(x x x -【解析】提取公因式后利用平方差公式分解因式即可,即原式=2(5)(x x x x x -=-.故答案为(.x x x19.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a>b .故答案为a >b .【点睛】本题考查一次函数图象上点的坐标特征解析:a >b【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为a >b .【点睛】本题考查一次函数图象上点的坐标特征.20.36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE =PF∴OP 是∠AOB 的平分线,∠OEP=90°, ∴∠AOP=∠AOB,解析:36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE ⊥OA ,PF ⊥OB ,PE =PF∴OP 是∠AOB 的平分线,∠OEP=90°, ∴∠AOP=12∠AOB, ∵∠AOP=90°-∠OPE ,∠OPE=72°,∴∠AOP=18°, ∴∠AOB=2∠AOP=36°故答案为36°.【点睛】本题考查了角平分线的判定与直角三角形的性质,关键是熟练掌握角平分线的判定. 三、解答题21.(1)3;(2)2x =±【解析】【分析】(1)先根据零指数幂、算术平方根、立方根、绝对值的意义逐项化简,再算加减即可; (2)根据平方根的意义求解即可.【详解】解:(1)原式1323=-++3=;(2)∵228x =,∴24x =,∴2x =±.【点睛】本题考查了实数的混合运算,熟练掌握零指数幂、算术平方根、立方根、绝对值的意义是解答本题的关键.22.(1)AE=CD ,理由见解析;(2)90°【解析】【分析】(1)如图,证明△ABE ≌△CBD ,即可解决问题.(2)证明AE ⊥BC ,证明∠BDC=∠AEB ,即可解决问题.【详解】解:(1)AE=CD ;理由如下:∵△ABC 和△BDE 等边三角形∴AB=BC ,BE=BD ,∠ABC=∠EBD=60°;在△ABE 与△CBD 中,AB BC ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBD (SAS ),∴AE=CD .(2)∵BE=4,BC=8∴E 为BC 的中点;又∵等边三角形△ABC ,∴AE ⊥BC ;由(1)知△ABE ≌△CBD ,∴∠BDC=∠AEB=90°.【点睛】本题考查全等三角形的判定及其性质的应用问题;解题关键是观察图形,准确找出图形中隐含的等量关系、全等关系.23.(1)y=2x-4;(2)-6<y <0.【解析】【分析】(1)设y=k (x-2),把x=1,y=-2代入求出k 值即可;(2)把x=-1,x=2代入解析式求出相应的y 值,然后根据函数的增减性解答即可.【详解】解:(1)因为y 与x-2成正比例,可得:y=k (x-2),把x=1,y=-2代入y=k (x-2),得k (1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y 随x 的增大而增大,∴当-1<x <2时,y 的范围为-6<y <0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.24.见解析.【解析】【分析】根据等边对等角的性质可得∠ADC=∠AEB ,然后利用“角角边”证明△ABE 和△ACD 全等,然后根据全等三角形对应边相等即可证明.【详解】证明:∵AD=AE ,∴∠ADC=∠AEB (等边对等角),∵在△ABE 和△ACD 中,ABC ACB AEB ADC AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.25.见解析【解析】【分析】利用“角角边”证明△ABE 和△DCE 全等,根据全等三角形对应边相等可得BE=CE ,然后利用等边对等角证明即可.【详解】证明:在△ABE 和△DCE 中,12AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE=CE ,∴∠EBC=∠ECB .【点睛】本题考查了全等三角形的判定与性质,等边对等角的性质,熟练掌握三角形全等的判定方法是解题的关键.四、压轴题26.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE△≌△,写出证明过程和依据即可.【详解】解:过点E作//EF AC交BC于F,∴ACB EFB∠=∠(两直线平行,同位角相等),∴D OEF∠=∠(两直线平行,内错角相等),在OCD与OFE△中()()()COD FOEOD OED OEF⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证,∴OCD OFE△≌△,(ASA)∴CD FE=(全等三角形对应边相等)∵AB AC=(已知)∴ACB B=∠∠(等边对等角)∴EFB B∠=∠(等量代换)∴BE FE=(等角对等边)∴CD BE=;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.27.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS≅△△,根据全等三角形的性质得到BD CE=;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.28.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2)12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.29.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.30.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中,EDF DCADFE CADDE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1) 2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0< 3.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .36B .33C .6D .34.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .455.满足下列条件的△ABC ,不是直角三角形的是( )A .a :b :3c =:4:5B .A ∠:B ∠:9C ∠=:12:15 C .C A B ∠=∠-∠D .222b a c -= 6.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥- 7.如图,∠AOB=60°,点P 是∠AOB 内的定点且3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .38.下列图案中,属于轴对称图形的是( )A .B .C .D .9.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--10.下列计算正确的是( )A .5151++-=25B .512+﹣51-=2C .5151+-⨯=1D .5151--⨯=3﹣25 二、填空题 11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316000米.将数据316000用四舍五入法精确到万位,并用科学记数法表示为____________.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.13.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 14.如图,已知等腰三角形ABC ,AB =AC ,若以点B 为圆心,BC 长为半径画弧,分别与腰AB ,AC 交于点D ,E .给出下列结论:正确的结论有:_____(把你认为正确的结论的序号都填上).①AE =BE ;②AD =DE ;③∠EBC =∠A ;④∠BED =∠C .15.比较大小:10_____3.(填“>”、“=”或“<”)16.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;17.若正实数,m n 满足等式222(1)(1)(1)m n m n +-=-+-,则m n ⋅=__________.18.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.19.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.20.如图,点 P 是∠AOB 内一点,PE ⊥OA ,PF ⊥OB ,垂足分别为 E 、F ,若 PE =PF ,且∠OPF =72°,则∠AOB 的度数为__________.三、解答题21.小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离(km)y 与小丽的行驶时间(h)x 之间的函数关系.请你根据图像进行探究:(1)小丽的速度是______km/h ,小明的速度是_________km/h ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若两人相距20km ,试求小丽的行驶时间?22.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -(1)作出三角形ABC 关于y 轴对称的三角形111A B C(2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .23.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.24.如图,ABC ∆中, 90ACB ∠=︒, 10AB cm =,6BC cm =,若点P 从点A 出发以每秒1cm 的速度向点C 运动,设运动时间为t 秒(0)t >.(1)若点P 恰好在ABC ∠的角平分线上,求出此时t 的值;(2)若点P 使得PB PC AC +=时,求出此时t 的值.25.在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△111A B C ,使它与△ABC 关于y 轴对称;(2)点A 的对称点1A 的坐标为 ;(3)求△111A B C 的面积. 四、压轴题26.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --+-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).27.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图2所示.P为线段AB上的一动点(不与A、B重合),连接OP、PE平分OPB∠,2BCE ECD∠=∠.求证:3()BCD CEP OPE∠=∠-∠.29.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.30.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点(1,1)A ,点(3,2)C 建立平面直角坐标系,再结合图形即可确定出点B 的坐标.【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.2.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.3.D解析:D【解析】分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC ,NP=ND ,3∠BOP=∠BOD ,∠AOP=∠AOC ,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可.详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC ,NP=ND ,3∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.4.B解析:B【解析】【分析】易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD=∠DBC.又∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BE=DE.设BE=DE=x,∴AE=12﹣x.∵四边形ABCD是矩形,∴∠A=90°,∴AE2+AB2=BE2,即(12﹣x)2+62=x2,x=7.5,∴S△EDB=12×7.5×6=22.5.故选B.【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE的长是解决本题的关键.5.B解析:B【解析】分析:根据三角形的内角和定理及勾股定理的逆定理进行分析,进而得到答案.详解:A.设三边分别为3k ,4k ,5k ,因为(3k)2+(4k )2=(5k )2,所以是直角三角形;B.因为∠C=0015180909+12+15⨯<,所以不是直角三角形; C. ∠C=∠A ﹣∠B ,即∠B+∠C=∠A ,故∠A=090,所以是直角三角形;D.因为b 2﹣a 2=c 2,所以c 2+a 2= b 2,所以是直角三角形.故答案为B.点睛:此题考查勾股定理的逆定理的应用.判断三角形是不是直角三角形,已知三角形的三边的长,只要利用勾股定理的逆定理加以判断即可.6.A解析:A【解析】【分析】令点P 的横坐标小于0,列不等式求解即可.【详解】解:∵点P P (1+m ,3)在第二象限,∴1+m <0,解得: m <-1.故选:A .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.D解析:D【解析】分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC ,NP=ND ,∠BOP=∠BOD ,∠AOP=∠AOC ,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可.详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC ,NP=ND ,∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+MC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°, ∴此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.8.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项不是轴对称图形,故本选项不符合题意;D选项是轴对称图形,故本选项符合题意;故选D.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.9.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.上下平移时只需让b的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.故选:D.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k 的值不变,只有b 发生变化.10.C解析:C【解析】【分析】利用二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A ==A 选项错误;B 212==,所以B 选项错误; C 1515114--==,所以C 选项正确;D 、151-=,所以D 选项错误. 故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题11.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于解析:53.210⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.316000≈320000=3.2×105.故答案为:3.2×105.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.12.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.13..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围..解析:x2试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.14.③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=B解析:③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=BC,∴∠ACB=∠BEC,∠BDE=∠BED,∴∠BEC=∠ABC=∠ACB,∴∠EBC=∠A,无法得到①AE=BE;②AD=DE;④∠BED=∠C.故答案为:③.【点睛】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.15.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.16.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 17.【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得的值.【详解】∵∴∴∴,故答案为:.【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的 解析:12【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得m n ⋅的值.【详解】∵2222(1)()2()12221m n m n m n m mn n m n +-=+-++=++--+2222(1)(1)2121m n m m n n -+-=-++-+∴222222212121m mn n m n m m n n ++--+=-++-+∴21mn = ∴12mn =, 故答案为:12. 【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的化简是解决本题的关键. 18.−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y 、y 的值都大于0的x 的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y 1>0,当x<2时,y 2>0,∴使y 1、y 2的值都大于0的x 的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于019.【解析】【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点,连接交y轴于点C,点C解析:513+【解析】【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点'⊥轴于E,由勾股定理求出A B',即可得出结C,点C即为使AC+BC最小的点,作A E x果.【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB222+3=13要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,点C即为使AC+BC最小的点,'⊥轴于E,作A E x由对称的性质得:AC=A C',则AC+BC=A B',A E'=3,OE=1,∴BE=4,由勾股定理得:A B'22+=,345∴△ABC13+5.13+5.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.20.36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE =PF∴O P 是∠AOB 的平分线,∠OEP=90°, ∴∠AOP=∠AOB,解析:36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE ⊥OA ,PF ⊥OB ,PE =PF∴OP 是∠AOB 的平分线,∠OEP=90°, ∴∠AOP=12∠AOB, ∵∠AOP=90°-∠OPE ,∠OPE=72°,∴∠AOP=18°, ∴∠AOB=2∠AOP=36°故答案为36°.【点睛】本题考查了角平分线的判定与直角三角形的性质,关键是熟练掌握角平分线的判定. 三、解答题21.(1)10;20;(2)3030y x =-(1 1.5)x ≤≤;(3)13小时或2小时 【解析】【分析】(1)根据题意和函数图象中的数据可以分别求得小丽和小明的速度;(2)根据(1)中的结果和图象中的数据可以求得点C 的坐标,从而可以解答本题 (3)根据题意分情况讨论即可求解.【详解】(1)从AB 可以看出:两人从相距30千米的两地相遇用了1个小时时间,则30V V +=小丽小明千米/时,小丽用了3个小时走完了30千米的全程,∴10V =小丽千米/时,∴20V =小明千米/时;故答案为:10;20;(2)C 点的意义是小明骑车从乙地到甲地用了3020 1.5÷=小时,此时小丽和小明的距离是()1.513015-⨯=∴C 点坐标是(1.5,15).设BC 对应的函数表达式为y kx b =+,则将点()10B ,,()1.5,15C 分别代入表达式得01.515k b k b +=⎧⎨+=⎩, 解得:3030k b =⎧⎨=-⎩, ∴BC 解析式为3030y x =-,(1 1.5)x ≤≤(3)①当两人相遇前:1(3020)(2010)3-÷+=(小时); ②当两人相遇后:1.55102+÷=(小时).答:小丽出发13小时或2小时时,两人相距20公里. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析②20.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.23.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.24.(1) 5秒 (2)254秒 【解析】【分析】(1) 作PD ⊥AB 于D ,依据题意求出ADP △∽ ACB △,设AP 为x ,用x 表示PC ,求出x 即可.(2)当P 在AC 上时,作PD ⊥AB 于D ,由题意可得△ABP 为等腰三角形PD 也是中线,求出AD ,根据ADP △∽ACB △,求出AP 即可求出时间t.【详解】(1)如图,作PD ⊥AB 于D ,∵点P 恰好在ABC ∠的角平分线上∴PC=PD∵A A ∠=∠ADP ACB ∠=∠∴ADP △∽ ACB △∴PD BC AP AB= ∵ 10AB cm = 6BC cm = ∴63105PC PD BC AP AP AB ==== 设AP 为x ,PC=35x 根据勾股定理得到 2222AC AB BC 1068=-=-=385AC AP PC x x =+=+= 解得:x=5∴AP=5∴t 51==5 秒 答:若点P 恰好在ABC ∠的角平分线上,t 为5秒.(2)作PD ⊥AB 于D ,∵ PB+PC=AC∴ PA=PB∴AD=BD=5∵∠A=∠A ∠ADP=∠ACB∴ADP △∽ACB △∴AD AC AP AB= ∵ 10AB cm =, 6BC cm = ∴254AP =∴t=254秒 答:t 为254秒. 【点睛】 此题主要考查了角平分线的性质、等腰三角形的性质,勾股定理及相似三角形,熟记概念是解题的关键,重点是分类讨论.25.(1)见解析;(2)(-3,5);(3)7.【解析】【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再顺次连接可得;(2)根据所作图形可得A 1点的坐标;(3)根据割补法求解可得△111A B C 的面积等于矩形的面积减去三个三角形的面积.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)由图知A 1的坐标为(-3,5);故答案是:(-3,5);(3)△111A B C 的面积为4×4-12×2×3-12×1×4-12×2×4=7. 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键. 四、压轴题26.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析 【解析】【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵222110a b a b --++-=,∴220,2110a b a b --=+-=, ∴2202110a b a b --=⎧⎨+-=⎩, ∴34a b =⎧⎨=⎩, ∴A (0,3),B (4,0);(2)如图1中,设直线CD 交y 轴于E .∵CD//AB ,∴S △ACB =S △ABE ,∴12AE×BO=16, ∴12×AE×4=16, ∴AE=8,∴E (0,-5),设直线AB 的解析式为y=kx+b ,将点A (0,3),(4,0)代入解析式中得:343k b ⎧=-⎪⎨⎪=⎩ , ∴直线AB 的解析式为y=334x -+, ∵AB//CD ,∴直线CD 的解析式为y=34x c -+, 又∵点E (0,-5)在直线CD 上,∴c=5,即直线CD 的解析式为y=354x --, 又∵点C (-3,m )在直线CD 上, ∴m=115, ∴C (-3,115), ∵点A (0,3)平移后的对应点为C (-3,115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M ,∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.27.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.28.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0,|21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =,解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.29.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.30.(1)P(﹣1,﹣1);(2)32;(3)T(1,0)或(﹣2,0).【解析】【分析】(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+12|,所以|x+12|=32,解得即可.【详解】解:(1)由212y xy x=+⎧⎨=--⎩,解得11xy=-⎧⎨=-⎩,所以P(﹣1,﹣1);(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),则S△APB=12×(1+2)×1=32;(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣12,∴C(﹣12,0),设T(x,0),∴CT=|x+12 |,∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=12•|x+12|•(1+1)=|x+12|,∴|x+12|=32,解得x=1或﹣2,∴T(1,0)或(﹣2,0).【点睛】本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .322.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m 3.点(3,2)A -关于y 轴对称的点的坐标为( ) A .(3,2)B .(3,2)-C .(3,2)--D .(2,3)- 4.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .6.在平面直角坐标系中,把直线23y x =-沿y 轴向上平移2个单位后,所得直线的函数表达式为( )A .22y x =+B .25y x =-C .21y x =+D .21y x =-7.4 的算术平方根是( ) A .16 B .2 C .-2D .2± 8.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)9.若关于x 的分式方程211x a x -=+的解为负数,则字母a 的取值范围为( ) A .a ≥﹣1 B .a ≤﹣1且a ≠﹣2C .a >﹣1D .a <﹣1且a ≠﹣2 10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.12.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.13.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.14.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___.15.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b =+⎧⎨=+⎩的解为____. 16.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.17.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________.18.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.19.若点P (3m ﹣1,2+m )关于原点的对称点P ′在第四象限的取值范围是_____.20.一次函数y =2x -4的图像与x 轴的交点坐标为_______.三、解答题21.先化简,再求值:35(2)362x x x x -÷+---,其中53x =- 22.如图,在平面直角坐标系中,长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,D 是BC 的中点,动点P 从O 点出发,以每秒1个单位长度的速度,沿着O A B D →→→运动,设点P 运动的时间为t 秒(013t <<).(1)点D 的坐标是______;(2)当点P 在AB 上运动时,点P 的坐标是______(用t 表示);(3)求POD 的面积S 与t 之间的函数表达式,并写出对应自变量t 的取值范围.23.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距 km ,轿车比货车晚出发 h ;(2)求线段CD 所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=6,求△ADE的周长.(2)若∠DAE=60°,求∠BAC的度数.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O﹣A﹣B﹣C﹣D(实线)表示甲,折线O﹣E﹣F﹣G(虚线)表示乙)(1)甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.四、压轴题AB=,26.如图,已知四边形ABCO是矩形,点A,C分别在y轴,x轴上,4BC=.3(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.27.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.28.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E .求证:△BEC ≌△CDA .(模型应用)应用1:如图②,在四边形ABCD 中,∠ADC =90°,AD =6,CD =8,BC =10,AB 2=200.求线段BD 的长.应用2:如图 ③,在平面直角坐标系中,纸片△OPQ 为等腰直角三角形,QO =QP ,P (4,m ),点Q 始终在直线OP 的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.29.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】222,11∴点A2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:22+,34∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.3.A解析:A【解析】【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,A-关于y轴对称的点为(3,2).∴点(3,2)故选:A【点睛】本题考查了坐标系中的轴对称,掌握坐标系中的轴对称的特点是解题的关键.在平面直角坐标系中,关于x轴对称的点,横坐标相同,纵坐标互为相反数,关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.D解析:D【解析】试题分析:根据a>0,b<0和第四象限内的坐标符号特点可确定p在第四象限.∵a>0,b<0,∴点P(a,b)在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.6.D解析:D【解析】【分析】根据平移法则“上加下减”可得出平移后的解析式.【详解】解:直线23y x =-沿y 轴向上平移2个单位后的解析式为:y=2x-3+2,即y=2x-1. 故选:D .【点睛】本题考查一次函数图象平移问题,掌握平移法则“左加右减,上加下减”是解决此题的关键.7.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42=,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.8.