八年级上册数学易错题和典型题
八上数学易错题
八年级上册数学易错题可能涵盖多个知识点,以下是一些典型的易错题及其详细解析,旨在帮助学生更好地理解和避免这些错误。
1 平面直角坐标系
题目:点 A(2,−3) 关于 x 轴对称的点 B 的坐标是 _______。
易错点:混淆关于 x 轴和 y 轴对称的点的坐标变化规则。
解析:点 A(2,−3) 关于 x 轴对称时,横坐标不变,纵坐标取反。
因此,点 B 的坐标为 (2,3)。
2. 一元一次不等式
题目:解不等式 2x−1>3x+2。
易错点:移项时符号处理不当。
解析:首先将不等式两边合并同类项,得−x>3。
然后,两边同时乘以−1,注意不等号方向要反转,得到 x<−3。
3. 函数的图像与性质
题目:函数 y=2x 的图像经过哪几个象限?
易错点:未正确分析函数图像的性质。
解析:函数 y=2x 是一个正比例函数,其图像是一条经过原点的直线。
由于斜率 k=2>0,图像将从第三象限经过原点进入第一象限。
因此,它经过第一、三象限。
4. 数据的集中趋势与离散程度
题目:一组数据 3,5,5,4,2 的众数是 _______。
易错点:混淆众数与中位数、平均数的概念。
解析:众数是一组数据中出现次数最多的数。
在这组数据中,数字 5 出现了两次,而其他数字只出现了一次。
因此,众数是 5。
人教版数学八年级上册易错题难题整理含答案+易错题及答案
人教版数学八年级上册易错题难题整理含答案+易错题及答案人教版数学八年级上册易错题整理一、选择题3、正确说法的个数有(C)3个。
改写:在一组数据中,中位数只有一个;中位数可能是这组数据中的数,也可能不是;一组数据的众数可能有多个;众数是这组数据中出现次数最多的数据的次数;众数一定是这组数据中的数。
5、正确说法的个数有(D)4个。
改写:数轴上的点要么表示有理数,要么表示无理数;实数a的倒数是1/a;带根号a的数都是无理数;两个绝对值不相等的无理数,其和、差、积、商仍是无理数。
6、答案为(B)m2+1.改写:设自然数为n,则n的算术平方根为m,即m^2≤n<(m+1)^2,因此n的范围为m^2≤n≤m^2+2m,与n相邻的下一个自然数为m^2+2m+1=(m+1)^2.二、填空题11、样本容量为(240÷100)×=7500,正常视力的初中生人数为(0.16÷100)×=48.12、b(10+a)的值为(根号10-3)×(根号10+3)=10-9=1.13、-.36-1/2=-1.86.14、该图形的面积为∆ABC的面积减去∆ADC的面积,即(1/2)×12×5-(1/2)×3×4=21.15、根据勾股定理,BD=5,所以该图形的面积为(1/2)×12×5=30.16、解方程可得x=2.17、由不等式组得x>a且x>b,所以a<b。
18、甲管的注水速率为1/6,乙管的注水速率为1/x,两管同时开的注水速率为1/3,因此1/6+1/x=1/3,解方程可得x=9.三、解答题20、计算:1)因式分解题略。
2)已知$\frac{a-b}{a+b}=9$,$\frac{a-b}{a+b}=49$,求$a+b$和$ab$的值。
由$\frac{a+b}{a-b}=\frac{1}{9}$,得$a+b+2ab=9$(1)。
人教版八年级上册数学易错题(含解析)
八年级数学上册易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
八年级数学上册 全册全套试卷易错题(Word版 含答案)
八年级数学上册全册全套试卷易错题(Word版含答案)一、八年级数学三角形填空题(难)1.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.2.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.3.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.【答案】40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.故答案为:40°.4.已知等腰三角形的两边长分别为3和5,则它的周长是____________【答案】11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC 外,若∠2=20º,则∠1的度数为 _______.【答案】100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.6.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.【答案】90°【解析】【分析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.二、八年级数学三角形选择题(难)7.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.8.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条【答案】C【解析】【分析】n边形的内角和是(2)180n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n-计算即可.【详解】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n-.9.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111A B C.再分别倍长A1B1,B1C1,C1A1得到222A B C.…… 按此规律,倍长2018次后得到的201820182018A B C的面积为()A.20176B.20186C.20187D.20188【答案】C【解析】分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.故选C.点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.10.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠A B.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A【答案】B【解析】试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。
八年级数学上期中易错题精选习题及解析
一.选择题(共16 小题)1.如图,要测量河两岸相对两点A、B 的距离,可以在AB 的垂线BF 上取两点C 、D,使CD=BC,再作BF 的垂线DE,且使A、C、E 在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是( )A.ASA B.SAS C.SSS D.AAS2.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC.下列结论中不正确的是( )A.∠MBE=∠MEB B.MN∥BE C.S△BEM=S△BEN D.∠MBN=∠MNB3.如图,D 为∠BAC 的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC 于E,DF⊥AB 交BA 的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )个B.2 个C.3 个D.4 个4.在平面直角坐标系内,点O 为坐标原点,A(﹣4,0),B(0,3).若在该坐标平面内有以点P(不与点A、B、O 重合)为一个顶点的直角三角形与Rt△ABO 全等,且这个以点P 为顶点的直角三角形与Rt△ABO 有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7 C.5 D.35.如图所示,已知在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,若∠ B=28°, 则∠AEC=( )A.28° B.59° C.60° D.62°6.下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1 个B.2 个C.3 个D.4 个7.如图,AB=AC,AD=AE,BE、CD 交于点O,则图中全等三角形共有( )A.五对B.四对C.三对D.二对8.如图,已知:AD∥BC,AB∥DC,AC 与BD 交于点O,AE⊥BD 于点E,CF⊥ BD 于点F,那么图中全等的三角形有( )A.8 对B.7 对C.6 对D.5 对9.在如图所示的5×5 方格中,每个小方格都是边长为1 的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( )A.1 B.2 C.3 D.410.如图,△ABC 的3 个顶点分别在小正方形的顶点上,这样的三角形叫做格点三角形,在图中再画格点三角形(位置不同于△ABC),使得所画三角形与△ABC全等,则这样的格点三角形能画( )A.1 个B.2 个C.3 个D.4 个11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.12.不能用尺规作出唯一三角形的是( )A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角13.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点 ,AB和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS14.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<1915.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( ) A.37° B.53° C.37°或63°D.37°或53°16.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C 在一条直线上.下列结论: ①BD 是∠ABE 的平分线;②AB⊥AC;③∠C=30°;④线段DE 是△BDC 的中线;⑤AD+BD=AC其中正确的有( )个.A.2 B.3 C.4 D.5参考答案与试题解析一.选择题(共16 小题)1.如图,要测量河两岸相对两点A、B 的距离,可以在AB 的垂线BF 上取两点C 、D,使CD=BC,再作BF 的垂线DE,且使A、C、E 在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是( )A.ASA B.SAS C.SSS D.AAS[解答]解:在△ABC 和△EDC 中,∴△ABC≌△EDC(ASA),她的依据是两角及这两角的夹边对应相等即ASA 这一方法.故选:A.2.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC.下列结论中不正确的是( )A.∠MBE=∠MEB B.MN∥BE C.S△BEM=S△BEN D.∠MBN=∠MNB[解答]解:∵EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A 正确),∠EBM=∠NMC,∴MN ∥BE (故 B 正确),∴MN 和 BE 之间的距离处处相等,∴S △BEM =S △BEN (故 C 正确),∵∠MNB=∠EBN ,而∠EBN 和∠MBN 的关系不知,∴∠MBN 和∠MNB 的关系无法确定,故 D 错误,故选:D .3. 如图,D 为∠BAC 的外角平分线上一点并且满足 BD=CD ,∠DBC=∠DCB ,过 D 作 DE ⊥AC 于 E ,DF ⊥AB 交 BA 的延长线于 F ,则下列结论:①△CDE ≌△BDF ;②CE=AB +AE ;③∠BDC=∠BAC ;④∠DAF=∠CBD . 其中正确的结论有( )个B .2 个C .3 个D .4 个[解答]解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE=DF ,在 Rt △CDE 和 Rt △BDF 中,,∴Rt △CDE ≌Rt △BDF (HL ),故①正确;∴CE=AF ,在 Rt △ADE 和 Rt △ADF 中,,∴Rt △ADE ≌Rt △ADF (HL ),∴AE=AF ,∴CE=AB +AF=AB +AE ,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∴A、B、C、D 四点共圆,∴∠BDC=∠BAC,故③正确;∠DAE=∠CBD,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共 4个.故选:D.4.在平面直角坐标系内,点O 为坐标原点,A(﹣4,0),B(0,3).若在该坐标平面内有以点P(不与点A、B、O 重合)为一个顶点的直角三角形与Rt△ABO 全等,且这个以点P 为顶点的直角三角形与Rt△ABO 有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7 C.5 D.3[解答]解:如图:分别以OA、OB、AB 为边作与Rt△ABO 全等的三角形各有3 个,则所有符合条件的三角形个数为9.故选:A.5.如图所示,已知在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,若∠B=28°, 则∠AEC=( )A.28° B.59° C.60° D.62°[解答]解:∵在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE= ∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∵∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.6.下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1 个B.2 个C.3 个D.4 个[解答]解:①有一条直角边和斜边上的高对应相等的两个直角三角形全等,正确; 有两边和其中一边上高对应相等的两个三角形不一定全等,所以②错误;③有两边和第三边上的高对应相等的两个三角形全等,错误;故选:A.7.如图,AB=AC,AD=AE,BE、CD 交于点O,则图中全等三角形共有( )A.五对B.四对C.三对D.二对[解答]解:∵AB=AC,AD=AE,∴∠ABC=∠ACB,BD=EC.∵在△BDC 和△CEB 中, ,∴△BDC≌△CEB.∴∠EBC=∠DCB,∴∠ABO=∠ACO.在△DBO 和△ECO 中, ,∴△DBO≌△ECO.∵∠EBC=∠DCB,∴OB=OC.∵在△ABO 和△ACO 中, ,∴△ABO≌△ACO.∴∠DAO=∠EAO.∵在△DAO 和△EAO 中, ,∴△DAO≌△EAO.∵在△DAC 和△EAB 中, ,∴△DAC≌△EAB.故选:A.8.如图,已知:AD∥BC,AB∥DC,AC 与BD 交于点O,AE⊥BD 于点E,CF⊥ BD 于点F,那么图中全等的三角形有( )A.8 对B.7 对C.6 对D.5 对[解答]解:由平行四边形的性质可知:△ABD≌△CDB,△ABO≌△CDO,△ADE≌△CBF,△AOE≌△CFO,△AOD≌△COB,△ABC≌△CDA,△ABE 和△CDF故选:B.9.在如图所示的5×5 方格中,每个小方格都是边长为1 的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( )A.1 B.2 C.3 D.4[解答]解:以BC 为公共边的三角形有3 个,以AB 为公共边的三角形有0 个, 以AC 为公共边的三角形有1 个,共3+0+1=4 个,故选:D.10.如图,△ABC 的3 个顶点分别在小正方形的顶点上,这样的三角形叫做格点三角形,在图中再画格点三角形(位置不同于△ABC),使得所画三角形与△ABC全等,则这样的格点三角形能画( )A.1 个B.2 个C.3 个D.4 个[解答]解:如图所示可作 3 个全等的三角形.故选:C.11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.[解答]解:A、由全等三角形的判定定理SAS 证得图中两个小三角形全等, 故本选项不符合题意;B、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE 和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意; D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=FC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.12.不能用尺规作出唯一三角形的是( )A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角[解答]解:A、已知两角和夹边,满足ASA,可知该三角形是唯一的; B、已知两边和夹角,满足SAS,可知该三角形是唯一的;C、已知两角和其中一角的对边,满足AAS,可知该三角形是唯一的;D、已知两边和其中一边的对角,满足SSA,不能确定三角形是唯一的.故选:D.13.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点 ,AB和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS[解答]解:在△ADC 和△ABC 中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC 就是∠DAB 的平分线.故选:A.14.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19[解答]解:如图,延长AD 至E,使DE=AD,∵AD 是△ABC 的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14﹣5=9,∴9<CE<19,即9<AB<19.故选:D.15.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( ) A.37° B.53° C.37°或63°D.37°或53°[解答]解:在△ABC 中,∠C=180°﹣∠A﹣∠B=53°.∵△ABC 与△DEF 全等,∴当△ABC≌△DEF 时,∠E=∠B=37°,当△ABC≌△DFE 时,∠E=∠C=53°.∠E 的度数是37 度或53度.故选:D.16.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C 在一条直线上.下列结论: ①BD 是∠ABE 的平分线;②AB⊥AC;③∠C=30°;④线段DE 是△BDC 的中线;⑤AD+BD=AC其中正确的有( )个.A.2 B.3 C.4 D.5[解答]解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD 是∠ABE 的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C 可能不在同一直线上∴AB 可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C 不在同一直线上,则∠ABD+∠EBD+∠C≠90°, ∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE 是△BDC 的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C 不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.。
八年级上册数学错题
八年级上册数学错题八年级上册数学错题集一、三角形错题 1:一个三角形的两边长分别为 3 和 6,第三边长是方程x^2 10x + 21 = 0的根,则三角形的周长为()A. 12B. 16C. 12 或 16D. 不能确定解析:解方程x^2 10x + 21 = 0,即(x 3)(x 7) = 0,解得x = 3或x = 7。
当第三边长为 3 时,因为 3 + 3 = 6,不满足三角形两边之和大于第三边,所以舍去。
当第三边长为 7 时,三角形的周长为 3 + 6 + 7 = 16。
故选 B。
错题 2:在\triangle ABC中,\angle A = 50^{\circ},\angle B = \angle C,则\angle B的度数为()A. 65°B. 50°C. 80°D. 40°解析:因为\angle A + \angle B + \angle C = 180^{\circ},且\angle B = \angle C,所以\angle B = (180^{\circ}50^{\circ})÷ 2 = 65^{\circ}故选 A。
二、全等三角形错题 3:如图,已知AB = AD,那么添加下列一个条件后,仍无法判定\triangle ABC ≌ \triangle ADC的是()A. CB = CDB. ∠BAC = ∠DACC. ∠B = ∠D = 90°D.∠BCA = ∠DCA解析:A 选项,因为AB = AD,CB = CD,AC = AC,根据 SSS 可判定\triangle ABC ≌ \triangle ADC。
B 选项,因为AB = AD,∠BAC = ∠DAC,AC = AC,根据 SAS 可判定\triangle ABC ≌ \triangle ADC。
C 选项,因为AB = AD,∠B = ∠D = 90°,AC = AC,根据 HL 可判定\triangle ABC ≌ \triangle ADC。
