二元一次方程组的巧妙解法
二元一次方程组的解法
二元一次方程组的常见解法
二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.
一、代入法
2x+5y=-21
例1、解方程组
x+3y=8
3x-4y=9
例2、解方程组
9x-10y=3
※解题方法:
①编号:②变形③代入④求x(或y):;⑤求y(或x):⑥联立:
三、加减消元法
2x+3y=14
例3、解方程组
4x-5y=6
3(x+2)+(y -1)=4 例4 解方程组
3(x+2)+(1-y)=2
※解题方法:
①编号 ②系数相等
③相加(或相减) ④求值 ⑤求另值 ⑥联立
3.精选真题强化练习:
解二元一次方程组:
(1)⎩⎨⎧=+=+52y x 4
y 2x
(2)⎩⎨⎧==+112y -3x 12y x。
二元一次方程组的解法之加减消元法
②
12x 16y 32 ③ 12x 9y 3 ④
当程的方的方程两程组边的的都系两乘数(能x(个以相或不方一 同或互能程个或y为)使不适互相的两能当为反直的相系个接数反数数方用(数)相程加不,呢等中减为那?消零么元)就时, 可,使以可变用将形加方后减
消元法来解方程组了.
樂
见
2x 3y 11 ①
2x 3 (3) 11
解得 x 1 写解
3x 45 8
解得 x 4
x 1
因此原方程组的解是
y
3
x 4
因此原方程组的解是
y
5樂见
2x 3y 11 ①
(1)6x 5y 9
②
3x 4y 8 ① (2)4x 3y 1 ②
解:①×5得10x 15y 55③ 解:①×4得 12x 16y 32 ③
小结:如果两个方程中有一个未知数的系数相 等(或互为相反数),那么把这两个方程直接 相减(或相加);否则,就把方程乘以适当的 数进行变形,再将所得方程相减(或相加). 樂
见
1997m 1999n 3995 (5)1999m 1997n 3997
选择消
,将方程
①+②得
3996m3996n 39962
y
3
x 4
因此原方程组的解是
y
5樂见
牛刀小试
解下列方程组:
3x 2 y 8 ① (1)6x 5y 47 ②
2x 3y 12 ① (2) 3x 4 y 17 ②
樂 见
巩固练习
用加减法解下列方程时,你认为先消哪个未知数 比较简单,填写消元的过程.
2m 3n 1 ① 选择消 n
(1) 5m 3n 4 ② 将方程 ②-① 进行消元
二元一次方程组的解法
解二元一次方程组的基本方法是消元,而我们熟知的方法就是代入消元法和加减消元法,但这两种方法都比较繁琐.下面通过加减消元法的解答过程探讨更简单直接的方法.例.解方程组的解.加减消元法解答过程:······························①两式作差,得···························②··························③将③代入,得··························④所以,原方程组的解为:【解析】由方程组的解可知,,的分母均为,我们可先求二者的分母,而该值亦是②式中的系数,再由①式形式,我们可以通过把原方程组中的两个方程的,的系数写成如下形式:·····························⑤交叉相乘相减,得到二者的分母.