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A 、(1,2)在第一象限,故本选项错误;B 、(﹣1,2)在第二象限,故本选项错误;C 、(1,﹣2)在第四象限,故本选项正确;D 、(﹣1,﹣2)在第三象限,故本选项错误.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,故选:D .【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.10.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.12.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC ,∴AC=OC ,由勾股定理得:2AC 2=OA 2=4,∴,由三角形的面积公式得:AC×OC=OA×CD ,=2CD ,∴CD=1,∴OD=CD=1,∴B (-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B 和C 重合时,线段AB 最短,题目比较典型,主要培养了学生的理解能力和计算能力.13.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).14.k <1.【解析】【分析】一次函数y=kx+b ,当k <0时,y 随x 的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y 随x 的增大而减小,∴k-1<0,解得k解析:k <1.【解析】【分析】一次函数y=kx+b ,当k <0时,y 随x 的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y 随x 的增大而减小,∴k-1<0,解得k <1,故答案是:k <1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b ,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.15..【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数与的图象的交点的坐标为(−1,2),∴方程组的解是.【点睛】本题考查了一次函数和二元一次方程(组)解析:12x y =-⎧⎨=⎩. 【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),∴方程组32y kx y x b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.16.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.17.【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,∴10k ->,∴1k >;故答案为:1k >.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.18.130°或90°.【解析】分析:根据题意可以求得∠B 和∠C 的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=40°解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.19.﹣2<m<【解析】【分析】直接利用关于原点对称点的性质得出P′(﹣3m+1,﹣2﹣m),进而得出不等式组答案.【详解】∵点P(3m﹣1,2+m)关于原点的对称点P′(﹣3m+1,﹣2﹣m)解析:﹣2<m<1 3【解析】【分析】直接利用关于原点对称点的性质得出P′(﹣3m+1,﹣2﹣m),进而得出不等式组答案.【详解】∵点P(3m﹣1,2+m)关于原点的对称点P′(﹣3m+1,﹣2﹣m)在第四象限,∴310 20mm-+>⎧⎨--<⎩,解得:﹣2<m<13,故答案为:﹣2<m<1 3 .【点睛】此题主要考查根据对称性和象限的性质求点坐标参数的取值范围,熟练掌握,即可解题. 20.(2,0)【解析】【分析】把y=0代入y=2x+4求出x 的值,即可得出答案.【详解】把y=0代入y=2x -4得:0=2x -4,x=2,即一次函数y=2x -4与x 轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x 的值,即可得出答案.【详解】把y=0代入y=2x -4得:0=2x -4,x=2,即一次函数y=2x -4与x 轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x 轴的交点的纵坐标是0.三、解答题21.()133x +,15【解析】【分析】先根据分式混合运算法则进行化简,再代入已知值求值.【详解】 解:35(2)362x x x x -÷+--- =()2345()3222x x x x x --÷---- =()239322x x x x --÷-- =()()()323233x x x x x --⨯-+- =()133x +当53x =-时,原式=()515353533==-+ 【点睛】考核知识点:二次根式化简求值.先根据分式性质进行化简是关键.22.(1)(3,4);(2)(6,t -6)(3)()()()20632161022621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩【解析】【分析】(1)根据长方形的性质和A 、B 的坐标,即可求出OA=BC=6,OC=AB=4,再根据中点的定义即可求出点D 的坐标;(2)画出图形,易知:点P 的横坐标为6,然后根据路程=速度×时间,即可求出点P 的运动路程,从而求出AP 的长,即可得出点P 的坐标;(3)分别求出点P 到达A 、B 、D 三点所需时间,然后根据点P 运动到OA 、AB 、BD 分类讨论,并写出t 对应的取值范围,然后画出图形,利用面积公式即可求出各种情况下S 与t 之间的函数表达式.【详解】解:(1)∵长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,∴OA=BC=6,OC=AB=4,BA ⊥x 轴,BC ⊥y 轴∵D 是BC 的中点,∴CD=BD=12BC=3 ∴点D 的坐标为(3,4)故答案为:(3,4);(2)当点P 在AB 上运动时,如下图所示易知:点P 的横坐标为6,∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t∴点P 运动的路程OA +AP=t∴AP=t -6∴点P 的坐标为(6,t -6)故答案为:(6,t -6);(3)根据点P 的速度可知:点P 到达A 点所需时间为OA ÷1=6s点P 到达B 点所需时间为(OA+AB )÷1=10s点P 到达D 点所需时间为(OA+AB+BD )÷1=13s①当点P 在OA 上运动时,此时06t <≤,过点D 作DE ⊥x 轴于E∴DE=4∵动点P 从O 点出发,以每秒1个单位长度的速度,∴OP=t∴122S OP DE t =•=; ②当点P 在AB 上运动时,此时610t <≤,由(2)知AP=t -6∴BP=AB -AP=10-t∴OCD OAP BDP OABC S S S S S =---△△△长方形=111222OA AB OC CD OA AP BD BP •-•-•-• =()()111644366310222t t ⨯-⨯⨯-⨯⨯--⨯⨯- =3212t -+; ③当点P 在BD 上运动时,此时1013t <<,∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t∴点P 运动的路程OA +AB +BP=t∴BP=t -OA -AB=t -10∴DP=BD -BP=13-t12S OC DP =• =()14132t ⨯- =262t - 综上所述:()()()20632161022621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩【点睛】此题考查的是平面直角坐标系与长方形中的动点问题,掌握行程问题公式:路程=速度×时间、数形结合的数学思想和分类讨论的数学思想是解决此题的关键.23.(1)300;1.2 (2)y =110x ﹣195 (3)3.9;234千米【解析】【分析】(1)由图象可求解;(2)利用待定系数法求解析式;(3)求出OA 解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km ,轿车比货车晚出发1.2小时; 故答案为:300;1.2;(2)设线段CD 所在直线的函数表达式为:y =kx +b ,由题意可得:300=4.580 2.5k b k b +⎧⎨=+⎩解得:110195k b =⎧⎨=-⎩∴线段CD 所在直线的函数表达式为:y =110x ﹣195;(3)设OA 解析式为:y =mx ,由题意可得:300=5m ,∴m =60,∴OA 解析式为:y =60x ,∴60110195y x y x =⎧⎨=-⎩∴3.9234 xy=⎧⎨=⎩答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.24.(1)6;(2)120°【解析】【分析】(1)根据线段垂直平分线性质得出AD=BD,CE=AE,求出△ADE的周长=BC,即可得出答案;(2)由∠DAE=60°,即可得∠ADE+∠AED=120°,又由DA=DB,EA=EC,即可求得∠BAC 的度数.【详解】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于D、E,∴DB=DA,EA=EC,又BC=6,∴△ADE的周长=AD+DE+EA=BD+DE+EC=BC=6,(2)∵∠DAE=60°,∴∠ADE+∠AED=120°∵DB=DA,EA=EC,∴∠B=∠BAD,∠C=∠CAE∴∠ADE=∠B+∠BAD=2∠B,∠AED=∠C+∠CAE=2∠C∴2∠B+2∠C=120°∴∠B+∠C=60°∴∠BAC=180°﹣(∠B+∠C)=120°【点睛】本题考查的知识点是线段垂直平分线的性质,熟记性质内容是解此题的关键.25.(1)1小时,30千米/时;(2)y=24x﹣24(1≤x≤3.5);(3)x=17 3 27【解析】【分析】(1)根据题意结合图象解答即可;(2)求出乙的速度,再利用待定系数法解答即可;(3)根据(2)的结论列方程解答即可.【详解】(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),故答案为:1;30.(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),60÷24=2.5(小时),设乙从P 地到Q 地骑车过程中(即线段EF )距P 地的路程y (千米)与时间x (时)的函数关系式为y =24x +b ,则24+b =0,解得b =﹣24.∴乙从P 地到Q 地骑车过程中(即线段EF )距P 地的路程y (千米)与时间x (时)的函数关系式为y =24x ﹣24(1≤x ≤3.5).(3)根据题意得,30(x ﹣4)+(24x ﹣24)=60﹣8,解得x =17327. 答:乙两人相遇前,当时间x =17327时,甲,乙两骑手相距8千米. 【点睛】此题考查了一次函数与一元一次方程的综合运用,熟练掌握,即可解题.四、压轴题26.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩,所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.27.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E作//EF CD,交y轴于点F,如图所示,则ECD CEF∠=∠,2BCE ECD∠=∠,33BCD ECD CEF∴∠=∠=∠,过点O作//OG AB,交PE于点G,如图所示,则OGP BPE∠=∠,PE平分OPB∠,OPE BPE∴∠=∠,OGP OPE∴∠=∠,由平移得//CD AB,//OG FE∴,FEP OGP∴∠=∠,FEP OPE∴∠=∠,CEP CEF FEP∠=∠+∠,CEP CEF OPE∴∠=∠+∠,CEF CEP OPE∴∠=∠-∠,3()BCD CEP OPE∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.28.模型建立:见解析;应用1:652:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(4,2),∴M(2,1),设直线Q M 的函数表达式为:y =kx+b ,把Q (1,3),M(2,1),代入上式得:213k b k b +=⎧⎨+=⎩,解得:25k b =-⎧⎨=⎩∴直线l 的函数表达式为:y =﹣2x +5,∴该直线l 与x 轴的交点坐标为(52,0); (2)∵△OKQ ≌△QHP ,∴QK =PH ,OK =HQ ,设Q (x ,y ),∴KQ =x ,OK =HQ =y ,∴x +y =KQ +HQ =4,∴y =﹣x +4,∴无论m 取何值,点Q 总在某条确定的直线上,这条直线的解析式为:y =﹣x +4, 故答案为:y =﹣x +4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.29.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°, 在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .92.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)3.7的平方根是( ) A .±7 B .7 C .-7D .7 4.由四舍五入得到的近似数48.0110⨯,精确到( )A .万位B .百位C .百分位D .个位5.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A .0条B .1条C .2条D .3条6.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 7.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是()A .B .C .D .8.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .159.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg 10.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)- 二、填空题11.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.12.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.13.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.14.计算222m m m+--的结果是___________ 15.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 16.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.17.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.18.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y19.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题21.(本题满分10分) 如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求△AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,△ABP 的面积是92,求点P 的坐标. 22.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.23.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等. (1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?24.如图,M 、N 两个村庄落在落在两条相交公路AO 、BO 内部,这两条公路的交点是O ,现在要建立一所中学C ,要求它到两个村庄的距离相等,到两条公路的距离也相等.试利用尺规找出中学的位置(保留作图痕迹,不写作法).25.如图,在平面直角坐标系中,已知A (4,0)、B (0,3).(1)求AB 的长为____.(2)在坐标轴上是否存在点P ,使△ABP 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.四、压轴题26.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S 最大值.27.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.28.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.29.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.2.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D .【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.B解析:B【解析】【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案.【详解】解:∵48.0110⨯=80100,数字1在百位上,∴ 近似数48.0110⨯精确到百位,故选 B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.5.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC ,作AD ⊥BC ,根据勾股定理求出AD ,BD ,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD ⊥BC ,根据勾股定理可得:AC 2-CD 2=AB 2-BD 2所以设CD=x,则BD=7-x所以52-x 2=(2-(7-x )2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC 中3==所以AD=BD=3所以三角形ABD 是帅气等腰三角形 假如从点C 或B 作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.6.A解析:A【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程. 7.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.8.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 9.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.10.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.二、填空题11.【解析】【分析】计算出当P 在直线上时a 的值,再计算出当P 在直线上时a 的值,即可得答案.【详解】解:当P 在直线上时,,当P 在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与解析:0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.12.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC 是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC 是等边三角形是解题的关键.13.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.14.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 15.60【解析】【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.16.【解析】【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】由数轴可得:0<a <2,则a+=a+=a+(2﹣a )=2.故答案为2.【点睛】本题主要考查了解析:【解析】【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】由数轴可得:0<a <2,则2a 4a 4-+22a -()(2﹣a )=2. 故答案为2.【点睛】本题主要考查了二次根式的性质与化简,正确得出a 的取值范围是解题的关键. 17.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100︒∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.18.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.19.(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向右平移2个单位,再向上平移3个单位,∴点B′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.20.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题21.(1)94 ;(2)P(1.5,0) 或 (-4.5,0) 【解析】【分析】(1)分别求直线与x,y 轴交点坐标,再求面积.(2)利用面积,可求得P 点距离A 点的距离,求出P 点坐标.【详解】(1) 由x=0得:y=3,即:B (0,3).由y=0得:2x+3=0,解得:32x =-∴OA =32,OB =3 . ∴△AOB 的面积:1393224⨯⨯=. (2) ∵△ABP 的面积是92, OB =3 3922AP ∴= ∴AP =3∴P (1.5,0) 或 (-4.5,0)【点睛】本题考查了一次函数图象上点的坐标特征.22.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.23.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【解析】【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得: 312042009x x=-, 解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.作图见解析.【解析】【分析】先连接MN ,根据线段垂直平分线的性质作出线段MN 的垂直平分线DE ,再作出∠AOB 的平分线OF ,DE 与OF 相交于C 点,则点C 即为所求. 【详解】点C 为线段MN 的垂直平分线与∠AOB 的平分线的交点,则点C 到点M 、N 的距离相等,到AO 、BO 的距离也相等,作图如下:. 【点睛】此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.25.(1)5;(2)(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫⎪⎝⎭;理由见解析 【解析】【分析】(1)根据A 、B 两点坐标得出OA 、OB 的长,再根据勾股定理即可得出AB 的长(2)分三种情况,AB=AP ,AB=BP ,AP=BP ,利用等腰三角形性质和两点之间距离公式,求出点P 坐标.【详解】解:(1) ∵A (4,0)、B (0,3).∴OA=3,OB=4, 22435AB ∴=+=(2)当点P 在y 轴上时 当AB=BP 时, 此时OP=3+5=8或OP=5-3=2,∴P 点坐标为(0,8)或(0,-2);当AB=AP 时,此时OP=BO=3,∴P 点坐标为;(0,-3);当AP=BP 时,设P(0,x),∴2224(3)x x +=-7:6x =-;∴P 点坐标为70,6⎛⎫- ⎪⎝⎭ 当点P 在x 轴上时当AB=AP 时, 此时OP=4+5=9或OP=5-4=1,∴P 点坐标为(9,0)或(-1,0);当AB=BP 时,此时OP=AO=4,∴P 点坐标为(-4,0);当AP=BP 时,设P(x ,0),∴2223(4)x x +=- :78x =;∴P 点坐标为7,08⎛⎫ ⎪⎝⎭综上所述:符合条件的点的坐标为:(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫ ⎪⎝⎭【点睛】本题主要考查等腰三角形性质、两点之间距离公式和勾股定理,学生只要掌握这些知识点,解决此问题就会变得轻而易举,需要注意的是,在解题过程中不要出现漏解现象.四、压轴题26.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+, 即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.27.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °, ∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°,即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y , 而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.28.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.29.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD =,BF BP BD ∴+=;(3)如图③,BF BD BP =+,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠+∠=∠+∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BC BP =+,BF BC BP ∴=+,BC BD =,BF BD BP ∴=+.【点睛】 此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF ∆≅∆,是一道中等难度的中考常考题.30.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD , ∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-2 2.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠ B .5x = C .5x > D .5x <3.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A .甲的速度保持不变B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人不相遇D .在起跑后第50秒时,乙在甲的前面 4.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE5.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .156.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .67.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+ 8.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .9.到ABC ∆的三顶点距离相等的点是ABC ∆的是( )A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点 10.如图,若BD 为等边△ABC 的一条中线,延长BC 至点E ,使CE =CD =1,连接DE ,则DE 的长为( )A .32B .3C .52D .5二、填空题11.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.12.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.13.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.14.计算222m m m+--的结果是___________ 15.若关于x 的方程233x m x +=-的解不小于1,则m 的取值范围是_______. 16.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .17.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.18.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.19.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .20.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题21.分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边BC 上找一点P ,使P 到AB 和AC 的距离相等;(2)在射线AP 上找一点Q ,使QA QC =.22.先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢的数代入求值.23.解分式方程 (1)11322x x x-=--- (2)2121x x x =++-24.如图,已知直角三角形ABC 中,ABC ∠为直角,12AB =、16BC =,三角形ACD 为等腰三角形,其中503AD DC ==,且//AB CD ,E 为AC 中点,连接ED 、BE 、BD ,则三角形BDE 的面积为___________.25.如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点. (1)在图①中,以格点为端点画一条长度为13的线段MN ;(2)在图②中,A 、B 、C 是格点,求∠ABC 的度数.四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P点,如图3.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.27.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.28.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C,且OC=3.图1 图2(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;29.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?30.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b (k≠0),∵一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,∴在直线y=-x 中,令x=-1,解得:y=1,则B 的坐标是(-1,1).把A (0,2),B (-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1b k b =-+=,解得2{1b k ==, 该一次函数的表达式为y=x+2.故选B .2.A解析:A【解析】【分析】根据分式的定义即可求解.【详解】依题意得50x -≠,解得5x ≠,故选A.【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.3.B解析:B【解析】【分析】A 、由于线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B 、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C 、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D 、根据图象知道起跑后50秒时OB 在OA 的上面,由此可以确定乙是否在甲的前面.【详解】解:A 、∵线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,∴甲的速度是没有变化的,故不选A ;B 、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选B ;C 、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故不选C ;D 、∵起跑后50秒时OB 在OA 的上面,∴乙是在甲的前面,故不选D .故选:B .【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.4.B解析:B【解析】【分析】根据全等三角形的性质和判定即可求解.解:选项A,∠B=∠C 利用 ASA 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项B,BE=CD 不能说明△ABE≌△ACD ,说法错误,故此选项正确;选项C,AD=AE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项D,BD=CE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;故选B.