八年级数学上册 全册全套试卷易错题(Word版 含答案)
八年级数学上册全册全套试卷易错题(Word版含答案)一、八年级数学三角形填空题(难)∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线1.在ABC中,BACα∠的度数为______.(用含α的代数式表示)交边BC于点E,连结AD,AE,则DAE【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.解:有两种情况:①如图所示,当∠BAC⩾90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.【答案】32【解析】【分析】过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.【详解】过C点作∠ACE=∠CBD,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC,∵对角线BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ACE,∴∠BAC=∠CEB=64°,∴∠BDC=12∠CEB=32°.故答案为:32.【点睛】此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.3.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=1 2(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=12(∠BAC﹣∠C);其中正确的是_____.【答案】①②③④【解析】【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③根据垂直的定义和同角的余角相等的性质证明结论正确;④证明∠DBE=∠BAC-∠C,根据①的结论,证明结论正确.【详解】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,故①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,∴∠BEF=12(∠BAF+∠C),故②正确;③∵∠AEB=∠EBC+∠C,∵∠ABE=∠EBC,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=90︒-∠DFH,∠AEB=90︒-∠DFH,∴∠FGD=∠AEB∴∠FGD=∠ABE+∠C.故③正确;④∠ABD=90°-∠BAC,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC,∵∠CBD=90°-∠C,∴∠DBE=∠BAC-∠C-∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC-∠C-∠DBE,∴∠F=1(∠BAC-∠C);2故④正确,故答案为①②③④.【点睛】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键4.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.【答案】105°.【解析】【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.5.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC 沿着DE 翻折,∴∠1+2∠BED =180°,∠2+2∠BDE =180°,∴∠1+∠2+2(∠BED +∠BDE )=360°,而∠1+∠2=80°,∠B +∠BED +∠BDE =180°,∴80°+2(180°﹣∠B )=360°,∴∠B =40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.6.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)7.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为( )A .120°B .135°C .150°D .不能确定【答案】B【解析】【分析】 先根据∠1+∠2=90°得出∠EAM+∠EDN 的度数,再由角平分线的定义得出∠EAF+∠EDF 的度数,根据AE ⊥DE 可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA 的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM 和∠EDN 的平分线交于点F ,∴∠EAF+∠EDF=12×270°=135°. ∵AE ⊥DE ,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA )=180-45°=135°.故选B .【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.8.如图,在ABC ∆中,点D 在BC 上,点O 在AD 上,如果3AOB S ∆=,2BOD S ∆=,1ACO S ∆=,那么COD S ∆=( )A .13B .12C .32D .23【答案】D【解析】【分析】根据三角形的面积公式结合3AOB S ∆=,2BOD S ∆=求出AO 与DO 的比,再根据1ACO S ∆=,即可求得COD S ∆的值.【详解】∵3AOB S ∆=,2BOD S ∆=,且AD 边上的高相同,∴AO :DO=3:2.∵△ACO 和△COD 中,AD 边上的高相同,∴S △AOC :S △COD = AO :DO=3:2,∵1ACO S ∆=,∴COD S ∆=23. 故选D .【点睛】本题考查了三角形的面积及等积变换,利用同底等高的三角形面积相等是解题的关键.9.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A .4B .5C .6D .7【答案】D【解析】【分析】连接AO,利用等高不等底的三角形面积比等于底长的比,可求出△COD与△BOE的面积.列出关于△AOE与△AOD的面积的方程即可求出四边形AEOD的面积.【详解】连接OA,∵OB=OD,∴S△BOC=S△COD=2,∵OC=2OE,∴S△BOE=12S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选D.【点睛】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.10.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2 B.4 C.3 D.5【解析】如图,满足条件的点C共有4个.故选B.11.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为()A.9 B.4 C.5 D.13【答案】A【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】设这个三角形的第三边为x.根据三角形的三边关系定理,得:9-4<x<9+4,解得5<x<13.故选A.【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.12.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.14【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.三、八年级数学全等三角形填空题(难)13.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD 是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN 分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=14BC2.其中正确结论是_____(填序号).【答案】①②【解析】分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.详解:∵∠B=45°,AB=AC∴点D为BC的中点,∴AD=CD=BD故①正确;由AD⊥BC,∠BAD=45°可得∠EAD=∠C∵∠MDN是直角∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°∴∠ADE=∠CDF∴△ADE≌△CDF(ASA)故②正确;∴DE=DF,AE=CF,∴AF=BE∴BE+AE=AF+AE∴AE+AF>EF故③不正确;由△ADE≌△CDF 可得S △ADF =S △BDE∴S 四边形AEDF =S △ACD =12×AD×CD=12×12BC×12BC=18BC 2, 故④不正确.故答案为①②.点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.14.如图,在△ABC 中,∠C=090,点D 在AB 上,BC=BD,DE ⊥AB 交AC 于点E ,△ABC 的周长为12,△ADE 的周长为6,则BC 的长为_______【答案】3【解析】【分析】连接BE ,由斜边直角边判定Rt BDE ∆≅ Rt BCE ∆,从而DE CE =,再由△ABC 的周长 △ADE 的周长即可求得BC 的长.【详解】如图:连接BE ,DE ⊥AB ,090BDE ∴∠=,在Rt BDE ∆和Rt BCE ∆中,BE BE BD BC =⎧⎨=⎩, ∴Rt BDE ∆≅ Rt BCE ∆,DE CE ∴=,∴△ABC 的周长=AB+BC+AC=2BC+AD+AE+DE=12,△ADE 的周长= AD+AE+DE =6,∴BC=3,故答案为3.【点睛】本题考查三角形全等的判定和性质以及和三角形有关的线段,连接BE构造全等三角形是解答此题的关键.15.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.5【解析】【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×5×5=12.5,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故答案为12.5.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题16.在ABC中给定下面几组条件:①BC=4cm,AC=5cm,∠ACB=30°;②BC=4cm,AC=3cm,∠ABC=30°;③BC=4cm,AC=5cm,∠ABC=90°;④BC=4cm,AC=5cm,∠ABC=120°.若根据每组条件画图,则ABC能够唯一确定的是___________(填序号).【答案】①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS,即能画出唯一三角形,正确;②根据BC=4cm,AC=3cm,∠ABC=30°不能画出唯一三角形,如图所示△ABC和△BCD,错误;③符合全等三角形的判定定理HL,即能画出唯一三角形,正确;④∵∠ABC为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.【点睛】本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.17.如图,已知BD,CD分别是∠ABC和∠ACE的平分线,连接AD,∠DAC=46°, ∠BDC _________【答案】44°【解析】如图,过点D作DF⊥BA,交BA的延长线于点F,过点D作DH⊥AC于点H,过点D作DG⊥BA,交BC的延长线于点G,∵BD,CD分别是∠ABC和∠ACE的平分线,∴DF=DG=DH,∵DH⊥AC,DF⊥BA,∴AD平分∠CAF,∴∠DAC=∠FAD=46°,∴∠BAC=180°-46°-46°=88°;∵BD,CD分别是∠ABC和∠ACE的平分线,∴∠DCE=12ACE∠,∠DBC=12ABC∠,∵∠DCE=∠BDC+∠DBC,∠ACE=∴∠BDC+∠DBC=12(∠BAC+∠ABC),∴∠BDC=12∠BAC=00188442⨯= .18.如图,在△ABC中,∠B=∠C,BD=CE,BE=CF.若∠A=40°,则∠DEF的度数为____.【答案】70°【解析】由等腰三角形的性质得出∠B=∠C=70°,再根据SAS证得△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF,然后根据三角形外角的性质可求解.四、八年级数学全等三角形选择题(难)19.如图(1),已知AB AC=,D为BAC∠的角平分线上一点,连接BD,CD;如图(2),已知AB AC=,D,E为BAC∠的角平分线上两点,连接BD,CD,BE,CE;如图(3),已知AB AC=,D,E,F为BAC∠的角平分线上三点,连接BD,CD,BE,CE,BF,CF;……,依此规律,第6个图形中有全等三角形的对数是()A.21 B.11 C.6 D.42【答案】A【解析】【分析】根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.【详解】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,AB ACBAD CADAD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等,3=1+2;同理:图3中有6对三角形全等,6=1+2+3;∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.故选:A .【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.20.如图,在四边形ABCD 中,//AB CD .不能判定ABD CDB ∆≅∆的条件是( )A .AB CD =B .AD BC = C .//AD BC D .A C ∠=∠【答案】B【解析】【分析】根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.【详解】解:A.若添加AB=CD,根据AB ∥CD ,则∠ABD=∠CDB ,依据SAS 可得△ABD ≌△CDB ,故A 选项正确;B.若添加AD=BC,根据AB ∥CD ,则∠ADB=∠CBD ,不能判定△ABD ≌△CDB ,故B 选项错误;C.若添加//AD BC ,则四边形ABCD 是平行四边形,能判定△ABD ≌△CDB ,故C 选项正确;D.若添加∠A=∠C ,根据AB ∥CD ,则∠ABD=∠CDB ,且BD 公用,能判定△ABD ≌△CDB ,故D 选项正确;故选:B.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.21.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =, ∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.22.如图,在Rt△ABC 中,∠CBA=90°,∠CAB 的角平分线AP 和∠ACB 外角的平分线CF 相交于点D ,AD 交CB 于点P ,CF 交AB 的延长线于点F ,过点D 作DE⊥CF 交CB 的延长线于点G ,交AB 的延长线于点E ,连接CE 并延长交FG 于点H ,则下列结论:①∠CDA=45°;②AF -CG=CA ;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有( )A.①②④B.①②③C.①②④⑤D.①②③⑤【答案】D【解析】试题解析:①利用公式:∠CDA=12∠ABC=45°,①正确;②如图:延长GD与AC交于点P',由三线合一可知CG=CP',∵∠ADC=45°,DG⊥CF,∴∠EDA=∠CDA=45°,∴∠ADP=∠ADF,∴△ADP'≌△ADF(ASA),∴AF=AP'=AC+CP'=AC+CG,故②正确;③如图:∵∠EDA=∠CDA,∠CAD=∠EAD,从而△CAD≌△EAD,故DC=DE,③正确;④∵BF⊥CG,GD⊥CF,∴E为△CGF垂心,∴CH⊥GF,且△CDE、△CHF、△GHE均为等腰直角三角形,∴CD,故④错误;⑤如图:作ME⊥CE交CF于点M,则△CEM为等腰直角三角形,从而CD=DM,CM=2CD,EM=EC,∵∠MFE=∠CGE,∠CEG=∠EMF=135°,∴△EMF≌△CEG(AAS),∴GE=MF,∴CF=CM+MF=2CD+GE,故⑤正确;故选D点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.23.下列四组条件中,能够判定△ABC和△DEF全等的是()A.AB=DE,BC=EF,∠A=∠D B.AC=EF,∠C=∠F,∠A=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AC=DF,BC=DE,∠C=∠D【答案】D【解析】根据三角形全等的判定定理:SSS、SAS、ASA、AAS、HL,逐一判断:A、AB=DE,BC=EF,∠A=∠D,不符合“SAS”定理,不能判断全等;B、AC=EF,∠C=∠F,∠A=∠D,不符合“ASA”定理,不能判断全等;C、∠A=∠D,∠B=∠E,∠C=∠F ,“AAA”不能判定全等;不符合“SAS”定理,不对应,不能判断全等;D、AC=DF,BC=DE,∠C=∠D,可利用“SAS”判断全等;故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的的序号为()A.①②③B.①②④C.②③④D.①②③④【答案】A【解析】【分析】根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明△BRP≌△QSP.【详解】试题分析:解:∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AP=AP,PR=PS,∴AR=AS,∴②正确;∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴③正确;没有条件可证明△BRP≌△QSP,∴④错误;连接RS,∵PR=PS,∵PR⊥AB,PS⊥AC,∴点P在∠BAC的角平分线上,∴PA平分∠BAC,∴①正确.故答案为①②③.故选A.点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=22,∴OA=OP=22,∴P的坐标是(﹣22,0).综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.26.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.27.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,∆为等腰三角形,符合条件的C点有∠=︒,在x轴或y轴上取点C,使得ABCABO36__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.28.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=3,∴A 2B 1=3,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1,以此类推:a 2019=22018a 1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.29.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC为腰或BP为腰.分别作出符合条件的图形,计算出OP的长度,即可求出t的值.【详解】解:如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G∵点B(-8,8),点C(-2,0),∴DC=6cm,BD=8cm,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,6秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.30.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.【答案】2【解析】【分析】连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=2DE=2×1=2,∴EF=2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由等边三角形的性质可得BD=DC,AB=AC,∠B=∠C=60°,利用SAS可证明△ABD≌△ACD,从而可判断①正确;利用ASA可证明△ADE≌△ADF,从而可判断③正确;在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD,从而可判断②正确;同理可得2BE=2CF=BD,继而可得4BE=4CF=AB,从而可判断④正确,由此即可得答案.