再求的分子,即②式右边的数值,可由得到.事实上,用替换⑤中计算可得.即求的值时,用常数列相应替换的系数列.同样地,求的分子,可由得到.即求的值时,则在⑤中用常数列相应替换的系数列计算可得.通过上述推导,我们得到解二元一次方程组的简单方法:,.其中,,,.【注】作为,的分母,因此要求方程组才有解.事实上,二元一次方程组的解可看成两直线和的交点的横纵坐标,而条件“”告诉我们两直线相交,因此方程组有唯一解.而当时,则两直线平行或重合,相应地,方程组要么有无穷多解要么无解.。
二元一次方程组解题技巧讲义(补课用)
⼆元⼀次⽅程组解题技巧讲义(补课⽤)⼆元⼀次⽅程组解题技巧讲义(补课⽤)⼀、⼆元⼀次⽅程组的有关概念:1.⼆元⼀次⽅程:含有两个未知数,并且含有未知数的项的次数都是1?的整式⽅程叫做⼆元⼀次⽅程.它的⼀般形式:)0,0(≠≠=+b a c by ax ,如6713,245=-=-n m y x 等是⼆元⼀次⽅程。
2.⼆元⼀次⽅程的解集:适合⼀个⼆元⼀次⽅程的每⼀对未知数的值,叫做这个⼆元⼀次⽅程的⼀个解.对于任何⼀个⼆元⼀次⽅程,令其中⼀个未知数取任意⼀个值,都能求出与它对应的另⼀个未知数的值.因此,任何⼀个⼆元⼀次⽅程都有⽆数多个解.由这些解组成的集合,叫做这个⼆元⼀次⽅程的解集.3.⼆元⼀次⽅程组及其解:两个⼆元⼀次⽅程合在⼀起就组成了⼀个⼆元⼀次⽅程组.⼀般地,能使⼆元⼀次⽅程组的两个⽅程左右两边的值都相等的两个未知数的值,叫做⼆元⼀次⽅程组的解.它的⼀般形式为:=+=+.,222111c y b x a c y b x a 其中2121,,,b b a a 不全为零,如:?==;2,3y x =+=-;5,3n m n m =-=+-;2,53q p q p 都是⼆元⼀次⽅程组。
4.⼆元⼀次⽅程组的解法:代⼊消元法:在⼆元⼀次⽅程组中选取⼀个适当的⽅程,将⼀个未知数⽤含另⼀个未知数的式⼦表⽰出来,再代⼊另⼀个⽅程,消去⼀个未知数得到⼀元⼀次⽅程,求出这个未知数的值,进⽽求得这个⼆元⼀次⽅程组的解,这种⽅法叫做代⼊消元法。
加减消元法:两个⼆元⼀次⽅程中同⼀未知数的系数相反或相等时,将两个⽅程的两边分别相加或相差,从⽽消去这个未知数,得到⼀个⼀元⼀次⽅程,这种求⼆元⼀次⽅程组的解的⽅法叫做加减消元法,简称加减法.例题精析:例1.⽅程ax-4y=x-1是⼆元⼀次⽅程,则a 的取值为() A 、≠0 B 、≠-1 C 、≠1 D 、≠2 解题思路:含有两个未知数,并且含有未知数的项的次数都是1?的整式⽅程叫做⼆元⼀次⽅程.选B变式题1:如果(a -2)x+(b+1)y=13是关于x ,y 的⼆元⼀次⽅程,则a ,b 满⾜什么条件?解题思路:∵(a -2)x+(b+1)y=13是关于x ,y 的⼆元⼀次⽅程,∴a -2≠0,b+1≠0,?∴a ≠2,b ≠-1例2.若⼆元⼀次⽅程3x-2y=1有正整数解,则x 的取值应为()A 、正奇数B 、正偶数D 、0 解题思路:由312x y -=,x 、y 都是正整数,选A变式题1:.⽅程组2528x y x y +=??-=?的解是否满⾜2x -y=8?满⾜2x -y=8的⼀对x ,y 的值是否是⽅程组2528x y x y +=??