【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.5.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等6.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,==EAM NAM AM AM∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME≥BE ,当BE 是点B 到直线AC 的距离时,BE ⊥AC ,此时BM+MN 有最小值,∵2AB =,∠BAC=45°,此时△ABE 为等腰直角三角形,∴,即BE ,∴BM+MN .故选:B .【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN 进行转化,是解题的关键.7.B解析:B【解析】【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.8.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.9.D解析:D【解析】【分析】根据垂直平分线的性质进行判断即可;【详解】∵到△ABC的三个顶点的距离相等,∴这个点在这个三角形三条边的垂直平分线上,即这点是三条垂直平分线的交点.故答案选D.【点睛】本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.10.B解析:B【解析】【分析】由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=12∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=CD=1,∵△ABC是等边三角形,∴BC =AC =1+1=2,且BD ⊥AC ,在Rt △BDC 中,由勾股定理得:2222213BD BC CD =-=-=,即DE =BD =3,故选:B .【点睛】本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键. 二、填空题11.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABCS BC AO AB CD==,即1144=522CD⨯⨯⨯⨯,解得,165 CD=.故答案为:16 5.【点睛】此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.12.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.解析:(1,1)--【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B (-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B 和C 重合时,线段AB 最短,题目比较典型,主要培养了学生的理解能力和计算能力.13.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数. 14.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.15.m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出. 【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程233x mx+=-的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程233x mx+=-得x=m+9因为x的方程233x mx+=-的解不小于1,且x≠3所以m+9≥1 且m+9≠3解得m≥-8 且m≠-6 .故答案为:m≥-8 且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.16.y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y =kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得. 【详解】当x=2解析:y=32x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y=6x=3,∴A(2,3),B(2,0),∵y=kx过点 A(2,3),∴3=2k,∴k=32,∴y=32 x,∵直线y=32x平移后经过点B,∴设平移后的解析式为y=32x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=32x-3,故答案为:y=32x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.17.【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA 、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,解析:28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,5=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PMAB AO=,即:754PM =,所以可得:PM=285.18.3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.【详解】∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.19.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=12×4×4=8cm2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.20.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题21.(1)见解析;(2)见解析.【解析】【分析】(1)根据角平分线的性质可知,角平分线上的点到角两边的距离相等,故做角A的角平分线交BC于点P,P点即为所求.(2)根据垂直平分线的性质,垂直平分线上的点到线段两端点的距离相等,故作出线段AC的垂直平分线,交射线AP与点Q,Q点即为所求.【详解】作法:1.以点A为圆心,以任意长为半径画弧,两弧交角BAC两边于点M,N.2.分别以点M,N为圆心,以大于12MN的长度为半径画弧,两弧交于点D.3.作射线AD,交BC与点P,如图所示,点P即为所求.(2)作法:1.以线段的AC两个端点为圆心,以大于AC一半长度为半径分别在线段两边画相交弧;2得出相交弧的两个交点F、E;3用直尺连接这两个交点,所画得的直线与射线AP交与点Q,如图所示,点Q即为所求.【点睛】本题考查了角平分线的性质和垂直平分线的性质,根据角平分线和垂直平分线的作法即可解决问题,能够熟练掌握二者的作法是解决本题的关键.22.12m m --;当0m =时,原式12= 【解析】【分析】 根据分式的加法和除法可以化简题目中的式子,然后从22m -≤≤且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:3212m m m 223121m m m m 243211m m m 11112m m m m21m m , ∵22m -≤≤且m 为整数, ∴当m=0时,原式011022【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.(1) 无解 (2) x=1-2 【解析】【分析】(1) 利用分式方程的解法,解出即可;(2) 利用分式方程的解法,解出即可.【详解】 (1)11322x x x-=--- 1=x-1-3(x-2)1=-2x+52x=4x=2 检验:当x=2时,x-2=0 x=2为曾根所以原方程无解(2)2121x x x =++- x(x-1)=2(x+2)+(x+2)(x-1)x 2-x=2x+4+x 2+x-24x=-2x=1-2检验:当x=1-2时,x+2≠0 x-1≠0,所以x=1-2是解.【点睛】此题主要考查了解分式方程,关键点是要进行验证是否是方程的解. 24.563 【解析】【分析】过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,分别求出EG 、EH 的长,利用BDE ABC BEC EDC S S S S ∆∆∆∆=--求解即可.【详解】 过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,如图所示,∵△ABC 是直角三角形,AB=12,BC=16,∴222AC AB BC =+,即2222121620AC AB BC +=+=, ∵点C 为斜边AC 的中点,∴BE=CE=12AC=120102⨯= ∴CG=1116822BC =⨯=, 在Rt △EGC 中,22221086EC CG --=,∵AB ∥CD ,∠ABC=90°∴∠DCB=90°∵ EG ⊥BC ,FH ⊥DC ,∴∠EGC=∠DCB=∠EHC=90°∴四边形EGCH 为矩形, ∴EH=GC=6, ∴BDE ABC BEC EDC S S S S ∆∆∆∆=--=111222BC CD BC EG EH DC -- =150115016166823223⨯⨯-⨯⨯-⨯⨯, =563. 【点睛】本题主要考查了勾股定理以及等腰三角形的性质,正确作出辅助线是解题的关键. 25.(1)见解析;(2)45°【解析】【分析】(1)根据网格和勾股定理即可在图①中,以格点为端点画一条长度为13的线段MN ; (2)连接AC ,根据勾股定理及逆定理可得三角形ABC 是等腰直角三角形,进而可求∠ABC 的度数. 【详解】解:(1)如图根据勾股定理,得MN 22AM AN +2223+13 (2)连接AC∵221310AC +221310BC ,222425AB =+=∴AC 2+BC 2=AB 2,∴ABC 是等腰直角三角形,∴∠ABC =45°.【点睛】此题考查的是勾股定理和网格问题,掌握勾股定理及逆定理是解决此题的关键.四、压轴题26.(1)5y x =+;(2)223)PB 的长为定值52【解析】【分析】(1)先求出A、B两点坐标,求出OA与OB,由OA= OB,求出m即可;(2)用勾股定理求AB,再证AMO OBN∆≅∆,BN=OM,由勾股定理求OM即可;(3)先确定答案定值,如图引辅助线EG⊥y轴于G,先证AOB EBG∆≅∆,求BG再证BFP GEP∆≅∆,可确定BP的定值即可.【详解】(1)对于直线:5L y mx m=+.当0y=时,5x=-.当0x=时,5y m=.()5,0A∴-,()0,5B m.OA OB=.55m∴=.解得1m=.∴直线L的解析式为5y x=+.(2)5OA=,17AM=.∴由勾股定理,2222OM OA AM=-=.180AOM AOB BON∠+∠+∠=︒.90AOB∠=︒.90AOM BON∴∠+∠=︒.90AOM OAM∠+∠=︒.BON OAM∴∠=∠.在AMO∆与OBN∆中,90BON OAMAMO BNOOA OB∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS∴∆≅∆.22BN OM∴==..(3)如图所示:过点E作EG y⊥轴于G点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4,∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m ,∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =,∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -.当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.28.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C(3,0),设直线BC的解析式为y=kx+b,将B、C的坐标代入得:304k bb+=⎧⎨=⎩,解得:434kb⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为443y x=-+;(2)连接OM,∵S△AMB=S△AOB,∴直线OM平行于直线AB,故设直线OM解析式为:2y x=,将直线OM的解析式与直线BC的解析式联立得方程组2443y xy x=⎧⎪⎨=-+⎪⎩,解得:65125xy⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M;(3)∵FA=FB,A(-2,0),B(0,4),∴F(-1,2),设G(0,n),①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.∵四边形FGQP 是正方形,易证△FMG ≌△GNQ ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上, ∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.29.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中, PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇.由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.30.(1)y=43x+2;(2)(103,10);(3)存在, P 坐标为(6,6)或(6,+2)或(6,).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610b k b =⎧⎨+=⎩, 解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)设P (m ,10),则PB=PB′=m ,如图2,∵OB′=OB=10,OA=6,∴,∴B′C=10-8=2,∵PC=6-m ,∴m 2=22+(6-m )2,解得m=103 则此时点P 的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP122-=8627∴AP17P1(6,7);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P322-8627∴AP3=AE+EP37,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,7+2)或(6,7).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题 1.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .52.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ) A . B . C . D .4.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .6 5.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C.D.6.下列图案属于轴对称图形的是()A. B.C.D.7.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2 B.2或C.或D.2或或8.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B.2C.2.4 D.3.59.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(﹣2,﹣3)C.(3,2)D.(3,﹣2)10.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.2二、填空题11.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.13.使3x -有意义的x 的取值范围是__________. 14.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.15.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.16.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.17.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .18.如图,在Rt ABC ∆中,90B =∠,6AB =,8BC =,将ABC ∆折叠,使点B 恰好落在斜边AC 上,与点'B 重合,AE 为折痕,则'EB 的长度是__________.19.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于_____.20.函数y1=x+1与y2=ax+b的图象如图所示,那么,使y1、y2的值都大于0的x的取值范围是______.三、解答题21.已知函数y1=2x-4与y2=-2x+8的图象,观察图象并回答问题:(1)x取何值时,2x-4>0?(2)x取何值时,-2x+8>0?(3)x取何值时,2x-4>0与-2x+8>0同时成立?(4)求函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积?22.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,当△PCD的周长最小时,在图中画出点P的位置,并求点P的坐标.23.一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?24.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上(网格线的交点).(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)(2)点C的坐标为(,)(直接写出结果)(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①请在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为(,);(直接写出结果)③试在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,此时,QA2+QC2的长度之和最小值为.(在图中画出点Q的位置,并直接写出最小值答案)25.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为233时.①求k的值;②若m=a+b,求m的取值范围.四、压轴题26.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).27.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.28.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.29.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).30.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).(1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:A31,故错误;B2<﹣1,故错误;C.﹣12<2,故正确;52,故错误;故选C.【考点】估算无理数的大小.2.C解析:C【解析】【分析】连接BQ,由矩形的性质,设BC=AO=a,AB=OC=b,利用勾股定理得到222+=,然后得到y与x的关系式,判断关系式,即可得到答案.PQ PB BQ【详解】解,如图,连接BQ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.3.D解析:D【解析】试题分析:A .是轴对称图形,故本选项错误;B .是轴对称图形,故本选项错误;C .是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项正确.故选D .考点:轴对称图形.4.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME 与△AMN 中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB=,∠BAC=45°,此时△ABE为等腰直角三角形,∴2,即BE2,∴BM+MN2.故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.5.B解析:B【解析】【分析】根据四个选项图像可以判断y kx=过原点且k<0,12y x k=-,-k>0 即可判断.【详解】解:A .y kx=与12y x k=-图像增减相反,得到k<0,所以12y x k=-与y轴交点大于0 故错误;B.y kx=与12y x k=-图像增减相反,得到k<0,所以12y x k=-与y轴交点大于0 故正确;C.y kx=与12y x k=-图像增减相反,12y x k=-为递增一次函数且不过原点,故错误;过原点,而图中两条直线都不过原点,故错误.D .y kx故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.6.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.7.A解析:A【解析】【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x-2与4是对应边,或3x-2与5是对应边,计算发现,3x-2=5时,2x-1≠4,故3x-2与5不是对应边.【详解】解:∵△ABC三边长分别为3,4,5,△DEF三边长分别为3,3x-2,2x-1,这两个三角形全等,①3x-2=4,解得:x=2,当x=2时,2x+1=5,两个三角形全等.②当3x-2=5,解得:x=,把x=代入2x+1≠4,∴3x-2与5不是对应边,两个三角形不全等.故选A.【点睛】此题主要考查了全等三角形的性质,分类讨论正确得出对应边是解题关键.8.B解析:B【解析】【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,2222=+=+=GH GE HE2222故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.9.C解析:C【解析】【分析】直接利用关于y轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M(﹣3,2)关于y轴对称的点的坐标为:(3,2).故选:C.【点睛】本题考查的知识点是关于x轴、y轴对称的点的坐标,属于基础题目,易于掌握.10.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题11.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.13.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的x≥解析:3【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.x≥故答案为3【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;14.【解析】【分析】由题意,可知点A坐标为(1,),点B坐标为(2,0),由直线与△OAB的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解解析:21-<<b【解析】【分析】=+与△OAB由题意,可知点A坐标为(1),点B坐标为(2,0),由直线y x b的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解:如图,过点A 作AE ⊥x 轴,.∵△ABC 是等边三角形,且边长为2,∴OB=OA=2,OE=1, ∴22213AE -=∴点A 为(13B 为(2,0);当直线y x b =+经过点A (13ABC 边界只有一个交点,则13b +=31b =,∴点D 的坐标为(31);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:231b -<<; 故答案为:231b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 15.(,)【解析】【分析】根据题意,△ABO 为等腰直角三角形,由点C 坐标为(6,4),可知点B 为(6,0),点A 为(6,6),则直线OA 为,作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,解析:(185,185) 【解析】【分析】根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为y x=,作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,则点E坐标为(0,3),然后求出直线CE的解析式,联合y x=,即可求出点P的坐标.【详解】解:在Rt△ABO中,∠OBA=90°,AB=OB,∴△ABO是等腰直角三角形,∵点C在边AB上,且C(6,4),∴点B为(6,0),∴OB=6=AB,∴点A坐标为:(6,6),∴直线OA的解析式为:y x=;作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,∴∠APC=∠OPE=∠DPO,OD=OE,∵点D是OB的中点,∴点D的坐标为(3,0),∴点E的坐标为:(0,3);设直线CE的解析式为:y kx b=+,把点C、E代入,得:643k bb+=⎧⎨=⎩,解得:163kb⎧=⎪⎨⎪=⎩,∴直线CE的解析式为:136y x=+;∴136y xy x⎧=+⎪⎨⎪=⎩,解得:185185xy⎧=⎪⎪⎨⎪=⎪⎩,∴点P的坐标为:(185,185);故答案为:(185,185).【点睛】本题考查了一次函数的图像和性质,等腰直角三角形的性质,以及线段动点问题,正确的找到P点的位置是解题的关键.16.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.17.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有(a+2)2-a2=24,(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.18.3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算解析:3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算出答案.【详解】解:根据折叠可得BE=EB′,AB′=AB=6,设BE=EB′=x,则EC=8-x,∵∠B=90°,AB=6,BC=8,∴在Rt△ABC中,由勾股定理得,AC=10,∴B′C=10-6=4,在Rt△B′EC中,由勾股定理得,x2+42=(8-x)2,解得x=3,故答案为:3.【点睛】此题主要考查了翻折变换,以及勾股定理,关键是分析清楚折叠以后哪些线段是相等的.直角三角形两条直角边的平方和等于斜边的平方.19.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=12×16×4=32.故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键.20.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y1>0,当x<2时,y2>0,∴使y1、y2的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于0三、解答题21.(1)x >2;(2)x <4 ;(3)2<x <4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积.【详解】由图可知:(1)当x >2时,2x−4>0;(2)当x <4时,-2x +8>0;(3)由(1)(2)可知当2<x <4时,2x−4>0与−2x +8>0同时成立;(4)联立y 1=2x -4与y 2=-2x +8,解得x=3,y=2,∴函数y 1=2x -4与y 2=-2x +8的图象的交点坐标为(3,2),所以函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.22.图见详解;P (197,127) 【解析】【分析】过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ,DP CP DP EP ED +=+=的值最小,即可得到P 点;通过A 和B 点的坐标,运用待定系数法求出直线AB 的函数表达式,再通过D 和E 点的坐标,运用待定系数法求出直线DE 的函数表达式,联合两个表达式解方程组求出交点坐标即可.【详解】解:如图所示,过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ;∵△PCD 的周长=CD DP CP ++∴DP CP DP EP ED +=+=时,可取最小值,图中P 点即为所求;又∵BD =3,DC =1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4) 设直线AB 的解析式为AB AB AB y k x b =+,代入点A 和B 得:540AB AB k b k b +=⎧⎨+=⎩解得:11AB ABk b =⎧⎨=-⎩ ∴1AB y x =-设直线DE 的解析式为DE DE DE y k x b =+,代入点D 和E 得:404DE DE DE DE k b k b +=⎧⎨+=⎩解得:43163DE DE k b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴416+33DE y x =- ∴联合两个一次函数可得: ∴1416+33y x y x =-⎧⎪⎨=-⎪⎩解得197127x y ⎧=⎪⎪⎨⎪=⎪⎩∴P (197,127) 【点睛】 本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.23.(1)24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.【解析】【分析】(1)应用勾股定理求出AC 的高度,即可求解;(2)应用勾股定理求出B′C的距离即可解答.【详解】(1)如图,在Rt△ABC中AB2=AC2+BC2,得AC=2222-=-=24(米)AB BC257答:这个梯子的顶端距地面有24米.(2)由A'B'2=A'C2+CB'2,得B'C=2222-=--=15(米),A B A C'''25(244)∴BB'=B'C﹣BC=15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.24.(1)见解析;(2)(-2,5);(3)①见解析;②点P2的坐标为(﹣m,n﹣6);③2【解析】【分析】(1)建立适当的平面直角坐标系,根据点A坐标为(﹣1,2),点B的坐标为(﹣5,2)即可画出直角坐标系;(2)根据坐标系即可写出点C的坐标;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①即可在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,即可写出点P2的坐标;③根据对称性即可在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,进而可以求出QA2+QC2的长度之和最小值.【详解】(1)∵点A坐标为(﹣1,2),点B的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系;(2)根据坐标系可知:点C的坐标为(﹣2,5),故答案为:﹣2,5;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①如图即为坐标系中画出的△A2B2C2;②点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,∴点P2的坐标为(﹣m,n﹣6),故答案为:﹣m,n﹣6;③根据对称性可知:在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,∴连接A2C1交y轴于点Q,此时QA2+QC2的长度之和最小,即为A 2C 1的长,A 2C 1=2,∴QA 2+QC 2的长度之和最小值为2.故答案为:2.【点睛】此题主要考查平面直角坐标系中三角形的平移以及对称性的运用,熟练掌握,即可解题.25.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0) 解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB ,∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D ,∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上,∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上∴b =4a +2,∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.四、压轴题26.(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.27.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.。