【详解】∵等边△ABC中,AD是BC边上的高,∴BD=DC,AB=AC,∠B=∠C=60°,在△ABD与△ACD中90AD ADADB ADCDB DC=⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD≌△ACD,故①正确;在△ADE与△ADF中60EAD FADAD ADEDA FDA∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ADE≌△ADF,故③正确;∵在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,∴2DE=2DF=AD,故②正确;同理2BE=2CF=BD,∵AB=2BD,∴4BE=4CF=AB,故④正确,故选D.【点睛】本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.32.如图,已知:30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若112OA =,则667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=12,得出△A 1B 1A 2的边长为12,再依次同理得出:△A 2B 2A 3的边长为1,△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠OB 1A 1=60°-30°=30°,∴∠MON=∠OB 1A 1,∴B 1A 1=OA 1=12, ∴△A 1B 1A 2的边长为12, 同理得:∠OB 2A 2=30°, ∴OA 2=A 2B 2=OA 1+A 1A 2=12+12=1, ∴△A 2B 2A 3的边长为1,同理可得:△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16. 故选:C . 【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.33.如图,在ABC ∆中,120BAC ︒∠=,点,E F 分别是ABC ∆的边AB 、AC 的中点,边BC 分别与DE 、DF 相交于点,H G ,且,DE AB DF AC ⊥⊥,连接AD 、AG 、AH ,现在下列四个结论:①60EDF ︒∠=,②AD 平分GAH ∠,③B ADF ∠=∠,④GD GH =.则其中正确的结论有( ). A .1个 B .2个C .3个D .4个【答案】A 【解析】 【分析】利用,DE AB DF AC ⊥⊥及四边形的内角和即可得到①正确;;根据三角形内角和与线段的垂直平分线性质得到∠BAH+∠GAC=60︒,无条件证明∠GAD=∠HAD,故②错误;由等量代换得B ADF ∠≠∠,故③错误;利用三角形的内角和与对顶角相等得到GD GH ≠,故④错误. 【详解】∵,DE AB DF AC ⊥⊥, ∴∠DEA=∠DFA=90︒, ∵120BAC ︒∠=,∴∠EDF=360︒-∠DEA-∠DFA-∠BAC=60︒,故①正确; ∵120BAC ︒∠=, ∴∠B+∠C=60︒,∵点,E F 分别是ABC ∆的边AB 、AC 的中点,,DE AB DF AC ⊥⊥, ∴BH=AH ,AG=CG , ∴∠BAH=∠B ,∠GAC=∠C , ∴∠BAH+∠GAC=60︒, ∵无条件证明∠GAD=∠HAD,∴AD 不一定平分GAH ∠,故②错误; ∵∠ADF+∠DAF=90︒,∠B=∠BAH,90BAH DAF ∠+∠≠,∴B ADF ∠≠∠,故③错误; ∵90B BHE ∠+∠=,30B ∠≠ , ∴ 60BHE ∠≠, ∴60DHG ∠≠, ∴DHG HDG ∠≠∠, ∴GD GH ≠,故④错误, 故选:A. 【点睛】此题考查线段的垂直平分线的性质,利用三角形的内角和,四边形的内角和求角度,利用对顶角相等,等角对等边推导边的关系.34.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于( )A .108°B .114°C .126°D .129°【答案】C 【解析】 【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC 和∠DOC 的度数,利用三角形的内角和定理可得∠OCD 的度数. 【详解】解:展开如图,五角星的每个角的度数是,1805=36°. ∵∠COD =360°÷10=36°,∠ODC=36°÷2=18°, ∴∠OCD =180°-36°-18°=126°,故选C . 【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.35.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点。
人教版八年级上册数学 全册全套试卷易错题(Word版 含答案)
人教版八年级上册数学 全册全套试卷易错题(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.【答案】1.5或5或9【解析】【分析】分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.2.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10【解析】【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形, 故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.3.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.4.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n ,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.5. 如果一个n 边形的内角和等于它的外角和的3倍,则n=______.【答案】8【解析】【分析】根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,解得:n=8,故答案为:8.此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)7.如图,把一张长方形纸条ABCD 沿EF 折叠,C 、D 两点落到'C 、'D 处.已知20DAC ∠=,且''//C D AC ,则AEF ∠的度数为( )A .20B .35C .50D .70【答案】B【解析】【分析】 依据C'D'//AC ,即可得到∠AHG=∠C′=90°,进而得出AGH 70∠=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,依据三角形外角性质得到1AEF GFE AGH 352∠∠∠===.如图,C'D'//AC ,,又DAC 20∠=,AGH 70∠∴=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=, 1AEF GFE AGH 352∠∠∠∴===, 故选:B .【点睛】 本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.8.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒【答案】C【解析】【分析】 先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF是△AEF的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB∥CD,∴∠2=∠BEF=50︒,故选:C.【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)【答案】B【解析】【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.10.以下列各组线段为边,能组成三角形的是().A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm【答案】B【解析】【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】A.∵2+3=5,∴不能组成三角形,故本选项错误;B.∵5+6=11>10,∴能组成三角形,故本选项正确;C.∵1+1=2<3,∴不能组成三角形,故本选项错误;D.∵3+4=7<9,∴不能组成三角形,故本选项错误.故选B.【点睛】本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故选C.点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.12.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=,则1244α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.三、八年级数学全等三角形填空题(难)13.如图,已知OP 平分∠AOB ,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .CP =254,PD =6.如果点M 是OP 的中点,则DM 的长是_____.【答案】5.【解析】 【分析】由角平分线的性质得出∠AOP=∠BOP ,PC=PD=6,∠PDO=∠PEO=90°,由勾股定理得出2274CE CP PE =-=,由平行线的性质得出∠OPC=∠AOP ,得出∠OPC=∠BOP ,证出254CO CP ==,得出OE=CE+CO=8,由勾股定理求出2210OP OE PE +=,再由直角三角形斜边上的中线性质即可得出答案.【详解】∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°,∴222257446CE CP PE ⎛⎫⎪⎭-⎝=-==, ∵CP ∥OA , ∴∠OPC =∠AOP ,∴∠OPC =∠BOP ,∴254CO CP ==, ∴725448OE CE CO =+=+=, ∴22228610OP OE PE ++=,在Rt △OPD 中,点M 是OP 的中点,∴125DM OP ==; 故答案为:5.【点睛】 本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP是解题的关键.14.在Rt△ABC中,∠C=90°,∠A的平分线AD分对边BD,DC的长度比为3:2,且BC =20cm,则点D到AB的距离是_____cm.【答案】8【解析】【分析】根据题意画出图形,过点D作DE⊥AB于点E,由角平分线的性质可知DE=CD,根据角平分线AD分对边BC为BD:DC=3:2,且BC=10cm即可得出结论.【详解】解:如图所示,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD.∵BD:DC=3:2,且BC=10cm,∴CD=20×25=8(cm).故答案为:8.【点睛】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.15.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC边上的动点,连接DM 、ME、CM、DE, DE与CM相交于点F且∠DME=90°.则下列5个结论: (1)图中共有两对全等三角形;(2)△DEM是等腰三角形; (3)∠CDM=∠CFE;(4)AD2+BE2=DE2;(5)四边形CDME的面积发生改变.其中正确的结论有( )个.A.2 B.3 C.4 D.5【答案】B【解析】【分析】根据等腰三角形的性质,三角形内角和定理,得出:△AMC≌△BMC、△AMD≌△CME、△CMD ≌△BME,根据全等三角形的性质得出DM=ME 得出△DEM 是等腰三角形,及∠CDM=∠CFE ,再逐个判断222AD +BE =DE CEM CDM ADM CDM ACM ABC CDME 1S =S +S =S +S =S =S 2△△△△△△四边形 即可得出结论.【详解】解:如图在Rt △ABC 中,∠ACB=90°,M 为AB 中点,AB=BC∴AM=CM=BM ,∠A=∠B=∠ACM=∠BCM=45°,∠AMC=∠BMC=90°∵∠DME=90°.∴∠1+∠2=∠2+∠3=∠3+∠4=90°∴∠1=∠3,∠2=∠4在△AMC 和△BMC 中AM=BM MC MC AC BC ⎧⎪=⎨⎪=⎩∴△AMC ≌△BMC在△AMD 和△CME 中A=MCE AM=CM 1=3∠∠⎧⎪⎨⎪∠∠⎩∴△AMD ≌△CME在△CDM 和△BEMDCM=B CM=BM2=4∠∠⎧⎪⎨⎪∠∠⎩∴△CMD ≌△CME共有3对全等三角形,故(1)错误∵△AMD ≌△BME∴DM=ME∴△DEM 是等腰三角形,(2)正确∵∠DME=90°.∴∠EDM=∠DEM=45°,∴∠CDM=∠1+∠A=∠1+45°,∴∠EDM=∠3+∠DEM=∠3+45°,∴∠CDM=∠CFE,故(3)正确在Rt △CED 中,222CE CD DE +=∵CE=AD ,BE=CD∴222AD +BE =DE 故(4)正确(5)∵△ADM ≌△CEM∴ADM CEM S =S △△ ∴CEM CDM ADM CDM ACM ABC CDME 1S =S +S =S +S =S =S 2△△△△△△四边形 不变,故(5)错误 故正确的有3个故选:B【点睛】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,通过推理论证每个命题的正误是解决此类题目的关键.16.如图所示,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段上,连接EF 、CF ,则下列结论2BCD DCE ①∠=∠;EF CF =②;3DFE AEF ③∠=∠,2BEC CEF SS =④中一定成立的是______ .(把所有正确结论的序号都填在横线上)【答案】②③【解析】分析:由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,易得AF=FD=CD ,继而证得①∠DCF=12∠BCD ;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),得出对应线段之间关系,进而得出答案.详解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=12∠BCD , 即∠BCD=2∠DCF ;故此选项错误;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴FC=FM ,故②正确;③设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°-x ,∴∠EFC=180°-2x ,∴∠EFD=90°-x+180°-2x=270°-3x ,∵∠AEF=90°-x ,∴∠DFE=3∠AEF ,故此选项正确.④∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CEF 错误;综上可知:一定成立的是②③,故答案为②③.点睛:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DME 是解题关键.17.如图,在△ABC 中, ∠BAC=90°, AB=AC=22,点D ,E 均在边BC 上,且∠DAE=45°,若BD=1,则DE=__________.【答案】53【解析】 分析:根据等腰直角三角形的性质得45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,根据旋转的性质得,,AD AF BAD CAF =∠=∠45,ABD ACF ∠=∠=接着证明45,EAF ∠=然后根据“SAS”可判断△ADE ≌△AFE ,得到DE =FE ,由于90ECF ACB ACF ∠=∠+∠=,根据勾股定理得222CE CF EF +=,设,DE EF x == 则3CE x =-,则()22231,x x -+=由此即可解决问题.详解:90BAC AB AC ∠==,, ∴45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,则△ABD ≌△ACF ,,,45,AD AF BAD CAF ABD ACF =∠=∠∠=∠=∵45DAE ∠=,∴45BAD CAE ∠+∠=,∴45,CAF CAE ∠+∠=即45,EAF ∠=∴∠EAD =∠EAF ,在△ADE 和△AFE 中AE AE EAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△AFE ,∴DE =FE ,∵90ECF ACB ACF ∠=∠+∠=,∴222CE CF EF +=,Rt △ABC 中,∵22AB AC ==,∴224BC AB AC =+=,∵1BD =,设,DE EF x == 则3CE x =-,则有()22231,x x -+=解得:5.3x =∴5.3DE = 故答案为5.3点睛:本题属于全等三角形的综合题,涉及三角形旋转,全等三角形的判定与性质,勾股定理等知识点,综合性较强,难度较大.18.如图,已知BD ,CD 分别是 ∠ABC 和∠ACE 的平分线,连接AD ,∠DAC=46°, ∠BDC _________【答案】44°【解析】如图,过点D 作DF ⊥BA ,交BA 的延长线于点F ,过点D 作DH ⊥AC 于点H ,过点D 作DG ⊥BA ,交BC 的延长线于点G ,∵BD ,CD 分别是 ∠ABC 和∠ACE 的平分线,∴DF=DG=DH ,∵DH ⊥AC ,DF ⊥BA ,∴AD 平分∠CAF ,∴∠DAC=∠FAD=46°,∴∠BAC=180°-46°-46°=88°;∵BD ,CD 分别是 ∠ABC 和∠ACE 的平分线,∴∠DCE=12ACE ∠,∠DBC=12ABC ∠, ∵∠DCE=∠BDC+∠DBC ,∠ACE=∴∠BDC+∠DBC=12(∠BAC+∠ABC ), ∴∠BDC=12∠BAC=00188442⨯= .四、八年级数学全等三角形选择题(难)19.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°【答案】B【解析】【分析】 根据SAS 可证得ABC ≌EDC ,可得出BAC DEC ∠∠=,继而可得出答案,再根据邻补角的定义求解.【详解】由题意得:AB ED =,BC DC =,D B 90∠∠==,ABC ∴≌EDC ,BAC DEC ∠∠∴=,12180∠∠+=.故选B .【点睛】本题考查全等图形的知识,比较简单,解答本题的关键是判断出ABC ≌EDC ..20.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG=( )A .73B .83 C .113 D .133【答案】D【解析】【分析】过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.【详解】解:过点F 作FD ⊥AG ,交AG 的延长线于点D∵53BC CE = 设BC=5x ,则CE=3x∴BE=BC +CE=8x∵5AB BC x ==,90ABC ∠=︒,∴∠BAC=∠BCA=45°∴∠BCA=∠CAE +∠E=45°由旋转可知∠EAF=90°,AF=EA∴∠CAE +∠FAD=∠EAF -∠BAC=45°∴∠FAD=∠E在△FAD 和△AEB 中90FAD E D ABE AF EA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△FAD ≌△AEB∴AD=EB=8x ,FD=AB∴BD=AD -AB=3x ,FD=CB在△FDG 和△CBG 中90FDG CBG FGD CGBFD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△FDG ≌△CBG∴DG=BG=12BD=32x ∴AG=AB +BG=132x ∴13132332xAG x BG == 故选D .【点睛】此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.21.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF ,∵△ABC 是等腰直角三角形,∴∠FCB=∠A=45 ,CF=AF=FB ;∵AD=CE ,∴△ADF ≌△CEF(SAS);∴EF=DF ,∠CFE=∠AFD ;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF 是等腰直角三角形(故(1)正确).当D. E 分别为AC 、BC 中点时,四边形CDFE 是正方形(故(2)错误).由于△DEF 是等腰直角三角形,因此当DE 最小时,DF 也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴242DE DF== (故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.22.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1B.2C.3D.4【答案】D【解析】【分析】根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】‚解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF-∠DAE=45°.在△AED与△AEF中,,∴△AED≌△AEF(SAS),①正确;②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【点睛】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.23.