-=?的解?解:满⾜,不⼀定.∵2528x y x y +=??-=?的解既是⽅程x+y=25的解,也满⾜2x -y=8,?∴⽅程组的解⼀定满⾜其中的任⼀个⽅程,但⽅程2x -y=8的解有⽆数组,如x=10,y=12,不满⾜⽅程组2528x y x y +=??-=?.例3.已知⼆元⼀次⽅程组45ax by bx ay +=??+=? 的解是21x y =??=?,则a+b 的值为____。
二元一次方程组的解法技巧
二元一次方程组的解法技巧在我们的生活中,数学可真是一门神奇的学科,尤其是二元一次方程组。
听起来复杂,其实也没那么可怕,咱们可以把它想象成两个朋友在一起讨论谁来买午餐的问题。
就像王小明和李小红,他们每次出去吃饭都要聊聊自己钱包里的钱和想吃的东西。
王小明说:“嘿,我有20块钱,咱们去吃炸鸡吧。
”李小红却说:“我也有20块钱,咱们可以吃披萨!”这样两个人就需要找到一个方案,既能让他们的总钱数合在一起,又能吃到大家都喜欢的美食。
这时候,咱们就得用到二元一次方程组了。
你看,咱们设王小明的钱为x,李小红的钱为y,那就能得到两个方程:x + y = 40,还有他们想吃的东西的成本,比如炸鸡和披萨的价格。
这样就形成了一个小小的数学挑战。
解决这个问题其实就像吃火锅,先把锅里的底料煮开,再慢慢加入配菜,最后就能吃得津津有味。
解这个方程组时,有两种常用的方法,大家伙儿一定听说过。
第一种就是代入法。
想象一下,王小明心急如焚,想知道自己能吃多少炸鸡,他就把李小红的那部分钱给代入进去。
这样,咱们可以把y替换成40x。
然后,就只需要简单地计算出炸鸡的数量,这简直跟做数学题一样简单。
就像你心里有数了,赶紧去点外卖,结果一看,这价格还真合适,心里那种美滋滋的感觉,不就是解题的乐趣吗?再说说消元法,哎,这个就有点儿像打麻将。
你得先把牌理顺,才能出牌。
咱们先写出两个方程,把它们整理一下,然后找到一个变量,比如y,直接把它消掉。
结果就会出现一个新的方程,像一块儿美味的蛋糕等着你去切。
解决完一个,另一个也就迎刃而解,最后王小明和李小红就能一起高高兴兴地吃到心仪的午餐,何乐而不为呢?别忘了,解二元一次方程组的过程中,不可避免地会有一些小坑。
比如有些人一看方程就头大,没关系,咱们可以从简单的开始,慢慢来,犹如学骑自行车一样,起初总是摔跤,但只要坚持,最终你就能飞驰在路上。
还有就是细心点,千万别弄错数字,稍不留神就可能把炸鸡的价格算成了披萨的,这可就麻烦了。
8.2(3)二元一次方程组解法总结
3X-4Y=10 ① 5X+6Y=42 ② 分析:必须设法使同一未知数的系数的绝对值相等。
(1)若消Y,两个方 程未知数Y系数的绝对 值分别为4,6。只要 使它们变成12(4,6 的最小公倍数),只 要 (2)若消X,只要使 两个方程未知数X系 数变成15(3,5的最 小公倍数),只要 ①×5,②×3得: 15X-20Y=50 15X+18Y=126
∴
x=2 y = -4
答:x 的值是2,y 的值是 -4.
x=2
8.思 考 练 习 题
x = -1, x = 2, 若 和 是方程 mx + ny = 10 的两个解, y = 2, y = -2, 求 m 、n 的值.