苏教版八年级上数学好题易错题

苏教版八年级上数学好题易错题

苏教版⼋年级上数学好题易错题第1题图⼋上好题易错题(1)1.如图所⽰,四边形ABCD 的对⾓线AC ,BD 相交于点O ,△ABC ≌△BAD .求证:(1)OA=OB ;(2)AB ∥CD .2.已知:在△ABC 中,AC=BC ,∠ACB=90°,点D 是AB 的中点,点E 是AB 边上⼀点.(1)直线BF 垂直于直线CE ,交CE 于点F ,交CD 于点G (如图①),求证:AE=CG ;(2)直线AH 垂直于直线CE ,交CE 的延长线于点H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.3.如上图,BD 为△ABC 的的⾓平分线,且BD=BC ,E 为BD 延长线上的⼀点,BE=BA ,过E 作EF ⊥AB 于F .下列结论:①△ABD ≌△EBC ;②∠BCE+∠BCD=180°;③AD=AE=EC ;④BA+BC=2BF .其中正确的是()A .①②③B .①③④C .①②④D .①②③④第2题图第3题图4.如图,BD是△ABC的⾓平分线,DE⊥AB,垂⾜为E.△ABC的⾯积为70,AB=16,BC=12。

求DE的长.第4题图5.如图的2×4的正⽅形⽹格中,△ABC的顶点都在⼩正⽅形的格点上,这样的三⾓形称为格点三⾓形,在⽹格中与△ABC成轴对称的格点三⾓形⼀共有()A.2个 B.3个 C.4个 D.5个第5题图6.如图,AD平分∠BAC,EG⊥AD于H,则下列等式中成⽴的是()A.∠α=(∠β+∠γ) B.∠α=(∠β﹣∠γ)C.∠G=(∠β+∠γ) D.∠G=∠α第6题图7.如图,有⼀个直⾓三⾓形ABC,∠C=90°,AC=10,BC=5,⼀条线段PO=AB,P、O两点分别在AC和过点A且垂直于AC 的射线AX上运动,问P点运动到AP= 时,才能使△ABC与△POA全等.第7题图8.如图,在△ABC 中,AD 是⾓平分线,DF ⊥AB ,DM ⊥AC ,AF=10cm , AC=14cm ,动点E 以2cm/s 的速度从A 点向F 点运动,动点G 以1cm/s 的速度从C 点向A 点运动,当⼀个点到达终点时,另⼀个点随之停⽌运动,设运动时间为t(1)求证:在运动过程中,不管t 取何值,都有DGC AED S S ??=2;(2)当t 取何值时,△DFE 与△DMG 全等第8题图9.如图,在5×5的正⽅形⽹格中,每个⼩正⽅形的边长为1,在图中找出格点C ,使得△ABC 是等腰三⾓形,点C 的个数为()A .5B .6C .7D . 810.已知等腰三⾓形⼀腰上的中线将它周长分成18cm 和12cm 两部分,则这个等腰三⾓形的底边长是 .B A 第9题图第13题图11.如图所⽰,在△ABC 中,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则三个结论:①AS=AR; ②QP ∥AR;③△BPR ≌△QPS 中⼀定正确....的是____________.(填序号)第11题图12.如图:某通信公司要修建⼀座信号发射塔,要求发射塔到两城镇P 、Q 的距离相等,同时到两条⾼速公路l 1、l 2的距离也相等。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题 1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°3.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b (a >0,b >0)D .7 4.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的125.如图,已知△ABC 的三条边和三个角,则甲、乙、丙三个三角形中和△ABC 全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙 6.64的立方根是( )A .4B .±4C .8D .±8 7.下列图案中,属于轴对称图形的是( )A .B .C .D .8.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm9.9的平方根是( )A .3B .81C .3±D .81±10.下列分式中,x 取任意实数总有意义的是( ) A .21x x + B .221(2)x x -+ C .211x x -+ D .2x x + 二、填空题11.1﹣π的相反数是_____.12.如图,在平面直角坐标系中,函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则方程组,y mx n y kx b=+⎧⎨=+⎩的解为________.13.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax b y kx --=⎧⎨--=⎩的解是 _______.14.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -.把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.15.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.16.分解因式:12a 2-3b 2=____.17.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.18.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.19.如图,ABC ∆中,B C ∠=∠,D ,E ,F 分别是BC ,AC ,AB 上的点,且BF CD =,BD CE =,55FDE ∠=︒,则A ∠=__________︒.20.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题21.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.22.如图,Rt ABC ∆中,90ACB ∠=︒.(1)尺规作图(保留作图痕迹,不写作法与证明):①作B 的平分线BD 交边AC 于点D ;②过点D 作DE AB ⊥于点E ;(2)在(1)所画图中,若3CD =,8AC =,则AB 长为________________.23.如图,在Rt ABC ∆中,90C ∠=︒,BD 是ABC ∆的一条角平分线.点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形.(1)求证:点O 在BAC ∠的平分线上;(2)若5AC =,12BC =,且正方形OECF 的面积为4,求ABO ∆的面积.24.某列车平均提速vkm/h ,用相同的时间,列车提速前行驶150km ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?(用含v 的式子表示)25.已知21a =+,求代数式223a a -+的值.四、压轴题26.如图,在平面直角坐标系中,直线y =﹣34x+m 分别与x 轴、y 轴交于点B 、A .其中B 点坐标为(12,0),直线y =38x 与直线AB 相交于点C . (1)求点A 的坐标.(2)求△BOC 的面积.(3)点D 为直线AB 上的一个动点,过点D 作y 轴的平行线DE ,DE 与直线OC 交于点E (点D 与点E 不重合).设点D 的横坐标为t ,线段DE 长度为d .①求d 与t 的函数解析式(写出自变量的取值范围).②当动点D 在线段AC 上运动时,以DE 为边在DE 的左侧作正方形DEPQ ,若以点H (12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点时,请直接写出t 的取值范围.27.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)28.如图,A ,B 是直线y =x +4与坐标轴的交点,直线y =-2x +b 过点B ,与x 轴交于点C .(1)求A ,B ,C 三点的坐标;(2)点D 是折线A —B —C 上一动点.①当点D 是AB 的中点时,在x 轴上找一点E ,使ED +EB 的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E 点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由29.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A (3,2),B (4,0),请在x 轴上找一个C ,使得△OAB 与△OAC 是偏差三角形.你找到的C 点的坐标是______,直接写出∠OBA 和∠OCA 的数量关系______.(2)如图2,在四边形ABCD 中,AC 平分∠BAD ,∠D+∠B=180°,问△ABC 与△ACD 是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD 中,AB=DC ,AC 与BD 交于点P ,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC <90°,且点C 到直线BD 的距离是3,求△ABC 与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t秒,则CP=12-3t,BQ=t,根据题意得到12-3t=t,解得:t=3,故选B.【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.3.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=2,故A不符合题意;(B)原式=6,故B不符合题意;(C )a b是分式,故C 不符合题意; 故选:D .【点睛】 本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.4.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 5.B解析:B【解析】【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.6.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.7.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项不是轴对称图形,故本选项不符合题意;D选项是轴对称图形,故本选项符合题意;故选D.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.8.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.9.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】.解:9的平方根是3故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.10.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A.x=0时,x2=0,A选项不符合题意;B .x =﹣2时,分母为0,B 选项不符合题意;C .x 取任意实数总有意义,C 选项符号题意;D .x =﹣2时,分母为0.D 选项不符合题意.故选:C .【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.二、填空题11.π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是.故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是()11ππ=﹣﹣﹣. 故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.12.【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】∵函数的图像与的图像交于点,则关于x ,y 的二元一次方程组的解是,故答案为:.【点睛】本题考查了解析:12x y =-⎧⎨=⎩【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】∵函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则关于x ,y 的二元一次方程组,y mx n y kx b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩, 故答案为:12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.13.【解析】【分析】是图像上移2个单位,是图像上移2个单位,所以交点P 也上移两个单位,据此即可求得答案.【详解】解:∵是图像上移2个单位得到,是图像上移2个单位得到,∴ 交点P (-4,-2解析:40x y =-⎧⎨=⎩【解析】【分析】2y ax b --=是()0y ax b a =+≠图像上移2个单位,20y kx --=是()0y kx k =≠图像上移2个单位,所以交点P 也上移两个单位,据此即可求得答案.【详解】解:∵2y ax b --=是()0y ax b a =+≠图像上移2个单位得到,20y kx --=是()0y kx k =≠图像上移2个单位得到,∴ 交点P (-4,-2),也上移两个单位得到P '(-4,0),∴++2+2y ax b y kx =⎧⎨=⎩的解为40x y =-⎧⎨=⎩, 即方程组220y ax b y kx --=⎧⎨--=⎩ 的解为40x y =-⎧⎨=⎩, 故答案为:40x y =-⎧⎨=⎩. 【点睛】此题主要考查了一次函数与二元一次方程(组):函数图像的交点坐标为两函数解析式组成的方程组的解.14.【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵,,,∴AB=2,BC=3,CD解析:()1,1【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵()1,1A ,()1,1B -,()1,2C --,()1,2D -∴AB=2,BC=3,CD=2,DA=3∴细线绕一圈所需:AB+BC+CD+DA=10个单位长度2020÷10=202(圈),即细线正好绕了202圈故细线另一端所在位置正好为点A ,它的坐标为()1,1故答案为:()1,1.【点睛】此题考查的是探索点的坐标规律题,掌握把坐标转化为线段的长是解决此题的关键. 15.3;【解析】【分析】过D 作DE⊥AB 于E ,DF⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D作DE⊥AB于E,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.16.3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.正方形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .四个角都是直角 2.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ) A . B . C . D .4.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD5.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .766.若分式242x x -+的值为0,则x 的值为( ) A .-2 B .0 C .2 D .±27.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =,3c =9.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:5010.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A .9cmB .12cmC .15cmD .18cm二、填空题11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316000米.将数据316000用四舍五入法精确到万位,并用科学记数法表示为____________.12.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.13.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.14.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.15.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.16.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.17.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.18.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.19.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .20.如图,将一张三角形纸片折叠,使得点A 、点C 都与点B 重合,折痕分别为DE 、FG ,此时测得∠EBG =36°,则∠ABC =_____°.三、解答题21.如图,在Rt ABC ∆中,90ACB ︒∠=,60B ︒∠=,CD 是AB 边上的中线,那么BC 与AB 有怎样的数量关系?试证明你的结论.22.小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg ,超过300kg 时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y (元/kg )与质量x ()kg 的函数关系.(1)求图中线段AB 所在直线的函数表达式;(2)小李需要一次性批发这种水果280kg ,需要花费多少元?23.人教版教材指出:等边三角形是三边都相等的特殊的等腰三角形.请证明:有一个角是60︒的等腰三角形是等边三角形.24.如图,AO BO ⊥,DO EO ⊥,AO BO =,DO EO =.求证:AE BD =.25.如图,在△ABC 中,AB =AC =2,∠B =36°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =36°,DE 交线段AC 于点E .(1)当∠BDA =128°时,∠EDC = ,∠AED = ;(2)线段DC 的长度为何值时,△ABD ≌△DCE ?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.四、压轴题26.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标27.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).28.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.29.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)30.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.考点:(1)、正方形的性质;(2)、矩形的性质2.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等3.D解析:D【解析】试题分析:A .是轴对称图形,故本选项错误;B .是轴对称图形,故本选项错误;C .是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项正确.故选D .考点:轴对称图形.4.D解析:D【解析】A .添加∠A =∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意;B .添加AB =DC 可利用SAS 定理判定△ABC ≌△DCB ,故此选项不合题意;C .添加∠ACB =∠DBC 可利用ASA 定理判定△ABC ≌△DCB ,故此选项不合题意;D .添加AC =BD 不能判定△ABC ≌△DCB ,故此选项符合题意.故选D .5.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.6.C解析:C【解析】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C.7.D解析:D【解析】试题分析:根据a>0,b<0和第四象限内的坐标符号特点可确定p在第四象限.∵a>0,b<0,∴点P(a,b)在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键.9.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h,从而可得走后一半路程的速度为60km/h,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h,因为匀速行驶了一半的路程后将速度提高了20km/h,所以以后的速度为20+40=60km/h ,时间为4060×60=40分钟, 故该车到达乙地的时间是当天上午10:40,故选B .【点睛】 本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.10.D解析:D【解析】【分析】首先根据题意画出图形,利用勾股定理计算出AC 的长.【详解】根据题意可得图形:AB=12cm ,BC=9cm ,在Rt △ABC 中:2222=129AB BC ++(cm ),则这只铅笔的长度大于15cm .故选D .【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.二、填空题11.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于解析:53.210⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】316000≈320000=3.2×105.故答案为:3.2×105.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解题的关键.12.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a). 13.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.14.60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经解析:60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【解析:m +3n =120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,180,A ABC ACB∠+∠+∠=︒∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.16.65°或25°【解析】【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD 中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度解析:65°或25°【解析】【分析】分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°;故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.17.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB22534,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.18.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 19.【解析】【分析】作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到×10×DE+×14×DF=42,则5DE+7DE=42,从而可求出DE的长.【详解】作D解析:7 2【解析】【分析】作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到1 2×10×DE+12×14×DF=42,则5DE+7DE=42,从而可求出DE的长.【详解】作DF⊥BC于F,如图所示:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ADB+S△BCD=S△ABC,∴12×10×DE+12×14×DF=42,∴5DE+7DE=42,∴DE=72(cm).故答案为72.【点睛】此题主要考查角平分线的性质,解题关键是利用三角形面积公式构建方程,即可解题. 20.【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C=180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点解析:【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C =180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点C都与点B重合,∴∠ABE=∠A,∠CBG=∠C,∵∠A+∠C=180°﹣∠ABC,∵∠ABC=∠ABE+∠CBG+∠EBG,∴∠ABC=∠A+∠C+36°=180°﹣∠ABC+36°,∴∠ABC=108°,故答案为:108.【点睛】本题主要考查三角形的内角和定理与图形折叠的性质,根据角的和差关系,列出关于∠ABC的方程,是解题的关键.三、解答题21.2AB BC =,证明见解析.【解析】【分析】根据直角三角形斜边上的中线得到CD BD AD ==,再根据60B ∠=︒得到DBC ∆为等边三角形,故可求解.【详解】2AB BC =因为90ACB ∠=,CD 是AB 边上的中线,所以CD BD AD ==.因为60B ∠=︒,所以DBC ∆为等边三角形,所以BC BD =.所以CB BD AD ==,即2AB BC =.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.22.(1)0.016y x =-+;(2)896.【解析】【分析】(1)设线段AB 所在直线的函数表达式为y =kx +b ,运用待定系数法即可求解;(2)先计算当x =280时,对应的y 值,用单价乘以数量即可得到结论.【详解】(1)设线段AB 所在直线的函数表达式为y =kx +b (k ≠0).把点(100,5),(300,3)分别代入,得:51003300k b k b=+⎧⎨=+⎩ 解得:0.016k b =-⎧⎨=⎩. ∴段AB 所在直线的函数表达式为y =-0.01x +6.(2)在y =-0.01x +6中,当x =280时,y =3.2.∴要花费的费用为280×3.2=896(元).【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.23.详见解析【解析】【分析】根据题意,给出已知和求证,加以证明即可得解.【详解】已知:如下图,ABC∆是等腰三角形,∠A=60°,证明:ABC∆是等边三角形.证明:∵ABC∆是等腰三角形∴AB=AC∴∠B=∠C∵∠A=60°∴∠B=∠C=18060602︒-︒=︒∴ABC∆是等边三角形.【点睛】本题主要考查了等边三角形的判定,熟练掌握等边三角形的判定证明是解决本题的关键. 24.见解析【解析】【分析】利用SAS证出△AOE≌△BOD,然后根据全等三角形的性质即可得出结论.【详解】解:∵AO BO⊥,DO EO⊥,∴∠DOE =∠AOB =90°∴∠DOE+∠AOD =∠AOB+∠AOD∴∠AOE=∠BOD在△AOE和△BOD中AO BOAOE BODEO DO=⎧⎪∠=∠⎨⎪=⎩∴△AOE≌△BOD(SAS)∴AE BD=【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等是解决此题的关键.25.(1)16°;52°;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理和等腰三角形的性质,得到答案;(2)当DC=2时,利用∠DEC+∠EDC=144°,∠ADB+∠EDC=144°,得到∠ADB=∠DEC,根据AB =DC =2,证明△ABD ≌△DCE ;(3)分DA =DE 、AE =AD 、EA =ED 三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】(1)∵AB =AC ,∴∠C =∠B =36°.∵∠ADE =36°,∠BDA =128°.∵∠EDC =180°﹣∠ADB ﹣∠ADE =16°,∴∠AED =∠EDC +∠C =16°+36°=52°.故答案为:16°;52°;(2)当DC =2时,△ABD ≌△DCE ,理由:∵AB =2,DC =2,∴AB =DC .∵∠C =36°,∴∠DEC +∠EDC =144°.∵∠ADE =36°,∴∠ADB +∠EDC =144°,∴∠ADB =∠DEC ,在△ABD 和△DCE 中,ADB DEC B CAB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE (AAS);(3)当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形,①当DA =DE 时,∠DAE =∠DEA =72°,∴∠BDA =∠DAE +∠C =70°+40°=108°;②当AD =AE 时,∠AED =∠ADE =36°,∴∠DAE =108°,此时,点D 与点B 重合,不合题意;③当EA =ED 时,∠EAD =∠ADE =36°,∴∠BDA =∠EAD +∠C =36°+36°=72°;综上所述:当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.四、压轴题26.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.27.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.28.(1)4;2;(0,4);(2)125m=或285m=;(3)存在.Q点坐标为()45,4-,()45,4,()0,4-或()5,4.【解析】【分析】(1)根据待定系数法,将点C(4,2)代入解析式可求解;(2)设点E(m,142m+),F(m,2m-6),得()154261022EF m m m=-+--=-,由平行四边形的性质可得BO=EF=4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y2=kx-6交于点C(4,2),∴2=4k-6,∴k=2,∵直线21 2y x b=-+过点C(4,2),∴2=-2+b,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m ,∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =,∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -.当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.29.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.30.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.。

苏教版八年级上数学好题易错题

苏教版八年级上数学好题易错题

5.如图,点A,B,C在同一直线上,△ABD,△BCE都是等边三角形。

(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论。

第5题图6.如图,一张矩形纸片沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD等于( )A. 108∘B. 114∘C. 126∘D. 129∘15.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.AC.(1)求证:EF=12(2)若∠BAC=45∘,求线段AM、DM、BC之间的数量关系。