如图,等腰直角△ABC中,∠BAC=90 ,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①AE=AF ;②AM ⊥EF ;③AF=DF ;④DF=DN ,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】试题解析:∵∠BAC=90°,AC=AB ,AD ⊥BC ,∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD ,∵BE 平分∠ABC ,∴∠ABE=∠CBE=12∠ABC=22.5°,∴∠BFD=∠AEB=90°-22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE ,故①正确;∵M 为EF 的中点,∴AM ⊥EF ,故②正确;过点F 作FH ⊥AB 于点H ,∵BE 平分∠ABC ,且AD ⊥BC ,∴FD=FH <FA ,故③错误;∵AM ⊥EF ,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN ,在△FBD 和△NAD 中{FBD DANBD AD BDF ADN∠∠∠∠===∴△FBD ≌△NAD ,∴DF=DN ,故④正确;故选C.24.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()A.五对B.四对C.三对D.二对【答案】A【解析】如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;∴图中共有5对全等三角形.故选A.五、八年级数学轴对称三角形填空题(难)25.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N 分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.26.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J 在CAE和BAD中AC AB CAE BADAE AD =⎧⎪∠=∠⎨⎪=⎩∴CAE ≅BAD∴ICA ABJ ∠=∠ ∴BFE CAB ∠=∠(8字形)∴°120CFD ∠=在CAI 和BAJ 中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.27.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.28.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角 ∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=. 故答案为:1702n -︒【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.29.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转α(0<α<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q.当△BPQ为等腰三角形时,则α=__________.【答案】20°或40°【解析】【分析】过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【详解】如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,又∵∠C=∠C'=30°,∠BQC=∠PQC',∴∠CBQ=∠C'PQ=θ,∴∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况:①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,∴90°-12θ+2×(30°+θ)=180°,解得θ=20°;②如图所示,当BP=BQ 时,∠BPQ=∠BQP ,即90°-12θ=30°+θ, 解得θ=40°; ③当QP=QB 时,∠QPB=∠QBP=90°-12θ, 又∵∠BQP=30°+θ,∴∠BPQ+∠PBQ+∠BQP=2(90°-12θ)+30°+θ=210°>180°(不合题意), 故答案为:20°或40°.【点睛】本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP 平分∠A'PC ,解题时注意分类思想的运用.30.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠ =01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800, ∴0180DCE CDE CED ∠=-∠-∠= 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.六、八年级数学轴对称三角形选择题(难)31.如图,△ABC 中,AB =AC ,且∠ABC =60°,D 为△ABC 内一点 ,且DA =DB ,E 为△ABC 外一点,BE =AB ,且∠EBD =∠CBD ,连DE ,CE. 下列结论:①∠DAC =∠DBC ;②BE ⊥AC ;③∠DEB =30°. 其中正确的是( )A .①...B .①③...C .② ...D .①②③【答案】B【解析】【分析】 连接DC,证ACD BCD DAC DBC ∠∠≅=得出①,再证BED BCD ≅,得出BED BCD 30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】解:证明:连接DC ,∵△ABC是等边三角形,∴AB=BC=AC,∠ACB=60°,∵DB=DA,DC=DC,在△ACD与△BCD中,AB BC DB DA DC DC=⎧⎪=⎨⎪=⎩,∴△ACD≌△BCD (SSS),由此得出结论①正确;∴∠BCD=∠ACD=130 2ACB∠=︒∵BE=AB,∴BE=BC,∵∠DBE=∠DBC,BD=BD,在△BED与△BCD中,BE BCDBE DBCBD BD=⎧⎪∠=∠⎨⎪=⎩,∴△BED≌△BCD (SAS),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC∥AD,∴∠DAC=∠ECA,∵∠DBE=∠DBC,∠DAC=∠DBC,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA,∴BE=BC,∴∠BCE=∠BEC=60°+∠1,在△BCE中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE是AC边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.32.如果三角形有一个内角为120°,且过某一顶点的直线能将该三角形分成两个等腰三角形,那么这个三角形最小的内角度数是( )A.15°B.40 C.15°或20°D.15°或40°【答案】C【解析】【分析】依据三角形的一个内角的度数为120°,且过某一顶点能将该三角形分成两个等腰三角形,运用分类思想和三角形内角和定理,即可得到该三角形其余两个内角的度数.【详解】如图1,当∠A=120°,AD=AC,DB=DC时,∠ADC=∠ACD=30°,∠DBC=∠DCB=15°,所以,∠DBC=15°,∠ACB=30°+15°=45°;故∠ABC=60°,∠C=80°;如图2,当∠BAC=120°,可以以A为顶点作∠BAD=20°,则∠DAC=100°,∵△APB,△APC都是等腰三角形;∴∠ABD=20°,∠ADC=∠ACD=40°,如图3,当∠BAC=120°,以A为顶点作∠BAD=80°,则∠DAC=40°,∵△APB,△APC都是等腰三角形,∴∠ABD=20°,∠ADC=100°,∠ACD=40°.故选C.【点睛】本题主要考查了三角形内角和定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的性质以及三角形内角和定理.33.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.34.如图,已知等边△ABC的面积为43, P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.3C15D.4【答案】B【解析】如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PE的长就是PR+QR的最小值,设等边△ABC的边长为x,则高为32x,∵等边△ABC的面积为43,∴12x×32x=43,解得x=4,∴等边△ABC的高为32x=23,即PE=23,所以PR+QR的最小值是23,故选B.【点睛】本题考查了轴对称的性质,最短路径问题等,解题的关键是正确添加辅助线构造出最短路径.35.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD.有下列结论:①∠C=2∠A;②BD平分∠ABC;③S△BCD=S△BOD.其中正确的选项是()A.①③B.②③C.①②③D.①②【答案】D【解析】①、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确;②、∵DO是AB垂直平分线,∴AD=BD.∴∠A=∠ABD=36°.∴∠DBC=72°﹣36°=36°=∠ABD.∴BD是∠ABC的角平分线,正确;③,根据已知不能推出△BCD的面积和△BOD面积相等,错误;故选:D.36.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是( )A .2B .2C .2D 2-1【答案】B【解析】 第一次折叠后,等腰三角形的底边长为1,腰长为22; 第一次折叠后,等腰三角形的底边长为22,腰长为12,所以周长为112212222++=+. 故答案为B.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.248﹣1能被60到70之间的某两个整数整除,则这两个数是( )A .61和63B .63和65C .65和67D .64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B .【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案38.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定【答案】C【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.39.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.40.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.41.若6a b +=,7ab =,则-a b =( )A .±1B .C .2±D .±【答案】D【解析】【分析】 由关系式(a-b )2=(a+b )2-4ab 可求出a-b 的值【详解】∵a+b=6,ab=7, (a-b )2=(a+b )2-4ab∴(a-b )2=8,∴a-b=±.故选:D .【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.42.下列式子从左至右的变形,是因式分解的是( )A .21234x y x xy -=B .11(1)x x x -=-C .2221(1)x x x -+=-D .22()()a b a b a b +-=- 【答案】C【解析】【分析】根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A .21234x y x xy -=,结果是单项式乘以单项式,不是因式分解,故选项A 错误;B .11(1)x x x-=-,结果应为整式因式,故选项B 错误;C .2221(1)x x x -+=-,正确;D .22()()a b a b a b +-=-是整式的乘法运算,不是因式分解,故选项D 错误. 故选:C .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.八、八年级数学整式的乘法与因式分解填空题压轴题(难)43.已知212()02a b -++=,则20192020a b =__________.。
人教版八年级上册数学考题易错汇总及答案解析
人教版八年级上册数学考题易错汇总及答案解析1.下列各组线段中,能组成三角形的是() A.2,3,5B.3,4,8C.3,3,4D.7,4,2【考点】三角形三边关系.【解答】A、2+3=5,不能构成三角形;B、4+3<8,不能构成三角形;C、3+3>4,能够组成三角形;D、2+4<7,不能构成三角形.故选:C.2.如图,在四边形 ABCD 中,∠DAB 的角平分线与∠ABC 的外角平分线相交于点 P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°【考点】多边形内角与外角.【解答】如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=150°.又∵∠DAB 的角平分线与∠ABC 的外角平分线相交于点 P,∴∠PAB+∠ABP=∠DAB+∠ABC+ (180°﹣∠ABC)=90°+ (∠DAB+∠ABC)=165°,∴∠P=180°﹣(∠PAB+∠ABP)=15°.故选:B.3.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.720°D.900°【考点】三角形内角和定理;三角形的外角性质;多边形内角与外角.【解答】连接 DG,则∠1+∠2=∠F+∠E,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠AGF=∠A+∠B+∠C+∠1+∠2+∠CDE+∠AGF=(5﹣2)×180°=540°.故选:B.4.满足下列条件的三角形中,不是直角三角形的是() A.∠A﹣∠B=∠CB.∠A:∠B:∠C=3:4:7 C.∠A=2∠B=3∠CD.∠A=9°,∠B=81°【考点】三角形内角和定理.【解答】A.∵∠A﹣∠B=∠C,∴∠A=∠B+∠C=90°,∴该三角形是直角三角形;B.∵∠A:∠B:∠C=3:4:7,∴∠C=180°×=90°,∴该三角形是直角三角形;C.∵∠A=2∠B=3∠C,∴∠A=180°×>90°,∴该三角形是钝角三角形;D.∵∠A=9°,∠B=81°,∴∠C=90°,∴该三角形是直角三角形;故选:C.5.一个多边形的每个内角都等于 144°,那么这个多边形的内角和为()A.1980°B.1800°C.1620°D.1440°【考点】多边形内角与外角.【解答】∵180°﹣144°=36°,360°÷36°=10,即这个多边形的边数是 10,∴这个多边形的内角和为(10﹣2)×180°=1440°. 故选:D.6.若一个多边形的外角和等于 360°,那么它一定是()A.四边形B.五边形C.六边形D.无法确定【考点】多边形内角与外角.【解答】任何多边形的外角和等于 360°,故多边形的边数无法确定,故选:D.7.在数学课上,同学们在练习画边 AC 上的高时,出现下列四种图形,其中正确的是()A.B.C. D.【考点】三角形的角平分线、中线和高.【解答】AC 边上的高应该是过 B 作垂线段 AC,符合这个条件的是 C; A,B,D 都不过 B 点,故错误;故选:C.8.如图,一个正五边形和一个正方形都有一边在直线 l 上,且有一个公共顶点 B,则∠ABC 的度数是()A.120°B.142°C.144°D.150°【考点】多边形内角与外角.【解答】如图:由题意:∠ABE=108°,∠CBF=90°,∠BEF=72°,∠BFE=90°,∴∠EBF=180°﹣72°﹣90°=18°,∴∠ABC=360°﹣108°﹣18°﹣90°=144°,故选:C.9.如图,已知四边形 ABCD 中,AB∥DC,连接 BD,BE 平分∠ABD,BE⊥AD,∠EBC 和∠DCB 的角平分线相交于点 F,若∠ADC=110°,则∠F 的度数为()A.115°B.110°C.105°D.100°【考点】平行线的性质;多边形内角与外角.【解答】∵BE⊥AD,∴∠BED=90°,又∵∠ADC=110°,∴四边形 BCDE 中,∠BCD+∠CBE=360°﹣90°﹣110°=160°,又∵∠EBC 和∠DCB 的角平分线相交于点 F,∴∠BCF+∠CBF=×160°=80°,∴△BCF 中,∠F=180°﹣80°=100°,故选:D.10.如图,在四边形 ABCD 中,∠A=90°,AD=3,连接 BD,BD⊥CD,∠ADB=∠C.若 P 是 BC 边上一动点,则 DP 长的最小值为()A.1B.6C.3D.12【考点】角平分线的性质.【解答】过点 D 作 DH⊥BC 交 BC 于点 H,如图所示:∵BD⊥CD,∴∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°∠ADB=∠C,∠A=90°,∴∠ABD=∠CBD,∴BD 是∠ABC 的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,又∴点 D 是直线 BC 外一点,∴当点 P 在 BC 上运动时,点 P 运动到与点 H 重合时 DP 最短,其长度为DH 长等于 3,即 DP 长的最小值为 3.故选:C.11.如图,已知点 E、F 在线段 BC 上,BE=CF,DE=DF,AD⊥BC,垂足为点 D,则图中共有全等三角形()对.A.2B.3C.4D.5【考点】全等三角形的判定.【解答】∵BE=CF,DE=DF,AD⊥BC,∴AD 垂直平分 BC,AD 垂直平分 EF,∴AB=AC,AE=AF,又∵AD=AD,∴△ABD≌△ACD(SSS),△AED≌△AFD(SSS),∵BE=CF,DE=DF,∴BF=CE,又∵AB=AC,AE=AF,∴△ABF≌△ACE(SSS),∵AB=AC,AE=AF,BE=CF,∴△ABE≌△ACF(SSS),∴图形中共有全等三角形 4 对,故选:C.12.如图,已知∠ABD=∠BAC,添加下列条件不能判断△ABD≌△BAC 的条件是()A.∠D=∠CB.AD=BCC.∠BAD=∠ABCD.BD=AC【考点】全等三角形的判定.【解答】由题意得,∠ABD=∠BAC,A、在△ABC 与△BAD 中,,∴△ABC≌△BAD(AAS),故 A 选项能判定全等;B、在△ABC 与△BAD 中,由 BC=AD,AB=BA,∠BAC=∠ABD,可知△ABC 与△BAD 不全等,故 B 选项不能判定全等;C、在△ABC 与△BAD 中,,∴△ABC≌△BAD(ASA),故 C 选项能判定全等;D、在△ABC 与△BAD 中,,∴△ABC≌△BAD(SAS),故 D 选项能判定全等;故选:B.13.已知△ABC 的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和△ABC 全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【解答】甲,不符合两边对应相等,且夹角相等,∴甲和已知三角形不全等;乙,符合两边对应相等,且夹角相等,乙和已知三角形全等;丙,符合 AAS,即三角形和已知图的三角形全等;故选:B.14.已知点 A(2,a)与点 B(b,3)关于 x 轴对称,则 a+b 的值为()A.﹣1B.1C.2D.3【考点】关于 x 轴、y 轴对称的点的坐标.【解答】∵点 A(2,a)与点 B(b,3)关于 x 轴对称,∴a=﹣3,b=2,∴a+b=﹣3+2=﹣1. 故选:A.15.如图,在△ABC 中,AB⊥AC,AB=3,BC=5,EF 垂直平分 BC,点 P为直线 EF 上的任意一点,则△ABP 周长的最小值是()A.8B.7C.6D.4【考点】线段垂直平分线的性质;轴对称﹣最短路线问题.【解答】∵EF 垂直平分 BC,∴B、C 关于 EF 对称,设 AC 交 EF 于 D,∴当 P 和 D 重合时,AP+BP 的值最小,最小值等于 AC 的长,由勾股定理得:AC===4,∴△ABP 周长的最小值是 AB+AC=3+4=7.故选:B.16.如图,在 Rt△ABC 中∠C=90°,AB>BC,分别以顶点 A、B 为圆心,大于AB 长为半径作圆弧,两条圆弧交于点 M、N,作直线 MN 交边 CB 于点D.若 AD=5,CD=3,则 BC 长是()A.7B.8C.12D.13【考点】线段垂直平分线的性质.【解答】由尺规作图可知,MN 是线段 AB 的垂直平分线,∴DA=DB=5,又∵CD=3,∴BC=CD+BD=3+5=8,故选:B.17.如图,在△ABC 中,∠C=90°,∠B=15°,DE 垂直平分 AB,垂足是点E,若 AD=8cm.则 AC 的长是()A.4cmB.5cmC.4cmD.6cm【考点】线段垂直平分线的性质;含 30 度角的直角三角形.【解答】∵DE 垂直平分 AB,∴AD=BD=8cm,∴∠BAD=∠B=15°,∴∠ADC=∠BAD+∠B=15°+15°=30°,∵∠C=90°,∴Rt△ACD 中,AC= AD=×8=4(cm).故选:A.18.如图,已知 AD 是△ABC 的角平分线,AD 的中垂线交 AB 于点F,交 BC的延长线于点 E.以下四个结论:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠FDE=90°;(4)∠B =∠CAE.恒成立的结论有()A.(1)(2)B.(2)(3)(4)C.(1)(2)(4)D.(1)(2)(3)(4)【考点】平行线的判定;线段垂直平分线的性质.