x =-1,
5.思
考
题
-a – 2b = 1
a = -2b - 1 ③ 由②得: 把③代入①得:
②
把b = -4/7 代入③,得: a = -2b - 1 = -2×(-4/7)-1 a = 1/7 ∴ a = 1/7
-2 + 2(-2b – 1)= 3b -2 – 4b – 2 = 3b -4b – 3b = + 2 + 2 -7b = 4 b = -4/7
把m = 3/7 代入③,得: n = 1 –2m
3 1 1 2 7 7
1 n 7 3 m 7
2x + ay = 3b 2、已知 y = 2, 是关于 x、y 的方程组 ax - by = 1 的解, 求 a 、 b 的值. 2x + ay = 3b 解: 把 x = -1,y = 2 代入方程组 ax - by = 1 得: -2 + 2a = 3b ①
把③代入①得: 3(2 + y)- 2y = 6
例谈解二元一次方程组中的数学思想方法
例谈解二元一次方程组中的数学思想方法成晓明解二元一次方程组的基本思想是消元,求解的主要方法是代入消元法和加减消元法.但是对于一些比较特殊的方程组,仅有这些方法是不够的,下面结合一些典型的例题进行分析,向同学们介绍几种解二元一次方程组常用的思想方法.一、转化思想例1解方程组5x+y=6,①3x-2y=1.②【解析】观察方程组中x、y的系数的特点,可以将方程①变形为y=6-5x③,然后将③代入②,消去y,得到关于x的一元一次方程,先求出x,进而再求出y的值.或者将方程①×2+②消去y,然后得到关于x的一元一次方程求解.例2解方程组7x-11y=7,①17x-13y=-7.②【解析】观察方程组中x、y的系数,既不简单,也不存在倍数关系,用代入消元法和加减消元法数据都相对复杂,再次观察系数,发现①+②可得24x-24y=0,化简得x=y③,再利用代入消元法求解就非常简单了.说明:转化思想就是将复杂的、陌生的问题转化为简单的、熟悉的问题进行求解,这是学习新知识、研究新问题的常用的基本方法.解二元一次方程组实际上就是通过“消元”(代入消元、加减消元)的手段化“二元”为“一元”.二、整体思想例3解方程组3x-2(x+2y)=3,①11x+4(x+2y)=45.②【解析】方程①和②中都含有(x+2y),可以将(x+2y)看作一个整体,①×2+②,从而消去(x+2y),达到消去y的目的.例4解方程组3x+2y-2=0,①■-2x=-3.②【解析】方程①和②中都含有(3x+2y),可以将(3x+2y)看作一个整体,把方程①变形为3x+2y=2③,然后将方程③代入方程②,从而消去(3x+2y),达到消去y的目的.说明:解数学题时,我们往往习惯于从问题的局部出发,将问题分解成若干个小问题,然后逐一解决.然而这种思考方法常常导致解题过程繁杂,运算量大.这时可将注意力和着眼点放在其问题的整体上,突出对问题整体结构的分析,发现问题的整体结构特征,找出整体与局部的有机联系,从整体上把握并解决问题,这就是整体思想.三、数形结合思想例5如图,8块相同的小长方形地砖拼成一个长方形,求其中每一个小长方形的面积.【解析】图形中隐含着长和宽的两个关系:一是每块小长方形地砖的长是宽的3倍,二是长与宽的和为60厘米,由此可以设未知数并列方程求出地砖的长和宽,进而求出每一个小长方形的面积.例6小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的矩形,如图(1)所示.小红看见了,说:“我来试一试.”结果小红七拼八凑,拼成如图(2)那样的正方形.咳!怎么中间还留下了一个洞,恰好是边长为2mm的小正方形!你能求出小长方形的长和宽吗?【解析】本题中有两个未知量:长方形的长与宽,而小明和小红的两个拼图恰好给出了两个等量关系:图1中得到:长×3=宽×5,图2中得到:宽×2-长=2,由此可以设未知数并列方程求出长方形的长和宽,说明:数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化.几何问题代数化.上面所举的两例都是巧妙地运用拼图,建立起小长方形的长与宽的关系,将数与形有机结合起来,突破了用语言描述数量关系的常规,突出了数形结合思想的应用.四、类比思想例7已知方程组2x-3y=1,3x+5y=12.9的解是x=2.3,y=1.2.请你用较简便的方法解方程组2(a-1)-3(b+2)=1,3(a-1)+5(b+2)=12.9.【解析】如果将方程组2(a-1)-3(b+2)=1,3(a-1)+5(b+2)=12.9中的(a-1)、(b+2)看做是一个整体,那么a-1=x,b+2=y,因为方程组2x-3y=1,3x+5y=12.9的解是x=2.3,y=1.2.所以a-1=2.3,b+2=1.2.这样就可以求出方程组的解了.说明:在平时的数学学习中,经常发现在数学中有一些相类似的概念,可以利用类比法进行学习,类比思想其实就是知识的迁移,就是一类问题的解决方法对另一类问题的影响,在学习的过程中,我们应当注意迁移意识的培养.