第15题图16.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;BF;(2)求证:CE=12(3)判断△ECG的形状,并证明你的结论;(4)猜想BG与CE的数量关系,并证明你的结论。

第16题图18.如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且满足PB=1,PC=2, PA=3,将△ACP绕C点逆时针旋转90°,使点A和点B重合,得到四边形ABDC,求∠BPC的度数第18题图19.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是__________.第19题图20.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=3cm,PN=4cm,MN=4.5cm,则线段QR的长为___.24.如图所示,等腰三角形ABC的底边BC为8cm,腰长为5cm,一动点P在底边上从点B向点C以0.25cm/s的速度移动,请你探究:当P运动几秒时,P点与顶点A的连线PA与腰垂直?第24题图。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .9 2.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是( ) A . B . C . D .3.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°4.下列实数中,无理数是( )A .0B .﹣4C .5D .175.由四舍五入得到的近似数48.0110⨯,精确到( )A .万位B .百位C .百分位D .个位6.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组7.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处8.下列式子中,属于最简二次根式的是( )A .12B .0.5C .52D .129.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( )A .1个B .2个C .3个D .4个10.下列交通标志图案是轴对称图形的是( )A .B .C .D .二、填空题11.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.12.比较大小:10_____3.(填“>”、“=”或“<”)13.等腰三角形中有一个角的度数为40°,则底角为_____________.14.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.15.4的算术平方根是 .16.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.17.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .18.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)19.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .20.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .三、解答题21.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数表达式,并写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?22.如图,直线l 与x 轴、y 轴分别交于点(3,0)A 、点(0,2)B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,90BAC ∠=,点(1,)P a 为坐标系中的一个动点.(1)请直接写出直线l 的表达式;(2)求出ABC ∆的面积;(3)当ABC ∆与ABP ∆面积相等时,求实数a 的值.23.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.24.某工厂计划生产A 、B 两种产品共50件,已知A 产品成本2000元/件,售价2300元/件;B 种产品成本3000元/件,售价3500元/件,设该厂每天生产A 种产品x 件,两种产品全部售出后共可获利y 元.(1)求出y 与x 的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?25.如图,已知直线y =kx +6经过点A (4,2),直线与x 轴,y 轴分别交于B 、C 两点.(1)求点B 的坐标;(2)求△OAC 的面积.四、压轴题26.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.27.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.28.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF29.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ 的解析式.30.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得2+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.2.A解析:A【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.3.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.4.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 5.B解析:B【解析】【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案.【详解】解:∵48.0110⨯=80100,数字1在百位上,∴ 近似数48.0110⨯精确到百位,故选 B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.6.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 及AAS ,即可判定.【详解】①满足SSS ,能判定三角形全等;②满足SAS ,能判定三角形全等;③满足ASA ,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.∴能使ABC DEF △≌△全等的条件有3组.故选:C .【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.7.D解析:D【解析】【分析】根据线段垂直平分线的性质判断即可.【详解】作AC,BC两边的垂直平分线,它们的交点为P,由线段垂直平分线的性质,P A=PB=PC,故选:D.【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关性质要点是解决本题的关键.8.C解析:C【解析】,被开方数含分母,不是最简二次根式,故本选项错误;2D.故选C.9.C解析:C【解析】【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.10.B解析:B【解析】【分析】【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.二、填空题11.70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC解析:70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.12.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.13.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.14.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.15.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.16.−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】>0,如图所示,x>−1时,y1当x<2时,y2>0,、y2的值都大于0的x的取值范围是:−1<x<2.∴使y1故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0 17..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,,.解析:(21)【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).18.轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11解析:y轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键.19.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有(a+2)2-a2=24,(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.20.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题21.(1)y与x的函数表达式为y=100x+17360(21≤x≤62且x为整数);(2)共有25种租车方案;租用A型号客车21辆,B型号客车41辆时最省钱.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【详解】解:(1)由题意:y=380x+280(62-x)=100x+17360.∵30x+20(62-x)≥1441,∴x ≥20.1,又∵x 为整数,∴x 的取值范围为21≤x ≤62的整数.即y 与x 的函数表达式为y=100x+17360(21≤x ≤62且x 为整数).(2)由题意100x+17360≤21940,∴x ≤45.8,∴21≤x ≤45,∴共有25种租车方案,又100>0,∴y 随x 的增大而增大,∴x=21时,y 有最小值.即租用A 型号客车21辆,B 型号客车41辆时最省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.22.(1)223y x =-+;(2)132ABC S =;(3)当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【解析】【分析】 (1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,用待定系数法求解即可;(2)先根据勾股定理求出AB 的长,然后根据三角形的面积公式求解即可;(3)分点P 在第一象限和点P 在第四象限两种情况求解即可.【详解】解:(1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,得302k b b +=⎧⎨=⎩, 解得223b k =⎧⎪⎨=-⎪⎩, ∴223y x =-+ ; (2)∵(3,0)A 、(0,2)B , ∴OA=3,OB=2,在Rt ABC ∆中,依勾股定理得:222223213AB OA OB =+=+=,∵ABC ∆为等腰直角三角形,∴21322ABC AB S ==; (3)连接,,BP PO PA ,则:①若点P 在第一象限时,如图:∵1=23ABO OA SOB ⋅=,2213APO O S A a a ⋅==,1=121BOP OB S ⨯=, ∴132ABP BOP APO ABOS S S S =+-=, 即3131322a +-=,解得173a =; ②若点P 在第四象限时,如图:∵3312ABO APO BOP SS a S ==-=,,, ∴132ABP ABO APO BOP S S S S =+-=, 即3133122a --=,解得3a =-, ∴当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【点睛】本题考查了待定系数法求一次函数解析式,勾股定理,三角形的面积公式,以及分类讨论的数学思想,分类讨论是解答本题的关键.23.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒1020-秒或3.75秒.【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠,把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,∴直线AC 对应的函数关系是为132y x =-+, (2)AC 垂直平分BB ',DB DB ='∴,BDB ∆'∴是等腰直角三角形,90BDB ∠'=∴° 过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F .90DFO DFB DEB '︒∴∠=∠=∠=,360EDF DFB DEO EOF ︒∠=-∠-∠-∠,90EOF ︒∠=, 90EDF ︒∴∠=,EDF BDB '∴∠=∠,BDF EDB '∴∠=∠,FDB EDB ∴∆∆'≌,DF DE ∴=,∴设点D 坐标为(,)a a ,把点(,)D a a 代入132y x =-+, 得0.53a a =-+2a ∴=, ∴点D 坐标为(2,2),(3)同(2)可得PDF QDE ∠=∠ 又2,90DF DE PDF QDE ︒==∠=∠= PDF QDE ∴∆∆≌PF QE ∴=①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为1020-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为1秒或102秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.24.(1)y =﹣200x +25000;(2)该厂生产的两种产品全部售出后最多能获利23000元.【解析】【分析】(1)根据题意,可以写出y 与x 的函数关系式;(2)根据该厂每天最多投入成本140000元,可以列出相应的不等式,求出x 的取值范围,再根据(1)中的函数关系式,即可求得该厂生产的两种产品全部售出后最多能获利多少元.【详解】(1)由题意可得:y =(2300﹣2000)x +(3500﹣3000)(50﹣x )=﹣200x +25000,即y 与x 的函数表达式为y =﹣200x +25000;(2)∵该厂每天最多投入成本140000元,∴2000x +3000(50﹣x )≤140000,解得:x ≥10.∵y =﹣200x +25000,∴当x =10时,y 取得最大值,此时y =23000,答:该厂生产的两种产品全部售出后最多能获利23000元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.25.(1)B (6,0);(2)12【解析】【分析】(1)根据待定系数法求得直线解析式,然后根据图象上点的坐标特征即可求得B 的坐标;(2)令x =0,求得C 的坐标,然后根据三角形面积公式即可求得.【详解】解:(1)∵直线y =kx +6经过点A (4,2),∴2=4k +6,解得k =﹣1∴直线为y =﹣x +6令y =0,则﹣x +6=0,解得x =6,∴B (6,0);(2)令x =0,则y =6,∴C (0,6),∴CO =6,∴△OAC 的面积=162⨯×4=12.【点睛】本题考查的知识点是一次函数的图象上点的坐标特征,属于基础题目,易于掌握. 四、压轴题26.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB −∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴AD = BE,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC-∠CED =135°- 45°= 90°.在等腰直角△DCE中,CM为斜边DE上的高,∴CM =DM= ME,∴DE = 2CM.∴AE = DE+AD=2CM+BE.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.27.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.28.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.29.(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+3 2【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0),∴AO=3,BO=6,∵AB=BC,BO⊥AC,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则036k bb=+⎧⎨=⎩,解得:26kb=-⎧⎨=⎩,∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠HCQ,又∵∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,∴点P的纵坐标为:2m﹣6,∵直线AB的表达式为:y=2x+6,∴2m﹣6=2x+6,解得:x=m﹣6,∴点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=92,∴Q(92,﹣3),P(﹣32,3),设直线PQ的解析式为:y=ax+c,∴932332a ca c⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:132ac=-⎧⎪⎨=⎪⎩,∴直线PQ的解析式为:y=﹣x+32.【点睛】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.30.(1)①见解析;②DE=297;(2)DE的值为517【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE的值为.。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题 1.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130°2.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+ 3.下列四组线段a 、b 、c ,不能组成直角三角形的是( ) A .4,5,3a b c === B . 1.5,2, 2.5a b c === C .5,12,13a b c ===D .1,2,3a b c === 4.下列四组线段a ,b ,c ,能组成直角三角形的是( )A .1a =,2b =,3c =B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c =5.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .22320m mn n -++=B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --=6.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .107.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( ) A . B . C . D .8.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <39.下列关于10的说法中,错误的是( )A .10是无理数B .3104<<C .10的平方根是10D .10是10的算术平方根10.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定二、填空题11.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).12.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.13.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.14.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.15.等腰三角形的顶角为76°,则底角等于__________.16.已知一次函数1y kx b =+与2y mx n =+的函数图像如图所示,则关于,x y 的二元一次方程组0,0kx y b mx y n -+=⎧⎨-+=⎩的解是______.17.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .18.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.19.用四舍五入法将2.0259精确到0.01的近似值为_____.20.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.三、解答题21.已知一次函数的图象经过点P (0,-2),且与两条坐标轴截得的直角三角形的面积为6,求这个一次函数的解析式.22.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =.(1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.23.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:()1在前2小时的挖掘中,甲队的挖掘速度为 米/小时,乙队的挖掘速度为 米/小时. ()2①当26x <<时,求出y 乙与x 之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差5米?24.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC 的外心时,只作出两边BC ,AC 的垂直平分线得到交点O ,就认定点O 是△ABC 的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC 的三边上,分别取点D ,E ,F ,使AD =BE =CF ,连接DE ,EF ,DF ,得到△DEF .若点O 为△ABC 的外心,求证:点O 也是△DEF 的外心.25.已知:如图点A 、B 、C 、D 在一条直线上,EA ∥FB ,EC ∥FD ,AB=CD ,求证:EA=FB .四、压轴题26.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC 的面积.(2)判断ABC 的形状,并说明理由.(3)点E 是直线BC 上一点,CDE △是直角三角形,求点E 的坐标.27.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式;②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.28.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC ≌△ADE ,∠B=20°,∠E=110°,∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C.【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键.2.B解析:B【解析】【分析】先换算出每项的值,全部保留三位小数,然后观察数轴上P 点的位置,逐项判断即可开.【详解】≈1.732≈1.414 2.236≈2.646,所以A 项≈1.732,B 项≈2.414,C 项≈1.646,D 项≈3.236观察数轴上P 点的位置,B 项正确.故选B.【点睛】本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.3.D解析:D【解析】【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可.【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.4.B解析:B【解析】【分析】根据如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形进行分析即可.【详解】A .12+22≠32,不能组成直角三角形,故此选项错误;B .2221(2)=(3)+,能组成直角三角形,故此选项正确;C .32+22≠42,不能组成直角三角形,故此选项错误;D .42+52≠62,不能组成直角三角形,故此选项错误.故选:B .【点睛】本题考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.5.B解析:B【解析】【分析】作图,根据等腰三角形的性质和勾股定理可得2220m mn n +-=,整理即可求解【详解】解:如图,222m m n m , 22222m n mn m ,2220m mn n +-=.故选:B .【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.6.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.7.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.故选:C .【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.8.B解析:B【解析】【分析】根据点A 的坐标找出b 值,令一次函数解析式中y=0求出x 值,从而找出点B 的坐标,观察函数图象,找出在x 轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y =﹣2x+b 的图象交y 轴于点A (0,3),∴b =3,令y =﹣2x+3中y =0,则﹣2x+3=0,解得:x =32, ∴点B (32,0). 观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.9.C解析:C【解析】试题解析:A10是无理数,说法正确;B、310<4,说法正确;C、1010,故原题说法错误;D10是10的算术平方根,说法正确;故选C.10.B解析:B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.二、填空题11.①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△A解析:①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.12.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.13.【解析】【分析】由题意,可知点A坐标为(1,),点B坐标为(2,0),由直线与△OAB的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解解析:231b-<<【解析】【分析】由题意,可知点A坐标为(13),点B坐标为(2,0),由直线y x b=+与△OAB 的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解:如图,过点A作AE⊥x轴,.∵△ABC 是等边三角形,且边长为2,∴OB=OA=2,OE=1, ∴22213AE -=∴点A 为(13B 为(2,0);当直线y x b =+经过点A (13ABC 边界只有一个交点, 则13b +=31b =,∴点D 的坐标为(31);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:231b -<<; 故答案为:231b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 14.18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:=当,时,原式,故答案为:18【点睛】此题考查了整式的混解析:18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:32232a b a b ab ++=222ab a ab b2=ab a b当3a b +=,2ab =时,原式2=23=18,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.15.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°, ∴底角为:11=104=5222⨯︒︒⨯︒︒(180-76), 故答案为:52°.【点睛】 本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.16.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数和一次函数的图象交点的坐标为∴方程组的解是: .故答案为: .【点睛】本题解析:12x y =-⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数1y kx b =+和一次函数2y mx n =+的图象交点的坐标为()1,2,-∴方程组00kx y b mx y n -+=⎧⎨-+=⎩的解是:12x y =-⎧⎨=⎩. 故答案为: 12x y =-⎧⎨=⎩. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.掌握以上知识是解题的关键.17.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a ,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a ,根据正方形面积公式有(a+2)2-a 2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有(a+2)2-a 2=24,(a+2)2-a 2=(a+2+a )(a+2-a )=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.18.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .19.03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似解析:03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.20.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形是解此题的关键.三、解答题21.y=-13x-2或y=13x-2. 【解析】【分析】 分一次函数与x 轴交点Q 在正半轴与负半轴两种情况确定出Q 的坐标,即可确定出一次函数解析式.【详解】解:设一次函数与x 轴的交点为Q,则①当一次函数与x 轴交点Q 在x 轴负半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (-6,0),设一次函数解析式为y=kx+b ,将P 与Q 坐标代入得:2,60,b k b -⎧⎨-+⎩==解得1,32.k b ⎧=-⎪⎨⎪=-⎩ 此时一次函数解析式为y=-13x-2; ②当一次函数与x 轴交点在x 轴正半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (6,0),设一次函数解析式为y=mx+n ,将P 与Q 坐标代入得:2,60,n m n -⎧⎨+⎩==解得1,32.m b ⎧=⎪⎨⎪=-⎩ 此时一次函数解析式为y=13x-2. 故所求一次函数解析式为:y=-13x-2或y=13x-2. 【点睛】 此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【解析】【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A 所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.23.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.【解析】【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.【详解】()1甲队:60610÷=米/小时,乙队: 30215÷=米/小时:故答案为:10,15;()2①当26x <<时,设z y kx b =+,则230650k b k b +=⎧⎨+=⎩, 解得520k b =⎧⎨=⎩, ∴当26x <<时,520z y x =+;②易求得:当02x ≤≤时,15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,由()10520x x =+解得4x =,1° 当02x ≤≤, 15105x x -=,解得:1x =,2°当24x <≤,()520105x x +-=解得:3x =,3°当46x <≤,()105205x x -+=,解得: 5x =答:挖掘1小时或3小时或5小时后,两工程队相距5米.【点睛】本题考查了一次函数的应用, 主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.24.(1)定点O 是△ABC 的外心有道理,理由见解析;(2)见解析【解析】【分析】(1)连接OA 、OB 、OC ,如图①,根据线段垂直平分线的性质得到OB OC =,OC OA =,则OA OB OC ==,从而根据三角形的外心的定义判断点O 是ABC ∆的外心;(2)连接OA 、OD 、OC 、OF ,如图②,利用等边三角形的性质得到OA OC =,2120AOC B ∠=∠=︒,再计算出30OAD OCF OAD ∠=∠=∠=︒,接着证明AOD COF ∆≅∆得到OD OC =,同理可得OD OE =,所以OD OE OF ==,然后根据三角形外心的定义得到点O 是DEF ∆的外心.【详解】(1)解:定点O 是ABC ∆的外心有道理.理由如下:连接OA 、OB 、OC ,如图①,BC ,AC 的垂直平分线得到交点O ,OB OC ∴=,OC OA =,OA OB OC ∴==,∴点O 是ABC ∆的外心;(2)证明:连接OA 、OD 、OC 、OF ,如图②,点O 为等边ABC ∆的外心,OA OC ∴=,2120AOC B ∠=∠=︒,30OAD OCF ∴∠=∠=︒,30OAD ∴∠=︒,在AOD ∆和COF ∆中OA OC OAD OCF AD CF =⎧⎪∠=∠⎨⎪=⎩,()AOD COF SAS ∴∆≅∆,OD OC ∴=,同理可得OD OE =,OD OE OF ∴==,∴点O 是DEF ∆的外心.【点睛】本题考查了线段垂直平分线性质和全等三角形的判定、等边三角形的性质.掌握线段垂直平分线性质和构造三角形全等是解题关键.25.用ASA 证明△EAC ≌△FBD 即可.【解析】【分析】首先利用平行线的性质得出,∠A=∠FBD ,∠D=∠ECA ,根据AB=CD 即可得出AC=BD ,进而得出△EAC ≌△FBD .【详解】证明:∵EA ∥FB ,∴∠A =∠FBD ,∵EC ∥FD ,∴∠D =∠ECA ,∵AB =CD ,∴AC =BD ,在△EAC 和△FBD 中,ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EAC ≌△FBD (AAS),∴EA =FB .【点睛】考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.四、压轴题26.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫-⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标.【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C ,令0y =,则1202x +=,解得4x =-, ∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =,∴22y x =-+,令0y =,则220x -+=,解得1x =,∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△; (2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形;(3)∵CD 平分ACB ∠, ∴12AD AC BD BC ==, ∴1533AD AB ==, ∴23OD AD OA =-=, ∴2,03D ⎛⎫- ⎪⎝⎭①如图,CED ∠是直角,过点E 作EN x ⊥轴于点N ,过点C 作CM EN ⊥于点M , 由(2)知,90ACB ∠=︒,∵CD 平分ACB ∠,∴45ECD ∠=︒,∴CDE △是等腰直角三角形,∴CE DE =,∵90NED MEC ∠+∠=︒,90NED NDE ∠+∠=︒,∴MEC NDE ∠=∠,在DNE △和EMC △中,NDE MEC DNE EMC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DNE EMC AAS ≅,设DN EM x ==,EN CM y ==,根据图象列式:DO DN CMEN EM CO+=⎧⎨+=⎩,即232x yx y⎧+=⎪⎨⎪+=⎩,解得2343xy⎧=⎪⎪⎨⎪=⎪⎩,∴43EN CM==,∴44,33E⎛⎫-⎪⎝⎭;②如图,CDE∠是直角,过点E作EG x⊥轴于点G,同理CDE△是等腰直角三角形,且可以证得()CDO DEG AAS≅,∴2DG CO==,23EG DO==,∴28233GO GD DO=+=+=,∴82,33E⎛⎫-⎪⎝⎭,综上:44,33E⎛⎫-⎪⎝⎭,82,33E⎛⎫-⎪⎝⎭.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3,∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解. (2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠,()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒.②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知, 11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=, ()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】 (1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)Ck-+,如图2, -1<Cy≤2,即:-1<33k+≤2,则334k-≤<-.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x =B .||y x =C .1y x=D .412x y =2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.下列等式从左到右的变形,属于因式分解的是( )A .()a x y ax ay -=-B .()()311x x x x x -=+- C .()()21343x x x x ++=++D .()22121x x x x ++=++4.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( ) A .B .C .D .5.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是()A .B .C .D .6.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >7.在下列各数中,无理数有( )33224,3,,8,9,07π A .1个B .2个C .3个D .4个8.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .2659.点P(2,-3)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限10.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC二、填空题11.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____. 12.112242=__________. 13.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax by kx--=⎧⎨--=⎩的解是 _______.14.如图,点P为∠AOB内任一点,E,F分别为点P关于OA,OB的对称点.若∠AOB=30°,则∠E+∠F=_____°.15.如图,在平面直角坐标系中,点B在x轴的正半轴上,AO=AB,∠OAB=90°,OB=12,点C、D均在边OB上,且∠CAD=45°,若△ACO的面积等于△ABO面积的13,则点D的坐标为 _______ 。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x > 2.4的平方根是( )A .2B .2±C .2D .2± 3.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m 4.下列四组线段a 、b 、c ,不能组成直角三角形的是( ) A .4,5,3a b c === B . 1.5,2, 2.5a b c === C .5,12,13a b c === D .1,2,3a b c ===5.下列四个图标中,是轴对称图形的是( )A .B .C .D .6.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .107.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4- 8.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 9.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg10.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=二、填空题11.如图,在数轴上,点A 、B 表示的数分别为0、2,BC ⊥AB 于点B ,且BC=1,连接AC ,在AC 上截取CD=BC ,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点E 表示的实数是_____.12.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.13.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.14.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.15.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.16.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.17.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.18.一次函数y =2x -4的图像与x 轴的交点坐标为_______.19.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.20.如图,将一张三角形纸片折叠,使得点A 、点C 都与点B 重合,折痕分别为DE 、FG ,此时测得∠EBG =36°,则∠ABC =_____°.三、解答题21.如图,在ABC ∆中,AB AC =,ABC ∆的高BH ,CM 交于点P .(1)求证:PB PC =.(2)若5PB =,3PH =,求AB .22.求下列各式中的x :(1)()2116x -=;(2)321x +=.23.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.24.解方程:(1)4x 2﹣8=0;(2)(x ﹣2)3=﹣1.25.如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE≌△BEC;(2)若AD=3,AB=9,求△ECD的面积.四、压轴题26.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?27.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).28.直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.29.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.△和ACF,连接30.如图,以ABC的边AB和AC,向外作等腰直角三角形ABEEF,AD是ABC的高,延长DA交EF于点G,过点F作DG的垂线交DG于点H.(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由图知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大,由此得出当x >0时,y >2,进而可得解.【详解】根据图示知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大; 即当x >0时函数值y 的范围是y >2;因而当不等式kx+b-2>0时,x 的取值范围是x >0.故选:A .【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.2.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】解:4的平方根是2故选:D本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键.3.D解析:D【解析】【分析】作BD ⊥OC 于点D ,首先由题意得:AO=BD=3m ,AB=OD=2m ,然后根据OC=6米,得到DC=4 m ,最后利用勾股定理得BC 的长度即可.【详解】解:如图,作BD ⊥OC 于点D ,由题意得:AO=BD=3m ,AB=OD=5-3=2m ,∵OC=6m ,∴DC=6-2=4m ,∴由勾股定理得:2234+,∴旗杆的高度为5+5=10m ,故选:D .【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.4.D解析:D【解析】【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可.【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222(2)123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.5.B解析:B【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.A解析:A【解析】【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【详解】解:由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,所以△BCF的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A.【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.7.C解析:C【解析】【分析】根据正方形的性质,即可求出点C的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB的边长是2,∴点C的坐标为(2,2)将点C的坐标代入kyx中,得22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.8.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.9.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D .【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.10.D解析:D【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的加减法对B 进行判断;根据二次根式的性质对C 、D 进行判断.【详解】解:A3=,所以A选项错误;B B选项错误;C3=,所以C选项错误;D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.二、填空题11.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC-CD= -1,∴AE= -1,∴点E表示的实数是 -1.【解析】∵∠ABC=90°,AB=2,BC=1,∴,∵CD=CB=1,∴ -1,∴,∴点E12.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k ,解得k=-32, ∴所求函数解析式是y=-32x ; 故答案为:y=-32x . 【点睛】 本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义. 13.1【解析】∵点P (a ,b )在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数解析:1【解析】∵点P (a ,b )在一次函数y=x +1的图象上,∴b=a+1,∴b -a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数的解析式.14.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.解析:【解析】解:90B ∠=︒,30A ∠=︒,∴60ACB ∠=︒.又∵DE 垂直平分AC ,∴CD AD =,30ACD A DCB ∠=∠=︒=∠.∵1BD =,∴2CD AD ==,∴3AB =,30A ∠=︒,12BC AC =.由勾股定理可得AC =故答案为 15.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0 解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4, ∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.17.15【解析】【分析】试题分析:过D 作DE ⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D 作DE ⊥BC 于E ,∵∠A=90°,∴DA ⊥AB ,∵BD 平分解析:15【解析】【分析】试题分析:过D 作DE ⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.18.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.19.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C 的坐标为(0,52), 故答案为:(0,52). 【点睛】 此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式. 20.【解析】【分析】根据折叠的性质得到∠ABE =∠A ,∠CBG =∠C ,根据三角形的内角和定理,得到∠A+∠C =180°﹣∠ABC ,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A 、点解析:【解析】【分析】根据折叠的性质得到∠ABE =∠A ,∠CBG =∠C ,根据三角形的内角和定理,得到∠A +∠C =180°﹣∠ABC ,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A 、点C 都与点B 重合,∴∠ABE =∠A ,∠CBG =∠C ,∵∠A +∠C =180°﹣∠ABC ,∵∠ABC =∠ABE +∠CBG +∠EBG ,∴∠ABC =∠A +∠C +36°=180°﹣∠ABC +36°,∴∠ABC =108°,故答案为:108.