【解答】(1)∵EF 是 AD 的垂直平分线,∴EA=ED,∴∠EAD=∠EDA;(2)∵EF 是 AD 的垂直平分线,∴FA=FD,∴∠FDA=∠FAD,∵AD 平分∠BAC,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵FD 与 BE 不一定互相垂直,∴∠FDE=90°不成立;(4)由(1)(2)得:∠EAD=∠EDA,∠FAD=∠CAD,又∵∠EDA =∠B+∠FAD,∠EAD=∠CAD+∠CAE,∴∠B=∠CAE. 故选:C.19.如图,直线 l 表示一条河,点 A,B 表示两个村庄,想在直线l 上的某点P 处修建一个水泵站向 A,B 两村庄供水.现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设的管道最短的是()A.B.C.D.【考点】垂线段最短;轴对称﹣最短路线问题.【解答】作点 A 关于直线 l 的对称点 A′,连接 BA′交直线 l 于P.根据两点之间,线段最短,可知选项 D 铺设的管道最短. 故选:D.20.在下列各式中,计算正确的是()A.4x﹣7x=3xB.y4﹣y3=yC.5a2﹣2a2=3D.4m2﹣(2m)2=0【考点】合并同类项;幂的乘方与积的乘方.【解答】A.4x﹣7x═﹣3x,故本选项不合题意;B.y4 与 y3 不是同类项,所以不能合并,故本选项不合题意;C.5a2﹣2a2=3a2,故本选项不合题意;D.4m2﹣(2m)2=0,正确,故本选项符合题意.故选:D.21.给出下列关系式:(1)﹣22=4;(2)(﹣a2)3=﹣a5;(3)(0.5)2019×22020=2;(4)(a+b)(a2+b2)=a3+b3.其中一定成立的有()A.1个B.2 个C.3 个D.4 个【考点】幂的乘方与积的乘方;平方差公式.【解答】﹣22=﹣4,故(1)错误;(﹣a2)3=a6,故(2)错误;(0.5)2019×22020=2,故(3)正确;(a+b)(a2+b2)=a3+b3+ab2+a2b,故(4)错误.∴一定成立的有(3)共 1 个. 故选:A.22.(﹣0.5)99×2100 的计算结果正确的是()A.﹣1B.1C.﹣2D.2【考点】幂的乘方与积的乘方.【解答】(﹣0.5)99×2100=(﹣0.5)99×299×2=(﹣0.5×2)99×2=(﹣1)99×2=(﹣1)×2=﹣2. 故选:C.23.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图 1 可以得到(a+b)2=a2+2ab+b2,那么利用图2 所得到的数学等式是()A.(a+b+c)2=a2+b2+c2B.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcC.(a+b+c)2=a2+b2+b2+ab+ac+bcD.(a+b+c)2=2a+2b+2c 【考点】完全平方公式的几何背景.【解答】∵正方形的面积=( a+b+c ) 2 ;正方形的面积=a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc. 故选:B.24.下列从左到右的变形,属于因式分解的是() A.(a+4)(a ﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1 C.8m2n3=2m2?4n2D.m2﹣2m+1=(m﹣1)2【考点】因式分解的意义.【解答】A、是整式乘法,不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.25.若分式在实数范围内有意义,则 x 的取值范围为()A.x>3B.x≠3C.x≥0D.x≠0 且 x≠3【考点】分式有意义的条件.【解答】∵分式在实数范围内有意义,∴x﹣3≠0,∴x≠3 故选:B.26.下列各式,,,,(x﹣y),中,分式的个数共有()A.2个B.3 个C.4 个D.5 个【考点】分式的定义.【解答】由题可得,是分式的有:,,(x﹣y),,共 4 个,故选:C.27.如果关于 x 的不等式组有且仅有四个整数解,且关于 y 的分式方程﹣=1 有非负数解,则符合条件的所有整数 m 的和是()A.13B.15C.20D.22【考点】分式方程的解;一元一次不等式组的整数解.【解答】原不等式组的解集为﹣<x≤,因为不等式组有且仅有四个整数解,所以 0≤<1,解得 2≤m<7.原分式方程的解为 y=,因为分式方程有非负数解,所以≥0,解得 m>1,且 m≠5,因为 m=5 时 y=2 是原分式方程的増根.所以符合条件的所有整数 m 的和是 2+3+4+6=15.故选:B.28.已知 a、b 为实数且满足 a≠﹣1,b≠﹣1,设,,则下列两个结论()①ab=1 时,M=N,ab>1 时,M>N;ab<1 时,M<N.②若 a+b =0,则M?N≤0.A.①②都对B.①对②错C.①错②对D.①②都错【考点】分式的加减法.【解答】∵,,∴M﹣N=﹣(),=,=,=,①当 ab=1 时,M﹣N=0,∴M=N,当 ab>1 时,2ab>2,∴2ab﹣2>0,当 a<0 时,b<0,(a+1)(b+1)>0 或(a+1)(b+1)<0,∴M﹣N>0 或 M﹣N<0,∴M>N 或 M<N;当 ab<1 时,a 和 b 可能同号,也可能异号,∴(a+1)(b+1)>0 或(a+1)(b+1)<0,而 2ab﹣2<0,∴M>N 或 M<N;∴①错②M?N=()?()=++,∵a+b=0∴原式===∵a≠﹣1,b≠﹣1,∴(a+1)2(b+1)2>0,∵a+b=0∴ab≤0,M?N≤0.∴②对. 故选:C.29.某服装制造厂要在开学前赶制 3000 套校服,为了尽快完成任务,厂领导合理调配加强第一线人力使每天完成的校服比原计划多 20%,结果提前 4 天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服 x 套,则可列出方程()A. B.C.D.【考点】由实际问题抽象出分式方程.【解答】设原来每天完成校服 x 套,则实际每天完成校服(1+20%)x 套,依题意,得:=4+ .故选:C.30.如图,五边形 ABCDE 的外角中,∠1=∠2=∠3=∠4=75°,则∠A 的度数是 .【考点】多边形内角与外角.【解答】∵∠1=∠2=∠3=∠4=75°,∴与∠A 相邻的外角=360°﹣75°×4=360°﹣300°=60°,∴∠A=180°﹣60°=120°.故答案为:120°.31.如图,在△ABC 中,AD 是 BC 边上的高,AE 平分∠BAC,∠B =∠BCA﹣70°,∠DAE 的度数为 .【考点】三角形内角和定理.【解答】∵AD 是 BC 边上的高,∴∠D=90°,∴∠BAD=90°﹣∠B,∵AE 平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠BCA),又∵∠B=∠BCA﹣70°,∴∠BCA=∠B+70°,∴∠DAE=∠BAD﹣∠BAE=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=90°﹣∠B﹣(180°﹣∠B﹣∠B﹣70°)=35°,故答案为:35°.32.如图,有一张矩形纸片 ABCD,将它沿 GH 折叠,点 C 落在点 Q 处,点D 落在 AB 边上的点E 处,若∠GHC=110°,则∠AGE 等于 .【考点】平行线的性质;多边形内角与外角.【解答】∵AD∥BC∴∠DGH+∠GHC=180°,且∠GHC=110°∴∠DGH=70°∵将长方形纸片 ABCD 沿 GH 折叠,∴∠EGH=∠DGH=70°∴∠AGE=180°﹣∠DGH﹣∠EGH=40°故答案为:40°.33.如图,AB=AC,AD=AE,点 B、D、E 在一条直线上,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=度.【考点】全等三角形的判定与性质.【解答】如图所示:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠4,∴∠1=∠4,在△ABD 和△ACE 中,,∴△ABD≌△ACE(SAS),∴∠ADB=∠AEC,又∵∠2+∠4+∠AEC=180°,∴∠AEC=115°,∴∠ADB=115°,又∠ADB+∠3=180°,∴∠3=65°,故答案为 65.34.如图,CA⊥BC,垂足为 C,AC=2cm,BC=6cm,射线 BM⊥BQ,垂足为 B,动点 P 从 C 点出发以 1cm/s 的速度沿射线 CQ 运动,点 N 为射线 BM 上一动点,满足 PN=AB,随着 P 点运动而运动,当点 P 运动秒时,△BCA 与点 P、N、B 为顶点的三角形全等.【考点】全等三角形的判定.【解答】①当 P 在线段 BC 上,AC=BP 时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点 P 的运动时间为 4÷1=4(秒);②当 P 在线段 BC 上,AC=BN 时,△ACB≌△NBP,这时 BC=PN =6,CP=0,因此时间为 0 秒;③当 P 在 BQ 上,AC=BP 时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点 P 的运动时间为 8÷1=8(秒);④当 P 在 BQ 上,AC=NB 时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点 P 的运动时间为 12÷1=12(秒),故答案为:0 或 4 或 8 或12.35.如图,△ABC 中,AB=AC,BC=5,S△ABC=15,AD⊥BC 于点 D,EF 垂直平分 AB,交 AC 于点 F,在 EF 上确定一点 P,使 PB+PD 最小,则这个最小值为 .【考点】线段垂直平分线的性质;等腰三角形的性质;轴对称﹣最短路线问题.【解答】∵AB=AC,BC=5,S△ABC=15,AD⊥BC 于点 D,∴AD=6,∵EF 垂直平分 AB,∴点 P 到 A,B 两点的距离相等,∴AD 的长度=PB+PD 的最小值,即 PB+PD 的最小值为 6,故答案为:6.36.如图,已知△ABC 中,AB=AC=5,BC=8,将△ABC 沿射线 BC 方向平移 m 个单位得到△DEF,顶点 A,B,C 分别与 D,E,F 对应,若以 A,D,E 为顶点的三角形是等腰三角形,且 AE 为腰,则 m 的值是 .【考点】等腰三角形的性质;等腰三角形的判定;平移的性质.【解答】分 2 种情况讨论:①当 DE=AE 时,作 EM⊥AD,垂足为 M,AN⊥BC 于 N,则四边形 ANEM 是平行四边形,∴AM=NE,AM= AD= m,CN= BC=4,∴m+m=8﹣(4﹣m),∴m=8;②当 AD=AE=m 时,∵将△ABC 沿射线 BC 方向平移 m 个单位得到△DEF,∴四边形 ABED 是平行四边形,∴BE=AD=m,∴NE=m﹣4,∵AN2+NE2=AE2,∴32+(m﹣4)2=m2,∴m= .综上所述:当 m=8 或时,△ADE 是等腰三角形. 故答案为:8 或.37.如图,由四个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点.在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC 本身)共有个.【考点】轴对称的性质.【解答】如图所示:符合题意的有 3 个三角形.故答案为:3.38.若 a,b,c 分别是△ABC 的三条边,a2+c2+2b2﹣2ab﹣2bc=0.则△ABC 的形状是 .【考点】因式分解的应用.【解答】∵a2+c2+2b2﹣2ab﹣2bc=0(a2﹣2ab+b2)+(b2﹣2bc+c2)=0(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,解得:a=b=c,又∵a,b,c 分别是△ABC 的三条边,∴△ABC 是等边三角形,故答案为等边三角形.39.因式分解:ax3y﹣axy3= .【考点】提公因式法与公式法的综合运用.【解答】ax3y﹣axy3=axy(x2﹣y2)=axy(x+y)(x﹣y).故答案为:axy(x+y)(x﹣y).40.若关于 x 的方程+=无解,则 m= .【考点】分式方程的解.【解答】分式方程化简,得3(x﹣1)+6x=m(x+1)整理,得(9﹣m)x=3+m当 x=0 时,m=﹣3;当 x=1 时,m=3;当 9﹣m=0 时,m =9.故答案为:3 或﹣3 或 9.41.当 x=时,分式的值为 0.【考点】分式的值为零的条件.【解答】由题意得:x2﹣x﹣6=0,且|x|﹣3≠0,解得:x=﹣2,故答案为:﹣2.42.化简:?= .【考点】分式的乘除法.【解答】?=﹣故答案为﹣.43.如图,四边形 ABCD 中,AB∥CD,∠B=∠D,点 E 为 BC 延长线上一点,连接 AE.(1)如图 1,求证:AD∥BC(2)若∠DAE 和∠DCE 的角平分线相交于点 F,连接 AC.①如图 2,若∠BAE=70°,求∠F 的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为(直接写出结果)【考点】平行线的判定与性质;多边形内角与外角.【解答】(1)∵AB∥CD,∴∠B=∠DCE,而∠B=∠D,∴∠D=∠DCE,∴AD∥BC;(2)①如下图,设∠DAF=∠EAF CF=∠ECF=猓?∵AD∥BC,∴∠D=∠DCE=2猓?∵AB∥CD,∴∠BAE+∠EAD+∠D=180°,∵∠BAE=70°∴70+2?+2猓?180整理得:?+猓?55°,∵∠DHF=∠DAH+∠D=∠DCF+∠F 即:?+2猓健螰+猓?∴∠F=?+猓?55°;②如图 3,设∠CAG=x,∠DCG=z,∠BAC=y,则∠EAD=y,∠D=∠DCE=2z,∠AGC=2∠CAE=2x,∵AB∥CD,∴∠AHD=∠BAH=x+y,∠ACD=∠BAC=y,△AHD 中,x+2y+2z=180①,△ACG 中,x+2x+y+z=180,3x+y+z=180,6x+2y+2z=360②,②﹣①得:5x=180,x=36°,∴∠CAE=36°.44.如图,AD 是△ABC 的角平分线,点 F、E 分别在边 AC、AB 上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当 AF+FD=AE 时,求证:∠AFD=2∠AED.【考点】全等三角形的判定与性质;角平分线的性质.【解答】证明:(1)过点 D 作 DM⊥AB 于 M,DN⊥AC 于 N,如图 1 所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD 平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB 和△DNF 中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在 AB 上截取 AG=AF,连接 DG.如图 2 所示,∵AD 平分∠BAC,∴∠DAF=∠DAG,在△ADF 和△ADG 中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD 又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED45.如图,已知等腰△ABC 中,AB=AC,∠BAC=120°,AD⊥BC 于D,点P 是 BA 延长线上一点,点 O 是线段 AD 上一点,OP=OC.(1)求∠APO+∠DCO 的度数;(2)求证:AC=AO+AP.【考点】全等三角形的判定与性质.【解答】(1)连接 BO,如图 1 所示:∵AB=AC,AD⊥BC,∴BD=CD,∠ODB=∠ODC,在△OBD 和△OCD 中,,∴△OBD≌△OCD(SAS),∴OB=OC,又∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DBO=∠DCO,又∵∠BAC=120°,∠ABC=∠ACB=30°,又∵∠ABD=∠ABO+∠DBO=30°,∴APO+∠DCO=30°;(2)过点 O 作 OH⊥BP 于点 H,如图 2 所示:∵∠BAC=120°,AB=AC,AD⊥BC,∴∠HAO=∠CAD=60°,又∵OH⊥BP,∴∠OHA=90°,∴∠HOA=30°,∴AO=2AH,又∵BO=PO,OH⊥BP,∴BH=PH,又∵HP=AP+AH,∴BH=AP+AH,又∵AB=BH+AH,∴AB=AP+2AH,又∵AB=AC,AO=2AH,∴AC=AP+AO.46.如图 1,在锐角△ABC 中,∠ABC=45°,高线 AD、BE 相交于点 F.(1)判断 BF 与 AC 的数量关系并说明理由;(2)如图 2,将△ACD 沿线段 AD 对折,点 C 落在 BD 上的点 M,AM 与BE 相交于点 N,当 DE∥AM 时,判断 NE 与 AC 的数量关系并说明理由.【考点】全等三角形的判定与性质.【解答】(1)BF=AC,理由是:如图 1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD 是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC 和△BDF 中,∵,∴△ADC≌△BDF(ASA),∴BF=AC;(2)NE= AC,理由是:解法一:如图 2,由折叠得:MD=DC,AM=AC∴∠AMD=∠ACD,∵DE∥AM,∴∠EDC=∠AMD=∠ACD,∴DE=CE,同理得:AE=DE,∴AE=CE,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:∠DAC=∠DBF,∴∠ABC=2∠DBF=2∠DAC=∠MAC=45°,∴△ANE 是等腰直角三角形,∴EN=AE= AC.解法二:如图 2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:∠DAC=∠DBF,∴∠ABC=2∠DBF=2∠DAC=∠MAC=45°,∴△ANE 是等腰直角三角形,∴NE=AE= AC.47.如图,网格中的△ABC 和△DEF 是轴对称图形.(1)利用网格线,作出△ABC 和△DEF 的对称轴 l;(2)结合所画图形,在直线 l 上找点 G,使 GA+GC 最小;(3)如果每个小正方形的边长为 l,则△ABC 的面积为;(4)在图中到 EF、BC 的距离相等的格点有个.【考点】角平分线的性质;作图﹣轴对称变换;轴对称﹣最短路线问题.【解答】(1)如图所示,直线 l 即为△ABC 和△DEF 的对称轴;(2)如图所示,连接 CD,交 l 于 G,连接 AG,则 GA+GC 最小,点 G 即为所求;(3)△ABC 的面积=2×4﹣×1×2﹣×2×2﹣×1×4=3,故答案为:3;(4)如图,延长 EF,BC 交于点 H,根据角的轴对称性可得,到 EF、BC的距离相等的格点在∠BHE 的角平分线上,故符合题意的格点在直线 l 上,共 8 个.故答案为:8.48.如图,直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,l 与 m 分别交边 AB,BC 于点 D 和点 E.(1)若 AB=10,则△CDE 的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE 的度数.【考点】线段垂直平分线的性质.【解答】(1)△CDE 的周长为 10.∵直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,∴AD=CD,BE=CE,∴△CDE 的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.49.已知:如图,AF 平分∠BAC,BC 垂直平分 AD,垂足为 E,CF 上一点 P,连结 PB 交线段 AF 相交于点 M.(1)求证:AB∥CD;(2)若∠DAC=∠MPC,请你判断∠F 与∠MCD 的数量关系,并说明理由.【考点】平行线的判定与性质;线段垂直平分线的性质.【解答】(1)∵BC 垂直平分 AD,∴AC=CD,∠CAD=∠CDA,∵AF 平分∠BAC,∴∠CAD=∠BAD,∴∠CDA=∠BAD,∴AB∥CD;(2)结论:∠F=∠MCD,理由:∵∠DAC=∠CDA,∠DAC=∠MPC,∴∠CDA=∠MPC,又∵∠CDA+∠CDM=180°,∠MPC+∠MPF=180°,∴∠CDM=∠MPF;又∵AF 平分∠BAC,AE⊥BC,AE=AE.∴△ACE≌△ABE(ASA),∴AC=AB.又∵AF 平分∠BAC,AM=AM,∴△ACM≌△ABM(SAS),∴∠AMC=∠AMB,又∵∠AMB=∠PMF.∴∠AMC=∠PMF.又∵∠AMC+∠MCD+∠CDM=180°,∠PMF+∠MPF+∠F=180°,∴∠F=∠MCD.50.先化简:÷(﹣),再从﹣3<x<2 的范围内选取一个你最喜欢的整数代入,求值.【考点】分式的化简求值;一元一次不等式组的整数解.【解答】原式=÷=?=,∵x≠±1 且 x≠0,∴取 x=﹣2,则原式==﹣ .。
八年级上册数学易错题
八年级上册数学易错题一、三角形相关1. 已知等腰三角形的两边长分别为3和5,则它的周长为()错解:11或13。
正解:11或13。
解析:当腰长为3时,三边长为3,3,5,因为3 + 3>5,满足三角形三边关系,此时周长为3+3 + 5 = 11;当腰长为5时,三边长为5,5,3,因为5+3>5,也满足三角形三边关系,此时周长为5 + 5+3 = 13。
2. 在△ABC中,∠A=50°,高BE、CF所在直线相交于点O,则∠BOC的度数为()错解:130°。
正解:130°或50°。
解析:当△ABC是锐角三角形时,因为∠A = 50°,∠AEB = 90°,∠AFC = 90°,在四边形AFOE中,根据四边形内角和为360°,可得∠EOF=360° 90°-90°50° = 130°,即∠BOC = 130°;当△ABC是钝角三角形时,∠A=50°,∠ABE = 40°,在Rt△BOE中,∠BOC = 50°。