例8有同学在解方程组22x+27y=4,7x+9y=3时,采用了如下的解法:原方程组化为x+3(7x+9y)=4,①7x+9y=3.②将②代入①得x+3×3=4,所以x=-5,把x=-5代入②求得y=■,所以原方程组的解为x=-5,y=■.请你用这种方法解方程组3x+5y=2,①11x+20y=6.②【解析】方程②可以变形为4(3x+5y)-x=6③,然后把方程①代入方程③,这样就可以达到消去y的目的.说明:数学上的类比思想是指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想.类比思想不仅使数学知识容易理解,而且使知识的记忆变得自然和顺畅,从而可以激发起学习的创造力.五、换元思想例9解方程组4(x+y)-5(x-y)=2,■+■=6.【解析】设x+y=m,x-y=n,则原方程组可变形为关于m、n的方程组4m-5n=2,■+■=6.方程组形式较为简单,可以先求出m、n,再求出x、y.说明:换元法通过用一个字母表示一个整体的方法进行变量的替换,将问题进行转化,从而起到化繁为简、化难为易的目的.。
3.3(2)二元一次方程组的解法(加减消元)及典型例题
m = 1 +2n
1 2 2 5
所以原方程组的解:
m =5 n=2
即m 的值是5,n 的值是4.
7、如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、y 的值. 解:由题意知, y + 3x – 2 = 0 ① 5x + 2y – 2 = 0 ② 由①得:y = 2 – 3x ③ 把③代入② 得: 5x + 2(2 – 3x)- 2 = 0 5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4 -x = -2 即x 的值是2,y 的值是-4. 把x = 2 代入③,得: y= 2 - 3×2 y= -4 所以原方程组的解: ∴ x=2 y = -4
1 3y 2 3y 6
把(3)代人(2)得
5
解法二:由(1)得:3 y=1-2x (3) 把(3)代人(2)得5x-(1-2x)=6 解法三:(1)+(2)得 : 7x=7 x=1
y 1 3
把x=1代入(1)得 2+3y=1
x 1 1 y 3
试 一 试 , 有 谁 能 用 三 种 方 法 解 ?
有相
这样可以通过第一个方程组求出x和y的值,再将 这两个值代入第二个方程,求关于a和b的二元 一次方程组。
9、 关于x、y的方程组 解满足3x+2y=19,求原方程组的解。
解:
的
分别把m=1代入到 x=7m、y=-m中, 得: x=7 ,y=-1 ∴原方程组的解为:
①+②,得: 2x=14m x=7m
6、若方程5x 求m 、n 的值.
m-2n+4y 3n-m =
二元一次方程的解法
二元一次方程的解法•二元一次方程的解:•使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
•二元一次方程有无数个解,除非题目中有特殊条件。
一、消元法•“消元”是解二元一次方程的基本思路。
所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。
这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。
•如:5x+6y=7 2x+3y=4,变为5x+6y=7 4x+6y=8•消元方法:•代入消元法(常用)•加减消元法(常用)•顺序消元法(这种方法不常用)•例:•x-y=3 ①•{•3x-8y=4②•由①得x=y+3③•③代入②得•3(y+3)-8y=4•y=1•所以x=4•则:这个二元一次方程组的解•x=4•{•y=1(一)加减-代入混合使用的方法.例:13x+14y=41 ①{14x+13y=40②②-①得x-y=-1x=y-1 ③把③代入①得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入③得x=1所以:x=1,y=2最后 x=1 ,y=2,解出来特点:两方程相加减,得到单个x或单个y,适用接下来的代入消元。
(二)代入法是二元一次方程的另一种方法,就是说把一个方程带入另一个方程中如:x+y=590y+20=90%x带入后就是:x+90%x-20=590(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式(x+5,y-4),换元后可简化方程。
(三)另类换元例:x:y=1:4①5x+6y=29②令x=t,y=4t方程2可写为:5t+24t=2929t=29t=1所以x=1,y=4二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
二元一次方程组及其解法
二元一次方程组及其解法
二元一次方程组是由两个含有两个未知数的等式组成的方程组,通常的一般式表示为:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f 都是已知数,x、y 都是未知数。