【点睛】本题主要考查三角形的内角和定理与图形折叠的性质,根据角的和差关系,列出关于∠ABC 的方程,是解题的关键.三、解答题21.(1)证明见解析;(2)10【解析】【分析】(1)利用AAS 定理证明MBC HCB ∆∆≌,从而求得PBC PCB ∠=∠,使问题得解;(2)利用勾股定理求HC 的长度,然后在ABH ∆中,设设AB AC x ==,则()4AH x =-,利用勾股定理列方程求解.【详解】证明:(1)∵AB AC =∴A ABC CB =∠∠∵BH 、CM 为ABC ∆的高∴90BMC CHB ∠=∠=︒又∵BC CB =(公共边)∴MBC HCB ∆∆≌(AAS )∴PBC PCB ∠=∠,∴PB PC =(2)∵5PC PB ==,3PH =,∴在Rt △PCH 中,4HC =,8BH =设AB AC x ==,则()4AH x =-,ABH ∆中由勾股定理可得方程:222AB AH BH =+,即()22248x x =-+解方程得:10x =∴10AB =【点睛】本题考查全等三角形的判定及勾股定理的应用,数形结合思想解题,正确列出方程是本题的解题关键.22.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.23.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒或102秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠,把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,∴直线AC 对应的函数关系是为132y x =-+, (2)AC 垂直平分BB ',DB DB ='∴,BDB ∆'∴是等腰直角三角形,90BDB ∠'=∴°过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F .90DFO DFB DEB '︒∴∠=∠=∠=,360EDF DFB DEO EOF ︒∠=-∠-∠-∠,90EOF ︒∠=, 90EDF ︒∴∠=,EDF BDB '∴∠=∠,BDF EDB '∴∠=∠,FDB EDB ∴∆∆'≌,DF DE ∴=,∴设点D 坐标为(,)a a ,把点(,)D a a 代入132y x =-+, 得0.53a a =-+ 2a ∴=, ∴点D 坐标为(2,2),(3)同(2)可得PDF QDE ∠=∠ 又2,90DF DE PDF QDE ︒==∠=∠= PDF QDE ∴∆∆≌PF QE ∴=①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为1020-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为1秒或102秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.24.(1)=x (2)1x =【解析】【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)4x 2﹣8=0,移项得:4x 2﹣8=0,即x 2=2,开方得:=x ;(2)(x ﹣2)3=﹣1,开立方得:x ﹣2=﹣1,解得:x =1.【点睛】本题主要考查一元二次方程的解法及立方根,熟练掌握运算法则是解题的关键.25.(1)见解析;(2)452【解析】【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由已知我们可求得BE 、AE 的长,再利用勾股定理求得ED 的长,利用三角形面积公式解答即可.【详解】(1)∵AD ∥BC ,∠A =90°,∠1=∠2,∴∠A =∠B =90°,DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中 AD BE DE CE=⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.又∵AD =3,AB =9,∴BE =AD =3,AE =9﹣3=6.∵∠1=∠2,∴ED =EC∴△CDE 的面积=14522⨯=. 【点睛】 此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.四、压轴题26.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【解析】【分析】(1)①由“SAS”可证△BPD ≌△CQP ;②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】 解:(1)①△BPD 与△CQP 全等,理由如下:∵AB =AC =18cm ,AD =2BD ,∴AD =12cm ,BD =6cm ,∠B =∠C ,∵经过2s 后,BP =4cm ,CQ =4cm ,∴BP =CQ ,CP =6cm =BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC =12BC =5cm ,BD =CQ =6cm ,∴t=5 2,∴点Q的运动速度=612552=cm/s,∴当点Q的运动速度为125cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:125x﹣2x=36,解得:x=90,点P沿△ABC跑一圈需要181810232++=(s)∴90﹣23×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.27.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.-;②t=3.5或5或6.5.28.(1)证明见解析;(2)①CM=8t-,CN=63t【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)①由折叠的性质可得出答案;②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F→C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC 与△CEN 全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.29.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CHCG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CHAF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2,AF )2+EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.30.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒3.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .24.下列运算正确的是( )A .236a a a ⋅=B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=-5.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是()A .B .C .D .6.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm7.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( ) A .k <3B .k >3C .k <2D .k >28.以下问题,不适合用普查的是( ) A .旅客上飞机前的安检 B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命9.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 10.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数二、填空题11.4的算术平方根是 . 12.4的平方根是 .13.计算:32()x y -=__________.14.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.15.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.16.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.17.一次函数y =2x -4的图像与x 轴的交点坐标为_______.18.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.19.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .20.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.若分式15x -在实数范围内有意义,则实数x 的取值范围是( )A .5x ≠B .5x =C .5x >D .5x <2.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( ) A .12y y < B .12y y = C .12y y > D .不能确定 3.64的立方根是( )A .4B .±4C .8D .±84.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+5.下到图形中,不是轴对称图形的是( )A .B .C .D .6.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100 km ; ②前半个小时,货车的平均速度是40 km/h ; ③8∶00时,货车已行驶的路程是60 km ; ④最后40 km 货车行驶的平均速度是100 km/h ; ⑤货车到达乙地的时间是8∶24, 其中,正确的结论是( )A.①②③④B.①③⑤C.①③④D.①③④⑤7.下列标志中,不是轴对称图形的是()A.B.C.D.8.一组不为零的数a,b,c,d,满足a cb d=,则以下等式不一定成立的是()A.ac=bdB.a bb+=c dd+C.9ab-=9cd-D.99a ba b-+=99c dc d-+9.某篮球运动员的身高为1.96cm,用四舍五人法将1.96精确到0.1的近似值为()A.2 B.1.9 C.2.0 D.1.9010.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.2二、填空题11.关于x的分式方程211x ax+=+的解为负数,则a的取值范围是_________.12.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC=__.13.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .14.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.15.对于分式23x a ba b x++-+,当1x =时,分式的值为零,则a b +=__________.16.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .17.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度; 18.计算:16=_______.19.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________. 20.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)三、解答题21.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE . (1)求证:ABE ∆是直角三角形; (2)求ACE ∆的面积.22.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求ADAB的值.23.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .24.解方程: (1)4x 2﹣8=0; (2)(x ﹣2)3=﹣1.25.如图,在平面直角坐标系中,已知A (4,0)、B (0,3).(1)求AB 的长为____.(2)在坐标轴上是否存在点P ,使△ABP 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______. (3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)28.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”; ②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值; ②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.29.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒). (1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点v以原来的运动速度从点B同时出发,都顺时针沿三边运动,求经过多长时间,点P与点Q第一次在ABC的哪条边上相遇?30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据分式的定义即可求解. 【详解】依题意得50x -≠,解得5x ≠, 故选A. 【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.2.C解析:C 【解析】 【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可. 【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小, 又∵两点的横坐标2<3, ∴12y y > 故选C. 【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.3.A解析:A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A 考点:立方根.4.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠ ∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1 故选B 【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.5.C解析:C 【解析】 【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴. 【详解】解:A 、是轴对称图形,故此选项错误; B 、是轴对称图形,故此选项错误; C 、不是轴对称图形,故此选项正确; D 、是轴对称图形,故此选项错误; 故选:C . 【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.6.D解析:D 【解析】 【分析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断. 【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟 ∴货车走完全程所花时间为:1小时24分钟, ∴货车到达乙地的时间是8∶24,⑤正确; 综上:①③④⑤正确; 故选:D 【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.7.B解析:B 【解析】 【分析】根据轴对称图形的性质对各项进行判断即可. 【详解】 A. 是轴对称图形; B. 不是轴对称图形; C. 是轴对称图形; D. 是轴对称图形; 故答案为:B . 【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.8.C解析:C 【解析】 【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可. 【详解】 解:一组不为零的数a ,b ,c ,d ,满足a cb d=, ∴a b c d =,11a c b d +=+,即a b c d b d++=,故A 、B 一定成立; 设a ck b d==, ∴a bk =,c dk =, ∴999999a b kb b k a b kb b k ---==+++,999999c d kd d k c d kd d k ---==+++,∴9999a b c da b c d--=++,故D一定成立;若99a cb d--=则99a cb b d d-=-,则需99b d=,∵b、d不一定相等,故不能得出99a cb d--=,故D不一定成立.故选:C.【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.9.C解析:C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C.【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.10.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题11.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析12..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.13.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5cm为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm.【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.14.3-【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC的长度即为AF的长度. 【详解】解析:3【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出,可求出HC的长度即为AF的长度.【详解】解:如下图,作AH⊥BC于H.则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.15.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233a b , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.16.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 17.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 18.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.19.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.20.或或【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2解析:()2,4或()2,0-或()2,4-【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A ,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C (2,0),C (2,4),C (2,4)-- 故答案为:()2,4或()2,0-或()2,4-【点睛】 本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键 三、解答题21.(1)详见解析;(2)185. 【解析】【分析】 (1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH ⊥BC,由1122AB AE BE AH •=•可得高AH ,再求面积. 【详解】 (1)因为AC 的垂直平分线交AC 于点D ,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5因为32+42=52所以AB 2+AE 2=BE 2所以ABE ∆是直角三角形;(2)作AH ⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.22.(1)详见解析;(2;(3【解析】【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE =,,根据(1)思路得.【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以AE=222AB AC AC +=因为AB AC =所以AE 2AB =又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以AD=BE=3AB所以33AD AB AB ==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.23.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定. 24.(1)=x (2)1x = 【解析】 【分析】(1)方程整理后,利用平方根定义开方即可求出解; (2)方程利用立方根定义开立方即可求出解. 【详解】解:(1)4x 2﹣8=0, 移项得:4x 2﹣8=0,即x 2=2,开方得:=x ; (2)(x ﹣2)3=﹣1, 开立方得:x ﹣2=﹣1, 解得:x =1. 【点睛】本题主要考查一元二次方程的解法及立方根,熟练掌握运算法则是解题的关键. 25.(1)5;(2)(0,8),(0,-3),(0,-2),70,6⎛⎫- ⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫⎪⎝⎭;理由见解析 【解析】 【分析】(1)根据A 、B 两点坐标得出OA 、OB 的长,再根据勾股定理即可得出AB 的长 (2)分三种情况,AB=AP ,AB=BP ,AP=BP ,利用等腰三角形性质和两点之间距离公式,求出点P 坐标. 【详解】解:(1) ∵A (4,0)、B (0,3). ∴OA=3,OB=4,5AB ∴==(2)当点P 在y 轴上时当AB=BP 时, 此时OP=3+5=8或OP=5-3=2, ∴P 点坐标为(0,8)或(0,-2); 当AB=AP 时,此时OP=BO=3, ∴P 点坐标为;(0,-3);当AP=BP 时,设P(0,x),∴2224(3)x x +=-7:6x =-;∴P 点坐标为70,6⎛⎫- ⎪⎝⎭当点P 在x 轴上时当AB=AP 时, 此时OP=4+5=9或OP=5-4=1, ∴P 点坐标为(9,0)或(-1,0); 当AB=BP 时,此时OP=AO=4, ∴P 点坐标为(-4,0); 当AP=BP 时,设P(x ,0),∴2223(4)x x +=-:78x =;∴P 点坐标为7,08⎛⎫⎪⎝⎭综上所述:符合条件的点的坐标为:(0,8),(0,-3),(0,-2),70,6⎛⎫- ⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫⎪⎝⎭【点睛】本题主要考查等腰三角形性质、两点之间距离公式和勾股定理,学生只要掌握这些知识点,解决此问题就会变得轻而易举,需要注意的是,在解题过程中不要出现漏解现象.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】 【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答. 【详解】(1)如图,C '的坐标为(3,-2), 故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】 【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标. 【详解】解:(1)根据平移规律可得:B 向左平移; m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位; 故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1) ∵移动后的点 B 和点 A 的纵坐标相等 ∴m+1=3m+3 ∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点, 设 K 点坐标为(-3,a ) M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a ) AM=3,BM=3,KC=a,KH=2 ∵ABM AKM BKM S S S ∆∆∆=+∴222AM BM KC AM KH BM⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S△COD = S△OB'C + S△OB'D∴'' 222 CO OD CO B M OD B E ⨯⨯⨯=+∴353(3)51 222n⨯⨯-⨯=+解得:193n=,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用. 28.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<- 【解析】 【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一); (2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可. 【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P , 故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B , ∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上,∵点A 关于点B 的“正矩点”为点(,)C C C x y , ∴∠ABC=90°,BC=BA , ∴∠1+∠2=90°, ∵∠AOB=90°, ∴∠2+∠3=90°, ∴∠1=∠3. ∴△BFC ≌△AOB , ∴3FC OB ==, 可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3. ②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k+点3(3,3)C k-+,如图2, -1<C y ≤2, 即:-1<33k+≤2, 则334k -≤<-. 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.29.(1)6-2t ;(2)全等,理由见解析;(3)83;(4)经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇 【解析】 【分析】(1)根据题意求出BP ,由PC=BC-BP ,即可求得;(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C ,利用SAS 判定BPD △和CQP 全等即可;(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC ,再根据路程=速度×时间公式,求点P 的运动时间,然后求点Q 的运动速度即得;(4)求出点P 、Q 的路程,根据三角形ABC 的三边长度,即可得出答案. 【详解】(1)由题意知,BP=2t ,则 PC=BC-BP=6-2t , 故答案为:6-2t ; (2)全等,理由如下: ∵p Q V V =,t=1, ∴BP=2=CQ ,∵AB=8cm ,点D 为AB 的中点, ∴BD=4(cm ),又∵PC=BC-BP=6-2=4(cm ), 在BPD △和CQP 中BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴BPD △≌CQP (SAS ) 故答案为:全等. (3)∵p Q V V ≠, ∴BP CQ ≠,又∵BPD △≌CPQ ,∠B=∠C , ∴BP=PC=3cm ,CQ=BD=4cm , ∴点,P Q 运动时间322BP t ==(s ), ∴48332Q CQ V t===(cm/s ), 故答案为:83;(4)设经过t 秒时,P 、Q 第一次相遇, ∵2/p V cm s =,8/3Q V cm s =, ∴2t+8+8=83t ,解得:t=24此时点Q走了824643⨯=(cm),∵ABC的周长为:8+8+6=22(cm),∴6422220÷=,∴20-8-8=4(cm),经过24s后,点P与点Q第一次在ABC的BC边上相遇,故答案为:24s,在 BC边上相遇.【点睛】考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.30.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解析;(3)27 2【解析】【分析】(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏差三角形的定义,即可得到结论;(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直线EA的距离是3,根据三角形的面积公式,即可求解.【详解】(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),∴点C的坐标为(2,0),如图1,∵AC=AB,∴∠ACB=∠ABC,∵∠OCA+∠ACB=180°,∴∠OBA+∠OCA=180°,故答案为:(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由如下:如图2中,在AD上取一点H,使得AH=AB.∵AC平分∠BAD,∴∠CAH=∠CAB,又∵ AC=AC,∴△CAH≌△CAB(SAS),∴CH=CB,∠B=∠AHC,∵∠B+∠D=180°,∠AHC+∠CHD=180°,∴∠D=∠CHD,∴CH=CD,∴CB=CD,∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,∴△ABC与△ACD是偏差三角形;(3)如图3中,延长CA至点E,使AE=BD,连接BE,∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,∴∠BDC=∠BAE,又∵AB=CD,∴∆BDC≅∆EAB(SAS),∴EA=BD,∵点C到直线BD的距离是3,∴点B到直线EA的距离是3,∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=12∙(AC+EA)×3 =12∙(AC+BD)×3 =12×9×3=272.【点睛】本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.下列有关一次函数y =-3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小 B .函数图象与y 轴的交点坐标为C .当时,D .函数图象经过第一、二、四象限2.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大3.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个B .2个C .3个D .4个4.下列图形是轴对称图形的是( )A .B .C .D .5.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( ) A .()3,2 B .()2,3-C .()3,2-D .()3,2--6.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、7.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .48.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M 是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )10.下列说法中,不正确的是( ) A 2323B 2332 C 64 2D .﹣3的倒数是﹣13二、填空题11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316000米.将数据316000用四舍五入法精确到万位,并用科学记数法表示为____________. 12.点P (﹣5,12)到原点的距离是_____.13.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .14.等边三角形绕一点至少旋转_____°与自身完全重合.15.在一个不透明的袋子中装有2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:①恰好取出白球;②恰好取出红球;③恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大顺序排列___________(只需填写序号).16.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.17.Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 在边AB 上,连接CD .有以下4种说法:①当DC DB =时,BCD ∆一定为等边三角形 ②当AD CD =时,BCD ∆一定为等边三角形③当ACD ∆是等腰三角形时,BCD ∆一定为等边三角形 ④当BCD ∆是等腰三角形时,ACD ∆一定为等腰三角形 其中错误的是__________.(填写序号即可) 18.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y19.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.20.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________ 三、解答题21.先化简再求值:21111a a a ⎛⎫-÷⎪+-⎝⎭,其中2a =. 22.已知一次函数5y kx =+的图象经过点(2,1)A -.(1)求k 的值;(2)在图中画出这个函数的图象;(3)若该图象与x 轴交于点B ,与y 轴交于点C ,试确定OBC ∆的面积.. 23.计算:2201931125272-⎛⎫-+- ⎪⎝⎭24.已知一次函数y kx b =+的图象经过点()3,3P ,()1,3Q -. (1)求这个一次函数表达式;(2)若函数y kx b =+的图象与x 轴的交点是A ,与y 轴交于点B ,求ABO ∆的面积(其中O 为坐标原点).25.某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整): 分组 频数 频率 50.5~60.5 20 0.05 60.5~70.5 48 △ 70.5~80.5 △ 0.20 80.5~90.5 104 0.26 90.5~100.5 148 △ 合计△1根据所给信息,回答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在 90.5 ~ 100.5 分之间的学生进行奖励,请你估算出全校获奖学生的人数.四、压轴题26.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.27.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积; (2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数; (3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .28.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补. (1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK =∠HPK ,作PQ 平分∠EPK ,求∠HPQ 的度数.29.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.30.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】A、∵k=-3<0,∴当x值增大时,y的值随着x增大而减小,正确;B、函数图象与y轴的交点坐标为(0,2),正确;C、当x>0时,y<2,错误;D、∵k<0,b>0,图象经过第一、二、四象限,正确;故选C.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.2.C解析:C【解析】【分析】连接BQ,由矩形的性质,设BC=AO=a,AB=OC=b,利用勾股定理得到222PQ PB BQ+=,然后得到y与x的关系式,判断关系式,即可得到答案.解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形, 在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则 OP=a x -,CQ b y =-, 由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-, 整理得:2by x ax =-+,∴221()24a a y x b b=--+,∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小; 故选择:C. 【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.3.B解析:B 【解析】 【分析】根据无理数的定义判断即可. 【详解】 解:3π-73127-1-3 ,227-可以化成分数,不是无理数.故选 B 【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是4.B解析:B 【解析】 【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可. 【详解】根据轴对称图形定义,图形A 、C 、D 中不是轴对称图形,而B 是轴对称图形. 故选B 【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念.5.D解析:D 【解析】 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--. 故选:D . 【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.6.D解析:D 【解析】 【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可. 【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D . 【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.C【解析】 【分析】根据轴对称图形的概念求解. 【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个, 故选:C . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.B解析:B 【解析】 【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答. 【详解】解:∵0a b -<,且0ab <, ∴a 0,0b <> ∴点(),a b 在第二象限 故选:B 【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.C解析:C 【解析】 【分析】设沿直线AM 将△ABM 折叠,点B 正好落在x 轴上的C 点,则有AB =AC ,而AB 的长度根据已知可以求出,所以C 点的坐标由此求出;又由于折叠得到CM =BM ,在直角△CMO 中根据勾股定理可以求出OM ,也就求出M 的坐标. 【详解】设沿直线AM 将△ABM 折叠,点B 正好落在x 轴上的C 点, ∵直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B , ∴A (3,0),B (0,4),∴AB=223+4=5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A2323,故A选项不正确,所以本选项符合题意;B2332,正确,所以本选项不符合题意;C648642,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于解析:53.210⨯【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】316000≈320000=3.2×105.故答案为:3.2×105.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.12.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13.【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.14.120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角解析:120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.点睛:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.15.①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中解析:①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中任取1球,则①恰好取出白球的可能性为0,②恰好取出红球的可能性为35,③恰好取出黄球的可能性为25,故这些事件按发生的可能性从小到大的顺序排列是①③②.故答案为:①③②.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.16.150【解析】【分析】连接OP,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案. 【详解】解:如图,连接OP,E,F分别为点P关于OA,OB的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.17.③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵,,∴,∵,∴为等边三角形∴①正确;②∵,,∴,∵,∴,,∴,∴为等边三角形∴②正确;解析:③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵DC DB =,∴BCD ∆为等边三角形 ∴①正确;②∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵AD CD =,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形∴②正确;③当DA DC =时∵90ACB ∠=︒,30A ∠=︒,ACD ∆是等腰三角形,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形;当AC AD =时,易得BCD ∆不为等边三角形∴③错误;④∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵BCD ∆是等腰三角形,∴BCD ∆是等边三角形,60DCB ∠=︒∴30ACD ∠=︒,∴ACD ∆为等腰三角形;∴④正确;故答案为:③.【点睛】本题主要考查了等边三角形,等腰三角形的判定及性质,熟练掌握等边三角形、等腰三角形的判定及性质的证明方法是解决本题的关键.18.<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.19.x>﹣1【解析】【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【详解】当解析:x>﹣1【解析】【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【详解】当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为x>﹣1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)﹣2x 的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在﹣2x 上(或下)方部分所有的点的横坐标所构成的集合.20.(3,4)【解析】分析:首先根据点A 和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A 的坐标为(-4,-1),A′的坐标为(-2,2), ∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A 和点A ′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B ′的坐标.详解:∵A 的坐标为(-4,-1),A ′的坐标为(-2,2), ∴平移法则为:先向右平移2个单位,再向上平移3个单位, ∴点B ′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.三、解答题21.1a -+,-1.【解析】【分析】先对括号里的减法运算进行通分,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为最简形式,再把a 的值代入求解.【详解】 原式1(1)1(1)(1)a a a a a --=÷++- (1)(1)1a a a a a-+-=⋅+ 1a =-+.当a =2时,原式=-2+1=-1.【点睛】本题考查了分式的化简求值.掌握分式的混合运算法则是解答本题的关键.22.(1)3k =-;(2)画图见解析;(3)256OBC S =△ 【解析】【分析】(1)把点(2,1)A -代入解析式5y kx =+即可求出k 的值;(2)用两点法画出函数图像即可; (3)利用三角形面积公式进行计算.【详解】解:(1)将2,1x y ==-代入5y kx =+得:251k +=-,解得3k =-;(2)∵3k =-,∴35y x =-+,当x=0时,y=5;当y=0时,-3x+5=0,53x =, 如图:(3)由(2)知,53OB =,OC=5, 则55•253226OBC OC OB S ⨯===. 【点睛】 本题主要考查了满足函数解析式的点一定在函数的图象上,一次函数与坐标轴的交点,以及图形与坐标的性质,求出一次函数解析式是解答本题的关键.23.-5【解析】【分析】根据实数的运算法则进行计算.【详解】解:原式=-1+4-5-3=-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、算术平方根等考点的运算.24.(1)36y x =-;(2)6.【解析】【分析】(1)将P 点和Q 点分别代入,直接利用待定系数法即可求得一次函数解析式;(2)先分别求得A 、B 的坐标,由坐标即可求得AO 和BO 的长度,继而求得ABO ∆的面积.【详解】解:(1)分别将()3,3P ,()1,3Q -代入y kx b =+得333k b k b =+⎧⎨-=+⎩,解得33k b =⎧⎨=-⎩, ∴一次函数的表达式为:36y x =-;(2)当y=0时,036x =-,解得2x =,故(2,0)A ,OA=2,当x=0时,066y =-=-,故(0,6)B -,OB=6,∴ABO ∆的面积为:1126 6.22OA OB ⋅=⨯⨯= 【点睛】本题考查待定系数法求一次函数解析式,熟知待定系数法求一次函数解析式一般步骤是解决此题的关键.25.(1)见解析;(2)见解析;(3)740人【解析】【分析】(1)先根据第1组的频数和频率求出抽查学生的总人数,再利用频数、频率及样本总数之间的关系分别求得每一个小组的频数与频率即可得到答案;(2)根据(1)中频数分布表可得70.5~80.5的频数,据此补全图形即可;(3)用总人数乘以90.5~100.5小组内的频率即可得到获奖人数.【详解】解:(1)抽取的学生总数为20÷0.05=400,则60.5~70.5的频率为48÷400=0.12,70.5~80.5的频数为400×0.2=80,90.5~100.5的频率为148÷400=0.37,补全频数分布表如下:90.5~100.51480.37合计4001(3)2000×0.37=740(人),答:估算出全校获奖学生的人数约为740人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,根据第1组的数据求出被抽查的学生数是解题的关键,也是本题的突破口.四、压轴题26.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC =90°﹣55°=35°,∴∠CEF =180°﹣∠DEC =145°;(3)证明:由(2)得∠AOG+∠HEC =∠ACB =90°,而∠HEC+∠CEF =180°,∠NEC+∠CEF =180°,∴∠NEC =∠HEC,∴∠NEF =180°﹣∠NEH =180°﹣2∠HEC,∵∠HEC =90°﹣∠AOG,∴∠NEF =180°﹣2(90°﹣∠AOG )=2∠AOG .【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)AB ∥CD ,理由见解析;(2)证明见解析;(3)45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°,∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF 与∠EFD 的角平分线交于点P , ∴1()902FEP EFP BEF EFD ︒∠+∠=∠+∠= ∴∠EPF =90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)∵∠PHK =∠HPK ,∴∠PKG =2∠HPK .又∵GH ⊥EG ,∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,∴∠EPK =180°﹣∠KPG =90°+2∠HPK .∵PQ 平分∠EPK , ∴1452QPK EPK HPK ︒∠=∠=+∠, ∴∠HPQ =∠QPK ﹣∠HPK =45°.答:∠HPQ 的度数为45°.【点睛】 本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.29.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF∴∆是等边三角形,60MF DM F DMF∴=∠=∠=︒60BMG∠=︒DMF DM B MGG DM G∴∠+∠=+∠∠,即FMG DMB∠=∠在FMG∆和DMB∆中,60F MDBMF MDFMG DMB∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA∴∆≅∆GF BD∴=,即DF DG BD+=AD DF DG MD DG∴=+=+即AD DG MD=+;(3)结论:AD DG ND=-,证明过程如下:如图,延长BD使得DH ND=,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD∠=︒∠=︒-∠-∠=︒= HDN∴∆是等边三角形,60NH ND H HND∴=∠=∠=︒60BNG∠=︒HND BND BNDBNG∠+∠=+∠∴∠,即NHNB D G∠=∠在HNB∆和DNG∆中,60H NDGNH NDHNB DNG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA∴∆≅∆HB DG∴=,即DH BD DG+=ND AD DG∴+=即AD DG ND=-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