二、全等三角形相关1. 如图,已知AB = AD,∠1 = ∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)。
错解:AC = AE。
正解:AC = AE或∠B=∠D或∠C = ∠E。
解析:已知AB = AD,∠1 = ∠2,所以∠BAC = ∠DAE。
如果添加AC = AE,根据SAS(边角边)可证△ABC≌△ADE;如果添加∠B = ∠D,根据ASA(角边角)可证全等;如果添加∠C=∠E,根据AAS(角角边)可证全等。
2. 如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,连接EF 交AD于G。
求证:AD垂直平分EF。
错解:只证明了DE = DF,就得出AD垂直平分EF。
正解:因为AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可知DE = DF。
八年级上册数学 全册全套试卷易错题(Word版 含答案)
八年级上册数学 全册全套试卷易错题(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.【答案】2b-2a【解析】【分析】【详解】根据三角形的三边关系得:a ﹣b ﹣c <0,c +a ﹣b >0,∴原式=﹣(a ﹣b ﹣c )﹣(a +c ﹣b )=﹣a +b +c ﹣a ﹣c +b =2b ﹣2a .故答案为2b ﹣2a【点睛】本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.3.如图,ABC 中,点D 在AC 的延长线上,E 、F 分别在边AC 和AB 上,BFE ∠与BCD ∠的平分线相交于点P ,若ABC ∠=70°FEC ∠=80°,则P ∠=______.【答案】85°【解析】【分析】根据四边形内角和等于360°,在四边形FECB 中∠B +∠BFE +∠FEC +∠BCE =360°,结合角平分线的定义计算即可得∠1-∠2=15°;再在四边形EFPC 中求出∠1-∠2+∠P =110°即可解答.【详解】解:∵∠BFE =2∠1,∠BCD =2∠2,又∵∠BFE +∠ABC +∠FEC +∠BCE =360°,ABC ∠=70°,FEC ∠=80°,∴2∠1+(180°-2∠2)+70°+80°=360°,∴∠1-∠2=15°;∵在四边形EFPC 中,∠PFE +∠FEC +∠P +∠PCE =360°,∴∠1+80°+(180°-∠2)+∠P =360°,∴∠1-∠2+∠P =100°,∴∠P =85°,故答案为:85°.【点睛】本题考查的是三角形内角和定理和四边形内角和定理的应用,掌握三角形内角和等于180°和四边形内角和等于360°是解题的关键.4.如图,在∆ABC 中, ∠A =80︒, ∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……; ∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为_________..【答案】516【解析】【分析】 利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A 1=12∠A ,再依此类推得,∠A 2=212∠A ,……,∠A 8= 812∠A ,即可求解. 【详解】解:根据三角形的外角得:∠ACD=∠A+∠ABC.又∵∠ABC 与∠ACD 的平分线交于点A 1, ∴1111222A ABC A ABC ∠+∠=∠+∠∴∠A 1=12∠A 依此类推得,∠A 2=212∠A ,……,∠A 8= 812∠A=180256⨯=516 故答案为516. 【点睛】 本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..5.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.6.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD ,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD 的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD 的度数.【详解】解:∵△B′CD 时由△BCD 翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、八年级数学三角形选择题(难)7.图1是二环三角形,S=∠A1+∠A2+…+∠A6=360,图2是二环四边形,S=∠A1+∠A2+…+∠A8=720,图3是二环五边形,S=∠A1+∠A2+…+∠A10=1080…聪明的同学,请你直接写出二环十边形,S=_____________度()A.1440 B.1800 C.2880 D.3600【答案】C【解析】【分析】本题只看图觉得很复杂,但从数据入手,就简单了,从图2开始,每个图都比前一个图多360度.抓住这点就很容易解决问题了.【详解】解:依题意可知,二环三角形,S=360度;二环四边形,S=720=360×2=360×(4﹣2)度;二环五边形,S=1080=360×3=360×(5﹣2)度;…∴二环十边形,S=360×(10﹣2)=2880度.故选:C.【点睛】本题考查了多边形的内角和,本题可直接根据S的度数来找出规律,然后根据规律表示出二环十边形的度数.8.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.9.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条【答案】C【解析】【分析】n边形的内角和是(2)180n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n-计算即可.【详解】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n-.10.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠A B.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A【答案】B【解析】试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。
数学八年级上册全册全套试卷易错题(Word版含答案)
数学八年级上册全册全套试卷易错题(Word版含答案)一、八年级数学三角形填空题(难)1.如图,AB〃CD,点P为CD上一点,NEBA、NEPC的角平分线于点F,已知NF = 40。
, 则NE=度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知NFMA二! NCPE=NF+N1, 2ZANE=ZE+2Z1=ZCPE=2ZFMA, HPZE=2ZF=2x40o=80°.故答案为80.2.如图,已知四边形ABCD中,对角线BD平分NABC , /BAC=64° , NBCD+NDCA=180°, 那么NBDC为度.【答案】32【解析】【分析】过C点作NACE=NCBD,根据三角形内角和为180。
,以及等量关系可得NECD=/BDC,根据角平分线的定义可得NABD=NCBD,再根据三角形内角和为180。
,以及等量关系可得 ZBDC的度数.【详解】过 C 点作NACE=NCBD ,B CVZBCD+ZDCA=180° r ZBCD+ZCBD+ZBDC=180° zAZECD=ZBDC r对角线BD平分NABC ,AZABD=ZCBD ,AZABD=ZACE , AZBAC=ZCEB=64° .1AZBDC=-ZCEB=32° . 2 故答案为:32 .【点睛】此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.3.如图,在△48C中,N8和NC的平分线交于点O,若N4=50。
,则N8OC=.【解析】【分析】根据三角形的内角和定理得出NA8C+NAC8=130。
,然后根据角平分线的概念得出NO8C+NOCB,再根据三角形的内角和定理即可得出N8OC的度数.【详解】解:V ZA = 50\:.NA8C+N4C8=180°- 50° = 130°,VZB和NC的平分线交于点O,A ZOBC= - ZABC. ZOCB=- ZACB.2 2•・.NO8C+/OCB=L X (ZABC+ZACB) =-X1300=65%2 2A ZBOC=180° - (NO8C+NOCB) =115%故答案为:115。
数学八年级上册全册全套试卷易错题(版含答案)
数学八年级上册全册全套试卷易错题(版含答案)数学八年级上册全册全套试卷易错题(版含答案)第一部分:选择题(每小题2分,共60分)1. 题干:已知正方形ABCD的边长为4cm,如图所示,询问以下哪一个是该正方形的对角线。
A) AC B) BD C) CE D) AF题解:正方形ABCD的对角线是连结对立的顶点的线段。
所以正确答案是B) BD。
2. 题干:小明骑自行车行驶20分钟,速度为15 km/h。
求小明骑行的距离是多少?A) 5km B) 10km C) 15km D) 20km题解:速度等于距离除以时间。
距离 = 速度 ×时间。
小明行驶的距离 = 15 km/h × 20 min = 5 km。
所以正确答案是A) 5km。
3. 题干:已知下一个月的日历如图所示,若27日是星期四,则1日是星期几?A) 星期一 B) 星期二 C) 星期三 D) 星期四题解:由题意可知,27日是星期四,而一周共7天,所以下一个月的1日是27日后的第4天,即星期一。
所以正确答案是A) 星期一。
...第二部分:填空题(每小题3分,共30分)1. 题干:小明家里总共有____只红花猫和____只黑花猫。
题解:设小明家里有x只红花猫,则有x只黑花猫。
所以空格应分别填入x和x,答案是x和x。
2. 题干:在45°的角周围,补角是____°。
题解:补角定义为两角的度数相加等于180°。
所以45°的补角是180° - 45°= 135°。
所以答案是135°。
3. 题干:一年有____季,一季有____个月。
题解:一年有4季,所以第一个空格填入4。
每个季度有3个月,所以第二个空格填入3。
所以答案是4和3。
...第三部分:解答题(共10题,每题5分,共50分)1. 题干:已知正方形ABCD的边长为6cm,求它的面积。
题解:正方形的面积等于边长的平方。
人教版八年级数学上册期末易错精选30题
人教版八年级数学上学期期末易错精选30题考试范围:全册的内容,共30小题.【答案】332+(1--【分析】以M为直角顶点,@()V V,接着得到当NMB AMPSAS形的性质解答即可.【详解】解:如图,以M为直角顶点,【点睛】本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质、三角形的外角性质、利用了等量代换及转化的思想等知识点,熟练掌握相关判定与性质是解本题的关键.三、解答题(共14小题)17.(2022·山东德州·八年级期中)如图,在ABC V 中,AB AC =,AD (1)若42C Ð=°,求BAD Ð(2)若点E 在边AB 上,EF 【答案】(1)48BAD Ð=а(2)AEF △为等腰三角形【分析】(1)根据直角三角形的两锐角互余即可求解;(2)根据三线合一得出BAD CAD Ð=Ð,根据平行线的性质得出F CAD Ð=Ð,等量代换可得BAD F Ð=Ð,根据等角对等边即可求解.【详解】(1)解:∵AB AC =,AD BC ^于点D ,∴BAD CAD Ð=Ð,90ADC Ð=°,又42C Ð=°,∴904248BAD CAD Ð=Ð=°-°=°.(2)证明:∵AB AC =,AD BC ^于点D ,∴BAD CAD Ð=Ð,∵EF AC ∥,∴F CAD Ð=Ð,∴BAD F Ð=Ð,∴AE FE =,∴AEF △为等腰三角形.【点睛】本题考查了直角三角形的两锐角互余,等腰三角形的性质与判定,掌握等腰三角形的性质与判定是解题的关键.18.(2022·江苏·仪征市第三中学八年级期中)如图,已知在四边形ABCD 中,点E 在AD 上,BCE ACD Ð=Ð,BAC D Ð=Ð,BC CE =.(1)求证:AC CD =;(2)若AC AE =,=90ACD а,求DEC Ð的度数.【答案】(1)见解析(2)112.5Ð=°DEC 【分析】(1)证明()AAS ABC DHC @V V ,即可得到结论;(2)由=90ACD а,AC CD =,得到45CAD D Ð=Ð=°,由AE AC =,得到67.5ACE AEC Ð=Ð=°,即可得到答案.【详解】(1)证明:∵BCE ACD Ð=Ð,∴BCE ACE ACD ACE Ð-Ð=Ð-Ð,∴ACB DCE Ð=Ð,在ABC V 和DEC V 中,BAC D ACB DCE BC CE Ð=ÐìïÐ=Ðíï=î,∴()AAS ABC DEC @V V ,∴AC CD =;(2)解:∵=90ACD а,AC CD =,∴45CAD D Ð=Ð=°,∵AE AC =,∴67.5ACE AEC Ð=Ð=°,∴180112.5DEC ADC °Ð=-Ð=°.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,熟练掌握全等三角形的判定和性质是解题的关键.19.(2022·福建·莆田锦江中学八年级期中)如图,四边形ABCD ,分别延长AD 、AB(1)求证:FDC CBE A C Ð+Ð=Ð+Ð(2)如图2,FDC Ð与CBE Ð的角平分线相交于G 点,若6040A G Ð=°Ð=°,,求C Ð.【答案】(1)见解析;(2)140°【分析】(1)连接AC ,根据三角形的外角性质可得FDC FAC DCA Ð=Ð+Ð,CBE CAB BCA Ð=Ð+Ð,进而得出FDC CBE FAB DCB Ð+Ð=Ð+Ð,即FDC CBE A C Ð+Ð=Ð+Ð.(2)根据360ADC ABC A C Ð+Ð+Ð+Ð=°,得出300ADC ABC C Ð+Ð=°-Ð,进而得出2260CDG CBG C Ð+Ð=°+Ð,根据360ADG ABG A G Ð+Ð+Ð+Ð=°,得出40CDG CBG C Ð+Ð=Ð-°,联立方程即可得出答案.【详解】(1)连接AC ,∵FDC FAC DCA Ð=Ð+Ð∴FDC CBE FAC Ð+Ð=Ð∴FDC CBE FAB Ð+Ð=Ð(2)∵ADC ABC Ð+Ð∴300ADC ABC Ð+Ð=【答案】(1)115;140;(2)1()2P A B Ð=Ð+Ð;(3)1(2P A B Ð=Ð+Ð+Ð(1)若点D 是BC 的中点,则:ABD ACD S S =△△_____;(1)若=60B а,求出发几秒后,(2)若=60B а,求出发几秒后,(3)若AB AC =,点Q 与点动,当a 为何值时,BPD △【答案】(1)5秒(2)2.5秒或10秒∴=30BDP а,∵20cm AB =,点D 为线段AB 的中点,∴10cm BD =,∴210cm BP BD ==,∴5cm BP =,∵动点P 以2cm /s 的速度运动,∴25x =,解得, 2.5x =;②当=90BDP а时,∵=60B а,∴=30BPD а,∵20cm AB =,点D 为线段AB 的中点,∴10cm BD =,∴220cm BP BD ==,∵动点P 以2cm /s 的速度运动,∴220x =,解得,10x =;∴当P 出发2.5秒或10秒后,BPD △为直角三角形;(3)解:设运动时间为t 秒,∵AB AC =,∴B C Ð=Ð,∵20cm AB =,D 是AB 的中点,∴10cm BD =,①当BD QC =,BP CP =时,BDP CQP △≌△,则有,BP CP =,∵16cm BC =,∴8cm BP CP ==,∵动点P 以2cm /s 的速度运动,∴2BP t =,∴4t =,∵点Q 以cm/s a 的速度从C 点出发在线段CA 上运动,∴4CQ at a ==.∵CQ BD =,∵20cm AB =,D 是AB 的中点,(1)由已知和作图能得到ADC EDB V V ≌的理由是______.(2)求得AD 的取值范围是______.(3)如图2,在ABC V 中,点D 是BC 的中点,点M 在AB 边上,点BM CN MN +>.【答案】(1)SAS ;(2)17AD <<;(3)证明见解析.【分析】(1)根据全等三角形的判定定理解答即可;(2)根据三角形的三边关系计算;(3)延长MD 到E ,使MD DE =,连接NE ,CE ,证明()DMN DEN SAS △≌△,得到MN EN =,证明()≌DMB DEC SAS △△,得到MB EC =,再利用EC NC NE +>即可证明BM NC MN +>.【详解】(1)解:∵AD 是BC 边上的中线,∴BD DC =,在ADC △和EDB △中,BD DC BDE ADCDE AD =ìïÐ=Ðíï=î∴()ADC EDB SAS ≌△△,故答案为:SAS(2)解:∵()ADC EDB SAS ≌△△,∴6AC EB ==,∵8AB =,∴在ABE V 中,AB BE AE AB BE -<<+,即214AE <<,∵2AE AD =,∴17AD <<,故答案为:17AD <<(3)解:延长MD 到E ,使MD DE =,连接NE ,CE ,∵MD DN ^,∴MDN EDN Ð=Ð,在DMN V 和DEN V 中,MD DE MDN EDNDN DN =ìïÐ=Ðíï=î∴()DMN EDN SAS V V ≌,∴MN EN =,在DMB V 和DEC V 中,MD DE MDB EDCBD DC =ìïÐ=Ðíï=î∴()≌DMB DEC SAS △△,∴MB EC =,∵在NCE △中,EC NC NE +>,∴BM NC MN +>.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,三角形三边关系应用等知识;熟练掌握三角形的三边关系,作出辅助线,证明三角形全等是解题的关键.26.(2022·江苏盐城·七年级期中)(1)在下列横线上用含有a b ,的代数式表示相应图形的面积._________________________________①②③④___________(2)请在图④画出拼图并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达:___________.(3)利用(2)的结论计算2210.2320.469.779.77+´+的值.【答案】(1)①2a ,②2ab ,③2b ,④()2a b +;(2)2222()aab b a b ++=+;(3)400【分析】(1)根据正方形、长方形面积公式即可解答;(2)前三个图形的面积之和等于第四个正方形的面积;(3)借助于(2)中的结论解答即可.【详解】解:(1)①2a ,②2ab ,③2b ,④()2a b +;(2)画出的拼图为:观察图形可知,a (3)210.2320.46+2102321023..=+´()21023977..=+(1)求证:ADC △≌CEB V ;(2)若5AD =,13DE =,求BE 的长;(3)如图2,延长AD 至F ,连接CF ,过点C 作CG CF ^,且CG CF =,连接BG 交直线l 于点H ,若30CGH S =V ,10CD =,则AF =______.【答案】(1)见解析(2)8(3)12【分析】(1)先根据互余角性质得DAC ECB Ð=Ð,再根据AAS 得结论;(2)由(1)中全等三角形的性质求得AD CE =,再由线段和差求得结果;(3)过点G 作GM l ^于M ,先证明CDF V ≌GMC △,得10CD GM ==,再已知三角形的面积求得CH ,再证明BEH ≌GMH V 得EH MH =,最后由线段和差得结果.【详解】(1)证明:AD DE ^Q ,BE DE ^,∴90ADC CEB ACB Ð=Ð=Ð=°,∵90DAC DCA ECB DCA Ð+Ð=Ð+Ð=°,DAC ECB \Ð=Ð,在ADC △和CEB V 中,ADC CEB DAC ECB AC CB Ð=ÐìïÐ=Ðíï=î,ADC \V ≌()CEB AAS △;(2)解:ADC Q V ≌CEB V ,5AD =,∴5AD CE ==,CD BE =.∵13DE =,∴1358BE CD ==-=;(3)解:过点G 作GM l ^于M ,则另两个角分别为60°,90°,60230°=´°Q ,\有一个30°的直角三角形是“倍角三角形”,故答案为:②③;(2)①证明:AB AC =Q ,ABC ACB \Ð=Ð,Q 将ABC V 沿边AB 所在的直线翻折180°得到ABD △,ABC ABD \Ð=Ð,ACB ADB Ð=Ð,BC BD =,ADB ABD \Ð=Ð,2BAE ADB ABD ADB \Ð=Ð+Ð=Ð,BE BC =Q ,BD BE \=,E ADB \Ð=Ð,2BAE E \Ð=Ð,ABE \V 是“倍角三角形”;②解:由①可得2260BAE BDA C Ð=Ð=Ð=°,如图,若ABP V 是等腰三角形,则BPE V 是“倍角三角形”,ABP \V 是等边三角形,60APB \Ð=°,120BPE \Ð=°,60E EBP \Ð+Ð=°,BPE Q V 是“倍角三角形”,2EBP E \Ð=Ð或2E EBP Ð=Ð,于点P CE ,交BD 于点Q,连接BF ,请问BF 是否会平分CBD Ð?如果是,求出a ,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF BF ,和CF 之间的数量关系,并说明理由.【答案】(1)见解析(2)不会BF 平分CBD Ð,理由见解析(3)AF CF BF +=,理由见解析【分析】(1)由边角边即可证明三角形全等,根据全等三角形的性质即可得出结论.(2)由边角边即可证明三角形全等,再由面积法即可求出60AFB EFB Ð=Ð=°,再由三角形内角和定理可求得角相等,即可得AB DB =,与题干矛盾,即可求解.(3)由边角边即可证明三角形全等,可得AM CF =,即可得结论.【详解】(1)证明:∵ABC DBE ,V V 都是等边三角形,60AB BC BD BE ABC DBE \Ðа=,=,==,ABD CBE \ÐÐ=,在ABD △和CBE △中,AB CB ABD CBEBD BE =ìïÐ=Ðíï=îABD CBE SAS \≌()V V ,AD CE \=;(2)解:不是,理由如下:如图3,过点B 作BN AD ^于N ,过点B 作BH CE ^于H ,ABC DBE ,Q V V 都是等边三角形,60AB BC BD BE ABC DBE \Ðа=,=,==,ABD CBE \ÐÐ=,在ABD △和CBE △中,ABM CBFBM BF ïÐ=Ðíï=îABM CBF SAS \≌()V V ,AM CF \=,AF AM MF +=Q ,AF CF BF \+=.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,角平分线的性质等知识,添加恰当辅助性构造全等三角形是解题关键.。