解法有以下几种:
1. 消元法:通过变换方程式将一个未知数消去,再代入另一个方程求解。
2. 代入法:选择其中一个方程,将其中一个未知数表示成另一个未知数的函数,代入另一个方程中求解。
3. 公式法:利用二元一次方程组的公式解法求解。
4. 矩阵法:用矩阵运算的方法求解方程组。
以上四种方法都可以求得二元一次方程组的解,一般解的形式为一个有序二元组 (x, y)。
二元一次方程组知识点归纳及解题技巧汇总
二元一次方程组知识点归纳及解题技巧汇总二元一次方程组知识点归纳及解题技巧汇总1、二元一次方程:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组:把具有相同未知数的两个二元一次方程合在一起。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
5、消元法解二元一次方程组:(1) 基本思路:未知数又多变少。
(2) 消元法的基本方法:将二元一次方程组转化为一元一次方程。
6.解法:通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y ③把③带入②,得6(5-y)+13y=89y=59/7把y=59/7带入③,得x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解加减消元法:例:解方程组x+y=9①x-y=5②解:①+② 2x=14即 x=7把x=7带入①得7+y=9解得y=-2∴x=7y=-2 为方程组的解7. 二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6① 2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。
教科书中没有的几种解法(一)加减-代入混合使用的方法.例1, 13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2, (x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
二元一次方程组解法:消元法
二元一次方程组解法:消元法代入消元法(1)基本思绪:未知数又多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,完成消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的普通步骤:1、从方程组中选出一个系数比拟复杂的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的方式,即〝变〞2、将y=ax+b代入到另一个方程中,消去y,失掉一个关于x的一元一次方程,即〝代〞。
3、解出这个一元一次方程,求出x的值,即〝解〞。
4、把求得的x值代入y=ax+b中求出y的值,即〝回代〞5、把x、y的值用{联立起来即〝联〞加减消元法1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边区分相加或相减,就能消去这个未知数,失掉一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,假设同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即"乘"。
2、把两个方程的两边区分相加或相减,消去一个未知数、失掉一个一元一次方程,即"加减"。
3、解这个一元一次方程,求得一个未煮熟的值,即"解"。
4、将这个求得的未知数的值代入原方程组中恣意一个方程中,求出另一个未知数的值即"回代"。
5、把求得的两个未知数的值用{联立起来,即"联"。
7.2.2二元一次方程组的解法(2)
解:由(1)得2x﹣3y=2 (3), 把(3)代入(2),得 y=4 把y=4代入(3)得: x=7
例4.
2x 7 x
6y 2 18 y 1
① ②
解: ①×3得 6x+18y=-6 ③
② - ③得: x=5 把x=5代入①得:
2×5+6y=-2
y=-2
∴
x
y
5 2
特点: 方程组中没有未知数的系数的 绝对值相等
办法:选一个未知数,用方程变形 的规则⑵,变其系数为绝对 值相等,从而为加减消元法 解方程组创造条件.
87y
3( 2 ) -8y= 10
把 y 4 代入(3)得:
5
x
8
7
4 5
8
28 5
12 5
6
2
2 25
24+21y-16y=20
5y=-4
y4 5
x6
∴
5
y4
5
选一个方程变形为y=?x或x=?y,代入另一个方程,实现消元,进而求得二 元一次方程组的解的方法叫代入消元法, 简称代入法
用加减法解方程组
(5)写解 写出方程组的解
解二元一次方程组的方法选择
x 2y 0 3x 4y 6
5x 3y 2 2x 3y 10
代入法还是加减法
选择的标准: 若有未知数的系数为±1, 用代入法. 否则用加减法.