苏教版八上数学好题易错题5

苏教版八上数学好题易错题5

苏教版八上数学好(Hao)题易错题51.已知(Zhi)点A(0,2).B(−3,−2.)C(a,b),若(Ruo)C点(Dian)在x轴(Zhou)上,且∠ACB=90∘,则(Ze)C点坐(Zuo)标_______2.已(Yi)知5x2−3x−5=0,则5x2−2x−=_________.3.设a>b>0,a2+b2−6ab=0,则的值等于______.4.ab为实数,且ab=1,设P=+,Q=+,则P____Q(填“>”、“<”或“=”).5.如图,在锐角△ABC中,AB=,∠BAC=45∘,∠BAC的平分线交BC于点D,M、N分别是AD和AB 上的动点,则BM+MN的最小值是( )A. B. 1 C. D.第5题图6.如(Ru)图,已(Yi)知点F的坐(Zuo)标为(3,0),点(Dian)A,B分别是某(Mou)函数图象与x 轴(Zhou)、y轴(Zhou)的交点,P是此(Ci)图象上的一动点。

设P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5−x(0⩽x⩽5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=4其中正确结论的序号是___________.第6题图7.已知:如图1,△ABC中,AB=13,BC=14,AC=15.将线段AB沿过点A的直线翻折,使得点B的对应点E恰好落在BC边上,折痕与BC边相交于点D,如图2所示。