人教版数学八年级上册易错题难题整理含答案+易错题及答案
人教版数学八年级上册易错题难题整理含答案+易错题及答案人教版数学八年级上册易错题难题整理含答案一、选择题(把正确答案的代号填在下面对应的表格中,每小题3分,共30分)3、下列说法中,①一组数据的中位数只有一个②一组数据的中位数可能是这组数据中的数,也可能不是这组数据中的数 ③一组数据的众数可能有多个 ④一组数据的众数是这组数据中出现次数最多的数据的次数⑤一组数据的众数一定是这组数据中的数 正确说法的个数有( )A 、1个B 、2个C 、3个D 、4个 5、下列说法正确的有( )(1)数轴上的点不是表示有理数,就是表示无理数;(2)实数a 的倒数是a1;(3)带根号的数都是无理数;(4)两个绝对值不相等的无理数,其和、差、积、商仍是无理数。
A、1个 B、2个 C、3个 D、4个 内容补充一个数的平方=它本身这个数0,1 一个数的平方根=它本身这个数是0,1 一个数的算术平方根=它本身这个数是0, 一个数的立方等于它本身,这个数是-1,0,1 一个数的立方根=它本身这个数是-1,0,16、一个自然数的算术平方根为m ,则与这个自然数相邻的下一个自然数是( ) A、1+m B、 12+m C、12+m D、1+m 分析:此题注意审题 二、填空题11、某市对全市3万名初中学生的视力进行了一次抽样调查,得到如图所示的统计图。
在这次调查中,所选取样本的容量是 ;如果视力在4.9到5.1之间(含4.9与5.1)为正常,那么全市大约有 名初中生视力是正常的。
12、设10的整数部分为a ,小数部分为b ,则代数式b (10+a )的值等于 。
根号9<根号10<根号16,所以3<根号10<4,所以,a=3 b=【根号10-3】 所以,b (10+a )=【根号10-3】【根号10+3】 所以利用因式分解的结果为1 13、比较大小:-36.0 -1 /215、如图所示,AD =4,CD =3,∠ADC =90°,AB =13,BC =12,该图形的面积等于 .则x= ;16、已知x 满足(x-1)3=-278,17、若不等式组⎩⎨⎧b x ax 的解集为x ﹥a ,则a 与b 的关系是 。
八年级数学上册全册全套试卷易错题(Word版 含答案)
八年级数学上册全册全套试卷易错题(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS证明△ABE≌AFE即可;(2)由(1)得出∠AEB=∠AEF,BE=EF,再证明△DEF≌△DEC(SAS),得出DF=DC,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE≌△AFE(SAS),△DGE≌△DCE(SAS),由全等三角形的性质得出BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,进而证明△EFG是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD ,∴AD=AB+CD+12BC . 【点睛】 本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.2.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.3.如图(1),在ABC 中,90A ∠=︒,AB AC =,点D 是斜边BC 的中点,点E ,F 分别在线段AB ,AC 上, 且90EDF ∠=︒.(1)求证:DEF 为等腰直角三角形;(2)若ABC 的面积为7,求四边形AEDF 的面积;(3)如图(2),如果点E 运动到AB 的延长线上时,点F 在射线CA 上且保持90EDF ∠=︒,DEF 还是等腰直角三角形吗.请说明理由.【答案】(1)证明见解析;(2)3.5;(3)是,理由见解析.【解析】【分析】(1)由题意连接AD ,并利用全等三角形的判定判定△BDE ≌△ADF(ASA),进而分析证得DEF 为等腰直角三角形;(2)由题意分析可得S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,以此进行分析计算求出四边形AEDF的面积即可;(3)根据题意连接AD,运用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形.【详解】解:(1)证明:如图①,连接AD.∵∠BAC=90˚,AB=AC,点D是斜边BC的中点,∴AD⊥BC,AD=BD,∴∠1=∠B=45°,∵∠EDF=90°,∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴ΔDEF为等腰直角三角形.(2)由(1)可知DE=DF,∠C=∠6=45°,又∵∠2+∠3=90°,∠2+∠5=90°,∴∠3=∠5,∴△ADE≌△CDF,∴S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,∴ S∆ABC=2 S四边形AEDF,∴S四边形AEDF=3.5 .(3)是.如图②,连接AD.∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD ,∴∠1=45°,∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,∴∠DAF=∠DBE ,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE 和△ADF 中,∠DAF=∠DBE ,AD=BD,∠2=∠4,∴△BDE ≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF 为等腰直角三角形.【点睛】本题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.4.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.5.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.二、八年级数学 轴对称解答题压轴题(难)6.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==- 在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.7.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC 中,AB =AC ,点D 在AC 边上,且AD =BD =BC ,求∠A 的大小; (2)在图1中过点C 作一条线段CE ,使BD ,CE 是△ABC 的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.9.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE =5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.10.如图,在 ABC 中,已知 AB AC =,AD 是 BC 边上的中线,点 E 是 AB 边上一动点,点 P 是 AD 上的一个动点.(1)若 37BAD ∠=,求 ACB ∠ 的度数;(2)若 6BC =,4AD =,5AB =,且 CE AB ⊥ 时,求 CE 的长;(3)在(2)的条件下,请直接写出 BP EP + 的最小值.【答案】(1)53ACB ∠=.(2)245CE =.(3) 245. 【解析】【分析】(1)由已知得出三角形ABC 是等腰三角形,ACB ABC ∠∠=,AD 是BC 边的中线,有AD BC ⊥,求出ABC ∠的度数,即可得出ACB ∠的度数.(2)根据三角形ABC 的面积可得出CE 的长(3)连接CP ,有BP=CP ,BP+EP=EP+CP ,当点E ,P ,C 在同一条直线上时BP+EP 有最小值,即CE 的长度.【详解】解:(1) AB AC =,ACB ABC ∴∠=∠,AD 是 BC 边上的中线, 90ADB ∴∠=, 37BAD ∠=,903753ABC ∴∠=-=,53ACB ∴∠=.(2)CE AB ⊥,1122ABC S BC AD AB CE ∴=⋅=⋅, 6BC =,4=AD ,5AB =,245CE ∴=. (3) 245【点睛】本题考查的知识点主要有等腰三角形的“三线合一”,三角形的面积公式等,充分利用等腰三角形的“三线合一”是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.因式分解是多项式理论的中心内容之一,是代数中一种重要的恒等变形,它是学习数学和科学技术不可缺少的基础知识.在初中阶段,它是分式中研究约分、通分、分式的化简和计算的基础;利用因式分解的知识,有时可使某些数值计算简便.因式分解的方法很多,请根据提示完成下面的因式分解并利用这个因式分解解决提出的问题.(1)填空: ①()242221144x x x x ⎡⎤+=++-=⎢⎥⎣⎦( )22x -=( )( ) ②()()242116=644⎡⎤+++-⎢⎥⎣⎦=( )( )=( )⨯ ( ) (2)解决问题,计算:4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 【答案】(1)①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,;(2)14541 【解析】【分析】(1)根据完全平方公式和平方差公式计算可得;(2)利用前面所得规律变形即可.【详解】(1)()242221144x x x x ⎡⎤+=++-⎢⎥⎣⎦ 22212x x ⎛⎫=+- ⎪⎝⎭ 221122x x x x ⎛⎫⎛⎫=++-+ ⎪⎪⎝⎭⎝⎭()2422211666624⎡⎤+=++-⎢⎥⎣⎦ 2211666622⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭42.530.5=⨯ 故答案为:①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,; (2)4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 2222222211116666888822221111555577772222⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42.530.372.556.530.520.556.542.5⨯⨯⨯=⨯⨯⨯ 14541= 【点睛】本题考查了因式分解的应用;熟练掌握完全平方公式和平方差公式是解题的关键.12.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】 (1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.13.观察以下等式:(x+1)(x 2-x+1)=x 3+1(x+3)(x 2-3x+9)=x 3+27(x+6)(x 2-6x+36)=x 3+216...... ......(1)按以上等式的规律,填空:(a+b )(___________________)=a 3+b 3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)【答案】(1)a 2-ab+b 2;(2)详见解析;(3)2y 3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b )(a 2-ab+b 2)=a 3+b 3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.【详解】(1)(a+b )(a 2-ab+b 2)=a 3+b 3;(2)(a+b )(a 2-ab+b 2)=a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3;(3)(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)=x 3+y 3-(x 3-y 3)=2y 3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.14.任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并且规定F (n )=p q .例如18=1×18=2×9=3×6,这时就有F (18)=3162=.请解答下列问题:(1)计算:F (24);(2)当n 为正整数时,求证:F (n 3+2n 2+n )=1n . 【答案】(1)23;(2) 1n . 【解析】分析:(1)根据最佳分解的意义,把24分解成两数的积,找出差的绝对值最小的两数,求比值即可;(2)根据(1)的求法,确定差的绝对值最小的两数的特点,然后根据要求变形即可. 详解:(1)∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=46=23. (2)∵n 3+2n 2+n =n(n +1)2,其中n(n +1)与(n +1)的差的绝对值最小,且(n +1)≤n(n +1),∴F(n 3+2n 2+n)=()n 1n n 1++=1n . 点睛: 本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.15.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值.解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.四、八年级数学分式解答题压轴题(难)16.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a +=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.17.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
人教版数学八年级上册 期末试卷易错题(Word版 含答案)
人教版数学八年级上册期末试卷易错题(Word 版 含答案)一、八年级数学全等三角形解答题压轴题(难)1.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.(1)求m 和n 的值.(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值. 【答案】(1)42m n =-⎧⎨=⎩(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化. 【解析】 【分析】(1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证; (3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明△ABH ≌△CAN ,即可得到结论. 【详解】解:(1)由题意()()218122m n n m m --=⎧⎪⎨++-=⎪⎩解得42m n =-⎧⎨=⎩;(2)如图2中,由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),∴AD=OA =4,OB =2,∴由勾股定理可得:AB =BD =25, ∵AC =OC =2, ∴AC =OB ,∵∠DAC =∠AOB =90°,AD =OA , ∴△DAC ≌△AOB (SAS ), ∴∠ADC =∠BAO , ∵∠ADC +∠ACD =90°, ∴∠EAC +∠ACE =90°, ∴∠AEC =90°, ∵AF ⊥BD ,DE ⊥AB , ∴S △ADB =12•AB •AE =12•BD •AF , ∵AB =BD , ∴DE =AF .(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,∵AG =BG , ∴∠GAB =∠GBA , ∵G 为射线AD 上的一点, ∴AG ∥y 轴, ∴∠GAB =∠ABC , ∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB , 即∠ABG =∠ACN , ∵∠GAN =∠GBO , ∴∠AGB =∠ANC , 在△ABG 与△ACN 中,ABH ACNAHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△ACN (AAS ), ∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB=2∴NB﹣FB=2×2=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.【点睛】本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.2.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.3.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.4.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD≅CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵DBG DCFBD CDBDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.5.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或32(3)9s【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ), ∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°, ∠CPQ=90°,则线段PC 与线段PQ 垂直. (2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912tt xt =-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xtt t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩,综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程, 设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点; ∴EB=EA=18cm. 当V Q =1时, 依题意得3x=x+2×9, 解得x=9; 当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇. 【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.二、八年级数学轴对称解答题压轴题(难)6.如图,在ABC△中,已知AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于点F,求证:AF EF=.【答案】证明见解析【解析】【分析】延长AD到点G,使得ADDG=,连接BG,结合D是BC的中点,易证△ADC和△GDB全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD到点G,延长AD到点G,使得AD DG=,连接BG.∵AD是BC边上的中线,∴DC DB=.在ADC和GDB△中,AD DGADC GDBDC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC≌GDB△(SAS).∴CAD G∠=∠,BG AC=.又BE AC=,∴BE BG=.∴BED G ∠=∠. ∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠ ∴AF EF =. 【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.7.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在;当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO,'FAE FAE ∴'EAG EAO则有:'OPG EAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x =,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.8.