⑴ 中x的系数为1
例1. 解方程组 x-y=3 3x-8y=14
解:将方程⑴变形,得
选择用代入法.
ቤተ መጻሕፍቲ ባይዱ
6
2
2 25
24+21y-16y=20
5y=-4
y4 5
二元一次方程组的解法技巧
二元一次方程组的解法技巧
二元一次方程组定义
由几个方程组成的一组方程叫做方程组,如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
接下来,一起做道热身题,检测一下自己是否完全理解了二元一次方程组的定义。
下面哪个选项是二元一次方程组呢?向左滑动就能看到答案,做完之后自我验证一下吧!动脑筋前不要偷看哦!
左滑查看答案
怎么样,做对了吗?
二元一次方程组与一元一次方程、三元一次方程组等知识板块关系密切,起着承上启下的作用。
二元一次方程组的重要解题思路是消元,将许多关系式中的若干个元素通过有限次地变换,消去其中的某些元素,从而使问题获得解决。
最为常见的消元方法有代入消元法和加减消元法,除了这两种,二元一次方程组的消元思想还可以延伸出许多解题方法,如消常数法、叠加法、整体代入消元法等等。
这是一道非常简单的例题,学生在拿到题目后,常会想到如下两种消元方法,来解开这个方程组。
在例题中可以看到,通过两种常规的消元方法,问题得到了有效的解决。
接下来,看一下
除了这两种常规方法以外,其他三种方法是如何解开这道题目的。
这五种方法你们都学会了吗?一起来做一
下这道题,检测一下吧!
透过这五种解题方法,我们体验到了
数学的化归思想,而且知道解二元一
次方程组中化归的基本方法——消
元,即把二元化为一元,通过解一元
一次方程达到解二元一次方程组的目
的。
二元一次方程组的解法
解法有如下:
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法
二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.
例: 1)x-y=3 2)3x-8y=4 3)x=y+3 代入得3×(y+3)-8y=4
y=1
所以x=4 这个二元一次方程组的解x=4 y=1
以上就是代入消元法,简称代入法。
利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,是方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫作加减消元法,简称加减法。
例题:(1)3x+2y=7 (2)5x-2y=1
解:消元得:8x=8 x=1 3x+2y=7 3*1+2y=7 2y=4 y=2 x=1 y=2
你看下,明白没?没得话,我再解释!
这里说实在的最主要的还是方法,方法掌握了,类似的问题都能解决了!
希望我的回答对你有帮助,祝你好运!像这样的问题自己多尝试下,下次才会的!
祝你学业进步!。
两个二元一次方程组的解法
两个二元一次方程组的解法解一:代入法对于一个二元一次方程组,可以使用代入法来求解。
代入法的基本思想是将一个方程的某个变量表示成另一个方程中另一个变量的函数,然后将该表达式代入另一个方程,从而得到只含有一个变量的方程,进而求解出该变量的值,最后再将该值代入另一个方程求解出另一个变量的值。
具体的步骤如下:1. 将其中一个方程表示成另一个方程中另一个变量的函数。
假设方程组为:a1x + b1y = c1a2x + b2y = c2我们可以假设第一个方程中的x表示成y的函数,即x = f(y),则代入第二个方程得到:a2f(y) + b2y = c22. 然后将得到的方程化简为只含有一个变量的方程。
将上述方程整理为标准形式:a2f(y) + (b2y - c2) = 0a2f(y) + g(y) = 0其中,g(y) = b2y - c23. 求解得到f(y)的表达式。
将上述方程两边同时除以a2,得到:f(y) + h(y) = 0其中,h(y) = g(y)/a24. 求解得到f(y)的表达式后,将其代入第一个方程,即可得到只含有y的方程:a1f(y) + b1y = c15. 求解得到y的值后,再将该值代入第一个方程,即可得到x的值。