(1)求线段DE的长;(2)在图2中,若点P为线段AC上一点,且△AEP为等腰三角形,求AP的长。

8.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为__________第(Di)8题(Ti)图9.如(Ru)图,在平面(Mian)直角坐标系中,直(Zhi)线l1:y=−x+3与(Yu)x轴交(Jiao)于点A,与(Yu)y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)直线l2是否经过x轴上一定点?若经过,请直接写出定点坐标;若不经过,请说明理由;=8,求直线l2的函数关系式;(2)若S△ACP(3)过点M(0,6)作平行于x轴的直线l3,点Q为直线l3上一个动点,当△QAB为等腰三角形时,求所有点Q的坐标。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,8 3.某一次函数的图像与x 轴交于正半轴,则这个函数表达式可能是( )A .2y x =B .1y x =+C .1y x =--D .1y x =- 4.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .5.下列图案中,不是轴对称图形的是( )A .B .C .D .6.下列各点中,在函数y=-8x 图象上的是( ) A .(﹣2,4)B .(2,4)C .(﹣2,﹣4)D .(8,1) 7.若3n +3n +3n =19,则n =( ) A .﹣3 B .﹣2 C .﹣1 D .08.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等9.估算x 5 )A .0<x <1B .1<x <2C .2<x <3D .3<x <4 10.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( )A .﹣2B .﹣1C .0D .2 二、填空题11.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.12.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.13.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.14.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.15.阅读理解:对于任意正整数a ,b ,∵20a b ≥,∴0a ab b -≥,∴2a b ab +≥a b =时,等号成立;结论:在2a b ab +≥a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab 若1m 1m m -有最小值为__________.16.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.17.在△ABC 中,已知AB =15,AC =11,则BC 边上的中线AD 的取值范围是____.18.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.19.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .20.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.三、解答题21.如图,正方形网格由边长为1的小正方形组成,ABC ∆的顶点都在格点上,平面直角坐标系的坐标轴落在网格线上,按要求完成作图:(1)作出ABC ∆关于y 轴对称的图形111A B C ∆,其中,点1A 的坐标为_______.(2)在x 轴上画出一点Q ,使得ACQ ∆的周长最小.22.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.23.一架梯子AB 长25米,如图斜靠在一面墙上,梯子底端B 离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?24.已知:如图,,12AB DC =∠=∠,求证 :EBC ECB ∠=∠.25.如图,四边形ABCD 中,CD ∥AB ,E 是AD 中点,CE 交BA 延长线于点F .(1)试说明:CD =AF ;(2)若BC =BF ,试说明:BE ⊥CF .四、压轴题26.阅读并填空: 如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE=,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________) 在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =27.如图,在平面直角坐标系中,直线y =﹣34x+m 分别与x 轴、y 轴交于点B 、A .其中B 点坐标为(12,0),直线y =38x 与直线AB 相交于点C . (1)求点A 的坐标.(2)求△BOC 的面积.(3)点D 为直线AB 上的一个动点,过点D 作y 轴的平行线DE ,DE 与直线OC 交于点E (点D 与点E 不重合).设点D 的横坐标为t ,线段DE 长度为d .①求d 与t 的函数解析式(写出自变量的取值范围).②当动点D 在线段AC 上运动时,以DE 为边在DE 的左侧作正方形DEPQ ,若以点H (12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点时,请直接写出t 的取值范围.28.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数. 29.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.30.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据轴对称图形的概念求解.【详解】A 、是轴对称图形.故选项正确;B 、不是轴对称图形.故选项错误;C 、不是轴对称图形.故选项错误;D 、不是轴对称图形.故选项错误.故选:A .【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.2.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.D解析:D【解析】分别求出每个函数与x 轴的交点,即可得出结论.【详解】A .y =2x 与x 轴的交点为(0,0),故本选项错误;B .y =x +1与x 轴的交点为(-1,0),故本选项错误;C .y =-x -1与x 轴的交点为(-1,0),故本选项错误;D .y =x -1与x 轴的交点为(1,0),故本选项正确.故选:D .【点睛】本题考查了一次函数的性质.掌握求一次函数与x 轴的交点坐标的方法是解答本题的关键.4.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.5.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、是轴对称图形,故此选项不合题意;B 、是轴对称图形,故此选项不合题意;C 、是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项符合题意.故选:D .【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.6.A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.7.A解析:A【解析】【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【详解】 解:13339n n n ++=, 1233n +-∴=,则12n +=-,解得:3n =-.故选:A .【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.8.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A :如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误; B 、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等, ∴等腰三角形的两条中线不一定相等,此选项错误;C 、如图,△ABC 和△ABD 中,AB=AC=AD ,CD ∥AB ,DG 是△ABD 的AB 边高,CH 是是△ABC 的AB 边高,则DG=CH ,但△ABC 和△ABD 不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.9.C解析:C【解析】【分析】549.【详解】459<<<<,∴253故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.10.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题11.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.12.4【解析】【分析】过点D 作DF⊥AC 于F ,然后利用△ABC 的面积公式列式计算即可得解.【详解】过点D 作DF⊥AC 于F ,∵AD 是△ABC 的角平分线,DE⊥AB,∴DE=DF =3,∴S△解析:4【解析】【分析】过点D 作DF ⊥AC 于F ,然后利用△ABC 的面积公式列式计算即可得解.【详解】过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DE =DF =3,∴S △ABC =12×6×3+12AC ×3=15, 解得AC =4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.13.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数. 【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.14.18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:=当,时,原式,故答案为:18【点睛】此题考查了整式的混解析:18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:32232a b a b ab ++=222ab a ab b2=ab a b当3a b +=,2ab =时,原式2=23=18,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.15.3【解析】【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,解析:3【解析】【分析】根据a b +≥(a 、b进行化简求最小值. 【详解】1=1111m m m111m=111m1211=31m m即:当1m 时,m m 3, 故答案为:3.【点睛】 准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.16.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【解析:1【解析】【分析】直接把点P(-1,0)代入一次函数y=kx+1,求出k的值即可.【详解】∵一次函数y=kx+1的图象经过点P(-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD 全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三解析:2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.【详解】解:如图,延长AD至E,使得DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,∵AD=DE,∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=15,∴CE=15,∵AC=11,∴在△ACE中,15-11=4,15+11=26,∴4<AE<26,∴2<AD<13;故答案为:2<AD<13.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.18.x2+y2=1【解析】因为原点为圆心,过点P(1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x-0)2+(y-0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x2+y2=1【解析】因为原点为圆心,过点P(1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x-0)2+(y-0)2=1,即x2+y2=1,故答案为: x2+y2=1.19.【解析】【分析】作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到×10×DE+×14×DF=42,则5DE+7DE=42,从而可求出DE的长.【详解】作D解析:7 2【解析】【分析】作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到1 2×10×DE+12×14×DF=42,则5DE+7DE=42,从而可求出DE的长.【详解】作DF⊥BC于F,如图所示:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE =DF ,∵S △ADB +S △BCD =S △ABC , ∴12×10×DE +12×14×DF =42, ∴5DE +7DE =42, ∴DE =72(cm ). 故答案为72. 【点睛】 此题主要考查角平分线的性质,解题关键是利用三角形面积公式构建方程,即可解题. 20.m >2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m >2.【解析】【分析】根据(x 1﹣x 2)(y 1﹣y 2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x 1﹣x 2)(y 1﹣y 2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣, 也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.三、解答题21.(1)见解析;(2)见解析.【解析】【分析】(1)分别找到三角形个顶点关于y 轴对称的对称点,再顺次连接即可,再根据直角坐标系即可得到1A 的坐标;(2)作点A 关于x 轴的对称点A’,再连接A’C ,与x 轴的交点即为所求.【详解】(1)作出ABC ∆关于y 轴对称的图形111A B C ∆如图所示.其中,点1A 的坐标为3,1().(2)如图,Q 点为所求.【点睛】此题主要考查坐标与图形,解题的关键是熟知轴对称的性质.22.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x ,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x (x+8),=x 2+8x+7-x 2-8x ,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.23.(1)24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.【解析】【分析】(1)应用勾股定理求出AC 的高度,即可求解;(2)应用勾股定理求出B ′C 的距离即可解答.【详解】(1)如图,在Rt △ABC 中AB 2=AC 2+BC 2,得AC =2222257AB BC -=-=24(米)答:这个梯子的顶端距地面有24米.(2)由A 'B '2=A 'C 2+CB '2,得B 'C =2222'''25(244)A B A C -=--=15(米),∴BB '=B 'C ﹣BC =15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.24.见解析【解析】【分析】利用“角角边”证明△ABE 和△DCE 全等,根据全等三角形对应边相等可得BE=CE ,然后利用等边对等角证明即可.【详解】证明:在△ABE 和△DCE 中,12AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE=CE ,∴∠EBC=∠ECB .【点睛】本题考查了全等三角形的判定与性质,等边对等角的性质,熟练掌握三角形全等的判定方法是解题的关键.25.(1)证明见解析;(2)证明见解析【解析】【分析】(1)由CD ∥AB ,可得∠CDE =∠FAE ,而E 是AD 中点,因此有DE =AE ,再有∠AEF =∠DEC,所以利用ASA可证△CDE≌△FAE,再利用全等三角形的性质,可得CD=AF;(2)先利用(1)中的三角形的全等,可得CE=FE,再根据BC=BF,利用等腰三角形三线合一的性质,可证BE⊥CF.【详解】证明:(1)∵CD∥AB,∴∠CDE=∠FAE,又∵E是AD中点,∴DE=AE,又∵∠AEF=∠DEC,∴△CDE≌△FAE,∴CD=AF;(2)∵BC=BF,∴△BCF是等腰三角形,又∵△CDE≌△FAE,∴CE=FE,∴BE⊥CF(等腰三角形底边上的中线与底边上的高相互重合).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明△CDE≌△FAE是正确解答本题的关键.四、压轴题26.见解析【解析】【分析】△≌△,写出证明过程和依据先根据平行线的性质,得到角的关系,然后证明OCD OFE即可.【详解】EF AC交BC于F,解:过点E作//∠=∠(两直线平行,同位角相等),∴ACB EFB∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.27.(1)点A 坐标为(0,9);(2)△BOC 的面积=18;(3)①当t <8时,d =﹣98t+9,当t >8时,d =98t ﹣9;②12≤t≤1或7617≤t≤8017. 【解析】【分析】(1)将点B 坐标代入解析式可求直线AB 解析式,即可求点A 坐标;(2)联立方程组可求点C 坐标,即可求解;(3)由题意列出不等式组,可求解.【详解】解:(1)∵直线y =﹣34x+m 与y 轴交于点B (12,0), ∴0=﹣34×12+m , ∴m =9, ∴直线AB 的解析式为:y =﹣34x+9, 当x =0时,y =9,∴点A 坐标为(0,9); (2)由题意可得:38394y x y x ⎧=⎪⎪⎨⎪=+⎪⎩,解得:83xy=⎧⎨=⎩,∴点C(8,3),∴△BOC的面积=12×12×3=18;(3)①如图,∵点D的横坐标为t,∴点D(t,﹣34t+9),点E(t,38t),当t<8时,d=﹣34t+9﹣38t=﹣98t+9,当t>8时,d=38t+34t﹣9=98t﹣9;②∵以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,∴12≤t≤1或919829918t tt t⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩,∴12≤t≤1或7617≤t≤8017.【点睛】本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.28.(1)56°;(2)y=454x+;(3)36°或1807°.【解析】【分析】(1)根据等边对等角求出等腰△ABC的底角度数,再根据角平分线的定义得到∠ABE的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE ,则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.29.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中, ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.30.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD=,BF BP BD∴+=;(3)如图③,BF BD BP=+,理由:90ACB∠=︒,30A∠=︒,60CBA∴∠=︒,12BC AB=,点D是AB的中点,BC BD∴=,DBC∴∆是等边三角形,60CDB∴∠=︒,DC DB=,线段DP绕点D逆时针旋转60︒,得到线段DF,60PDF∴∠=︒,DP DF=,CDB PDB PDF PDB∴∠+∠=∠+∠,CDP BDF∴∠=∠,在DCP∆和DBF∆中,DC DBCDP BDFDP DF=⎧⎪∠=∠⎨⎪=⎩,DCP DBF∴∆≅∆,CP BF∴=,CP BC BP=+,BF BC BP∴=+,BC BD=,BF BD BP∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF∆≅∆,是一道中等难度的中考常考题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八上好题易错题(1)1.如图所示,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.第1题图2.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE,交CE于点F,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于直线CE,交CE的延长线于点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.第2题图3.如上图,BD为△ABC的的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB于F.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④第3题图4.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.△ABC的面积为70,AB=16,BC=12。

求DE的长.第4题图5.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个 B.3个 C.4个 D.5个第5题图6.如图,AD平分∠BAC,EG⊥AD于H,则下列等式中成立的是()A.∠α=(∠β+∠γ) B.∠α=(∠β﹣∠γ)C.∠G=(∠β+∠γ) D.∠G=∠α第6题图7.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PO=AB,P、O两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到AP= 时,才能使△ABC与△POA全等.第7题图8.如图,在△ABC 中,AD 是角平分线,DF ⊥AB ,DM ⊥AC ,AF=10cm , AC=14cm ,动点E 以2cm/s 的速度从A 点向F 点运动,动点G 以1cm/s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t (1)求证:在运动过程中,不管t 取何值,都有DGC AED S S ∆∆=2;(2)当t 取何值时,△DFE 与△DMG 全等第8题图9.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C ,使得△ABC 是等腰三角形,点C 的个数为( ) A .5 B .6 C .7 D . 810.已知等腰三角形一腰上的中线将它周长分成18cm 和12cm 两部分,则这个等腰三角形的 底边长是 .MF AB C D EG B A 第9题图第13题图11.如图所示,在△ABC 中,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则三个结论:①AS=AR; ②QP ∥AR; ③△BPR ≌△QPS 中一定正确....的是____________.(填序号)第11题图12.如图:某通信公司要修建一座信号发射塔,要求发射塔到两城镇P 、Q 的距离相等,同时到两条高速公路l 1、l 2的距离也相等。

在图上画出发射塔M 的位置。

(尺规作图)第12题图13. 如图,四边形ABCD 中,∠BAD=110°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N , 使△AMN 周长最小,此时∠MAN 的度数为 °.14.如图,在△ABC 中,AB =AC =9,BC =12,点D 从B 出发以每秒2厘米的速度在线段BC 上从B 向C 方向运动,点E 同时从C 出发以每秒2厘米的速度在线段AC 上从C 向A 运动,连接AD 、DE .(1)运动 秒时,AE =DC (不必说明理由);(2)运动多少秒时,∠ADE =∠B ,并请说明理由.第14题图15.在△ABC 中,AB=AC ,点D 是射线CB 上的一动点(不与点B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=_____度; (2)设∠BAC=α,∠DCE=β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;12②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).(3)结论:α与β之间的数量关系是_____________________.16.一节数学课后,老师布置了一道课后练习题:如图1,已知在Rt △ABC 中,AB=BC ,∠ABC=90°,O 为AC 中点.(1)如图1,若把三角板的直角顶点放置于点O ,两直角边分别与AB 、BC 交于点M 、N ,求证:BM=CN ;(2)若点P 是线段AC 上一动点,在射线BC 上找一点D ,使PD=PB ,再过点D 作BO 的平行线,交直线AC 于一点E ,试在备用图上探索线段ED 和OP 的关系,并说明理由.图117.如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F .若AC=BD ,AB=ED ,BC=BE ,则∠ACB 等于( )备用图2备用图1A.∠EDB B.∠BED C.∠AFB D.2∠ABF第17题图18.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为度.第18题图19.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?第19题图20(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是 .(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=900, 点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中当点A,D,E不在同一直线上时,设直线AD 与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.21.如图,△ABC 中,AB=AC,∠BAC 的平分线与AB 的垂直平分线交于点O,将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,若∠OEC=136°,则∠BAC 的大小为( )A.44°B.58°C.64°D.68°第21题图22.如图,已知等边△ABC 的边长为3,点P 是AB 上一动点,过点P 作PE ⊥AC 于E ,Q 为BC 延长线上一点,且 PA=CQ ,连接PQ 交边AC 于点D ,随着P 点的运动,线段DE 的长发生变化吗?若不变请求出DE 的长;若变化请写出DE 的变化情况 .第22题图 23.如图,长方形纸片中,,将纸片折叠,使顶点落在边上的点处,折痕的一端点在边上. (1)如图(1),当折痕的另一端在边上且AE=4时,求AF 的长 (2)如图(2),当折痕的另一端在边上且BG=10时,①求证:EF=EG . ②求AF 的长. (3) 如图(3),当折痕的另一端在边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2cm,且BG=10时,求AF 的长.ABCD 8AB B AD E G BC F AB F AD F AD GF EDCBA(图1)(图2)(图3)24.等腰三角形一腰长为5,一边上的高为3,则底边长为 .25.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥DB ,连接AC 、EC ,已知AB =5,DE =1,BD =8,设CD =x .(1)用含x 的代数式表示AC +CE 的长.(2)请问点C 满足什么条件时,AC +CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式 第25题图()224129x x ++-+的最小值.26.如图,在△ABC 中,∠ABC =45°,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,F 为BC 中点,BE 与DF ,DC 分别交于点G ,H ,∠ABE =∠CBE .(1)求证:BH =AC ; (2)求证:BG 2-GE 2=EA 2.HAEFB GCDAB G CDE FH第26题图27.如图,用4个全等的直角三角形与1个小正方形镶嵌成正方形图案,已知大正方形的面积为49,小正方形的面积为4.若分别用x,y表示直角三角形的两条直角边(x>y),给出下列四个结论:①x2+y2=49;②x-y=2;③2xy+4=49;④x+y=9.其中正确的结论是 ( ) A.①② B.①②③ C.①②④ D.①②③④第27题图28.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B 落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.第28题图29.如图,△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别在AB,BC边上匀速移动,它们的速度分别为2 cm/s和1cm/s,当点P到达点B时,P,Q两点停止运动,设点P的运动时间为ts,则当t= s时,△PBQ为直角三角形.第29题图30.如图,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为 ( )A.2 cm B.4 cm C.6 cm D.8 cm第30题图31.细心观察下图,认真分析各式,然后解答问题.()2+1=2,S1=()2+1=3,S2=()2+1=4,S3=。

,则S12+S22+S32+…+S n2的值为第31题图32.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过点D作DE⊥AC于E.(1)求证:∠CBP=∠ABP;(2)若AB-BC=4,AC=8.①求AB的长度及△ABP的面积;②求AE的长.第32题图33如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(6分)(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在x的值,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.与AC、BC的交点。

相关文档
最新文档