八年级的小明同学通到这样一道数学题目:△ABC 为边长为4的等边三角形,E 是边AB 边上任意一动点,点D 在CB 的延长线上,且满足AE =BD .(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由;(3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)32)DE =CE ,理由见解析;(3)这个最小值为7;【解析】【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=BH 3=,∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23.故答案为:23;(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=AH 3=,∴C 'H =4+1=5,∴C 'F 22'253C H HF =+=+=27,∴DE +EF 的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线...段.叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.10.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP,BQ=PQ,PQ=CQ时,∴∠PQC=∠C=2∠PBQ,∴12∠C+∠C=30°,解得:∠C=20°.综上所述:∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是______;(2)根据(1)中的结论,若5x y +=,94x y ⋅=,则x y -=______; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)(2020)m m --的值. 【答案】(1)22()()4a b a b ab +=-+;(2)4,-4:(3)-3【解析】 【分析】(1)观察图2,大正方形由4个矩形和一个小正方形组成,根据面积即可得到他们之间的关系.(2)由(1)的结论可得(x-y) ²=16,然后利用平方根的定义求解即可. (3)从已知等式的左边看,左边配成两数和的平方来求解. 【详解】解:(1)由题可得,大正方形的面积2()a b =+,大正方形的面积2()4a b ab =-+, ∴22()()4a b a b ab +=-+,(2)∵22()()4x y x y xy +=-+,∴229()()4254164x y x y xy -=+-=-⨯=, ∴4x y -=或-4,(3)∵22(2019)(2020)7m m -+-=,又2(20192020)m m -+-22(2019)(2020)2(2019)(2020)m m m m =-+-+-- ∴172(2019)(2020)m m =+-- ∴(2019)(2020)3m m --=-故答案为:(1)22()()4a b a b ab +=-+;(2) 4,-4:(3)-3【点睛】本题通过观察图形发现规律,并运用规律求值,使问题简单化是解题关键.12.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712yy ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1). 【解析】 【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果. 【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4); (2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1). 【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.13.若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为22521=+.再如,()222222M x xy y x y y =++=++(x ,y 是整数),所以M 也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”; (2)已知224412S x y x y k =++-+(x ,y 是整数,是常数),要使S 为“完美数”,试求出符合条件的一个2200-0=值,并说明理由. (3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.. 【答案】(1)8、29是完美数(2)S 是完美数(3)mn 是完美数 【解析】 【分析】(1)利用“完美数”的定义可得;(2)利用配方法,将S 配成完美数,可求k 的值 (3)根据完全平方公式,可证明mn 是“完美数”; 【详解】 (1)22228,8+=∴是完美数;222925,29=+∴是完美数 (2) ()222)2313S x y k =++-+-( 13.k S ∴=当时,是完美数 (3) 2222,m a b n c d 设=+=+,则()()()()222222mn a b c d ac bd ad bc =++=++-即mn 也是完美数. 【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.14.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n )2;(m+n )2-4mn ;(2)(m-n )2=(m+n )2-4mn ;(3)1. 【解析】 【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式; 方法2:利用大正方形的面积减去四周四个矩形的面积列式; (2)根据不同方法表示的阴影部分的面积相同解答; (3)根据(2)的结论整体代入进行计算即可得解. 【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形, ∴阴影部分的面积=(m-n )2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积 ∴阴影部分的面积=(m+n )2-4mn ;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n )2=(m+n )2-4mn ; (3)由(2)可知(a+b )2=(a-b )2+4ab ,∵a-b=5,ab=-6,∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.15.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.四、八年级数学分式解答题压轴题(难)16.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距离上班地点27km,他乘坐公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的3 7 .(1)小王用自驾车上班平均每小时行驶多少千米?(2)上周五,小王上班时先步行了6km,然后乘公交车前往,共用43小时到达.求他步行的速度.【答案】(1)小王用自驾车上班平均每小时行驶27km;(2)小王步行的速度为每小时6km.【解析】【分析】(1))设小王用自驾车上班平均每小时行驶xkm,则他乘坐公交车上班平均每小时行驶()29x km +.再利用乘公交车的方式平均每小时行驶的路程比他自用驾SS 式平均每小时行驶的路程的2倍还多9千米和乘公交车所用时间是自驾车方式所用时间的37,列方程求解即可;(2)设小王步行的速度为每小时ykm ,然后根据“步行时间+乘公交时间=小时”列方程解答即可. 【详解】解(1)设小王用自驾车上班平均每小时行驶xkm ,则他乘坐公交车上班平均每小时行驶()29x km +.根据题意得:27327297x x=⋅+ 解得:27x =经检验,27x =是原方程的解且符合题意. 所以小王用自驾车上班平均每小时行驶27km ;(2)由(1)知:小王乘坐公交车上班平均每小时行驶29227963x +=⨯+=(km ); 设小王步行的速度为每小时ykm ,根据题意得:62764633y -+= 解得:6y =.经检验:6y =是原方程的解且符合题意 所以小王步行的速度为每小时6km . 【点睛】本题考查了分式方程的应用,解答的关键在于弄清题意、找到等量关系、列出分式方程并解答.17.为了迎接运动会,某校八年级学生开展了“短跑比赛”。
八年级数学易错题20例(含解析)
八年级数学易错题20例1. 理解错误的题目:一些学生可能会误解题目的意思,从而得出错误的答案。
例如,题目要求求解一个方程,但是学生可能会误解为需要求解一个不同的方程。
2. 忘记变号:在进行等式运算时,有时会忘记在移项或者合并同类项时变号。
3. 计算错误:在进行复杂计算时,可能会出现计算错误,例如算错乘法、加法等。
4. 错误的应用公式:例如在使用勾股定理时,将直角三角形的边长错误地代入公式。
5. 忽视条件:在解决问题时,可能会忽视题目给出的某些条件,导致答案错误。
6. 图形理解错误:在几何问题中,可能会误解或错误地画出图形。
7. 错误的角度计算:在几何问题中,尤其是涉及角度的计算,容易出错。
8. 比例理解错误:在涉及比例的问题中,可能会对比例的概念理解错误。
9. 单位换算错误:在涉及单位换算的问题中,可能会换算错误。
10. 错误的概率计算:在概率问题中,可能会出现计算错误或者理解错误。
11. 忽视坐标系的方向:在平面直角坐标系中,有时会忽视坐标轴的方向,导致点的位置判断错误。
12. 函数理解不足:对于函数的理解不足,可能导致在解决与函数相关的问题时出错。
13. 三角形性质理解错误:例如,误将等边三角形的性质应用于等腰三角形等。
14. 分式运算错误:在进行分式的加减乘除运算时,可能会出现运算错误。
15. 错误的不等式解法:在解不等式时,可能会因为变号、计算等问题导致解答错误。
16. 数列求和公式使用不当:例如,等差数列和等比数列的求和公式混淆使用。
17. 根与系数的关系理解不清:对于二次方程的根与系数的关系理解不足,导致相关题目解答错误。
18. 圆的性质理解不足:例如,对圆心角、圆周角、弧长等性质理解不清,导致解题出错。
19. 忽视特殊情况:在一些数学问题中,可能存在特殊情况需要额外考虑,如果忽视这些特殊情况,可能会导致答案不完整或错误。
20. 不严谨的推理:在数学证明题中,推理过程不严谨,跳跃步骤或者逻辑不清晰,导致证明错误。
八年级数学上册全册全套试卷易错题(Word版 含答案)
八年级数学上册全册全套试卷易错题(Word版含答案)一、八年级数学三角形填空题(难)1.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.2.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.3.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.4.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】9【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.5.等腰三角形一边长是10cm,一边长是6cm,则它的周长是_____cm或_____cm.【答案】22cm,26cm【解析】【分析】题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】 1∠、2∠、3∠、4∠的外角的角度和为210, 12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.二、八年级数学三角形选择题(难)7.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm【答案】D【解析】试题分析:①当A ,B ,C 三点在一条直线上时,分点B 在A 、C 之间和点C 在A 、B 之间两种情况讨论;②当A ,B ,C 三点不在一条直线上时,根据三角形三边关系讨论.解:当点A 、B 、C 在同一条直线上时,①点B 在A 、C 之间时:AC =AB +BC =3+1=4;②点C 在A 、B 之间时:AC =AB -BC =3-1=2,当点A 、B 、C 不在同一条直线上时,A 、B 、C 三点组成三角形,根据三角形的三边关系AB -BC <AC <AB +BC ,即2<AC <4,综上所述,选D.故选D.点睛:本题主要考查点与线段的位置关系..利用分类思想得出所有情况的图形是解题的关键,8.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【答案】B【解析】【分析】由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.【点睛】本题考查多边形内角与外角,熟记公式是关键.9.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a ∥b ,∴∠2=∠4=45°.故选C .【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.10.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,△AOB 中,∠AOB=90°,AO=3,BO=6,△AOB 绕顶点O 逆时针旋转到△A ′OB ′处,此时线段A ′B ′与BO 的交点E 为BO 的中点,则线段B ′E的长度为在等腰△ABC 中,∠A=30°,AB=8,则AB 边上的高CD 的长是在三角形ABC 中,<BAC=150°,AB=20m,AC=30m,<BAC 的角平分线交BC 与点D,则点D 到AB 之间的距离是多少如果直角三角形中有一条直角边长市11,另两边的长也是自然数,那么它的周长是多少(天府前沿P13)如图,P 是等边三角形ABC 内的一点,连接PA ,PB ,PC ,以BP 为边作∠PBQ=60°,且BQ=BP,连接CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论;(2)若PA :PB :PC=3:4:5,连接PQ ,试判断△PQC 的形状,并说明理由.(3)角BQC=?(2012北京)19.如图,在四边形ABCD 中,对角线AC,BD 交于点E ,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=BE=.求CD 的长和四边形ABCD 的面积.方程|4x-8|+x −y −m=0,当y >0时,m 的取值范围是m <2.1、2(9)-的算术平方根是 。
4、已知22114,)1x y x x y x +-+-+=+3则(2= 。
5、设等式()()a x a a y a x a a y -+-=---在实数范围内成立,其中a 、x 、y 是两两不相等的实数,则22223x xy y x xy y+--+的值是 。
8、已知实数211,,a-b 20,24c a b c b c c c ab+++-+=满足则的算术平方根是 。
9、已知x 、y 是有理数,且x 、y 满足22322332x y y ++=-,则x+y= 。
12、设62,53,A B =+=+则A 、B 中数值较小的是 。
14、使式子252x x --有意义的x 的取值范围是 。
15、若1101,6,a a a a a+=-且则的值为 。
5 的整数部分是 ,小数部分是 。
已知的整数部分a ,小数部分是b ,求a -b 的值.4514,0.063a b ===则( )A 、10abB 、310abC 、100abD 、3100ab 6、如果30,a a -那么等于( )A 、aB 、a -C 、a -D 、a a --8、已知30,0,2150,y x y x xy y x xy y+-=+-2x+xy 且 9,,32220022002,x y z x y z x y z x y x y +--+-+---设适合关系式试求x,y,z 的值。
11、已知x 、y 是实数,且222(1)533x y x y x y -+--+与互为相反数,求的值。
已知()11039322++=+-+-y x x x y x ,求的值。
已知x y ==33_________x y xy +=。
若方程()24-+-=+-m nx n x m 有无穷多个解,则m= n=第2章 《实数》试题( )班 姓名一、填空题(每小题3分,共30分)1. 0.36的平方根是 ;14算术平方根是 ;27-的立方根是 .2.计算:=;;= .3. 的倒数是 ;π-的绝对值是 ;52-的相反数是 .4. 用计算器计算(保留2个有效数字):≈;≈;≈ . 5. 用“>或<或=”填空:0 π-; 3.16-6. 请你写出三个在1 和4之间的无理数: 、 、 .7. 若某数的一个平方根是4,则这个数的另一个平方根的立方等于 .8.若一个正方形桌面的面积为20.64m ,则这个桌面的边长为 m .9. 10.1=,则=.10. 借助计算器可以求得:;55== ;……观察上面几道题的计算结果,2220082008444333+=个个 .二、选择题(每小题3分,共30分)11. “9的平方根是3±”,用式子表示就是( )A 3=±B 3C .3=D .3=±12. 立方根等于8的数是( )A .512B .64C .2D .2±13. 在数轴上点A 点B 2,则A 、B 两点之间的距离等于( )A .22-B .22-C .2-D .214. 在下列各对数中,互为相反数的是( )A .13-与3- B . C 与 D)A .9B .9±C .3D .3±16. 算术平方根等于它本身的数是( )A .0B .1或1-C .1或0D .1或0或1-17. 在下列说法中,正确的是( )A .1的平方根是1B .3-的平方根C .210-能进行开平方运算D .2-是8-的立方根18. 在下列说法中,错误的是( )A .无限小数都是无理数B .实数与数轴上的点一一对应C .无理数都是无限小数D .带有根号的数不都是无理数19. 若底面为正方形的蓄水池容积是34.86m ,水池的深为1.5m ,则水池底面边长是( )A .3.24mB .1.8mC .0.324mD .0.18m20.若21(2)0a b ++-+,则23a b c ++的值等于( )A .0B .6-C .24-D .32-例4 (1) 已知22(4)0,()y x y xz -++=求的平方根。
(2a2,小数部分为b,求-16ab-8b的立方根。
(3,,4x y mm=-试求的算术平方根。
(4)设a、b是有理数还是无理数,并说明理由。
例5 (1)已知2m-3和m-12是数p的平方根,试求p的值。
(2)已知m,n是有理数,且2)(370m n+-+=,求m,n的值。
(3)△ABC的三边长为a、b、c,a和b2440b b-+=,求c的取值范围。
(4)已知19932(4a x a-=+,求x 的个位数字。
训练题:一、填空题1的算术平方根是 。
2、已知一块长方形的地长与宽的比为3:2,面积为3174平方米,则这块地的长为 米。
32(1)0,b -== 。
4、已知x y y +=则= 。
5=在实数范围内成立,其中a 、x 、y 是两两不相等的实数,则22223x xy y x xy y+--+的值是 。
6、已知a 、b 为正数,则下列命题成立的:若32,1;3,6, 3.2a b a b a b +=≤+=≤+=≤若;若根据以上3个命题所提供的规律,若a+6=9 。
7、已知实数a 满足21999,1999a a a -=-=则 。
8、已知实数211,,a-b 0,24c a b c c c ab-+=满足则的算术平方根是 。
9、已知x 、y 是有理数,且x 、y 满足22323x y ++=-,则x+y= 。
10、由下列等式:===所揭示的规律,可得出一般的结论是 。
11、已知实数a 满足0,11a a a =-++=那么 。
12、设A B ==则A 、B 中数值较小的是 。
1312 5.28,y -=则x= ,y= .14有意义的x 的取值范围是 。
15、若101,6,a aa +=且的值为 。
16、一个正数x 的两个平方根分别是a+1和a-3,则a= ,x= .17、写出一个只含有字母的代数式,要求:(1)要使此代数式有意义,字母必须取全体实数;(2)此代数式的值恒为负数。
。
二、选择题:1( )A 、-6 B 、6 C 、±6 D2、下列命题:①(-3)2的平方根是-3 ;②-8的立方根是-23;④平方根与立方根相等的数只有0; 其中正确的命题的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个3、若3,b a b ++a ,则的值为( )A 、0B 、1C 、-1D 、24、,a b ===( ) A 、10ab B 、310ab C 、100ab D 、3100ab5、使等式2(x =成立的x 的值( ) A 、是正数 B 、是负数 C 、是0 D 、不能确定6、如果0,a 那么( ) A 、 B 、- C 、 D 、-7、下面5个数:13.1416,1ππ-,其中是有理数的有( )A 、0个 B 、1个 C 、2个 D 、3个8、已知0,0,150,xy x y -=且9、已知:,,x y z =试求x,y,z 的值。
10、在实数范围内,设20064(1x a x =++,求a 的个位数字是什么?11、已知x 、y 是实数,且2(1)x y -+。