这样,我们就得到了方程组的解。
解二:消元法消元法是另一种常用的求解二元一次方程组的方法。
消元法的基本思想是通过对方程组中的方程进行线性组合,从而消去一个变量,得到只含有另一个变量的方程,然后再通过反向代入求解出另一个变量的值,进而得到方程组的解。
具体的步骤如下:1. 将方程组中的一个方程乘以适当的系数,使得两个方程中的某个变量的系数相等或者互为相反数,从而消去该变量。
假设方程组为: a1x + b1y = c1a2x + b2y = c2如果b1和b2互为相反数,可以直接相加得到只含有x的方程: (a1 + a2)x = c1 + c22. 求解得到x的值。
3. 将求得的x的值代入一个方程中,求解得到y的值。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
二元一次方程组的解法-加减消元法
在解决二元一次方程组时,加减消元法是常用的方法之一。本演示将介绍加 减消元法的基本原理、步骤,以及它的优点和缺点。
何为二元一次方程组
二元一次方程组是由两个未知数(变量)和两个一次项组成的方程组。
加减消元法的基本原理
加减消元法利用两个方程之间的加减运算,消去其中一个未知数的系数,从而简化方程组,使求解更容易。
加减消元法的步骤
1
按照系数选定一个未知数相加减
2
消元
选择两个方程中一个未知数的系数相加
或相减,使其系数成为零。
3
检验解的可行性
4
将求得的解代入原方程组中,检验是否 成立。
列方程组
将二元一次方程组的两个方程写成标准 形式。
消去选择的未知数并求解另一个 未知数
消去已选定的未知数,并通过解方程的 方法求解另一个未知数。
在方程组中,可能会出现特殊符号作为系数的情况,例如pi(π)、无穷大 (∞)、负数等。需要根据具体情况进行处数学和实际问题中,如线性方程组、经济学模型等。
课堂练习
通过加减消元法解以下方程组: 1) 3x + 5y = 11 x + 3y = 5 2) 2x + 7y = 19 4x + 14y = 38 3) 5x + 7y = 17 5x + 9y = 19
加减消元法的优点
1 简单高效
相比其他解法,加减消元 法步骤简单,容易理解和 实施。
2 直观
加减消元法通过消元过程 直观展现方程组的变换, 使解题更加形象具体。
3 适应性强
加减消元法对于较简单和 复杂的二元一次方程组都 适用,广泛应用于数学和 实际问题中。
加减消元法的缺点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二元一次方程组》专题1.整体代入法
2. 换元法
3. 直接加减法
4. 消常数项法
5. 相乘保留法
6. 科学记数法
例6 解方程组⎩⎨⎧=+=.00050022y 250x 500,
y 2x 5
7. 系数化整法
8. 对称法
例8 解方程组⎪⎪⎩⎪⎪⎨⎧=+=+.
127x 5y ,
127y
5x
9. 拆数法
例9 解方程组⎩⎨⎧=+=+.43y 17x 13,
59y 21x 19
10、利用二元一次方程组求字母系数的值
例10、在解方程组278ax by cx y +=⎧⎨-=⎩时,一同学把c 看错而得到22x y =-⎧⎨=⎩,而正确的解是32x y =⎧⎨=-⎩
,求a ,b ,c 的值.
练习:
1、 解方程组51542ax y x by +=⎧⎨-=-⎩时,甲由于看错系数a ,结果解得31
x y =-⎧⎨=-⎩;乙由于看错系数
b ,结果解得54
x y =⎧⎨
=⎩,则原来的a =______,b =______.
三、应用填空1.方程3x+y=8的正整数解是_______.
2、若x +y +z ≠0且k y x z z y x x z y =+=+=+222, 则k =_______.
5.如果2006200520044321=+-+-+n m n m y x 是二元一次方程,那么32n m +的值是 .
6.如果⎩⎨
⎧-==66y x ,⎩⎨⎧=-=6
2y x ,都能使方程1=+b y a x 成立,那么当4=x 时,=y .。